Sample records for waste management toxic

  1. Hazardous and toxic waste management in Botswana: practices and challenges.

    PubMed

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  2. Management of toxic substances and hazardous wastes.

    PubMed

    Niemela, V E

    1984-08-01

    This paper describes the extent of the hazardous and toxic chemical waste problems in Canada and discusses the management, treatment, and disposal methods commonly used in North America and Europe. The treatment and disposal techniques covered are biological, physical-chemical, incineration technologies, and secure land disposal. Some of the available and emerging technologies for destruction of polychlorinated biphenyls are also described.

  3. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seong-Rin; Schoenung, Julie M., E-mail: jmschoenung@ucdavis.ed

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancermore » potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.« less

  4. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities.

    PubMed

    Lim, Seong-Rin; Schoenung, Julie M

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones. 2010 Elsevier Ltd. All rights reserved.

  5. Nanoparticles: their potential toxicity, waste and environmental management.

    PubMed

    Bystrzejewska-Piotrowska, Grazyna; Golimowski, Jerzy; Urban, Pawel L

    2009-09-01

    This literature review discusses specific issues related to handling of waste containing nanomaterials. The aims are (1) to highlight problems related to uncontrolled release of nanoparticles to the environment through waste disposal, and (2) to introduce the topics of nanowaste and nanotoxicology to the waste management community. Many nanoparticles used by industry contain heavy metals, thus toxicity and bioaccumulation of heavy metals contained in nanoparticles may become important environmental issues. Although bioavailability of heavy metals contained in nanoparticles can be lower than those present in soluble form, the toxicity resulting from their intrinsic nature (e.g. their size, shape or density) may be significant. An approach to the treatment of nanowaste requires understanding of all its properties--not only chemical, but also physical and biological. Progress in nanowaste management also requires studies of the environmental impact of the new materials. The authors believe Amara's law is applicable to the impact of nanotechnologies, and society might overestimate the short-term effects of these technologies, while underestimating the long-term effects. It is necessary to have basic information from companies about the level and nature of nanomaterials produced or emitted and about the expectation of the life cycle time of nanoproducts as a basis to estimate the level of nanowaste in the future. Without knowing how companies plan to use and store recycled and nonrecycled nanomaterials, development of regulations is difficult. Tagging of nanoproducts is proposed as a means to facilitate separation and recovery of nanomaterials.

  6. Electronic waste management approaches: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiddee, Peeranart; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095; Naidu, Ravi, E-mail: ravi.naidu@crccare.com

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present inmore » e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.« less

  7. Engineering and Design: Chemical Data Quality Management for Hazardous, Toxic, Radioactive Waste Remedial Activities

    DTIC Science & Technology

    This regulation prescribes Chemical Data Quality Management (CDQM) responsibilities and procedures for projects involving hazardous, toxic and/or radioactive waste (HTRW) materials. Its purpose is to assure that the analytical data meet project data quality objectives. This is the umbrella regulation that defines CDQM activities and integrates all of the other U.S. Army Corps of Engineers (USACE) guidance on environmental data quality management .

  8. The role of health and safety experts in the management of hazardous and toxic wastes in Indonesia

    NASA Astrophysics Data System (ADS)

    Supriyadi; Hadiyanto

    2018-02-01

    Occupational Safety and Health Experts in Indonesia have an important role in integrating environmental health and safety factors, including in this regard as human resources assigned to undertake hazardous waste management. Comprehensive knowledge and competence skills need to be carried out responsibly, as an inherent professional occupational safety and health profession. Management leaders should continue to provide training in external agencies responsible for science in the management of toxic waste to enable occupational safety and health experts to improve their performance in the hierarchy of control over the presence of hazardous materials. This paper provides an overview of what strategies and competencies the Occupational Safety and Health expert needs to have in embracing hazardous waste management practices.

  9. Electronic waste management approaches: an overview.

    PubMed

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H

    2013-05-01

    Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including life cycle assessment (LCA), material flow analysis (MFA), multi criteria analysis (MCA) and extended producer responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...

  11. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...

  12. SEMINAR PUBLICATION: ORGANIC AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The organic chemicals contained in wastes processed during waste management operations can volatilize into the atmosphere and cause toxic or carcinogenic effects or contribute to ozone formation. Because air emissions from waste management operations pose a threat to human health...

  13. Special Report: E-Waste Management in the United States and Public Health Implications.

    PubMed

    Seeberger, Jessica; Grandhi, Radhika; Kim, Stephani S; Mase, William A; Reponen, Tiina; Ho, Shuk-mei; Chen, Aimin

    2016-10-01

    Electronic waste (e-waste) generation is increasing worldwide, and its management becomes a significant challenge because of the many toxicants present in electronic devices. The U.S. is a major producer of e-waste, although its management practice and policy regulation are not sufficient to meet the challenge. We reviewed e-waste generation, current management practices and trends, policy challenges, potential health impact, and toxicant exposure prevention in the U.S. A large amount of toxic metals, flame retardants, and other persistent organic pollutants exist in e-waste or can be released from the disposal of e-waste (e.g., landfill, incineration, recycling). Landfill is still a major method used to dispose of obsolete electronic devices, and only about half of the states have initiated a landfill ban for e-waste. Recycling of e-waste is an increasing trend in the past few years. There is potential, however, for workers to be exposed to a mixture of toxicants in e-waste and these exposures should be curtailed. Perspectives and recommendations are provided regarding managing e-waste in the U.S. to protect public health, including enacting federal legislation, discontinuing landfill disposal, protecting workers in recycling facilities from toxicant exposure, reducing toxicant release into the environment, and raising awareness of this growing environmental health issue among the public.

  14. Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi

    2013-10-01

    Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Potential resource and toxicity impacts from metals in waste electronic devices.

    PubMed

    Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin

    2016-04-01

    As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices. © 2015 SETAC.

  16. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-05

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 40 CFR 62.14431 - What must my waste management plan include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...

  18. 40 CFR 62.14431 - What must my waste management plan include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...

  19. Toxic-Waste Disposal by Drain-in-Furnace Technique

    NASA Technical Reports Server (NTRS)

    Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.

    1986-01-01

    Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls

  20. [Management of hazardous waste in a hospital].

    PubMed

    Neveu C, Alejandra; Matus C, Patricia

    2007-07-01

    An inadequate management of hospital waste, that have toxic, infectious and chemical wastes, is a risk factor for humans and environment. To identify, quantify and assess the risk associated to the management of hospital residues. A cross sectional assessment of the generation of hazardous waste from a hospital, between June and August 2005, was performed. The environmental risk associated to the management of non-radioactive hospital waste was assessed and the main problems related to solid waste were identified. The rate of generation of hazardous non-radioactive waste was 1.35 tons per months or 0.7 kg/bed/day. Twenty five percent of hazardous liquid waste were drained directly to the sewage system. The drug preparation unit of the pharmacy had the higher environmental risk associated to the generation of hazardous waste. The internal transport of hazardous waste had a high risk due to the lack of trip planning. The lack of training of personnel dealing with these waste was another risk factor. Considering that an adequate management of hospital waste should minimize risks for patients, the hospital that was evaluated lacks an integral management system for its waste.

  1. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Leaching characteristics, ecotoxicity, and risk assessment based management of mine wastes

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ju, W. J.; Jho, E. H.; Nam, K.; Hong, J. K.

    2016-12-01

    Mine wastes generated during mining activities in metal mines generally contain high concentrations of metals that may impose toxic effects to surrounding environment. Thus, it is necessary to properly assess the mining-impacted landscapes for management. The study investigated leaching characteristics, potential environmental effects, and human health risk of mine wastes from three different metal mines in South Korea (molybdenum mine, lead-zinc mine, and magnetite mine). The heavy metal concentrations in the leachates obtained by using the Korean Standard Test Method for Solid Wastes (STM), Toxicity Characteristics Leaching Procedure (TCLP), and Synthetic Precipitation Leaching Procedure (SPLP) met the Korea Waste Control Act and the USEPA region 3 regulatory levels accordingly, even though the mine wastes contained high concentrations of metals. Assuming that the leachates may get into nearby water sources, the leachate toxicity was tested using Daphnia Magna. The toxic unit (TU) values after 24 h and 48 h exposure of all the mine wastes tested met the Korea Allowable Effluent Water Quality Standards (TU<1). The column leaching test showed that the lead-zinc mine waste may have long-term toxic effects (TU>1 for the eluent at L/S of 30) implying that the long-term effect of mine wastes left in mining areas need to be assessed. Considering reuse of mine wastes as a way of managing mine wastes, the human health risk assessment of reusing the lead-zinc mine waste in industrial areas was carried out using the bioavailable fraction of the heavy metals contained in the mine wastes, which was determined by using the Solubility/Bioavailability Research Consortium method. There may be potential carcinogenic risk (9.7E-05) and non-carcinogenic risk (HI, Hazard Index of 1.0E+00) as CR≧1.0E-05 has carcinogenic risk and HI≧1.0E+00 has non-carcinogenic risk. Overall, this study shows that not only the concentration-based assessment but ecological toxic effect and human

  3. Biomedical waste management: incineration vs. environmental safety.

    PubMed

    Gautam, V; Thapar, R; Sharma, M

    2010-01-01

    Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  4. Healthcare waste management in Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prem Ananth, A.; Prashanthini, V.; Visvanathan, C., E-mail: visu@ait.ac.t

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper placesmore » recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.« less

  5. Healthcare waste management in Asia.

    PubMed

    Ananth, A Prem; Prashanthini, V; Visvanathan, C

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  6. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldrin, Alessio, E-mail: aleb@env.dtu.dk; Andersen, Jacob K.; Christensen, Thomas H.

    2011-07-15

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg{sup -1} ww for the non-toxic categoriesmore » and up to 100 mPE Mg{sup -1} ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.« less

  7. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark.

    PubMed

    Boldrin, Alessio; Andersen, Jacob K; Christensen, Thomas H

    2011-07-01

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg(-1) ww for the non-toxic categories and up to 100 mPE Mg(-1) ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. TOXICITY APPROACHES TO ASSESSING MINING IMPACTS AND MINE WASTE TREATMENT EFFECTIVENESS

    EPA Science Inventory

    The USEPA Office of Research and Development's National Exposure Research Laboratory and National Risk Management Research Laboratory have been evaluating the impact of mining sites on receiving streams and the effectiveness of waste treatment technologies in removing toxicity fo...

  9. Waste to energy – key element for sustainable waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together withmore » prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.« less

  10. Genetic engineering approach to toxic waste management: case study for organophosphate waste treatment.

    PubMed

    Coppella, S J; DelaCruz, N; Payne, G F; Pogell, B M; Speedie, M K; Karns, J S; Sybert, E M; Connor, M A

    1990-01-01

    Currently, there has been limited use of genetic engineering for waste treatment. In this work, we are developing a procedure for the in situ treatment of toxic organophosphate wastes using the enzyme parathion hydrolase. Since this strategy is based on the use of an enzyme and not viable microorganisms, recombinant DNA technology could be used without the problems associated with releasing genetically altered microorganisms into the environment. The gene coding for parathion hydrolase was cloned into a Streptomyces lividans, and this transformed bacterium was observed to express and excrete this enzyme. Subsequently, fermentation conditions were developed to enhance enzyme production, and this fermentation was scaled-up to the pilot scale. The cell-free culture fluid (i.e., a nonpurified enzyme solution) was observed to be capable of effectively hydrolyzing organophosphate compounds under laboratory and simulated in situ conditions.

  11. 40 CFR 268.38 - Waste specific prohibitions-newly identified organic toxicity characteristic wastes and newly...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... identified organic toxicity characteristic wastes and newly listed coke by-product and chlorotoluene... specific prohibitions—newly identified organic toxicity characteristic wastes and newly listed coke by-product and chlorotoluene production wastes. (a) Effective December 19, 1994, the wastes specified in 40...

  12. ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANAGEMENT OPTIONS

    EPA Science Inventory

    Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. hese management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. n choosing the best possible management...

  13. Toxic-Waste Disposal by Combustion in Containers

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Stephens, J. B.; Moynihan, P. I.; Compton, L. E.; Kalvinskas, J. J.

    1986-01-01

    Chemical wastes burned with minimal handling in storage containers. Technique for disposing of chemical munitions by burning them inside shells applies to disposal of toxic materials stored in drums. Fast, economical procedure overcomes heat-transfer limitations of conventional furnace designs by providing direct contact of oxygenrich combustion gases with toxic agent. No need to handle waste material, and container also decontaminated in process. Oxygen-rich torch flame cuts burster well and causes vaporization and combustion of toxic agent contained in shell.

  14. The Problem with Toxic Wastes.

    ERIC Educational Resources Information Center

    Beecher, John L.; Fossa, Arthur J.

    1980-01-01

    Traced is the historical development of toxic waste problems in western New York State from 1825 to the present. Three major data sources are described: Industrial Chemical Survey, Inventory of Industrial Waste Generation Study, and the Interagency Task Force Study, developed by the Department of Environmental Conservation to prevent future…

  15. Toxic Wastes: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    It is common to think of toxic wastes as chemical poisons like lead, mercury, or radioactive waste. Poisonous as these substances may be, there is another class of toxic wastes that are far more poisonous. These are the wastes produced by living bacteria and viruses. This booklet considers three aspects of toxic wastes: time, space, and spirit.…

  16. WHO collaboration in hazardous waste management in the Western Pacific Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Hisashi

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects ofmore » WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.« less

  17. Environmental management of industrial hazardous wastes in India.

    PubMed

    Dutta, Shantanu K; Upadhyay, V P; Sridharan, U

    2006-04-01

    Hazardous wastes are considered highly toxic and therefore disposal of such wastes needs proper attention so as to reduce possible environmental hazards. Industrial growth has resulted in generation of huge volume of hazardous wastes in the country. In addition to this, hazardous wastes sometimes get imported mainly from the western countries for re-processing or recycling. Inventorisation of hazardous wastes generating units in the country is not yet completed. Scientific disposal of hazardous wastes has become a major environmental issue in India. Hazardous Wastes (Management and Handling) Rules, 1989 have been framed by the Central Government and amended in 2000 and 2003 to deal with the hazardous wastes related environmental problems that may arise in the near future. This paper gives details about the hazardous wastes management in India. Health effects of the selected hazardous substances are also discussed in the paper.

  18. Minimization and management of wastes from biomedical research.

    PubMed Central

    Rau, E H; Alaimo, R J; Ashbrook, P C; Austin, S M; Borenstein, N; Evans, M R; French, H M; Gilpin, R W; Hughes, J; Hummel, S J; Jacobsohn, A P; Lee, C Y; Merkle, S; Radzinski, T; Sloane, R; Wagner, K D; Weaner, L E

    2000-01-01

    Several committees were established by the National Association of Physicians for the Environment to investigate and report on various topics at the National Leadership Conference on Biomedical Research and the Environment held at the 1--2 November 1999 at the National Institutes of Health in Bethesda, Maryland. This is the report of the Committee on Minimization and Management of Wastes from Biomedical Research. Biomedical research facilities contribute a small fraction of the total amount of wastes generated in the United States, and the rate of generation appears to be decreasing. Significant reductions in generation of hazardous, radioactive, and mixed wastes have recently been reported, even at facilities with rapidly expanding research programs. Changes in the focus of research, improvements in laboratory techniques, and greater emphasis on waste minimization (volume and toxicity reduction) explain the declining trend in generation. The potential for uncontrolled releases of wastes from biomedical research facilities and adverse impacts on the general environment from these wastes appears to be low. Wastes are subject to numerous regulatory requirements and are contained and managed in a manner protective of the environment. Most biohazardous agents, chemicals, and radionuclides that find significant use in research are not likely to be persistent, bioaccumulative, or toxic if they are released. Today, the primary motivations for the ongoing efforts by facilities to improve minimization and management of wastes are regulatory compliance and avoidance of the high disposal costs and liabilities associated with generation of regulated wastes. The committee concluded that there was no evidence suggesting that the anticipated increases in biomedical research will significantly increase generation of hazardous wastes or have adverse impacts on the general environment. This conclusion assumes the positive, countervailing trends of enhanced pollution prevention

  19. Warehouse hazardous and toxic waste design in Karingau Balikpapan

    NASA Astrophysics Data System (ADS)

    Pratama, Bayu Rendy; Kencanawati, Martheana

    2017-11-01

    PT. Balikpapan Environmental Services (PT. BES) is company that having core business in Hazardous and Toxic Waste Management Services which consisting storage and transporter at Balikpapan. This research starting with data collection such as type of waste, quantity of waste, dimension area of existing building, waste packaging (Drum, IBC tank, Wooden Box, & Bulk Bag). Processing data that will be done are redesign for warehouse dimension and layout of position waste, specify of capacity, specify of quantity, type and detector placement, specify of quantity, type and fire extinguishers position which refers to Bapedal Regulation No. 01 In 1995, SNI 03-3985-2000, Employee Minister Regulation RI No. Per-04/Men/1980. Based on research that already done, founded the design for warehouse dimension of waste is 23 m × 22 m × 5 m with waste layout position appropriate with type of waste. The necessary of quantity for detector on this waste warehouse design are 56 each. The type of fire extinguisher that appropriate with this design is dry powder which containing natrium carbonate, alkali salts, with having each weight of 12 Kg about 18 units.

  20. The evidence of toxic wastes dumping in Campania, Italy.

    PubMed

    Marfe, Gabriella; Di Stefano, Carla

    2016-09-01

    The region of Campania (particularly Naples and Caserta) were subjected to extensive illegal dumping operations of toxic and radioactive wastes since the 1980s. The highly toxic wastes (HTW) dumping operations that have taken place both along the coast and the hinterland, have extremely adverse effects on health, livelihoods and the future prospect of sustainable development of the local population. The toxic wastes dumping in Campania is real and it has compromised (irreversibly) the human health, natural environment, food security and the long-term development prospects of the affected population. To reverse this tragic trend, it is necessery the identification, isolation and reclamation of the polluted sites and full assessment of the nature and the scale of the polluting chemicals and other hazardous wastes. The purpose of this review is to contribute significantly to the available evidence of the long-running toxic waste dumping in Campania and its negative impact on the health of population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. LISREL Model Medical Solid Infectious Waste Hazardous Hospital Management In Medan City

    NASA Astrophysics Data System (ADS)

    Simarmata, Verawaty; Siahaan, Ungkap; Pandia, Setiaty; Mawengkang, Herman

    2018-01-01

    Hazardous and toxic waste resulting from activities at most hospitals contain various elements of medical solid waste ranging from heavy metals that have the nature of accumulative toxic which are harmful to human health. Medical waste in the form of gas, liquid or solid generally include the category or the nature of the hazard and toxicity waste. The operational in activities of the hospital aims to improve the health and well-being, but it also produces waste as an environmental pollutant waters, soil and gas. From the description of the background of the above in mind that the management of solid waste pollution control medical hospital, is one of the fundamental problems in the city of Medan and application supervision is the main business licensing and control alternatives in accordance with applicable regulations.

  2. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    EPA Science Inventory

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  3. Toxic Overload: The Waste Disposal Dilemma.

    ERIC Educational Resources Information Center

    Knox, Robert J.

    1991-01-01

    The role of the Environmental Protection Agency as ombudsman concerning waste disposal is examined with respect to both the current options of source reduction and recycling as pollution prevention, and alternative approaches that expand upon these current options, particularly with respect to toxic and medical waste. (JJK)

  4. Health care waste management practice in a hospital.

    PubMed

    Paudel, R; Pradhan, B

    2010-10-01

    Health-care waste is a by-product of health care. Its poor management exposes health-care workers, waste handlers and the community to infections, toxic effects and injuries including damage of the environment. It also creates opportunities for the collection of disposable medical equipment, its re-sale and potential re-use without sterilization, which causes an important burden of disease worldwide. The purpose of this study was to find out health care waste management practice in hospital. A cross-sectional study was conducted in Narayani Sub-Regional Hospital, Birgunj from May to October 2006 using both qualitative and quantitative methods. Study population was four different departments of the hospital (Medical/Paediatric, Surgical/Ortho, Gynae/Obstetric and Emergency), Medical Superintendent, In-charges of four different departments and all sweepers. Data was collected using interview, group discussion, observation and measurement by weight and volume. Total health-care waste generated was 128.4 kg per day while 0.8 kg per patient per day. The composition of health care waste was found to be 96.8 kg (75.4%) general waste, 24.1 kg (8.8%) hazardous waste and 7.5 kg (5.8%) sharps per day by weight. Health staffs and sweepers were not practicing the waste segregation. Occupational health and safety was not given due attention. Majority of the sweepers were unaware of waste management and need of safety measures to protect their own health. Health care waste management practice in the hospital was unsatisfactory because of the lack of waste management plan and carelessness of patients, visitors and staffs. Therefore the hospital should develop the waste management plan and strictly follow the National Health Care Waste Management Guideline.

  5. The politics of toxic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahm, D.

    1998-12-31

    Toxic waste, and the public policy that deals with it, is a complex issue. Much of the complexity stems from the science and technology embedded in the topic, but a great deal also results from the intricate interactions between the social organizations and institutions involved. The politics of toxic waste plays out within three key aspects of this complexity. The first of these is the nature of the intergovernmental relations involved. For toxic waste issues, these intergovernmental relations can be between sovereign states or between a nation and an international governing organization, or they may be restricted to a domesticmore » context. If the later is the case, the relationship can be between federal, state, and local governments or between different bureaus, departments, or agencies within the same level of government. A second feature of this complexity can be seen in the consequences of divergent organizational or institutional interests. When conflicting organizational or institutional perspectives, positions, or concerns arise, public policy outcomes are affected.The tug and pull of competing actors move policy in the direction favored by the winner. This may or may not be the most rational alternative. A third aspect of this interorganizational puzzle involves the question of where the locus of authority for decisionmaking resides and to what extent stakeholders, who do not possess direct authority, can influence policy outcomes.« less

  6. Environmental health risks of toxic waste site exposures--an epidemiological perspective.

    PubMed

    von Schirnding, Y E; Ehrlich, R I

    1992-06-06

    A general account is given of the problems of assessing the impact of human exposure to toxic waste sites, including the identification of truly exposed populations and of exposure pathways. Epidemiological studies of populations at risk are briefly reviewed and methodological problems summarised. These include the use of relatively weak study designs, inadequate exposure assessment and recall biases associated with symptom reporting among anxious residents living in the vicinity of waste sites. In South Africa, health risks associated with exposure to toxic waste sites need to be viewed in the context of current community health concerns, competing causes of disease and ill-health, and the relative lack of knowledge about environmental contamination and associated health effects. A nonspecific deterioration of health and well-being is more likely to result from waste site exposures than is overt clinical disease. Socially acceptable policies and controls may have to be based on criteria other than demonstrable ill-health. Detailed inventories and registries of the nature of disposed materials need to be maintained, sites of poorly controlled disposal in the past identified and selective environmental monitoring conducted. Epidemiological studies may be justified in situations where exposures well in excess of acceptable norms are demonstrated. An integrated national waste management policy for the country is urgently needed.

  7. Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran.

    PubMed

    Momeni, Habibe; Tabatabaei Fard, Seyyedeh Fatemeh; Arefinejad, Aliye; Afzali, Afsane; Talebi, Farkhonde; Rahmanpour Salmani, Elham

    2018-01-01

    The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as "hazardous waste." To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year) and toxic waste had the lowest quantity (9.275 kg/year). Components with the highest amounts in dentistry waste products were nylon gloves (16.7%), paper and cardboard (13.4%), latex gloves (10.8%), and pharmaceuticals (10.2%). Waste separation was restricted to sharp and cutting waste. More than half (57%) of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.

  8. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less

  9. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  10. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  11. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  12. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  13. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  14. Life cycle assessment of capital goods in waste management systems.

    PubMed

    Brogaard, Line K; Christensen, Thomas H

    2016-10-01

    The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m(3) collection truck, a composting plant, an anaerobic digestion plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation, Human Health: 2-91%, Photochemical Ozone Formation: 2-56%, Freshwater Eutrophication: 0.05-99%, Marine Eutrophication: 0.03-8%, Terrestrial Acidification: 2-13%, Terrestrial Eutrophication: 1-8%, Particulate Matter: 11-26%, Human Toxicity, Cancer Effect: 10-92%, Human Toxicity, non-Cancer Effect: 1-71%, Freshwater Ecotoxicity: 3-58%. Depletion of Abiotic Resources - Fossil: 1-31% and Depletion of Abiotic Resources - Elements (Reserve base): 74-99%. The single most important contribution by capital goods was made by the high use of steel. Environmental impacts from capital goods are more significant for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sydney tar ponds: some problems in quantifying toxic waste.

    PubMed

    Furimsky, Edward

    2002-12-01

    Information on the type and amount of hazardous and toxic waste is required to develop a meaningful strategy and estimate a realistic cost for clean up of the Sydney Tar Pond site which is located on Cape Breton, in the province of Nova Scotia, Canada. The site covers the area of the decommissioned Sysco (Sydney Steel Corporation) plant. The materials of concern include BTEX (benzene, toluene, ethylbenzene, and xylenes), PAH (polycyclic aromatic hydrocarbons), PCB (polychlorinated biphenyl), and particulates laden with toxic metals, such as arsenic, lead, and others. The originally nontoxic materials such as soil, blast furnace slag, and vegetation, as well as surface and ground waters, which were subsequently contaminated, must also be included if they fail tests prescribed by environmental regulations. An extensive sampling program must be undertaken to obtain data for an accurate estimate of the waste to be cleaned and disposed of. Apparently, 700,000 tons of toxic waste, which is believed to be present on the site, may represent only a fraction of the actual amount. The clean-up of the site is only part of the solution. Toxic waste has to be disposed of in accordance with environmental regulations.

  16. Are MUPs a Toxic Waste Disposal System?

    PubMed

    Kwak, Jae; Strasser, Eva; Luzynski, Ken; Thoß, Michaela; Penn, Dustin J

    2016-01-01

    Male house mice produce large quantities of major urinary proteins (MUPs), which function to bind and transport volatile pheromones, though they may also function as scavengers that bind and excrete toxic compounds ('toxic waste hypothesis'). In this study, we demonstrate the presence of an industrial chemical, 2,4-di-tert-butylphenol (DTBP), in the urine of wild-derived house mice (Mus musculus musculus). Addition of guanidine hydrochloride to male and female urine resulted in an increased release of DTBP. This increase was only observed in the high molecular weight fractions (HMWF; > 3 kDa) separated from male or female urine, suggesting that the increased release of DTBP was likely due to the denaturation of MUPs and the subsequent release of MUP-bound DTBP. Furthermore, when DTBP was added to a HMWF isolated from male urine, an increase in 2-sec-butyl-4,5-dihydrothiazole (SBT), the major ligand of MUPs and a male-specific pheromone, was observed, indicating that DTBP was bound to MUPs and displaced SBT. These results suggest that DTBP is a MUP ligand. Moreover, we found evidence for competitive ligand binding between DTBP and SBT, suggesting that males potentially face a tradeoff between eliminating toxic wastes versus transporting pheromones. Our findings support the hypothesis that MUPs bind and eliminate toxic wastes, which may provide the most important fitness benefits of excreting large quantities of these proteins.

  17. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management.

    PubMed

    Basu, Kingshuk; Nandi, Nibedita; Mondal, Biplab; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2017-12-06

    A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g. n -hexane, n -octane, petroleum ether, petrol, diesel, aromatic solvents like chlorobenzene, toluene, benzene, o -xylene and even aqueous phosphate buffer of pH 7.5. These gels have been thoroughly characterized using various techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, small angle X-ray scattering and rheological experiments. Interestingly, hydrogel obtained from the gelator molecule has been found to absorb toxic organic dyes (both cationic and anionic dyes) from dye-contaminated water. The gelator molecule can be reused for several cycles, indicating its possible future use in waste water management. Moreover, this gelator can selectively gel petrol, diesel, pump oil from an oil-water mixture in the presence of a carrier solvent, ethyl acetate, suggesting its efficient application for oil spill recovery. These results indicate that the peptide-based ambidextrous gelator produces soft materials (gels) with dual function: (i) removal of toxic organic dyes in waste water treatment and (ii) oil spill recovery.

  18. 40 CFR 268.38 - Waste specific prohibitions-newly identified organic toxicity characteristic wastes and newly...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... identified organic toxicity characteristic wastes and newly listed coke by-product and chlorotoluene... specific prohibitions—newly identified organic toxicity characteristic wastes and newly listed coke by... numbers F037, F038, K107-K112, K117, K118, K123-K126, K131, K132, K136, U328, U353, U359, and soil and...

  19. 40 CFR 268.38 - Waste specific prohibitions-newly identified organic toxicity characteristic wastes and newly...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... identified organic toxicity characteristic wastes and newly listed coke by-product and chlorotoluene... specific prohibitions—newly identified organic toxicity characteristic wastes and newly listed coke by... numbers F037, F038, K107-K112, K117, K118, K123-K126, K131, K132, K136, U328, U353, U359, and soil and...

  20. 40 CFR 268.38 - Waste specific prohibitions-newly identified organic toxicity characteristic wastes and newly...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... identified organic toxicity characteristic wastes and newly listed coke by-product and chlorotoluene... specific prohibitions—newly identified organic toxicity characteristic wastes and newly listed coke by... numbers F037, F038, K107-K112, K117, K118, K123-K126, K131, K132, K136, U328, U353, U359, and soil and...

  1. 40 CFR 268.38 - Waste specific prohibitions-newly identified organic toxicity characteristic wastes and newly...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identified organic toxicity characteristic wastes and newly listed coke by-product and chlorotoluene... specific prohibitions—newly identified organic toxicity characteristic wastes and newly listed coke by... numbers F037, F038, K107-K112, K117, K118, K123-K126, K131, K132, K136, U328, U353, U359, and soil and...

  2. Occupational exposure to municipal solid wastes and development of toxic neuropathies: possible role of nutrient supplementation, complementary and alternative medicines in chemoprevention.

    PubMed

    Ekor, Martins; Odewabi, Adesina O

    2014-09-01

    Achieving effective municipal solid waste (MSW) management remains a major challenge and waste generation and accumulation continue to constitute important environmental and public health concern, particularly in most developing countries. Although the general population is at risk of adverse health consequences and hazards associated with exposure to MSW, the waste management workers (WMWs) are the most vulnerable because of their direct involvement in the disposal of waste, with increasing evidence of work-related health and safety risks among these individuals. Among the numerous work-related health hazards prevalent in WMWs, development of toxic neuropathies following chronic occupational exposure remains poorly recognized. However, the risk or predisposition to toxic neuropathies is becoming evident considering the increasing recognition of large amount of neurotoxic heavy metals and hazardous industrial materials present in MSW in most parts of the world. The present review seeks to draw attention to the continuous vulnerability of the WMWs to developing toxic neuropathies. This is aimed at facilitating conscious efforts by relevant governmental and nongovernmental agencies towards promoting risk reduction and ensuring adequate protection against possible toxic polyneuropathies associated with occupational exposure to solid wastes. While continuous education of the WMWs on the need for adequate compliance to safety regulations and practice remains sacrosanct towards achieving significant reduction in toxic neuropathies and related adverse health consequences of waste handling, it is also our intention in this review to underscore the possible relevance of nutrient supplementation and alternative medicines in chemoprevention.

  3. Assessment of toxic metals in waste personal computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolias, Konstantinos; Hahladakis, John N., E-mail: john_chach@yahoo.gr; Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.gr

    Highlights: • Waste personal computers were collected and dismantled in their main parts. • Motherboards, monitors and plastic housing were examined in their metal content. • Concentrations measured were compared to the RoHS Directive, 2002/95/EC. • Pb in motherboards and funnel glass of devices released <2006 was above the limit. • Waste personal computers need to be recycled and environmentally sound managed. - Abstract: Considering the enormous production of waste personal computers nowadays, it is obvious that the study of their composition is necessary in order to regulate their management and prevent any environmental contamination caused by their inappropriate disposal.more » This study aimed at determining the toxic metals content of motherboards (printed circuit boards), monitor glass and monitor plastic housing of two Cathode Ray Tube (CRT) monitors, three Liquid Crystal Display (LCD) monitors, one LCD touch screen monitor and six motherboards, all of which were discarded. In addition, concentrations of chromium (Cr), cadmium (Cd), lead (Pb) and mercury (Hg) were compared with the respective limits set by the RoHS 2002/95/EC Directive, that was recently renewed by the 2012/19/EU recast, in order to verify manufacturers’ compliance with the regulation. The research included disassembly, pulverization, digestion and chemical analyses of all the aforementioned devices. The toxic metals content of all samples was determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The results demonstrated that concentrations of Pb in motherboards and funnel glass of devices with release dates before 2006, that is when the RoHS Directive came into force, exceeded the permissible limit. In general, except from Pb, higher metal concentrations were detected in motherboards in comparison with plastic housing and glass samples. Finally, the results of this work were encouraging, since concentrations of metals referred in the RoHS Directive were

  4. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    PubMed

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All

  5. A toxicity reduction evaluation for an oily waste treatment plant exhibiting episodic effluent toxicity.

    PubMed

    Erten-Unal, M; Gelderloos, A B; Hughes, J S

    1998-07-30

    A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.

  6. Evolution of electronic waste toxicity: Trends in innovation and regulation.

    PubMed

    Chen, Mengjun; Ogunseitan, Oladele A; Wang, Jianbo; Chen, Haiyan; Wang, Bin; Chen, Shu

    2016-01-01

    Rapid innovation in printed circuit board, and the uncertainties surrounding quantification of the human and environmental health impacts of e-waste disposal have made it difficult to confirm the influence of evolving e-waste management strategies and regulatory policies on materials. To assess these influences, we analyzed hazardous chemicals in a market-representative set of Waste printed circuit boards (WPCBs, 1996-2010). We used standard leaching tests to characterize hazard potential and USEtox® to project impacts on human health and ecosystem. The results demonstrate that command-and-control regulations have had minimal impacts on WPCBs composition and toxicity risks; whereas technological innovation may have been influenced more by resource conservation, including a declining trend in the use of precious metals such as gold. WPCBs remain classified as hazardous under U.S. and California laws because of excessive toxic metals. Lead poses the most significant risk for cancers; zinc for non-cancer diseases; copper had the largest potential impact on ecosystem quality. Among organics, acenaphthylene, the largest risk for cancers; naphthalene for non-cancer diseases; pyrene has the highest potential for ecotoxicological impacts. These findings support the need for stronger enforcement of international policies and technology innovation to implement the strategy of design-for-the-environment and to encourage recovery, recycling, and reuse of WPCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Dental solid waste characterization and management in Iran: a case study of Sistan and Baluchestan Province.

    PubMed

    Bazrafshan, Edris; Mohammadi, Leili; Mostafapour, Ferdos Kord; Moghaddam, Alireza Ansari

    2014-02-01

    The management of dental solid waste continues to be a major challenge, particularly in most healthcare facilities of the developing world. In Iran, few studies on management of dental solid waste and its composition are available. An effort has been made through this study to evaluate the hazardous and infectious status of dental solid waste, keeping in mind its possible role in cross-infection chain. For this study, 123 private dental centres and 36 public dental centres were selected and the composition and generation rate of dental solid waste produced were measured. Dental solid waste was classified to four main categories: (i) domestic-type; (ii) potentially infectious; (iii) chemical and pharmaceutical; and (iv) toxic, which constituted 11.7, 80.3, 6.3, and 1.7%, respectively, of the total. Also, the results indicated that the dental solid waste per patient per day generation rate for total, domestic-type, potentially infectious, chemical and pharmaceutical, and toxic wastes were 169.9, 8.6, 153.3, 11.2, and 3.3 g/patient/d, respectively. Furthermore, the per day generation rates for total, domestic-type, potentially infectious, chemical and pharmaceutical, and toxic wastes were 194.5, 22.6, 156.1, 12.3, and 3.4 kg/d, respectively. According to findings of this study, for best management of dental waste it is suggested that source reduction, separation, reuse, and recycling programmes be implemented and each section of dental waste be collected and disposed of separately and in accordance with related criteria.

  8. Sustainable waste management in the UK: the public health role.

    PubMed

    Mohan, R; Spiby, J; Leonardi, G S; Robins, A; Jefferis, S

    2006-10-01

    This paper discusses waste management in the UK and its relationship with health. It aims to outline the role of health professionals in the promotion of waste management, and argues for a change in their role in waste management regulation to help make the process more sustainable. The most common definition of sustainable development is that by the Brundtland commission, i.e. "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Managing waste sites in a manner that minimises toxic impacts on the current and future generations is obviously a crucial part of this. Although the management of waste facilities is extremely complex, the Integrated Pollution Prevention and Control regime, which requires the input of public health professionals on the regulation of such sites, means that all waste management installations should now be operating in a fashion that minimises any toxicological risks to human health. However, the impacts upon climate change, resource use and health inequalities, as well as the effects of waste transportation, are currently not considered to be part of public health professionals' responsibilities when dealing with these sites. There is also no requirement for public health professionals to become involved in waste management planning issues. The fact that public health professionals are not involved in any of these issues makes it unlikely that the potential impacts upon health are being considered fully, and even more unlikely that waste management will become more sustainable. This paper aims to show that by only considering direct toxicological impacts, public health professionals are not fully addressing all the health issues and are not contributing towards sustainability. There is a need for a change in the way that health professionals deal with waste management issues.

  9. [Wet oxidation of toxic industrial waste with oxygenated water].

    PubMed

    Alfieri, M; Colombo, G; Velotti, R

    1991-01-01

    The industrial toxic waste streams hot treatment technology with hydrogen peroxide and catalysts, developed by the research laboratories of Montefluos in Bollate, allows the abatement of many organic and bio-toxic pollutants. Some treatment examples are here reported. The examples, performed on a laboratory scale, relate to industrial waste streams with a high COD (100000-200000 mg/l) in which it was possible to obtain an abatement over the 90% of pollutants like phenols, formaldehyde, dimethylformamide and phenyl acetate. The application range of this technology is similar to that of oxygen or air wet oxidation, but it has remarkable advantages due to the lower plant, maintenance and energy costs, because the treatment is performed using much more bland conditions (atmospheric pressure and 90-100 degrees C of temperature). The aim of the bio-toxic pollutants abatement and COD reduction (70-80%) is to allow the final bio-digestion waste streams with high organic content, but too diluted to be directly incenerated at a suitable cost.

  10. Grand rounds: an outbreak of toxic hepatitis among industrial waste disposal workers.

    PubMed

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2007-01-01

    Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction-type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers' health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent.

  11. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    NASA Astrophysics Data System (ADS)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  13. Application of Life Cycle Assessment on Electronic Waste Management: A Review.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  14. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1991-09-10

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

  15. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    1991-01-01

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.

  16. Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    PubMed Central

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2007-01-01

    Context Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Case presentation Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. Discussion Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction–type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. Relevance to clinical or professional practice In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers’ health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent. PMID:17366828

  17. Toxicity assessment of carbon black waste: A by-product from oil refineries.

    PubMed

    Zhen, Xu; Ng, Wei Cheng; Fendy; Tong, Yen Wah; Dai, Yanjun; Neoh, Koon Gee; Wang, Chi-Hwa

    2017-01-05

    In Singapore, approximately 30t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with increasing waste concentration. Results from reactive oxygen species (ROS) assay indicated that carbon black waste extract induced oxidative stress by increasing intracellular ROS generation in these three human cell lines. Moreover, induction of oxidative damage in these cells was also observed through the alteration of glutathione (GSH) and superoxide dismutase (SOD) activities. Last but not least, by treating the cells with V-spiked solution of concentration equivalent to that found in the

  18. [Environmental toxicity of waste foundry sand].

    PubMed

    Zhang, Hai-Feng; Wang, Yu-Jue; Wang, Jin-Lin; Huang, Tian-You; Xiong, Ying

    2013-03-01

    The metal leaching characteristics and volatile organic compounds (VOCs) of five different types of waste foundry sands were analyzed with the toxicity characteristic leaching procedure (TCLP) and head space-gas chromatography (HS-GC). Microtox and soil dehydrogenase activity (DHA) tests were then used to evaluate the bio-effects of these waste sands. The results showed that due to the different metals poured and casting materials used to make the sand molds, there was significant difference among the five waste foundry sands in the compositions and concentrations of metal and organic pollutants. The concentrations of Fe in the leachates of iron and steel casting waste foundry sand exceeded the maximal allowable concentrations specified in the National Standard of Drinking Water Quality, whereas the As concentration in the leachate of aluminum casting waste foundry sand exceeded the standard. The five waste foundry sands had quite different compositions and levels of VOCs, which resulted in different levels of inhibition effects on the luminescent bacteria (30% and 95%). Additionally, the soil DHA tests suggested that metal pollutants in waste foundry sands may inhibit the soil microbial activity, whereas organics in the sands may slightly promote the microbial activity. The results of this study indicated that the waste foundry sands may pose considerable threat to the environment when improperly disposed.

  19. Waste management system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Jorgensen, G. K.

    1975-01-01

    The function of the waste management system was to control the disposition of solid and liquid wastes and waste stowage gases. The waste management system consisting of a urine subsystem and a fecal subsystem is described in detail and its overall performance is evaluated. Recommendations for improvement are given.

  20. Safe Management of Waste Generated during Shale Gas Operations

    NASA Astrophysics Data System (ADS)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  1. Innovating e-waste management: From macroscopic to microscopic scales.

    PubMed

    Zeng, Xianlai; Yang, Congren; Chiang, Joseph F; Li, Jinhui

    2017-01-01

    Waste electrical and electronic equipment (WEEE or e-waste) has become a global problem, due to its potential environmental pollution and human health risk, and its containing valuable resources (e.g., metals, plastics). Recycling for e-waste will be a necessity, not only to address the shortage of mineral resources for electronics industry, but also to decline environmental pollution and human health risk. To systematically solve the e-waste problem, more attention of e-waste management should transfer from macroscopic to microscopic scales. E-waste processing technology should be significantly improved to diminish and even avoid toxic substance entering into downstream of material. The regulation or policy related to new production of hazardous substances in recycled materials should also be carried out on the agenda. All the findings can hopefully improve WEEE legislation for regulated countries and non-regulated countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985

    USGS Publications Warehouse

    Ragone, S.E.

    1986-01-01

    In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program ?? 1986 Springer-Verlag New York Inc.

  3. U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985

    NASA Astrophysics Data System (ADS)

    Ragone, Stephen E.

    1986-09-01

    In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program

  4. Risk Reduction from Minimization of Persistent, Bioaccumulative, and Toxic Waste Materials Within the U.S. Industrial Solid Waste Management System

    EPA Science Inventory

    This study addressed three questions of interest in national-scale solid and hazardous waste management decision-making within the United States: 1) can we quantify the reduction in risk to human and ecological receptors resulting from the reduction of certain industrial waste s...

  5. CAPSULE REPORT: SOURCES AND AIR EMISSION CONTROL TECHNOLOGIES AT WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The chemicals processed during waste management operations can volatilize into the atmosphere and cause carcinogenic or other toxic effects or contribute to ozone formation. Regulations have been developed to control air emissions from these operations. The EPA has promulgated st...

  6. Toxicity of electronic waste leachates to Daphnia magna: screening and toxicity identification evaluation of different products, components, and materials.

    PubMed

    Lithner, Delilah; Halling, Maja; Dave, Göran

    2012-05-01

    Electronic waste has become one of the fastest growing waste problems in the world. It contains both toxic metals and toxic organics. The aim of this study was to (1) investigate to what extent toxicants can leach from different electronic products, components, and materials into water and (2) identify which group of toxicants (metals or hydrophobic organics) that is causing toxicity. Components from five discarded electronic products (cell phone, computer, phone modem, keyboard, and computer mouse) were leached in deionised water for 3 days at 23°C in concentrations of 25 g/l for metal components, 50 g/l for mixed-material components, and 100 g/l for plastic components. The water phase was tested for acute toxicity to Daphnia magna. Eighteen of 68 leachates showed toxicity (with immobility of D. magna ≥ 50% after 48 h) and came from metal or mixed-material components. The 8 most toxic leachates, with 48 h EC(50)s ranging from 0.4 to 20 g/l, came from 2 circuit sheets (key board), integrated drive electronics (IDE) cable clips (computer), metal studs (computer), a circuit board (computer mouse), a cord (phone modem), mixed parts (cell phone), and a circuit board (key board). All 5 electronic products were represented among them. Toxicity identification evaluations (with C18 and CM resins filtrations and ethylenediaminetetraacetic acid addition) indicated that metals caused the toxicity in the majority of the most toxic leachates. Overall, this study has shown that electronic waste can leach toxic compounds also during short-term leaching with pure water.

  7. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India.

    PubMed

    Sharma, Bhupendra K; Chandel, Munish K

    2017-01-01

    Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO 2 eq t -1 of municipal solid waste, 0.124 kg SO 2 eq t -1 , 0.46 kg PO 4 -3 eq t -1 , 0.44 kg 1,4-DB eq t -1 to 892.34 kg CO 2 eq t -1 , 0.121 kg SO 2 eq t -1 , 0.36 kg PO 4 -3 eq t -1 , 0.40 kg 1,4-DB eq t -1 , respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.

  8. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohout, E.F.; Folga, S.; Mueller, C.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less

  9. Toxic Waste in Grand Banks. Lesson Plan.

    ERIC Educational Resources Information Center

    Litchka, Peter

    "Toxic Waste in Grand Banks" is an assessment task in which students from a high school economics class investigate the issues of economic prosperity, environmental concerns, government intervention in the market economy, and responsible civic participation in solving community problems. Students will demonstrate an ability--both individually and…

  10. Tribal Waste Management Program

    EPA Pesticide Factsheets

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  11. [MANAGEMENT OF HEALTHCARE WASTE IN THE HOSPITAL SETTING. UNDERSTANDING RISK MANAGEMENT].

    PubMed

    Galimany-Masclans, Jordi; Torres-Egea, Pilar; Sancho-Agredano, Raúl; Girbau-García, Ma Rosa; Fabrellas, Núria; Torrens-Garcia, Ma Llum; Martínez-Estalella, Gemma

    2015-05-01

    The sanitary waste represents a potential hazard for health workers. Given the high risk of infection in labor accidents, the correct management of sanitary waste minimizes this risk and improves labor and environment conditions. To identify risk perception with health professionals in relation to the advanced sorting and management of healthcare waste (HW). The current study is a descriptive, cross-sectional. The sample size was 177 health workers (nurse assistants, nurses, physicians, lab technicians) from three hospitals in Barcelona (Catalonia). Homemade questionnaire and questions with a free and spontaneous association and incomplete sentences were used to analyze labor variables, perception of risk and personal security through a Likert scale. Using a score from 1 (the lowest perception of risk) to 5 (the high perception of risk) to assess the risk perception, the average value for nurse assistants, nurses, physicians, and lab technicians was 3.71, 3.75, 3.83 and 4.03, respectively. Referring to items with free and spontaneous response association, 44.8% of workers consider HW as a biohazard, 29.6% consider it as waste material, 22.1% state that it must be managed properly and 3.5% described it as unknown residues. The results suggest that all health professionals generally have a perception of high risk. The lab technicians have a higher perception of the real risk of inadequate management of HW A 63.2% report that everyone has to make a proper management to preserve their occupational health; the 59% consider that the HW are a biological risk to the general population and only the 47.8% that are harmful to public health. Although it should be noted that only 44.8% think that HW are toxic and dangerous.

  12. E-waste management and resources recovery in France.

    PubMed

    Vadoudi, Kiyan; Kim, Junbeum; Laratte, Bertrand; Lee, Seung-Jin; Troussier, Nadège

    2015-10-01

    There are various issues of concern regarding electronic waste management, such as the toxicity of hazardous materials and the collection, recycling and recovery of useful resources. To understand the fate of electronic waste after collection and recycling, a products and materials flow analysis should be performed. This is a critical need, as material resources are becoming increasingly scarce and recycling may be able to provide secondary sources for new materials in the future. In this study, we investigate electronic waste systems, specifically the resource recovery or recycling aspects, as well as mapping electronic waste flows based on collection data in France. Approximately 1,588,453 t of new electrical and electronic equipment were sold in the French market in 2010. Of this amount, 430,000 t of electronic waste were collected, with the remaining 1,128,444 t remaining in stock. Furthermore, the total recycled amounts were 354,106 t and 11,396 t, respectively. The main electronic waste materials were ferrous metals (37%), plastic (22%), aluminium (12%), copper (11%) and glass (7%). This study will contribute to developing sustainable electronic waste and resource recycling systems in France. © The Author(s) 2015.

  13. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri

    PubMed Central

    Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson

    2012-01-01

    Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE50,48 h = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method. PMID:22619632

  14. Acute and chronic toxicity of soluble fractions of industrial solid wastes on Daphnia magna and Vibrio fischeri.

    PubMed

    Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson

    2012-01-01

    Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE(50,48 h) = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE(50,30 min) = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.

  15. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  16. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay.

    PubMed

    Singh, I B; Chaturvedi, K; Morchhale, R K; Yegneswaran, A H

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 degrees C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 degrees C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 degrees C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  17. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  18. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  19. Solid Waste Management Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  20. Burden of disease from toxic waste sites in India, Indonesia, and the Philippines in 2010.

    PubMed

    Chatham-Stephens, Kevin; Caravanos, Jack; Ericson, Bret; Sunga-Amparo, Jennifer; Susilorini, Budi; Sharma, Promila; Landrigan, Philip J; Fuller, Richard

    2013-07-01

    Prior calculations of the burden of disease from toxic exposures have not included estimates of the burden from toxic waste sites due to the absence of exposure data. We developed a disability-adjusted life year (DALY)-based estimate of the disease burden attributable to toxic waste sites. We focused on three low- and middle-income countries (LMICs): India, Indonesia, and the Philippines. Sites were identified through the Blacksmith Institute's Toxic Sites Identification Program, a global effort to identify waste sites in LMICs. At least one of eight toxic chemicals was sampled in environmental media at each site, and the population at risk estimated. By combining estimates of disease incidence from these exposures with population data, we calculated the DALYs attributable to exposures at each site. We estimated that in 2010, 8,629,750 persons were at risk of exposure to industrial pollutants at 373 toxic waste sites in the three countries, and that these exposures resulted in 828,722 DALYs, with a range of 814,934-1,557,121 DALYs, depending on the weighting factor used. This disease burden is comparable to estimated burdens for outdoor air pollution (1,448,612 DALYs) and malaria (725,000 DALYs) in these countries. Lead and hexavalent chromium collectively accounted for 99.2% of the total DALYs for the chemicals evaluated. Toxic waste sites are responsible for a significant burden of disease in LMICs. Although some factors, such as unidentified and unscreened sites, may cause our estimate to be an underestimate of the actual burden of disease, other factors, such as extrapolation of environmental sampling to the entire exposed population, may result in an overestimate of the burden of disease attributable to these sites. Toxic waste sites are a major, and heretofore underrecognized, global health problem.

  1. Burden of Disease from Toxic Waste Sites in India, Indonesia, and the Philippines in 2010

    PubMed Central

    Caravanos, Jack; Ericson, Bret; Sunga-Amparo, Jennifer; Susilorini, Budi; Sharma, Promila; Landrigan, Philip J.; Fuller, Richard

    2013-01-01

    Background: Prior calculations of the burden of disease from toxic exposures have not included estimates of the burden from toxic waste sites due to the absence of exposure data. Objective: We developed a disability-adjusted life year (DALY)-based estimate of the disease burden attributable to toxic waste sites. We focused on three low- and middle-income countries (LMICs): India, Indonesia, and the Philippines. Methods: Sites were identified through the Blacksmith Institute’s Toxic Sites Identification Program, a global effort to identify waste sites in LMICs. At least one of eight toxic chemicals was sampled in environmental media at each site, and the population at risk estimated. By combining estimates of disease incidence from these exposures with population data, we calculated the DALYs attributable to exposures at each site. Results: We estimated that in 2010, 8,629,750 persons were at risk of exposure to industrial pollutants at 373 toxic waste sites in the three countries, and that these exposures resulted in 828,722 DALYs, with a range of 814,934–1,557,121 DALYs, depending on the weighting factor used. This disease burden is comparable to estimated burdens for outdoor air pollution (1,448,612 DALYs) and malaria (725,000 DALYs) in these countries. Lead and hexavalent chromium collectively accounted for 99.2% of the total DALYs for the chemicals evaluated. Conclusions: Toxic waste sites are responsible for a significant burden of disease in LMICs. Although some factors, such as unidentified and unscreened sites, may cause our estimate to be an underestimate of the actual burden of disease, other factors, such as extrapolation of environmental sampling to the entire exposed population, may result in an overestimate of the burden of disease attributable to these sites. Toxic waste sites are a major, and heretofore underrecognized, global health problem. PMID:23649493

  2. Toxicity characterization of waste mobile phone plastics.

    PubMed

    Nnorom, I C; Osibanjo, O

    2009-01-15

    Waste plastic housing units (N=60) of mobile phones (of different models, and brands), were collected and analyzed for lead, cadmium, nickel and silver using atomic absorption spectrophotometry after acid digestion using a 1:1 mixture of H2SO4 and HNO3. The mean (+/-S.D.) and range of the results are 58.3+/-50.4mg/kg (5.0-340mg/kg) for Pb, 69.9+/-145mg/kg (4.6-1005mg/kg) for Cd, 432+/-1905mg/kg (5.0-11,000mg/kg) for Ni, and 403+/-1888mg/kg (5.0-12,500mg/kg) for Ag. Approximately 90% of the results for the various metals were < or =100mg/kg. Results greater than 300mg/kg were generally less than 7% for each metal and could be attributed to exogenous contamination of the samples. These results suggest that there may not be any immediate danger from end-of-life (EoL) mobile phone plastic housing if appropriately treated/managed. However, considering the large quantities generated and the present low-end management practices in most developing countries, such as open burning, there appears a genuine concern over the potential for environmental pollution and toxicity to man and the ecology.

  3. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  4. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  5. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  6. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  7. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  8. Global challenges for e-waste management: the societal implications.

    PubMed

    Magalini, Federico

    2016-03-01

    Over the last decades the electronics industry and ICT Industry in particular has revolutionized the world: electrical and electronic products have become ubiquitous in today's life around the planet. After use, those products are discarded, sometimes after re-use cycles in countries different from those where they were initially sold; becoming what is commonly called e-waste. Compared to other traditional waste streams, e-waste handling poses unique and complex challenges. e-Waste is usually regarded as a waste problem, which can cause environmental damage and severe human health consequences if not safely managed. e-Waste contains significant amounts of toxic and environmentally sensitive materials and is, thus, extremely hazardous to humans and the environment if not properly disposed of or recycled. On the other hand, e-waste is often seen as a potential source of income for individuals and entrepreneurs who aim to recover the valuable materials (metals in particular) contained in discarded equipment. Recently, for a growing number of people, in developing countries in particular, recycling and separation of e-waste has become their main source of income. In most cases, this is done informally, with no or hardly any health and safety standards, exposing workers and the surrounding neighborhoods to extensive health dangers as well as leading to substantial environmental pollution. Treatment processes of e-waste aim to remove the hazardous components and recover as much reusable material (e.g. metals, glass and plastics) as possible; achieving both objectives is most desired. The paper discuss societal implications of proper e-waste management and key elements to be considered in the policy design at country level.

  9. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    PubMed

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Recycling and management of waste lead-acid batteries: A mini-review.

    PubMed

    Li, Malan; Liu, Junsheng; Han, Wei

    2016-04-01

    As a result of the wide application of lead-acid batteries to be the power supplies for vehicles, their demand has rapidly increased owing to their low cost and high availability. Accordingly, the amount of waste lead-acid batteries has increased to new levels; therefore, the pollution caused by the waste lead-acid batteries has also significantly increased. Because lead is toxic to the environment and to humans, recycling and management of waste lead-acid batteries has become a significant challenge and is capturing much public attention. Various innovations have been recently proposed to recycle lead and lead-containing compounds from waste lead-acid batteries. In this mini-review article, different recycling techniques for waste lead-acid batteries are highlighted. The present state of such recycling and its future perspectives are also discussed. We hope that this mini-review can provide useful information on recovery and recycling of lead from waste lead-acid batteries in the field of solid waste treatment. © The Author(s) 2016.

  11. Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification.

    PubMed

    Lim, Seong-Rin; Kang, Daniel; Ogunseitan, Oladele A; Schoenung, Julie M

    2011-01-01

    Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercury-free. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory limits (186 mg/L; regulatory limit: 5). However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except low-intensity yellow LEDs hazardous. The environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs.

  12. Disaster waste management: a review article.

    PubMed

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Disaster waste management: A review article

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz; Milke, Mark, E-mail: mark.milke@canterbury.ac.nz; Seville, Erica, E-mail: erica.seville@canterbury.ac.nz

    2011-06-15

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.;more » however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.« less

  14. 40 CFR 268.32 - Waste specific prohibitions-Soils exhibiting the toxicity characteristic for metals and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-Soils... Prohibitions on Land Disposal § 268.32 Waste specific prohibitions—Soils exhibiting the toxicity characteristic... from land disposal: any volumes of soil exhibiting the toxicity characteristic solely because of the...

  15. 40 CFR 268.32 - Waste specific prohibitions-Soils exhibiting the toxicity characteristic for metals and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-Soils... Prohibitions on Land Disposal § 268.32 Waste specific prohibitions—Soils exhibiting the toxicity characteristic... from land disposal: any volumes of soil exhibiting the toxicity characteristic solely because of the...

  16. 40 CFR 268.32 - Waste specific prohibitions-Soils exhibiting the toxicity characteristic for metals and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-Soils... Prohibitions on Land Disposal § 268.32 Waste specific prohibitions—Soils exhibiting the toxicity characteristic... from land disposal: any volumes of soil exhibiting the toxicity characteristic solely because of the...

  17. 40 CFR 268.32 - Waste specific prohibitions-Soils exhibiting the toxicity characteristic for metals and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Soils... Prohibitions on Land Disposal § 268.32 Waste specific prohibitions—Soils exhibiting the toxicity characteristic... from land disposal: any volumes of soil exhibiting the toxicity characteristic solely because of the...

  18. 40 CFR 268.32 - Waste specific prohibitions-Soils exhibiting the toxicity characteristic for metals and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-Soils... Prohibitions on Land Disposal § 268.32 Waste specific prohibitions—Soils exhibiting the toxicity characteristic... from land disposal: any volumes of soil exhibiting the toxicity characteristic solely because of the...

  19. Strategic exploration of battery waste management: A game-theoretic approach.

    PubMed

    Kaushal, Rajendra Kumar; Nema, Arvind K; Chaudhary, Jyoti

    2015-07-01

    Electronic waste or e-waste is the fastest growing stream of solid waste today. It contains both toxic substances as well as valuable resources. The present study uses a non-cooperative game-theoretic approach for efficient management of e-waste, particularly batteries that contribute a major portion of any e-waste stream and further analyses the economic consequences of recycling of these obsolete, discarded batteries. Results suggest that the recycler would prefer to collect the obsolete batteries directly from the consumer rather than from the manufacturer, only if, the incentive return to the consumer is less than 33.92% of the price of the battery, the recycling fee is less than 6.46% of the price of the battery, and the price of the recycled material is more than 31.08% of the price of the battery. The manufacturer's preferred choice of charging a green tax from the consumer can be fruitful for the battery recycling chain. © The Author(s) 2015.

  20. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  1. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  2. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  3. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  4. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  5. Health-care waste management in India.

    PubMed

    Patil, A D; Shekdar, A V

    2001-10-01

    Health-care waste management in India is receiving greater attention due to recent regulations (the Biomedical Wastes (Management & Handling) Rules, 1998). The prevailing situation is analysed covering various issues like quantities and proportion of different constituents of wastes, handling, treatment and disposal methods in various health-care units (HCUs). The waste generation rate ranges between 0.5 and 2.0 kg bed-1 day-1. It is estimated that annually about 0.33 million tonnes of waste are generated in India. The solid waste from the hospitals consists of bandages, linen and other infectious waste (30-35%), plastics (7-10%), disposable syringes (0.3-0.5%), glass (3-5%) and other general wastes including food (40-45%). In general, the wastes are collected in a mixed form, transported and disposed of along with municipal solid wastes. At many places, authorities are failing to install appropriate systems for a variety of reasons, such as non-availability of appropriate technologies, inadequate financial resources and absence of professional training on waste management. Hazards associated with health-care waste management and shortcomings in the existing system are identified. The rules for management and handling of biomedical wastes are summarised, giving the categories of different wastes, suggested storage containers including colour-coding and treatment options. Existing and proposed systems of health-care waste management are described. A waste-management plan for health-care establishments is also proposed, which includes institutional arrangements, appropriate technologies, operational plans, financial management and the drawing up of appropriate staff training programmes.

  6. Laboratory Waste Management. A Guidebook.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  7. Evaluating the toxicity of food processing wastes as co-digestion substrates with dairy manure.

    PubMed

    Lisboa, Maria Sol; Lansing, Stephanie

    2014-07-01

    Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A simple scheme to determine potential aquatic metal toxicity from mining wastes

    USGS Publications Warehouse

    Wildeman, T.R.; Smith, K.S.; Ranville, J.F.

    2007-01-01

    A decision tree (mining waste decision tree) that uses simple physical and chemical tests has been developed to determine whether effluent from mine waste material poses a potential toxicity threat to the aquatic environment. For the chemical portion of the tree, leaching tests developed by the United States Geological Survey, the Colorado Division of Minerals and Geology (Denver, CO), and a modified 1311 toxicity characteristic leaching procedure (TCLP) test of the United States Environmental Protection Agency have been extensively used as a surrogate for readily available metals that can be released into the environment from mining wastes. To assist in the assessment, element concentration pattern graphs (ECPG) are produced that compare concentrations of selected groups of elements from the three leachates and any water associated with the mining waste. The MWDT makes a distinction between leachates or waters with pH less than or greater than 5. Generally, when the pH values are below 5, the ECPG of the solutions are quite similar, and potential aquatic toxicity from cationic metals, such as Pb, Cu, Zn, Cd, and Al, is assumed. Below pH 5, these metals are mostly dissolved, generally are not complexed with organic or inorganic ligands, and hence are more bioavailable. Furthermore, there is virtually no carbonate alkalinity at pH less than 5. All of these factors promote metal toxicity to aquatic organisms. On the other hand, when the pH value of the water or the leachates is above 5, the ECPG from the solutions are variable, and inferred aquatic toxicity depends on factors in addition to the metals released from the leaching tests. Hence, leachates and waters with pH above 5 warrant further examination of their chemical composition. Physical ranking criteria provide additional information, particularly in areas where waste piles exhibit similar chemical rankings. Rankings from physical and chemical criteria generally are not correlated. Examples of how this

  9. FIELD SCREENING METHODS FOR HAZARDOUS WASTES AND TOXIC CHEMICALS

    EPA Science Inventory

    The purpose of this document is to present the technical papers that were presented at the Second International Symposium on Field Screening Methods for Hazardous Wastes and Toxic Chemicals. ixty platform presentations were made and included in one of ten sessions: hemical sensor...

  10. Environmental issues and management strategies for waste electronic and electrical equipment.

    PubMed

    Townsend, Timothy G

    2011-06-01

    Issues surrounding the impact and management of discarded or waste electronic and electrical equipment (WEEE) have received increasing attention in recent years. This attention stems from the growing quantity and diversity of electronic and electrical equipment (EEE) used by modern society, the increasingly rapid turnover of EEE with the accompanying burden on the waste stream, and the occurrence of toxic chemicals in many EEE components that can pose a risk to human and environmental health if improperly managed. In addition, public awareness of the WEEE or "e-waste" dilemma has grown in light of popular press features on events such as the transition to digital television and the exportation of WEEE from the United States and other developed countries to Africa, China, and India, where WEEE has often not been managed in a safe manner (e.g., processed with proper safety precautions, disposed of in a sanitary landfill, combusted with proper air quality procedures). This paper critically reviews current published information on the subject of WEEE. The definition, magnitude, and characteristics of this waste stream are summarized, including a detailed review of the chemicals of concern associated with different components and how this has changed and continues to evolve over time. Current and evolving management practices are described (e.g., reuse, recycling, incineration, landfilling). This review discusses the role of regulation and policies developed by governments, institutions, and product manufacturers and how these initiatives are shaping current and future management practices.

  11. Use of performance indicators to assess the solid waste management of health services.

    PubMed

    Assis, Mayara C; Gomes, Vanielle A P; Balista, Wagner C; Freitas, Rodrigo R DE

    2017-01-01

    Modern society faces serious challenges, among them, the complexity of environmental problems. Thus, there are several possible sources of environmental degradation, however, the waste produced by health services have an important peculiarity due to its toxic or pathogenic characteristics, since when managed improperly provide also health risk public. The involvement of solid waste from healthcare services environmental impact integrates matters a little more complex, because in addition to environmental health, they also interfere with the healthiness of environments that generate, with the consequences of nosocomial infections, occupational health and public. Thus, the management has become an urgent need, especially when we see no use of performance indicators management in healthcare environments in the city of São Mateus, ES. For this, we used the Analytic Hierarchy Process Method to prioritize such indicators as the potential improvement in health services waste management process - WHS and thus environmental analysis was performed with the use of a template for SWOT analysis. The results showed that the performance indicator training strategies developed with employees has the greatest potential to assist in improvements in WHS (Health Services Waste) management process followed indicator knowledge of the regulations associated with procedures performed by employees and importance of biosafety regulations.

  12. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less

  13. Mixed waste management options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, C.B.; Kirner, N.P.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatorymore » and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.« less

  14. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    EPA Pesticide Factsheets

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  15. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  16. Characterization of Airborne Particles in an Electronic Waste Recycling Facility and Their Toxicity Assessment

    EPA Science Inventory

    Improper disposal of electronic waste (e-waste) can lead to release of toxic chemicals into the environment and also may pose health risks. Thus, recycling e-waste, instead of landfilling, is considered to be an effective way to reduce pollutant release and exposure. However, lit...

  17. Understanding the role of waste prevention in local waste management: A literature review.

    PubMed

    Zacho, Kristina O; Mosgaard, Mette A

    2016-10-01

    Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.

  18. Solid waste production and its management in dental clinics in Gorgan, northern Iran.

    PubMed

    Nabizadeh, R; Faraji, H; Mohammadi, A A

    2014-10-01

    Waste produced in dental clinics has been the topic of investigations for many years. These waste materials have important health impacts and are hazardous to humans and the environment. To investigating solid waste production and its management in dental clinics in Gorgan, northern Iran. In this cross-sectional study, 45 of 143 public dental practices and 5 of 25 private dental practices were selected and studied. From each clinic, 3 samples were taken and analyzed at the end of successive working days (Tuesday and Wednesday). Samples were manually sorted into 50 components. The measured components were then classified on the basis of their characteristics, hazard potentials, and WHO classification. The total annual amount of dental waste produced in public and private dental practices in Gorgan was 12 015.1 and 3135.0 kg, respectively. Production percentages of infectious, domestic, chemical and pharmaceutical, and toxic waste in public dental practices were 38.4%, 33.7%, 6.6%, and 0.6%, respectively. The percentages for private practices were 8.7%, 10.6%, 1.1%, and 0.1%, respectively. Dental waste management in Gorgan is inadequate; dental waste is not properly segregated, collected, and disposed, as demanded by the WHO. Employees in dentist offices must be trained in correct handling of waste products and the associated risks.

  19. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  20. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  1. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  2. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  3. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  4. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  5. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  6. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  7. Oak Ridge Reservation Waste Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  8. UK report on waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, J.

    1995-09-01

    Arising jointly from the National and European Union requirements for more intensive attention to be paid to the environment, the United Kingdom (UK) has taken many strides forward in protecting the environment from pollution and preventing harm to human health arising from the handling, transport and disposal of wastes. Major adjustments are taking place in Europe following the opening up of the Eastern European countries. The consequences of the illegal movement of wastes and its mistreatment and disposal are now recognised within the European Union. The UK as a member State is well aware of the consequences which arise frommore » the lack of proper waste management. This paper discusses waste management and legislation pertaining to waste management in the United Kingdom.« less

  9. Solid waste management in Abuja, Nigeria.

    PubMed

    Imam, A; Mohammed, B; Wilson, D C; Cheeseman, C R

    2008-01-01

    The new city of Abuja provided an opportunity to avoid some of the environmental problems associated with other major cities in Africa. The current status of solid waste management in Abuja has been reviewed and recommendations for improvements are made. The existing solid waste management system is affected by unfavourable economic, institutional, legislative, technical and operational constraints. A reliable waste collection service is needed and waste collection vehicles need to be appropriate to local conditions. More vehicles are required to cope with increasing waste generation. Wastes need to be sorted at source as much as possible, to reduce the amount requiring disposal. Co-operation among communities, the informal sector, the formal waste collectors and the authorities is necessary if recycling rates are to increase. Markets for recycled materials need to be encouraged. Despite recent improvements in the operation of the existing dumpsite, a properly sited engineered landfill should be constructed with operation contracted to the private sector. Wastes dumped along roads, underneath bridges, in culverts and in drainage channels need to be cleared. Small-scale waste composting plants could promote employment, income generation and poverty alleviation. Enforcement of waste management legislation and a proper policy and planning framework for waste management are required. Unauthorized use of land must be controlled by enforcing relevant clauses in development guidelines. Accurate population data is necessary so that waste management systems and infrastructure can be properly planned. Funding and affordability remain major constraints and challenges.

  10. Household hazardous waste management: a review.

    PubMed

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Managing hazardous waste in the clinical laboratory.

    PubMed

    Hoeltge, G A

    1989-09-01

    Clinical laboratories generate wastes that present chemical and biologic hazards. Ignitable, corrosive, reactive, toxic, and infectious potentials must be contained and minimized. A summary of these problems and an overview of the applicable regulations are presented. A checklist of activities to facilitate the annual review of the hazardous waste program is provided.

  12. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  13. Waste Management Information System (WMIS) User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  14. Developing Tribal Integrated Waste Management Plans

    EPA Pesticide Factsheets

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  15. The effect of food waste disposers on municipal waste and wastewater management.

    PubMed

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  16. Transboundary hazardous waste management. Part I: Waste management policy of importing countries.

    PubMed

    Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa

    2005-12-01

    Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement.

  17. Assessment of toxic metals in waste personal computers.

    PubMed

    Kolias, Konstantinos; Hahladakis, John N; Gidarakos, Evangelos

    2014-08-01

    Considering the enormous production of waste personal computers nowadays, it is obvious that the study of their composition is necessary in order to regulate their management and prevent any environmental contamination caused by their inappropriate disposal. This study aimed at determining the toxic metals content of motherboards (printed circuit boards), monitor glass and monitor plastic housing of two Cathode Ray Tube (CRT) monitors, three Liquid Crystal Display (LCD) monitors, one LCD touch screen monitor and six motherboards, all of which were discarded. In addition, concentrations of chromium (Cr), cadmium (Cd), lead (Pb) and mercury (Hg) were compared with the respective limits set by the RoHS 2002/95/EC Directive, that was recently renewed by the 2012/19/EU recast, in order to verify manufacturers' compliance with the regulation. The research included disassembly, pulverization, digestion and chemical analyses of all the aforementioned devices. The toxic metals content of all samples was determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The results demonstrated that concentrations of Pb in motherboards and funnel glass of devices with release dates before 2006, that is when the RoHS Directive came into force, exceeded the permissible limit. In general, except from Pb, higher metal concentrations were detected in motherboards in comparison with plastic housing and glass samples. Finally, the results of this work were encouraging, since concentrations of metals referred in the RoHS Directive were found in lower levels than the legislative limits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Solid-Waste Management

    ERIC Educational Resources Information Center

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  19. Medical Waste Management in Community Health Centers.

    PubMed

    Tabrizi, Jafar Sadegh; Rezapour, Ramin; Saadati, Mohammad; Seifi, Samira; Amini, Behnam; Varmazyar, Farahnaz

    2018-02-01

    Non-standard management of medical waste leads to irreparable side effects. This issue is of double importance in health care centers in a city which are the most extensive system for providing Primary Health Care (PHC) across Iran cities. This study investigated the medical waste management standards observation in Tabriz community health care centers, northwestern Iran. In this triangulated cross-sectional study (qualitative-quantitative), data collecting tool was a valid checklist of waste management process developed based on Iranian medical waste management standards. The data were collected in 2015 through process observation and interviews with the health center's staff. The average rate of waste management standards observance in Tabriz community health centers, Tabriz, Iran was 29.8%. This case was 22.8% in dimension of management and training, 27.3% in separating and collecting, 31.2% in transport and temporary storage, and 42.9% in sterilization and disposal. Lack of principal separation of wastes, inappropriate collecting and disposal cycle of waste and disregarding safety tips (fertilizer device performance monitoring, microbial cultures and so on) were among the observed defects in health care centers supported by quantitative data. Medical waste management was not in a desirable situation in Tabriz community health centers. The expansion of community health centers in different regions and non-observance of standards could predispose to incidence the risks resulted from medical wastes. So it is necessary to adopt appropriate policies to promote waste management situation.

  20. Tribal Decisions-Makers Guide to Solid Waste Management: Chapter 2 - Developing Solid Waste Management Plans

    EPA Pesticide Factsheets

    Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.

  1. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developedmore » that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.« less

  2. Life cycle assessment of construction and demolition waste management.

    PubMed

    Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F

    2015-10-01

    Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60-95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing that end-of-life impacts and leaching should not be disregarded when assessing environmental impacts from construction products and materials. CO2 uptake in the C

  3. Medical waste management plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Todd W.; VanderNoot, Victoria A.

    2004-12-01

    This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

  4. Illegal Dumping of Toxic Waste and Its Effect on Human Health in Campania, Italy

    PubMed Central

    Mazza, Alfredo; Piscitelli, Prisco; Neglia, Cosimo; Rosa, Giulia Della; Iannuzzi, Leopoldo

    2015-01-01

    The region of Campania (particularly Naples and Caserta) has experienced an emergency in the waste management cycle during past years. Although the most critical phase has been overcome after the construction of the incineration plant in Acerra (an old-fashioned technology built up over a few months, whose impact on environment and health has not yet been assessed), most of the underlying problems have not been resolved. The illegal burning of wheels, plastics, textiles, and other industrial residuals, along with the detection of two thousand toxic substance dumping sites, still represents major concerns of environmental pollution and population health. This review summarizes the most relevant studies, which analyzed chemical contamination (primarily dioxins and polychlorinated biphenyls (PCBs)) of the air, soil, water, animals, and humans in Campania. In addition, we reviewed information on population health (i.e., mortality data, congenital malformations, and cancer incidence). Moving from a detailed mapping of (mostly illegal) waste dumping sites in Campania, we have focused on recent studies which have found: (a) high concentrations of dioxins (≥5.0 pg TEQ/g fat) in milk samples from sheep, cows, and river buffaloes; (b) remarkable contamination of dioxin and PCBs in human milk samples from those living in the Naples and Caserta areas (PCDDs+PCDFs and dioxin-like-PCBs (dl-PCBs) assessed at 16.6 pg TEQ/g of fat; range: 7.5–43 pg/g of fat); (c) potential age-adjusted standardized mortality rates associated with some specific cancer types; (d) a statistically significant association between exposure to illegal toxic waste dumping sites and cancer mortality, even after adjustment by socio-economic factors and other environmental indicators. PMID:26086704

  5. Illegal Dumping of Toxic Waste and Its Effect on Human Health in Campania, Italy.

    PubMed

    Mazza, Alfredo; Piscitelli, Prisco; Neglia, Cosimo; Della Rosa, Giulia; Iannuzzi, Leopoldo

    2015-06-16

    The region of Campania (particularly Naples and Caserta) has experienced an emergency in the waste management cycle during past years. Although the most critical phase has been overcome after the construction of the incineration plant in Acerra (an old-fashioned technology built up over a few months, whose impact on environment and health has not yet been assessed), most of the underlying problems have not been resolved. The illegal burning of wheels, plastics, textiles, and other industrial residuals, along with the detection of two thousand toxic substance dumping sites, still represents major concerns of environmental pollution and population health. This review summarizes the most relevant studies, which analyzed chemical contamination (primarily dioxins and polychlorinated biphenyls (PCBs)) of the air, soil, water, animals, and humans in Campania. In addition, we reviewed information on population health (i.e., mortality data, congenital malformations, and cancer incidence). Moving from a detailed mapping of (mostly illegal) waste dumping sites in Campania, we have focused on recent studies which have found: (a) high concentrations of dioxins (≥5.0 pg TEQ/g fat) in milk samples from sheep, cows, and river buffaloes; (b) remarkable contamination of dioxin and PCBs in human milk samples from those living in the Naples and Caserta areas (PCDDs+PCDFs and dioxin-like-PCBs (dl-PCBs) assessed at 16.6 pg TEQ/g of fat; range: 7.5-43 pg/g of fat); (c) potential age-adjusted standardized mortality rates associated with some specific cancer types; (d) a statistically significant association between exposure to illegal toxic waste dumping sites and cancer mortality, even after adjustment by socio-economic factors and other environmental indicators.

  6. Health concerns and hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yassi, A.; Weeks, J.; Kraut, A.

    1990-01-01

    This report discusses health effects of hazardous waste and emphasizes human health concerns related to establishing a hazardous waste management facility. The study reviewed world epidemiological and public health literature to identify cases of suspected or substantiated claims of public health impacts associated with hazardous waste management facilities and potential products or emissions from such facilities, and placed them into perspective, including possible routes and consequences of exposure, risk assessment, and the toxicity of selected organic and inorganic compounds.

  7. Exposure to toxic waste sites: an investigative approach.

    PubMed

    Stehr-Green, P A; Lybarger, J A

    1989-01-01

    Improper dumping and storage of hazardous substances and whether these practices produce significant human exposure and health effects are growing concerns. A sequential approach has been used by the Centers for Disease Control and the Agency for Toxic Substances and Disease Registry in investigating potential exposure to and health effects resulting from environmental contamination with materials such as heavy metals, volatile organic compounds, and pesticide residues at sites throughout the United States. The strategy consists of four phases: site evaluation, pilot studies of exposure or health effects, analytic epidemiology studies, and public health surveillance. This approach offers a logical, phased strategy to use limited personnel and financial resources of local, State, national, or global health agency jurisdictions optimally in evaluating populations potentially exposed to hazardous materials in waste sites. Primarily, this approach is most helpful in identifying sites for etiologic studies and providing investigative leads to direct and focus these studies. The results of such studies provide information needed for making risk-management decisions to mitigate or eliminate human exposures and for developing interventions to prevent or minimize health problems resulting from exposures that already have occurred.

  8. Investigations: Toxic Waste. A Science Curriculum in the Participation Series.

    ERIC Educational Resources Information Center

    Goldman, Jill S.; And Others

    One of a series of teacher-developed curriculum guides designed to encourage student participation and involvement in important social issues, this secondary level guide presents toxic waste as one example of a current issue requiring social action. The first section focuses on the skill of investigating as a means of introducing students to…

  9. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  10. E-waste management in India: A mini-review.

    PubMed

    Awasthi, Abhishek Kumar; Wang, Mengmeng; Wang, Zhishi; Awasthi, Mrigendra Kumar; Li, Jinhui

    2018-05-01

    Environmental deterioration and health risk due to improper e-waste management has become a serious issue in India. The major portion of e-waste reaches an unorganized e-waste recycling sector and is then treated by using crude methods. This review article presents a brief highlight on e-waste management status, legislation, and technology uses in India. The present e-waste management needs to be more focused on environmentally sound management, by more active support from all the participants involved in the e-waste flow chain in India.

  11. Leaching and toxicity behavior of coal-biomass waste cocombustion ashes.

    PubMed

    Skodras, G; Prokopidou, M; Sakellaropoulos, G P

    2006-08-01

    Land disposal of ash residues, obtained from the cocombustion of Greek lignite with biomass wastes, is known to create problems due to the harmful constituents present. In this regard, the leachability of trace elements from lignite, biomass, and blends cocombustion ashes was investigated by using the Toxicity Characteristic Leaching Procedure (TCLP) of the US Environmental Protection Agency (US EPA). In this work, the toxicity of the aqueous leachates and the concentrations of the metals obtained from the leaching procedure were measured using the Microtox test (Vibrio fischeri) and inductive coupled plasma-atomic emission spectrometer (ICP-AES), respectively. The toxic effects of most leachates on Vibrio fischeri were found to be significantly low in both 45% and 82% screening test protocols. However, the liquid sample originating from olive kernels fly ash (FA4) caused the highest toxic effect in both protocols, which can be attributed to its relatively high concentrations of As, Cd, Co, Cu, Mn, Ni, and Zn. Copyright 2006 Wiley Periodicals, Inc.

  12. Optimised management of orphan wastes in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doudou, Slimane; McTeer, Jennifer; Wickham, Stephen

    2013-07-01

    Orphan wastes have properties preventing them from being managed according to existing or currently planned management routes, or lack characterisation so that their management is uncertain. The identification of new management opportunities for orphan wastes could realise significant benefits by reducing the number of processing facilities required, reducing waste volumes, reducing hazard or leading to the development of centres of excellence for the processing of certain types of orphan wastes. Information on the characteristics of orphan waste existing at nuclear licensed sites across the UK has been collated and a database developed to act as a repository for the informationmore » gathered. The database provides a capability to analyse the data and to explore possible treatment technologies for each orphan waste type. Thirty five distinct orphan waste types have been defined and possible treatment options considered. Treatment technologies (including chemical, high temperature, immobilisation and physical technologies) that could be applied to one or more of the generic orphan waste streams have been identified. Wiring diagrams have been used to highlight the waste treatment / lifecycle management options that are available for each of the generic orphan groups as well as identifying areas for further research and development. This work has identified the potential for optimising the management of orphan wastes in a number of areas, and many potential opportunities were identified. Such opportunities could be investigated by waste managers at waste producing nuclear sites, to facilitate the development of new management routes for orphan wastes. (authors)« less

  13. Analysis on 3RWB model (Reduce, reuse, recycle, and waste bank) in comprehensive waste management toward community-based zero waste

    NASA Astrophysics Data System (ADS)

    Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi

    2017-06-01

    Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.

  14. The Potential of Sequential Extraction in the Characterisation and Management of Wastes from Steel Processing: A Prospective Review

    PubMed Central

    Rodgers, Kiri J.; Hursthouse, Andrew; Cuthbert, Simon

    2015-01-01

    As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes. PMID:26393631

  15. The Potential of Sequential Extraction in the Characterisation and Management of Wastes from Steel Processing: A Prospective Review.

    PubMed

    Rodgers, Kiri J; Hursthouse, Andrew; Cuthbert, Simon

    2015-09-18

    As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes.

  16. Medical waste management training for healthcare managers - a necessity?

    PubMed

    Ozder, Aclan; Teker, Bahri; Eker, Hasan Huseyin; Altındis, Selma; Kocaakman, Merve; Karabay, Oguz

    2013-07-16

    This is an interventional study, since a training has been given, performed in order to investigate whether training has significant impact on knowledge levels of healthcare managers (head-nurses, assistant head nurses, hospital managers and deputy managers) regarding bio-medical waste management. The study was conducted on 240 volunteers during June - August 2010 in 12 hospitals serving in Istanbul (private, public, university, training-research hospitals and other healthcare institutions). A survey form prepared by the project guidance team was applied to the participants through the internet before and after the training courses. The training program was composed of 40 hours of theory and 16 hours of practice sessions taught by persons known to have expertise in their fields. Methods used in the analysis of the data chi-square and t-tests in dependent groups. 67.5% (162) of participants were female. 42.5% (102) are working in private, and 21.7% in state-owned hospitals. 50.4% are head-nurses, and 18.3% are hospital managers.A statistically significant difference was found among those who had received medical waste management training (preliminary test and final test) and others who had not (p<0.01). It was observed that information levels of all healthcare managers who had received training on waste management had risen at the completion of that training session. On the subject of waste management, to have trained healthcare employees who are responsible for the safe disposal of wastes in hospitals is both a necessity for the safety of patients and important for its contribution to the economy of the country.

  17. So What's a Toxic Waste Site? Kids for Saving Earth News. Action Program #16.

    ERIC Educational Resources Information Center

    Kids for Saving Earth Worldwide, Minneapolis, MN.

    This document provides ideas for activities on toxic waste sites. A toxic tour around the home accompanied by an adult is recommended to discover items that are dangerous for humans and the earth. Activities on understanding forests, pollution problems, recycling, and prevention of pollution for a healthy planet is included. (YDS)

  18. Issues that Drive Waste Management Technology Development for Space Missions

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai

    2005-01-01

    Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.

  19. Monitoring of toxic elements present in sludge of industrial waste using CF-LIBS.

    PubMed

    Kumar, Rohit; Rai, Awadhesh K; Alamelu, Devanathan; Aggarwal, Suresh K

    2013-01-01

    Industrial waste is one of the main causes of environmental pollution. Laser-induced breakdown spectroscopy (LIBS) was applied to detect the toxic metals in the sludge of industrial waste water. Sludge on filter paper was obtained after filtering the collected waste water samples from different sections of a water treatment plant situated in an industrial area of Kanpur City. The LIBS spectra of the sludge samples were recorded in the spectral range of 200 to 500 nm by focusing the laser light on sludge. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique was used for the quantitative measurement of toxic elements such as Cr and Pb present in the sample. We also used the traditional calibration curve approach to quantify these elements. The results obtained from CF-LIBS are in good agreement with the results from the calibration curve approach. Thus, our results demonstrate that CF-LIBS is an appropriate technique for quantitative analysis where reference/standard samples are not available to make the calibration curve. The results of the present experiment are alarming to the people living nearby areas of industrial activities, as the concentrations of toxic elements are quite high compared to the admissible limits of these substances.

  20. Exposure to toxic waste containing high concentrations of hydrogen sulphide illegally dumped in Abidjan, Côte d'Ivoire.

    PubMed

    Dongo, Kouassi; Tiembré, Issiaka; Koné, Blaise Atioumonou; Zurbrügg, Christian; Odermatt, Peter; Tanner, Marcel; Zinsstag, Jakob; Cissé, Guéladio

    2012-09-01

    On August 2006, a cargo ship illegally dumped 500 t of toxic waste containing high concentrations of hydrogen sulphide in numerous sites across Abidjan. Thousands of people became ill. Seventeen deaths were associated with toxic waste exposure. This study reports on environmental and health problems associated with the incident. A cross-sectional transect study was conducted in five waste dumping site areas. Of the households, 62.1% (n = 502) were exposed to the effects of the pollutants and 51.1% of the interviewed people (n = 2,368) in these households showed signs of poisoning. Most important symptoms were cough (37.1%), asthenia (33.1%), pruritus (29.9%) and nausea (29.1%). The health effects showed different frequencies in the five waste impact sites. Among the poisoned persons, 21.1% (n = 532) presented symptoms on the survey day (i.e., 4 months after incident). Transect sampling allowed to determine a radius of vulnerability to exposure of up to 3 km from the point of toxic waste disposal. The area of higher vulnerability is influenced by various environmental factors, such as size and severity of pollution site, duration of toxic waste pollution on the impact site and locally climatic conditions. The surveillance of effects on environment and human health is warranted to monitor the development.

  1. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less

  2. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  3. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  4. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  5. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  6. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2014-10-01 2014-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  7. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2013-10-01 2013-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  8. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2012-10-01 2012-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  9. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2010-10-01 2010-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  10. The Orbital Workshop Waste Management Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.

  11. Aerospace vehicle water-waste management

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  12. WasteWise Resource Management: Innovative Solid Waste Contracting Methods

    EPA Pesticide Factsheets

    Resource management is an innovative contractual partnership between a waste-generating organization and a qualified contractor that changes the nature of current disposal services to support waste minimization and recycling.

  13. Export of toxic chemicals - a review of the case of uncontrolled electronic-waste recycling.

    PubMed

    Wong, M H; Wu, S C; Deng, W J; Yu, X Z; Luo, Q; Leung, A O W; Wong, C S C; Luksemburg, W J; Wong, A S

    2007-09-01

    This paper reviews the concentrations of persistent organic pollutants such as flame retardants (PBDEs), dioxins/furans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals/metalloid concentrations of different environmental media at Guiyu, a traditional rice-growing village located in southeastern Guangdong Province (PR China), which has turned into an intensive electronic-waste (e-waste) recycling site. Incomplete combustion of e-waste in open air and dumping of processed materials are the major sources of various toxic chemicals. By comparing with existing data available in other areas and also guidelines adopted in different countries, it is obvious that the environment is highly contaminated by these toxic chemicals derived from the recycling processes. For example, the monthly concentration of the sum of 22 PBDE congeners contained in PM(2.5) (16.8ngm(-3)) of air samples at Guiyu was 100 times higher than published data. In order to safeguard the environment and human health, detailed investigations are urgently needed, especially on tracking the exposure pathways of different toxic chemicals which may affect the workers and local residents especially mothers, infants and children.

  14. Life cycle assessment of construction and demolition waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butera, Stefania, E-mail: stbu@teknologisk.dk; Christensen, Thomas H.; Astrup, Thomas F.

    Highlights: • LCA of C&DW utilisation in road vs. C&DW landfilling. • C&DW utilisation in road better than landfilling for most categories. • Transportation is the most important process in non-toxic impact categories. • Leaching of oxyanions is the critical process in toxic impact categories. • Modelling of Cr fate in the subsoil is highly influential to the results. - Abstract: Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for naturalmore » aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60–95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts

  15. The containment of toxic wastes: I. Long term metal movement in soils over a covered metalliferous waste heap at Parc lead-zinc mine, North Wales.

    PubMed

    Shu, J; Bradshaw, A D

    1995-01-01

    In order to stabilise and contain a toxic metalliferous waste heap at Parc Mine, North Wales, it was covered with 30-40 cm layer of quarry waste in 1977-1978, and sown with a grass/clover seed mixture. This study has examined subsequent metal movement in the cover material and its effect on vegetation. The results, especially when compared with previous observations, give no evidence of upward migration of metals by capillarity in the cover material. Sideways movement of leachate, however, appears to be carrying the metals into the cover material on the sloping sides, giving rise to increasing concentrations of heavy metals in the vegetation and dieback in some places. Root growth on the flat top of the heap is greater than on the slope, but the roots have not penetrated the waste and the contents of Pb, Zn and Cd in surface vegetation remain low. Surface covering of toxic waste with coarse materials restricting capillary rise is therefore a valid reclamation technique so long as lateral movement of toxic leachate can be controlled.

  16. Progress and challenges to the global waste management system.

    PubMed

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.

  17. Guide to radioactive waste management literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principallymore » at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.« less

  18. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    PubMed

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  19. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has

  20. Archaeology and public perception of a trans-scientific problem; disposal of toxic wastes in the unsaturated zone

    USGS Publications Warehouse

    Winograd, Isaac Judah

    1986-01-01

    Predicting the effects of toxic-waste disposal on the environment over periods of millenia to hundreds of millenia is a transscientific problem; that is, one not fully addressed by quantitative scientific and engineering endeavors. Archaeology is a pertinent adjunct to such predictions in several ways. First, and foremost, archaeological records demonstrate that delicate, as well as durable, objects buried in thick unsaturated zones of arid and semiarid environments may survive intact for millenia to tens of millenia. This successful preservation of Late Paleolithic to Iron Age artifacts provides independent support for the tentative favorable conclusions of earth scientists regarding the general utility of thick unsaturated zones for toxic-waste isolation. By analogy with the archaeological record, solidified toxic wastes of low solubility that are buried in arid unsaturated zones should remain isolated from the environment indefinitely; modern man presumably should be able to improve upon the techniques used by his ancestors to isolate and preserve their sacred and utilitarian objects. Second, archaeological evidence pertinent to the fate of objects buried in unsaturated zones-although qualitative in nature and subject to the limitations of arguments by analogy-is meaningful to the public and to the courts who, with some scientists and engineers, are reluctant to rely exclusively on computer-generated predictions of the effects of buried toxic wastes on the environment. Third, the archaeological record issues a warning that our descendants may intrude into our waste disposal sites and that we must therefore take special measures to minimize such entry and, if it occurs, to warn of the dangers by a variety of symbols. And fourth, archaeology provides a record of durable natural and manmade materials that may prove to be suitable for encapsulation of our wastes and from which we can construct warning markers that will last for millenia. For these four reasons

  1. Resource Management, Coexistence, and Balance--The Fundamentals of Teaching Waste Management.

    ERIC Educational Resources Information Center

    Donovan, Connie

    1998-01-01

    Argues for the need for courses in waste management in departments other than civil engineering. Points out that although waste management is a business administration function, it is best performed from an environmental management perspective. (DDR)

  2. Municipal solid-waste management in Istanbul.

    PubMed

    Kanat, Gurdal

    2010-01-01

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. 2010 Elsevier Ltd. All rights reserved.

  3. Transboundary movements of hazardous wastes: the case of toxic waste dumping in Africa.

    PubMed

    Anyinam, C A

    1991-01-01

    Developed and developing countries are in the throes of environmental crisis. The planet earth is increasingly being literally choked by the waste by-products of development. Of major concern, especially to industrialized countries, is the problem of what to do with the millions of tons of waste materials produced each year. Owing to mounting pressure from environmental groups, the "not-in-mu-backyard" movement, the close monitoring of the activities of waste management agents, an increasing paucity of repositories for waste, and the high cost of waste treatment, the search for dumping sites for waste disposal has, in recent years, extended beyond regional and national boundaries. The 1980s have seen several attempts to export hazardous wastes to third world countries. Africa, for example, is gradually becoming the prime hunting ground for waste disposal companies. This article seeks to examine, in the context of the African continent, the sources and destinations of this form of relocation-diffusion of pollution, factors that have contributed to international trade in hazardous wastes between developed and developing countries, the potential problems such exports would bring to African countries, and measures being taken to abolish this form of international trade.

  4. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater

  5. Status of waste tyres and management practice in Botswana.

    PubMed

    Mmereki, Daniel; Machola, Bontle; Mokokwe, Kentlafetse

    2017-02-22

    Waste tyres (WTs) are becoming a significant environmental, economical and technological challenge due to their high contents of combustible composition and potential for valuable materials and energy resources. Fewer studies in developing and even developed countries have been carried out to assess the challenges regarding waste tyres management, and suggested the best alternative solutions for managing this waste stream. While developed countries made progress in waste tyres management needs by implementing more efficient innovative recovery and recycling methods, and restrictive regulations regarding the management of used tyres, in many developing countries the management of waste tyres has not received adequate interest, and the processing, treatment and disposal of waste tyre is still nascent. In recent years, worldwide, several methods for managing used tyres, including other principal alternatives for managing end-of-life tyres defined in the 4Rs, reduction, re-use, recovery and recycling have been adopted and applied to minimize serious threats to both the natural environment environment and human. The paper attempted to establish stakeholders' action that has the responsibility in waste tyre management in Botswana. This study also analyzed important aspects on waste tyres management in Botswana. A synthesis of approaches was employed in the present investigation to determine the factors influencing effective performance of waste tyres management practice in Botswana. Data for the present study was obtained using relevant published literature, scientific journals, other third sector sources, academic sources, and research derived from governments and other agencies and field observations. Group discussions with the participants and semi-structured interviews with professionals were carried out. The outcomes of this investigation are a wide-range outline concerning the participants that are important in waste tyres management, and a set of aspects affecting

  6. Municipal waste management in Sicily: practices and challenges.

    PubMed

    Messineo, Antonio; Panno, Domenico

    2008-01-01

    There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.

  7. Biomedical waste management guidelines 2016: What's done and what needs to be done.

    PubMed

    Singhal, Lipika; Tuli, Arpandeep Kaur; Gautam, Vikas

    2017-01-01

    The latest biomedical waste (BMW) management guidelines which have been introduced in 2016 are simplified and made easier so that they can be easily followed by various health agencies. The categories of BMW have been reduced from ten (in 1998) to four in the latest (2016) guidelines. Many changes have been made in these latest guidelines, which have been summarised in the article below. The segregation of hospital waste plays a very important role, so the waste has to be sorted out at the source of generation according to the category to which it belongs as given in the newer guidelines. Newer waste treatment facilities such as plasma pyrolysis, encapsulation, inertisation have been introduced, and we have to do away with older facilities such as incineration as toxic fumes (dioxins and furans) are produced which are harmful to both health and environment. We can even think of using these wastewater treatment plants to remove the antimicrobial resistance genes during the processing of the waste, which is being generated from the hospitals.

  8. Waste management outlook for mountain regions: Sources and solutions.

    PubMed

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  9. Public concerns and behaviours towards solid waste management in Italy.

    PubMed

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  10. Management of hazardous medical waste in Croatia.

    PubMed

    Marinković, Natalija; Vitale, Ksenija; Janev Holcer, Natasa; Dzakula, Aleksandar; Pavić, Tomo

    2008-01-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  11. Los Alamos Plutonium Facility Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Montoya, A.; Wieneke, R.

    1997-02-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facilitymore » on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process.« less

  12. A model to minimize joint total costs for industrial waste producers and waste management companies.

    PubMed

    Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto

    2004-12-01

    The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.

  13. Hospital waste management in developing countries: A mini review.

    PubMed

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong

    2017-06-01

    Health care activities can generate different kinds of hazardous wastes. Mismanagement of these wastes can result in environmental and occupational health risks. Developing countries are resource-constrained when it comes to safe management of hospital wastes. This study summarizes the main issues faced in hospital waste management in developing countries. A review of the existing literature suggests that regulations and legislations focusing on hospital waste management are recent accomplishments in many of these countries. Implementation of these rules varies from one hospital to another. Moreover, wide variations exist in waste generation rates within as well as across these countries. This is mainly attributable to a lack of an agreement on the definitions and the methodology among the researchers to measure such wastes. Furthermore, hospitals in these countries suffer from poor waste segregation, collection, storage, transportation and disposal practices, which can lead to occupational and environmental risks. Knowledge and awareness regarding proper waste management remain low in the absence of training for hospital staff. Moreover, hospital sanitary workers, and scavengers, operate without the provision of safety equipment or immunization. Unsegregated waste is illegally recycled, leading to further safety risks. Overall, hospital waste management in developing countries faces several challenges. Sustainable waste management practices can go a long way in reducing the harmful effects of hospital wastes.

  14. Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill

    NASA Astrophysics Data System (ADS)

    Pasko, O. A.; Mochalova, T. N.

    2014-08-01

    The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.

  15. [Socio-economic impact at the household level of the health consequences of toxic waste discharge in Abidjan in 2006].

    PubMed

    Koné, B A; Tiembré, I; Dongo, K; Tanner, M; Zinsstag, J; Cissé, G

    2011-02-01

    In August 2006, toxic wastes were discharged in the district of Abidjan, causing important health consequences in many households in the area. In order to appreciate the socio-economic impact of the consequences of toxic waste discharge on the households and of the measures taken by the authorities to deal with this catastrophe, and to appreciate the spatial extent of the pollution, we undertook a multidisciplinary transversal investigation at the sites of discharge of oxic waste, from October the 19th to December the 8th, 2006, using a transect sampling methodology. This paper presents the results related to the socio-economic aspects of the survey while the environmental and epidemiological results are presented in two other published papers. The socioeconomics investigation, conducted using a questionnaire, concerned 809 households across the various sites of discharge of toxic waste. More than 62% of households had at least one person who had been affected by toxic waste (affected households). 62.47% of these households were in Cocody district (with 2 sites and 4 points of discharge), 30.14% in Abobo district (with 2 sites and 3 points) and 7.39% in Koumassi district (with 1 site and 1 point). To escape the bad smell and the nuisance, 22.75% of the 501 "affected" households had left their houses. To face the health consequences generated by the toxic waste, 30.54% of the "affected" households engaged expenses. Those were on average of 92 450 FCFA (€141), with a minimum of 1 000 FCFA (€1.5) and a maximum of 1500000 FCFA (€2.287), in spite of the advertisement of the exemption from payment treatment fees made by the government. The decision of destroying cultures and farms near the points of discharge of the toxic products in a radius of 200 meters, taken by the authorities, touched 2.22% of the households. For these households, it did nothing but worsen their state of poverty, since the zone of influence of the toxic waste went well beyond the 200 meters

  16. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon... hazardous waste management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude... and recordkeeping requirements. 40 CFR Part 261 Environmental protection, Hazardous waste, Solid waste...

  17. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of themore » 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  18. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  19. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  20. Hazardous healthcare waste management in the Kingdom of Bahrain.

    PubMed

    Mohamed, L F; Ebrahim, S A; Al-Thukair, A A

    2009-08-01

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  1. Hazardous healthcare waste management in the Kingdom of Bahrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.

    2009-08-15

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this studymore » along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.« less

  2. RESULTS OF THE ENVIRONMENTAL MANAGEMENT (EM) CORPORATE PROJECT TEAM DISPOSING WASTE & REDUCING RISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHRADER, T.A.; KNERR, R.

    2005-01-31

    Toxic Substance Control Act (TSCA) Incinerator contract and operations; (6) development of a policy for load management of waste shipments to the Waste Isolation Pilot Plant (WIPP); and (7) development of a complex-wide fee incentive for transuranic waste disposal. The alternatives were further refined and a plan developed for institutionalizing the alternatives in various site contracts. In order to focus the team's efforts, all team activities were conducted per the principles of DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Although the Order was developed for construction projects, the principles were adapted for use on this ''soft'' project in which the deliverables were alternatives for the way work was performed. The results of the team's investigation and the steps taken during the project are presented along with lessons learned.« less

  3. Radioactive waste storage issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Daniel E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal)more » of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.« less

  4. ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANGEMENT OPTIONS

    EPA Science Inventory

    Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. These management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. In choosing the best possible manageme...

  5. Tribal Waste Journal: What Is an Integrated Waste Management Plan (Issue 7)

    EPA Pesticide Factsheets

    Integrated Waste Management Plans (IWMPs) may offer tribes an efficient and cost-effective way to reduce open dumping, effectively manage solid waste, and protect human health and the environment for this generation and the next.

  6. About the Managing and Transforming Waste Streams Tool

    EPA Pesticide Factsheets

    The Managing and Transforming Waste Streams Tool was developed by a team of zero waste consultants and solid waste program managers making informed observations from hands-on work in communities, with contributions from EPA.

  7. Sustainable Materials Management (SMM) WasteWise Data

    EPA Pesticide Factsheets

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  8. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...

  9. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  10. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...

  11. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  12. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  13. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  14. A total quality management approach to healthcare waste management in Namazi Hospital, Iran.

    PubMed

    Askarian, Mehrdad; Heidarpoor, Peigham; Assadian, Ojan

    2010-11-01

    Healthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75-90% of these wastes are classified as household waste posing no potential risk, 10-25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran. Namazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period. Before the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste. A structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Arsenic: a roadblock to potential animal waste management solutions.

    PubMed

    Nachman, Keeve E; Graham, Jay P; Price, Lance B; Silbergeld, Ellen K

    2005-09-01

    The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.

  16. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  17. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  18. Solid waste management challenges for cities in developing countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abarca Guerrero, Lilliana, E-mail: l.abarca.guerrero@tue.nl; Maas, Ger, E-mail: g.j.maas@tue.nl; Hogland, William, E-mail: william.hogland@lnu.se

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Stakeholders. Black-Right-Pointing-Pointer Factors affecting performance waste management systems. Black-Right-Pointing-Pointer Questionnaire as Annex for waste management baseline assessment. - Abstract: Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publicationsmore » from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is

  19. Waste management in small hospitals: trouble for environment.

    PubMed

    Pant, Deepak

    2012-07-01

    Small hospitals are the grassroots for the big hospital structures, so proper waste management practices require to be initiated from there. Small hospitals contribute a lot in the health care facilities, but due to their poor waste management practices, they pose serious biomedical waste pollution. A survey was conducted with 13 focus questions collected from the 100 hospital present in Dehradun. Greater value of per day per bed waste was found among the small hospitals (178 g compared with 114 g in big hospitals), indicating unskilled waste management practices. Small hospitals do not follow the proper way for taking care of segregation of waste generated in the hospital, and most biomedical wastes were collected without segregation into infectious and noninfectious categories.

  20. Current status of waste management in Botswana: A mini-review.

    PubMed

    Mmereki, Daniel

    2018-05-01

    Effective waste management practices are not all about legislative solutions, but a combination of the environmental, social, technical, technically skilled human resources, financial and technological resources, resource recycling, environmental pollution awareness programmes and public participation. As a result of insufficient resources, municipal solid waste (MSW) in transition and developing countries like Botswana remains a challenge, and it is often not yet given highest priority. In Botswana, the environment, public health and other socio-economic aspects are threatened by waste management practices due to inadequate implementation and enforcement mechanisms of waste management policy. This mini-review paper describes the panorama of waste management practices in Botswana and provides information to competent authorities responsible for waste management and to researchers to develop and implement an effective waste management system. Waste management practices in Botswana are affected by: lack of effective implementation of national waste policy, fragmented tasks and overlapping mandates among relevant institutions; lack of clear guidelines on the responsibilities of the generators and public authorities and on the associated economic incentives; and lack of consistent and comprehensive solid waste management policies; lack of intent by decision-makers to prepare national waste management plans and systems, and design and implement an integrated sustainable municipal solid waste management system. Due to these challenges, there are concerns over the growing trend of the illegal dumping of waste, creating mini dumping sites all over the country, and such actions jeopardize the efforts of lobbying investors and tourism business. Recommendations for concerted efforts are made to support decision makers to re-organize a sustainable waste management system, and this paper provides a reference to other emerging economies in the region and the world.

  1. Solid waste management in the hospitality industry: a review.

    PubMed

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Infectious waste management in Japan: A revised regulation and a management process in medical institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, M.; Une, H.

    In Japan, the waste management practice is carried out in accordance with the Waste Disposal Law of 1970. The first rule of infectious waste management was regulated in 1992, and infectious wastes are defined as the waste materials generated in medical institutions as a result of medical care or research which contain pathogens that have the potential to transmit infectious diseases. Revised criteria for infectious waste management were promulgated by the Ministry of Environment in 2004. Infectious waste materials are divided into three categories: the form of waste; the place of waste generation; the kind of infectious diseases. A reductionmore » of infectious waste is expected. We introduce a summary of the revised regulation of infectious waste management in this article.« less

  3. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  4. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less

  5. Systematic review of epidemiological studies on health effects associated with management of solid waste

    PubMed Central

    2009-01-01

    Background Management of solid waste (mainly landfills and incineration) releases a number of toxic substances, most in small quantities and at extremely low levels. Because of the wide range of pollutants, the different pathways of exposure, long-term low-level exposure, and the potential for synergism among the pollutants, concerns remain about potential health effects but there are many uncertainties involved in the assessment. Our aim was to systematically review the available epidemiological literature on the health effects in the vicinity of landfills and incinerators and among workers at waste processing plants to derive usable excess risk estimates for health impact assessment. Methods We examined the published, peer-reviewed literature addressing health effects of waste management between 1983 and 2008. For each paper, we examined the study design and assessed potential biases in the effect estimates. We evaluated the overall evidence and graded the associated uncertainties. Results In most cases the overall evidence was inadequate to establish a relationship between a specific waste process and health effects; the evidence from occupational studies was not sufficient to make an overall assessment. For community studies, at least for some processes, there was limited evidence of a causal relationship and a few studies were selected for a quantitative evaluation. In particular, for populations living within two kilometres of landfills there was limited evidence of congenital anomalies and low birth weight with excess risk of 2 percent and 6 percent, respectively. The excess risk tended to be higher when sites dealing with toxic wastes were considered. For populations living within three kilometres of old incinerators, there was limited evidence of an increased risk of cancer, with an estimated excess risk of 3.5 percent. The confidence in the evaluation and in the estimated excess risk tended to be higher for specific cancer forms such as non

  6. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  7. Comparison of infectious waste management in European hospitals.

    PubMed

    Mühlich, M; Scherrer, M; Daschner, F D

    2003-12-01

    A research project sponsored by the EC-LIFE programme was conducted to compare waste management in five different European hospitals. A comparison of the regulations governing current waste management revealed different strategies for defining infectious hospital waste. The differences in the infrastructure were examined and the consequences for waste segregation and disposal were discussed under economic and ecological aspects. In this context the definition of infectious waste is very important.

  8. Municipal solid waste management in Rasht City, Iran.

    PubMed

    Alavi Moghadam, M R; Mokhtarani, N; Mokhtarani, B

    2009-01-01

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years.

  9. Municipal solid waste management in Rasht City, Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alavi Moghadam, M.R.; Mokhtarani, N.; Mokhtarani, B.

    2009-01-15

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data ofmore » different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years.« less

  10. The challenge of electronic waste (e-waste) management in developing countries.

    PubMed

    Osibanjo, O; Nnorom, I C

    2007-12-01

    Information and telecommunications technology (ICT) and computer Internet networking has penetrated nearly every aspect of modern life, and is positively affecting human life even in the most remote areas of the developing countries. The rapid growth in ICT has led to an improvement in the capacity of computers but simultaneously to a decrease in the products lifetime as a result of which increasingly large quantities of waste electrical and electronic equipment (e-waste) are generated annually. ICT development in most developing countries, particularly in Africa, depends more on secondhand or refurbished EEEs most of which are imported without confirmatory testing for functionality. As a result large quantities of e-waste are presently being managed in these countries. The challenges facing the developing countries in e-waste management include: an absence of infrastructure for appropriate waste management, an absence of legislation dealing specifically with e-waste, an absence of any framework for end-of-life (EoL) product take-back or implementation of extended producer responsibility (EPR). This study examines these issues as they relate to practices in developing countries with emphasis on the prevailing situation in Nigeria. Effective management of e-waste in the developing countries demands the implementation of EPR, the establishment of product reuse through remanufacturing and the introduction of efficient recycling facilities. The implementation of a global system for the standardization and certification/labelling of secondhand appliances intended for export to developing countries will be required to control the export of electronic recyclables (e-scarp) in the name of secondhand appliances.

  11. Multiple system modelling of waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, Ola, E-mail: ola.eriksson@hig.se; Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle; Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se

    2011-12-15

    Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions havemore » developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.« less

  12. Role of NGOs and CBOs in Waste Management.

    PubMed

    Ahsan, A; Alamgir, M; Imteaz, M; Nik Daud, Nn; Islam, R

    2012-01-01

    Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs) and community-based organizations (CBOs) in municipal solid waste (MSW) management. A survey was conducted to observe the present scenarios of secondary disposal site (SDS), ultimate disposal site (UDS), composting plants, medical wastes management and NGOs and CBOs MSW management activities. A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs. The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises.

  13. Use of a Knowledge Management System in Waste Management Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendler, D.; Boetsch, W.U.; Holzhauer, U.

    2006-07-01

    In Germany the knowledge management system 'WasteInfo' about waste management and disposal issues has been developed and implemented. Beneficiaries of 'WasteInfo' are official decision makers having access to a large information pool. The information pool is fed by experts, so called authors This means compiling of information, evaluation and assigning of appropriate properties (metadata) to this information. The knowledge management system 'WasteInfo' has been introduced at the WM04, the operation of 'WasteInfo' at the WM05. The recent contribution describes the additional advantage of the KMS being used as a tool for the dealing with waste management projects. This specific aspectmore » will be demonstrated using a project concerning a comparative analysis of the implementation of repositories in six countries using nuclear power as examples: The information of 'WasteInfo' is assigned to categories and structured according to its origin and type of publication. To use 'WasteInfo' as a tool for the processing the projects, a suitable set of categories has to be developed for each project. Apart from technical and scientific aspects, the selected project deals with repository strategies and policies in various countries, with the roles of applicants and authorities in licensing procedures, with safety philosophy and with socio-economic concerns. This new point of view has to be modelled in the categories. Similar to this, new sources of information such as local and regional dailies or particular web-sites have to be taken into consideration. In this way 'WasteInfo' represents an open document which reflects the current status of the respective repository policy in several countries. Information with particular meaning for the German repository planning is marked and by this may influence the German strategy. (authors)« less

  14. Niagara River Toxics Management Plan

    EPA Pesticide Factsheets

    This 2007 Progress Report of the Niagara River Toxics Management Plan (NRTMP) summarizes progress made by the four parties in dealing with the 18 “Priority Toxics” through reductions in point and non-point sources to the Niagara River.

  15. Managing America's solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, J. A.

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  16. Hazardous Educational Waste Collections in Illinois.

    ERIC Educational Resources Information Center

    Illinois State Environmental Protection Agency, Springfield.

    This report presents the status of programs designed to manage hazardous educational waste collections in secondary schools in the state of Illinois. Laboratory wastes, expired chemicals, unstable compounds, and toxic or flammable materials are accounted for in this document. The report contains an executive summary, a review of Illinois statutes…

  17. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  18. Public perception of hazardousness caused by current trends of municipal solid waste management.

    PubMed

    Al-Khatib, Issam A; Kontogianni, Stamatia; Abu Nabaa, Hendya; Alshami, Ni'meh; Al-Sari', Majed I

    2015-02-01

    Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) as a result of inequitable waste collection and treatment. Citizens' collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent's educational attainment and their awareness of hazardous waste (hazard perception); the results will indicate the measure taking required to avoid accidents occurred in those regions (burns from toxics, cuts from sharps, etc). National policy and legislation development based on the research outcomes will ensure equitable and accessible services are in place in order to move towards a healthier environment. Specialized health education and training programs on national scale are also needed to enhance awareness on hazardous waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Recognition and management of digitalis toxicity.

    PubMed

    Kelly, R A; Smith, T W

    1992-06-04

    The most important step in the management of toxicity due to any of the cardiac glycosides is its recognition. Despite the development of an accurate clinical assay for serum levels of digoxin greater than 20 years ago, digitalis toxicity remains common and difficult to confirm, even if suspected, due primarily to 2 factors. First, the signs and symptoms of digitalis toxicity, most commonly an abnormal electrocardiogram showing ventricular or atrial arrhythmias, with or without some degree of concurrent atrioventricular block, often also occur in patients with congestive heart failure (CHF) and underlying coronary atherosclerosis who are not receiving a cardiac glycoside. Second, due to digoxin's narrow therapeutic ratio, the marked degree of variability in the sensitivity of individual patients to its toxic effects, and the common problem of obtaining blood samples inappropriately during the early distribution phase following dosing, a serum digoxin concentration often does not serve as a reliable indicator of toxicity. Despite these difficulties in diagnosis, the management of digoxin toxicity has been made much more effective with the widespread availability of F(ab) fragments of anti-digoxin antibodies. This drug provides the clinician with a rapidly acting, safe antidote for all commonly used digitalis preparations. Conventional therapy for digoxin toxicity remains the maintenance of serum potassium levels greater than or equal to 4 mEq/liter, reversal of decompensated CHF or overt myocardial ischemia, attention to serum magnesium levels and the patient's acid-base status, appropriate antiarrhythmics in the event of ventricular arrhythmias, and a temporary pacemaker for high-grade atrioventricular block. Nevertheless, the high specificity and documented safety of the antibody preparation provides a needed safety net for the continuing use of cardiac glycosides as first-line inotropic agents in the modern therapy of chronic CHF.

  20. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    PubMed

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Editor's Page: Management of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Discussed is the problem of management of hazardous waste disposal. Included are various federal laws and congressional kills pertinent to the problem of hazardous waste disposal. Suggested is cooperation between government and the chemical industry to work for a comprehensive solution to waste disposal. (DS)

  2. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...

  3. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...

  4. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for..., 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...

  5. A dipeptide-based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water.

    PubMed

    Nandi, Nibedita; Baral, Abhishek; Basu, Kingshuk; Roy, Subhasish; Banerjee, Arindam

    2017-01-01

    A short peptide-based molecule has been found to form a strong hydrogel at phosphate buffer solution of pH 7.46. The hydrogel has been characterized thoroughly using various techniques including field emission scanning electron microscopy (FE-SEM), wide angle powder X-ray diffraction (PXRD), and rheological analysis. It has been observed from FE-SEM images that entangled nanofiber network is responsible for gelation. Rheological investigation demonstrates that the self-assembly of this synthetic dipeptide results in the formation of mechanically strong hydrogel with storage modulus (G') around 10 4 Pa. This gel has been used for removing both cationic and anionic toxic organic dyes (Brilliant Blue, Congo red, Malachite Green, Rhodamine B) and metal ions (Co 2+ and Ni 2+ ) from waste water. Moreover, only a small amount of the gelator is required (less than 1 mg/mL) for preparation of this superhydrogel and even this hydrogel can be reused three times for dye/metal ion absorption. This signifies the importance of the hydrogel towards waste water management. © 2016 Wiley Periodicals, Inc.

  6. Chemical Waste Management and Disposal.

    ERIC Educational Resources Information Center

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  7. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-2011-0392; FRL-9476-6] RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and... Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management...-0392. (4) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System...

  8. Implementation of spatial smart waste management system in malaysia

    NASA Astrophysics Data System (ADS)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  9. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for... Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  10. Best Practices for Management of Biocontaminated Waste ...

    EPA Pesticide Factsheets

    Report The purpose of these best practices is to provide federal, state, territorial, and local waste management entities information on techniques and methodologies that have the potential to improve the handling and management of biocontaminated waste streams after a biological agent incident. These best practices are intended to be general in nature serving as a resource to a variety of biological agents in a variety of situations; however, these best practices also present a specific homeland security scenario – a biological attack with Bacillus anthracis (B. anthracis) – to help illustrate specific waste management considerations.

  11. Regulating the disposal of cigarette butts as toxic hazardous waste.

    PubMed

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  12. Regulating the disposal of cigarette butts as toxic hazardous waste

    PubMed Central

    2011-01-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment. PMID:21504925

  13. SUSTAINABILITY AND WASTE MANAGEMENT

    EPA Science Inventory

    There is a need to move toward a more sustainable use of resources. Concern for the environment and future generations is leading us to shift the focus from waste management to resource management. This paper provides an overview of a decision support tool that provides a holis...

  14. Management of Biomedical Waste: An Exploratory Study.

    PubMed

    Abhishek, K N; Suryavanshi, Harshal N; Sam, George; Chaithanya, K H; Punde, Prashant; Singh, S Swetha

    2015-09-01

    Dental operatories pose a threat due to the high chances of infection transmission both to the clinician and the patients. Hence, management of dental waste becomes utmost importance not only for the health benefit of the dentist himself, but also people who can come into contact with these wastes directly or indirectly. The present study was conducted to find out the management of biomedical waste in private dental practice among 3 districts of Karnataka. The study population included 186 private practitioners in 3 districts of Karnataka (Coorg, Mysore, Hassan), South India. A pre-tested self-administered questionnaire was distributed to assess the knowledge and practices regarding dental waste management. Descriptive statistics was used to summarize the results. Out of 186 study subjects, 71 (38%) were females and 115 (62%) were males. The maximum number of participants belonged to the age group of 28-33 years (29%). Undergraduate qualification was more (70%). 90 (48%) participants had an experience of 0-5 years. Chi-square analysis showed a highly significant association between participant who attended continuing dental education (CDE) program and their practice of dental waste management. Education with regards to waste management will help in enhancing practices regarding the same. In order to fill this vacuum CDE programs have to be conducted in pursuance to maintain health of the community.

  15. Hospital waste management in El-Beheira Governorate, Egypt.

    PubMed

    Abd El-Salam, Magda Magdy

    2010-01-01

    This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and

  16. Global capacity, potentials and trends of solid waste research and management.

    PubMed

    Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan

    2017-09-01

    In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.

  17. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...

  18. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...

  19. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...

  20. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...

  1. Radioactive Waste Management in A Hospital

    PubMed Central

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  2. Radioactive waste management in a hospital.

    PubMed

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  3. Food loss and waste management in Turkey.

    PubMed

    Salihoglu, Guray; Salihoglu, Nezih Kamil; Ucaroglu, Selnur; Banar, Mufide

    2018-01-01

    Food waste can be an environmental and economic problem if not managed properly but it can meet various demands of a country if it is considered as a resource. The purpose of this report is to review the existing state of the field in Turkey and identify the potential of food waste as a resource. Food loss and waste (FLW) was examined throughout the food supply chain (FSC) and quantified using the FAO model. Edible FLW was estimated to be approximately 26milliontons/year. The amount of biodegradable waste was estimated based on waste statistics and research conducted on household food waste in Turkey. The total amount of biodegradable waste was found to be approximately 20milliontons/year, where more than 8.6milliontons/year of this waste is FLW from distribution and consumption in the FSC. Options for the end-of-life management of biodegradable wastes are also discussed in this review article. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Solid waste management in Linamon, Lanao del Norte

    NASA Astrophysics Data System (ADS)

    Paragoso, Glaiza P.; Sapar, Cherine Mae A.; Magsayo, Joy R.; Lahoylahoy, Myrna E.; Guarin, Rica Mae B.

    2018-01-01

    In this modern world, Solid Waste Management is very important in maintaining a high quality of life so humans must manage and store waste efficiently and safely. Almost every day each household generates garbage or wastes. People throw things improperly without knowing the consequences. The main objective of the study was to assess the residents' Solid Waste Management. Specifically, it aimed to answer the following questions: What is the profile of the respondents in terms of age, gender, educational attainment, occupation, monthly income, no. of household member; What is the knowledge of the respondents about Natural Environment?; How do respondents disposed garbage from the household?; What is the level of the respondents concern about proper waste management?; What is the willingness of the respondents to participate in proper Solid Waste Management?; What is the attitude of the respondents towards the Solid Waste Management? The said study was conducted at the Municipality of Linamon, which is a 5th class municipality located at the Eastern Gateway to Lanao del Norte, a south western Province of Northern Mindanao in the Philippines. The study was conducted in the 8 barangays of the Municipality of Linamon, namely: Bosque, Larapan, Mago-ong, Napo, Poblacion, Purakan, Robocon, and Samburon. The Municipality has 3 urban barangays and 4 rural barangays. The study revealed that most of the respondents interviewed were housewives. Out of 313 respondents, 67.10 % did not understand the term natural environment, with major issue currently affecting natural environment as "household garbage'. The respondents dispose the yard trimmings and papers through burning. The plastic and glass is disposed through the garbage truck. The metals and damaged home appliances were disposed by selling it to the junk shop. The respondents disposed their garbage into an open container specifically in a sack, collected by garbage trucks. The study also revealed that the respondents were

  5. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  6. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  7. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  8. Role of NGOs and CBOs in Waste Management

    PubMed Central

    Ahsan, A; Alamgir, M; Imteaz, M; Nik Daud, NN; Islam, R

    2012-01-01

    Background Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs) and community-based organizations (CBOs) in municipal solid waste (MSW) management. Methods: A survey was conducted to observe the present scenarios of secondary disposal site (SDS), ultimate disposal site (UDS), composting plants, medical wastes management and NGOs and CBOs MSW management activities. Results: A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs. Conclusion: The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises. PMID:23113191

  9. Waste management in primary healthcare centres of Iran.

    PubMed

    Mesdaghinia, Alireza; Naddafi, Kazem; Mahvi, Amir Hossein; Saeedi, Reza

    2009-06-01

    The waste management practices in primary healthcare centres of Iran were investigated in the present study. A total of 120 primary healthcare centres located across the country were selected using the cluster sampling method and the current situation of healthcare waste management was determined through field investigation. The quantities of solid waste and wastewater generation per outpatient were found to be 60 g outpatient(-1) day(-1) and 26 L outpatient(-1) day(-1), respectively. In all of the facilities, sharp objects were separated almost completely, but separation of other types of hazardous healthcare solid waste was only done in 25% of the centres. The separated hazardous solid waste materials were treated by incineration, temporary incineration and open burning methods in 32.5, 8.3 and 42.5% of the healthcare centres, respectively. In 16.7% of the centres the hazardous solid wastes were disposed of without any treatment. These results indicate that the management of waste materials in primary healthcare centres in Iran faced some problems. Staff training and awareness, separation of healthcare solid waste, establishment of the autoclave method for healthcare solid waste treatment and construction of septic tanks and disinfection units in the centres that were without access to a sewer system are the major measures that are suggested for improvement of the waste management practices.

  10. Facilitating the improved management of waste in South Africa through a national waste information system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, Linda

    2008-07-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such asmore » South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.« less

  11. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management guidelines. 60.35e... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State...

  12. Waste Information Management System v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustamante, David G.; Schade, A. Carl

    WIMS is a functional interface to an Oracle database for managing the required regulatory information about the handling of Hazardous Waste. WIMS does not have a component to track Radiological Waste data. And it does not have the ability to manage sensitive information.

  13. Solid Waste Management with Emphasis on Environmental Aspect

    NASA Astrophysics Data System (ADS)

    Sinha, Navin Kr.; Choudhary, Binod Kumar; Shree, Shalini

    2011-12-01

    In this paper focus on Solid waste management. Its comprises of purposeful and systematic control of generation, storage, collection, transport, separations, processing, recycling, recovery and disposal of solid waste. Awareness of Four R's management & EMS support also for management Solid waste. Basel convention on the Control of transboundary movements of hazardous wastes and their Disposal usually known simply as the Basel Convention, is an international treaty that was designed to reduce the movements of hazardous waste between nations, and specifically to prevent transfer of hazardous waste from developed to less developed countries (LDCs). it came into force 5 May 1992. According to this "Substances or objects which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law"(UNEP).

  14. The use of sugar and alcohol industry waste in the adsorption of potentially toxic metals.

    PubMed

    Santos, Oseas Silva; Mendonça, André Gustavo Ribeiro; Santos, Josué Carinhanha Caldas; Silva, Amanda Paulina Bezerra; Costa, Silvanio Silverio Lopes; Oliveira, Luciana Camargo; Carmo, Janaina Braga; Botero, Wander Gustavo

    2016-01-01

    One of the waste products of the industrial process of the sugar and alcohol agribusiness is filter cake (FC). This waste product has high levels of organic matter, mainly proteins and lipids, and is rich in calcium, nitrogen, potassium and phosphorous. In this work we characterized samples of FC from sugar and alcohol industries located in sugarcane-producing regions in Brazil and assessed the adsorption of potentially toxic metals (Cu(II), Cd(II), Pb(II), Ni(II) and Cr(III)) by this waste in mono- and multi-elemental systems, seeking to use FC as an adsorbent in contaminated environments. The characterization of FCs showed significant differences between the samples and the adsorption studies showed retention of over 90% of potentially toxic metals. In a competitive environment (multi-metallic solution), the FC was effective in adsorbing all metals except lead, but less effective compared to the mono-metallic solution. These results show the potential for use of this residue as an adsorbent in contaminated environments.

  15. Management of construction and demolition wastes as secondary building resources

    NASA Astrophysics Data System (ADS)

    Manukhina, Lyubov; Ivanova, Irina

    2017-10-01

    The article analyzes the methods of management of construction and demolition wastes. The authors developed suggestions for improving the management system of the turnover of construction and demolition wastes. Today the issue of improving the management of construction and demolition wastes is of the same importance as problems of protecting the life-support field from pollution and of preserving biological and land resources. The authors educed the prospective directions and methods for improving the management of the turnover processes for construction and demolition wastes, including the evaluation of potential of wastes as secondary raw materials and the formation of a centralized waste management system.

  16. Defusing the Toxics Threat: Controlling Pesticides and Industrial Waste. Worldwatch Paper 79.

    ERIC Educational Resources Information Center

    Postel, Sandra

    The use of pesticides in agriculture and the discarding of industrial chemical waste into the air, soil, and water constitute two major pathways of human exposure to toxic substances. It is argued that these practices release hundreds of millions of tons of potentially hazardous substances into the environment each year. Speculation continues into…

  17. A-Way with Waste. A Waste Management Curriculum for Schools. Second Edition.

    ERIC Educational Resources Information Center

    Peterson, Todd; And Others

    Designed to address the problems and solutions related to waste management, this curriculum guide contains interdisciplinary activities for K-12 students in Washington State schools. Listings of the activities are provided by concept categories (under the themes of revise, reuse, recycle, and recover); by waste management subject area (addressing…

  18. Public perception of hazardousness caused by current trends of municipal solid waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Khatib, Issam A., E-mail: ikhatib@birzeit.edu; Kontogianni, Stamatia; Abu Nabaa, Hendya

    Highlights: • Contribution to the scientific literature by examining the relationship between concern for the environment and waste disposal in the frame of household waste treatment mechanism specifically in developing countries. • The awareness of the citizens satisfaction level and the local existing capacities in developing countries significantly contribute to decision making on MSW management sustainability in Palestine and other developing countries when applied. • Identification of the differences and similarities among DC resulting to failures or success in WM field. - Abstract: Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) asmore » a result of inequitable waste collection and treatment. Citizens’ collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent’s educational attainment and their awareness of hazardous waste (hazard

  19. Guide for Industrial Waste Management

    EPA Pesticide Factsheets

    The purpose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-hazardousindustrial wastes.

  20. Municipal solid waste management in Malaysia: practices and challenges.

    PubMed

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  1. Management and utilization of poultry wastes.

    PubMed

    Williams, C M; Barker, J C; Sims, J T

    1999-01-01

    Waste by-products such as excreta or bedding material that are generated by the worldwide annual production of more than 40 million metric tons (t) of poultry meat and 600 billion eggs are generally land applied as the final step of a producer's waste management strategy. Under proper land application conditions, the nutrients and organisms in poultry wastes pose little environmental threat. Environmental contamination occurs when land application of poultry wastes is in excess of crop utilization potential, or is done under poor management conditions causing nutrient loss from environmental factors such as soil erosion or surface runoff during rainfall. Environmental parameters of concern are N, P, and certain metals (Cu and Zn in particular), as well as pathogenic microorganisms that may be contained in poultry waste. The biochemical cycle of N is very dynamic, and N contained in poultry waste may either be removed by crop harvest, leave the animal production facility, waste treatment lagoon, or application field as a gas (NH3, NO, NO2, N2O, or N2), or, due to its mobility in soil, be transported in organic or inorganic N forms in the liquid state via surface runoff or leaching into groundwater. Elevated concentrations of NO3-N in groundwater used for human consumption is a health risk to infants that are susceptible to methemoglobinemia. An environmental impact resulting from elevated NO3-N is eutrophication of surface waters. Ammonia loss from poultry waste is an environmental concern because of volatilized wet and dry deposits of NH3 into nitrogen-sensitive ecosystems. Phosphorus in poultry wastes may contribute to environmental degradation by accelerating the process of eutrophication. Unlike N, P is very immobile in soil and must first be transported to a surface water environment to have an environmental impact. It is generally accepted, however, that this nutrient affects receiving waters via transport in eroding soil as sediment-bound P or in surface

  2. Estimation of construction waste generation and management in Thailand.

    PubMed

    Kofoworola, Oyeshola Femi; Gheewala, Shabbir H

    2009-02-01

    This study examines construction waste generation and management in Thailand. It is estimated that between 2002 and 2005, an average of 1.1 million tons of construction waste was generated per year in Thailand. This constitutes about 7.7% of the total amount of waste disposed in both landfills and open dumpsites annually during the same period. Although construction waste constitutes a major source of waste in terms of volume and weight, its management and recycling are yet to be effectively practiced in Thailand. Recently, the management of construction waste is being given attention due to its rapidly increasing unregulated dumping in undesignated areas, and recycling is being promoted as a method of managing this waste. If effectively implemented, its potential economic and social benefits are immense. It was estimated that between 70 and 4,000 jobs would have been created between 2002 and 2005, if all construction wastes in Thailand had been recycled. Additionally it would have contributed an average savings of about 3.0 x 10(5) GJ per year in the final energy consumed by the construction sector of the nation within the same period based on the recycling scenario analyzed. The current national integrated waste management plan could enhance the effective recycling of construction and demolition waste in Thailand when enforced. It is recommended that an inventory of all construction waste generated in the country be carried out in order to assess the feasibility of large scale recycling of construction and demolition waste.

  3. Challenges of Toxicity Management in Immuno-Oncology.

    PubMed

    Andrews, Stephanie

    2017-05-01

    Immunotherapies are conveying unprecedented efficacy in some tumor types, but with this success comes challenges in managing toxicities that are distinct from those of cytotoxic agents. Although most immune-related adverse events can be ameliorated by temporarily withholding the drug and administering steroids, grade 3 to 4 toxicities can be challenging and some adverse effects can be long-lasting. NCCN has developed an immunotherapy teaching and monitoring tool that can help in evaluating and managing these autoimmune-mediated inflammatory conditions, which can affect virtually all organ systems. Copyright © 2017 by the National Comprehensive Cancer Network.

  4. Alternative approaches for better municipal solid waste management in Mumbai, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, Sarika

    2006-07-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less

  5. [Biomedical waste management in five hospitals in Dakar, Senegal].

    PubMed

    Ndiaye, M; El Metghari, L; Soumah, M M; Sow, M L

    2012-10-01

    Biomedical waste is currently a real health and environmental concern. In this regard, a study was conducted in 5 hospitals in Dakar to review their management of biomedical waste and to formulate recommendations. This is a descriptive cross-sectional study conducted from 1 April to 31 July 2010 in five major hospitals of Dakar. A questionnaire administered to hospital managers, heads of departments, residents and heads of hospital hygiene departments as well as interviews conducted with healthcare personnel and operators of waste incinerators made it possible to assess mechanisms and knowledge on biomedical waste management. Content analysis of interviews, observations and a data sheet allowed processing the data thus gathered. Of the 150 questionnaires distributed, 98 responses were obtained representing a response rate of 65.3%. An interview was conducted with 75 employees directly involved in the management of biomedical waste and observations were made on biomedical waste management in 86 hospital services. Sharps as well as blood and liquid waste were found in all services except in pharmacies, pharmaceutical waste in 66 services, infectious waste in 49 services and anatomical waste in 11 services. Sorting of biomedical waste was ill-adapted in 53.5% (N = 46) of services and the use of the colour-coding system effective in 31.4% (N = 27) of services. Containers for the safe disposal of sharps were available in 82.5% (N = 71) of services and were effectively utilized in 51.1% (N = 44) of these services. In most services, an illadapted packaging was observed with the use of plastic bottles and bins for waste collection and overfilled containers. With the exception of Hôpital Principal, the main storage area was in open air, unsecured, with biomedical waste littered on the floor and often mixed with waste similar to household refuse. The transfer of biomedical waste to the main storage area was done using trolleys or carts in 67.4% (N = 58) of services and

  6. Environmental Education: Compendium for Integrated Waste Management.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    This compendium is a tool for bringing waste management education into classrooms. Curriculum materials gathered from across the country were reviewed by California's top environmental educators, both for correlation with the state's educational frameworks and for accuracy and completeness of waste management information. Materials that cover…

  7. [Assessment of medical waste management in a Palestinian hospital].

    PubMed

    Al-Khatib, I A; Khatib, R A

    2006-01-01

    We studied medical waste management in a Palestinian hospital in the West Bank and the role of municipality in this management. In general, "good management practices" were inadequate; there was insufficient separation between hazardous and non-hazardous wastes, an absence of necessary rules and regulations for the collection of wastes from the hospital wards and the on-site transport to a temporary storage location inside and outside the hospital and inadequate waste treatment and disposal of hospital wastes along with municipal garbage. Moreover, training of personnel was lacking and protective equipment and measures for staff were not available. No special landfills for hazardous wastes were found within the municipality.

  8. Waste Information Management System with 2012-13 Waste Streams - 13095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Lagos, L.

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less

  9. Fossil energy waste management. Technology status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less

  10. Safety and Waste Management for SAM Pathogen Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  11. Safety and Waste Management for SAM Biotoxin Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  12. Certain Hospital Waste Management Practices in Isfahan, Iran

    PubMed Central

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Zeinab; Narenjkar, Parisa

    2012-01-01

    Objectives: Infected hospital wastes are among hazardous wastes, and special treatment methods are needed for their disposal. Having information about present status of medical waste management systems is of great importance in finding weak, and for future planning. Such studies have not been done for most of the hospitals in Iran. Methods: This paper reports the results of a study on the present status of medical waste management in Isfahan hospitals. A ten page researcher made questionnaire was used to collect data in terms of collection, transportation, segregation, treatment and disposal. For assessment of autoclaves, standard tests including TST (Time, Steam, and Temperature) strip test and spore tests were used. Samples were made of stack gases of incinerators. Quantity and composition of hospital wastes in Isfahan were also measured manually. Results: Of all wastes in selected hospitals, 40% were infected wastes (1.59 kg/day/bed), which is 15 to 20% higher than World Health Organization (WHO) standards. TST and Spore test results were negative in all samples. Stack gases analysis showed high concentration of CO in some samples. Besides, the combustion efficiency in some samples is less than 99.5%, which is the standard criterion in Iran. Conclusions: This study may create awareness regarding the magnitude of the problem of waste management in hospitals of Isfahan and may stimulate interests for systematic control efforts for hospital waste disposal. Hospital waste management cannot succeed without documented plans, certain equipment, defined staff trainings, and periodic evaluations. PMID:22826762

  13. Provisional Peer-Reviewed Toxicity Values for Benzaldehyde

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  14. Provisional Peer-Reviewed Toxicity Values for Azodicarbonamide

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  15. Provisional Peer-Reviewed Toxicity Values for Lewisite

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  16. Provisional Peer-Reviewed Toxicity Values for Dicyclopentadiene

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  17. Provisional Peer-Reviewed Toxicity Values for Aluminum

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  18. Provisional Peer-Reviewed Toxicity Values for Guanidine

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  19. Provisional Peer-Reviewed Toxicity Values for Acrolein

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  20. Provisional Peer-Reviewed Toxicity Values for Acenaphthylene

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  1. Radioactive Waste Management in Non-Nuclear Countries - 13070

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubelka, Dragan; Trifunovic, Dejan

    2013-07-01

    This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services,more » comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)« less

  2. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Nicholas; Adams, Lynne; Wong, Pierre

    2013-07-01

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators formore » all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)« less

  3. Healthcare waste management research: A structured analysis and review (2005-2014).

    PubMed

    Thakur, Vikas; Ramesh, A

    2015-10-01

    The importance of healthcare waste management in preserving the environment and protecting the public cannot be denied. Past research has dealt with various issues in healthcare waste management and disposal, which spreads over various journals, pipeline research disciplines and research communities. Hence, this article analyses this scattered knowledge in a systematic manner, considering the period between January 2005 and July 2014. The purpose of this study is to: (i) identify the trends in healthcare waste management literature regarding journals published; (ii) main topics of research in healthcare waste management; (iii) methodologies used in healthcare waste management research; (iv) areas most frequently researched by researchers; and (v) determine the scope of future research in healthcare waste management. To this end, the authors conducted a systematic review of 176 articles on healthcare waste management taken from the following eight esteemed journals: International Journal of Environmental Health Research, International Journal of Healthcare Quality Assurance, Journal of Environmental Management, Journal of Hazardous Material, Journal of Material Cycles and Waste Management, Resources, Conservations and Recycling, Waste Management, and Waste Management & Research. The authors have applied both quantitative and qualitative approaches for analysis, and results will be useful in the following ways: (i) results will show importance of healthcare waste management in healthcare operations; (ii) findings will give a comparative view of the various publications; (c) study will shed light on future research areas. © The Author(s) 2015.

  4. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What is a waste management plan? 62...

  5. Data analytics approach to create waste generation profiles for waste management and collection.

    PubMed

    Niska, Harri; Serkkola, Ari

    2018-04-30

    Extensive monitoring data on waste generation is increasingly collected in order to implement cost-efficient and sustainable waste management operations. In addition, geospatial data from different registries of the society are opening for free usage. Novel data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. In this paper, a data-based approach based on the self-organizing map (SOM) and the k-means algorithm is developed for creating a set of waste generation type profiles. The approach is demonstrated using the extensive container-level waste weighting data collected in the metropolitan area of Helsinki, Finland. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information e.g. for the basis of tailored feedback services for waste producers and the planning and optimization of waste collection and recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Safety and Waste Management for SAM Chemistry Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  7. Safety and Waste Management for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  8. Biomedical waste management in Ayurveda hospitals - current practices & future prospectives.

    PubMed

    Rajan, Renju; Robin, Delvin T; M, Vandanarani

    2018-03-16

    Biomedical waste management is an integral part of traditional and contemporary system of health care. The paper focuses on the identification and classification of biomedical wastes in Ayurvedic hospitals, current practices of its management in Ayurveda hospitals and its future prospective. Databases like PubMed (1975-2017 Feb), Scopus (1960-2017), AYUSH Portal, DOAJ, DHARA and Google scholar were searched. We used the medical subject headings 'biomedical waste' and 'health care waste' for identification and classification. The terms 'biomedical waste management', 'health care waste management' alone and combined with 'Ayurveda' or 'Ayurvedic' for current practices and recent advances in the treatment of these wastes were used. We made a humble attempt to categorize the biomedical wastes from Ayurvedic hospitals as the available data about its grouping is very scarce. Proper biomedical waste management is the mainstay of hospital cleanliness, hospital hygiene and maintenance activities. Current disposal techniques adopted for Ayurveda biomedical wastes are - sewage/drains, incineration and land fill. But these methods are having some merits as well as demerits. Our review has identified a number of interesting areas for future research such as the logical application of bioremediation techniques in biomedical waste management and the usage of effective micro-organisms and solar energy in waste disposal. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  9. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection...

  10. International E-Waste Management Network (IEMN)

    EPA Pesticide Factsheets

    EPA and the Environmental Protection Administration Taiwan (EPAT) have collaborated since 2011 to build global capacity for the environmentally sound management of waste electrical and electronic equipment (WEEE), which is commonly called e-waste.

  11. E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries.

    PubMed

    Resmi, N G; Fasila, K A

    2017-10-01

    This paper proposes a novel algorithm for establishing a standard methodology to manage and refurbish e-waste called E-waste Management And Refurbishment Prediction (EMARP), which can be adapted by refurbishing industries in order to improve their performance. Waste management, particularly, e-waste management is a serious issue nowadays. Computerization has been into waste management in different ways. Much of the computerization has happened in planning the waste collection, recycling and disposal process and also managing documents and reports related to waste management. This paper proposes a computerized model to make predictions for e-waste refurbishment. All possibilities for reusing the common components among the collected e-waste samples are predicted, thus minimizing the wastage. Simulation of the model has been done to analyse the accuracy in the predictions made by the system. The model can be scaled to accommodate the real-world scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. OSSA Space Station waste inventory

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Johnson, Catherine C.; Bosley, John J.; Curran, George L.; Mains, Richard

    1987-01-01

    NASA's Office of Space Science and Applications has compiled an inventory of the types and quantities of the wastes that will be generated by the Space Station's initial operational phase in 35 possible mission scenarios. The objective of this study was the definition of waste management requirements for both the Space Station and the Space Shuttles servicing it. All missions, when combined, will produce about 5350 kg of gaseous, liquid and solid wastes every 90 days. A characterization has been made of the wastes in terms of toxicity, corrosiveness, and biological activity.

  13. Tank waste remediation system tank waste retrieval risk management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimper, S.C.

    1997-11-07

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.

  14. Solid industrial wastes and their management in Asegra (Granada, Spain)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casares, M.L.; Ulierte, N.; Mataran, A.

    ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both themore » type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping.« less

  15. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  16. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  17. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  18. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  19. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  20. Hazardous-waste analysis plan for LLNL operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R.S.

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less

  1. Energy aspects of solid waste management: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less

  2. Energy aspects of solid waste management: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less

  3. General Safety and Waste Management Related to SAM

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for chemicals, radiochemicals, pathogens, and biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  4. Human factors in waste management - potential and reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.S.

    There is enormous potential for human factors contributions in the realm of waste management. The reality, however, is very different from the potential. This is particularly true for low-level and low-level mixed-waste management. The hazards are less severe; therefore, health and safety requirements (including human factors) are not as rigorous as for high-level waste. High-level waste management presents its own unique challenges and opportunities. Waste management is strongly driven by regulatory compliance. When regulations are flexible and open to interpretation and the environment is driven so strongly by regulatory compliance, standard practice is to drop {open_quotes}nice to have{close_quotes} features, likemore » a human factors program, to save money for complying with other requirements. The challenge is to convince decision makers that human factors can help make operations efficient and cost-effective, as well as improving safety and complying with regulations. A human factors program should not be viewed as competing with compliance efforts; in fact, it should complement them and provide additional cost-effective means of achieving compliance with other regulations. Achieving this synergy of human factors with ongoing waste management operations requires educating program and facility managers and other technical specialists about human factors and demonstrating its value {open_quotes}through the back door{close_quotes} on existing efforts. This paper describes ongoing projects at Los Alamos National Laboratory (LANL) in support of their waste management groups. It includes lessons learned from hazard and risk analyses, safety analysis reports, job and task analyses, operating procedure development, personnel qualification/certification program development, and facility- and job-specific training program and course development.« less

  5. Solid Waste Management in Nigeria: Problems and Issues.

    PubMed

    AGUNWAMBA

    1998-11-01

    / This paper is a presentation of the problems of solid waste management in Nigeria and certain important issues that must be addressed in order to achieve success. At the core of the problems of solid waste management are the absence of adequate policies, enabling legislation, and an environmentally stimulated and enlightened public. Government policies on the environment are piecemeal where they exist and are poorly implemented. Public enlightenment programs lacked the needed coverage, intensity, and continuity to correct the apathetic public attitude towards the environment. Up to now the activities of the state environmental agencies have been hampered by poor funding, inadequate facilities and human resources, inappropriate technology, and an inequitable taxation system. Successful solid waste management in Nigeria will require a holistic program that will integrate all the technical, economic, social, cultural, and psychological factors that are often ignored in solid waste programs.KEY WORDS: Solid waste; Management; Problems; Solutions; Nigeria

  6. Hazardous Waste Management: A View to the New Century, 2001.

    ERIC Educational Resources Information Center

    Burton, Gwen

    Like many parts of the United States, Colorado is facing a significant hazardous waste problem. Radioactive and chemical wastes generated by the Rocky Flats Nuclear Plant, the toxic Lowry Land Fill Site, industrial dumps, and heavy land and air traffic contribute to water, land, and air pollution in the state. As part of a statewide response…

  7. Towards the effective plastic waste management in Bangladesh: a review.

    PubMed

    Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain

    2017-12-01

    The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.

  8. Toxicity screening of waste products using cell culture techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitmermet, M.; Favre, A.; Shah, B.

    1995-12-31

    More than 600,000 tons of residue from waste incineration plants is produced in Switzerland each year. These residues are slag, fly ashes, and residues from extended flue gas cleaning. Because they are contaminated with heavy metals, they have to be deposited in appropriate landfills. Due to the increasing amount of municipal and industrial waste and the decreasing amount of disposal sites, additional treatment of waste and its by-products is becoming more and more important. To decrease the amount of residuals to be deposited, the heavy metal content of the residues has to be reduced by physical, chemical, or biological methodsmore » to acceptably low levels to obtain products suitable for reuse in the construction industry. The cell reactions due to the presence of residues and their extracts were studied using quantitative and qualitative methods. The results of the applied cell culture techniques showed that fly ash was much more cytotoxic than slag. This finding correlates with the chemical analysis. The washed samples were again less cytotoxic than their corresponding unwashed samples due to the lack of water-soluble compounds. The very sensitive response of the cell cultures to toxic substances was used to classify and validate the applied treatment methods.« less

  9. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60.2899 Section 60.2899 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...

  10. Hospital waste management in Brazil: a case study.

    PubMed

    Mattoso, V D; Schalch, V

    2001-12-01

    The evaluation of the current definition, classification and quantification of hospital waste being carried out by hospitals in different countries is extremely important to avoid improper waste management practices. In this work, the waste management from a 400-bed Brazilian hospital which generates about 386 kg per day of hospital waste was studied. The generation rate of just over one kg per bed per day was considered small, although more than 50% of the waste from non-isolation wards consisted of food waste. It was also interesting to note that the highest generation rate per patient per day was found in private rooms and the lowest rate in the public ones. The waste practices used in this hospital are discussed in terms of current Brazilian legislation.

  11. E-waste scenario in India, its management and implications.

    PubMed

    Wath, Sushant B; Dutt, P S; Chakrabarti, T

    2011-01-01

    Electronic waste or E-waste comprises of old, end-of-life electronic appliances such as computers, laptops, TVs, DVD players, refrigerators, freezers, mobile phones, MP3 players, etc., which have been disposed of by their original users. E-waste contains many hazardous constituents that may negatively impact the environment and affect human health if not properly managed. Various organizations, bodies, and governments of many countries have adopted and/or developed the environmentally sound options and strategies for E-waste management to tackle the ever growing threat of E-waste to the environment and human health. This paper presents E-waste composition, categorization, Global and Indian E-waste scenarios, prospects of recoverable, recyclable, and hazardous materials found in the E-waste, Best Available Practices, recycling, and recovery processes followed, and their environmental and occupational hazards. Based on the discussion, various challenges for E-waste management particularly in India are delineated, and needed policy interventions were discussed.

  12. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: Some strategies for improving current conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghipour, Hassan, E-mail: hteir@yahoo.com; Amjad, Zahra; Jafarabadi, Mohamad Asghari

    2014-07-15

    Highlights: • Heavy metals in spent compact fluorescent lamps (CFLs) determined. • Current waste management condition of CFLs in Iran assessed. • Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. • We propose extended producer responsibility (EPR) for CFLs waste management. - Abstract: From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability ofmore » sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a

  13. Waste management in space: a NASA symposium. Special issue

    NASA Technical Reports Server (NTRS)

    Wydeven, T. (Principal Investigator)

    1991-01-01

    This special issue contains papers from the NASA Symposium on Waste Processing for Advanced Life Support, which was held at NASA Ames Research Center on September 11-13, 1990. Specialists in waste management from academia, government, and industry convened to exchange ideas and advise NASA in developing effective methods for waste management in a Controlled Ecological Life Support System (CELSS). Innovative and well-established methods were presented to assist in developing and managing wastes in closed systems for future long-duration space missions, especially missions to Mars.

  14. Influence of Planetary Protection Guidelines on Waste Management Operations

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  15. Building a new waste management strategy in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boltz, C.

    1995-06-01

    Puerto Rico traditionally has not had a centrally organized waste management system. Most municipalities have provided service for their own residents, and the island used 62 unlined landfills before 32 of those closed in April 1994. But waste management on this Caribbean island is changing as the government-a self-governing commonwealth associated voluntarily with the US government-begins implementing its strategy for developing efficient, state-of-the-art waste management. This strategy includes plans to build an integrated system of collection, transfer stations, and disposal sites whose centerpieces are market-drives recycling, partnerships between the public and private sectors, and public education. The details of thismore » plan coincide with the mission statement of the Puerto Rico Solid Waste Management Authority (SWMA, San Juan), to ``develop and implement the necessary infrastructure for the efficient management of solid waste in Puerto Rico.« less

  16. 75 FR 20942 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... of the waste generation and management information for saccharin and its salts, which demonstrate... partnership with the States, biennially collects information regarding the generation, management, and final... Based on the Available Toxicological Information and Waste Generation and Management Information for...

  17. Integrated software system for low level waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worku, G.

    1995-12-31

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less

  18. Waste management, informal recycling, environmental pollution and public health.

    PubMed

    Yang, Hong; Ma, Mingguo; Thompson, Julian R; Flower, Roger J

    2018-03-01

    With rapid population growth, especially in low-income and middle-income countries, the generation of waste is increasing at an unprecedented rate. For example, annual global waste arising from waste electrical and electronic equipment alone will have increased from 33.8 to 49.8 million tonnes between 2010 and 2018. Despite incineration and other waste treatment techniques, landfill still dominates waste disposal in low-income and middle-income countries. There is usually insufficient funding for adequate waste management in these countries and uptake of more advanced waste treatment technologies is poor. Without proper management, many landfills represent serious hazards as typified by the landslide in Shenzhen, China on 20 December 2015. In addition to formal waste recycling systems, approximately 15million people around the world are involved in informal waste recycling, mainly for plastics, metals, glass and paper. This review examines emerging public health challenges, in particular within low-income and middle-income countries, associated with the informal sector. While informal recyclers contribute to waste recycling and reuse, the relatively primitive techniques they employ, combined with improper management of secondary pollutants, exacerbate environmental pollution of air, soil and water. Even worse, insufficient occupational health measures expose informal waste workers to a range of pollutants, injuries, respiratory and dermatological problems, infections and other serious health issues that contribute to low life expectancy. Integration of the informal sector with its formal counterparts could improve waste management while addressing these serious health and livelihood issues. Progress in this direction has already been made notably in several Latin American countries where integrating the informal and formal sectors has had a positive influence on both waste management and poverty alleviation. © Article author(s) (or their employer(s) unless

  19. Evaluation of environmental impacts from municipal solid waste management in the municipality of Aarhus, Denmark (EASEWASTE).

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas H; Bhander, Gurbakhash Singh; Hauschild, Michael

    2006-02-01

    A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.

  20. Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.

    PubMed

    Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  1. Managing previously disposed waste to today's standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determinemore » extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs.« less

  2. Managing Materials and Wastes for Homeland Security Incidents

    EPA Pesticide Factsheets

    To provide information on waste management planning and preparedness before a homeland security incident, including preparing for the large amounts of waste that would need to be managed when an incident occurs, such as a large-scale natural disaster.

  3. Formal recycling of e-waste leads to increased exposure to toxic metals: an occupational exposure study from Sweden.

    PubMed

    Julander, Anneli; Lundgren, Lennart; Skare, Lizbet; Grandér, Margaretha; Palm, Brita; Vahter, Marie; Lidén, Carola

    2014-12-01

    Electrical and electronic waste (e-waste) contains multiple toxic metals. However, there is currently a lack of exposure data for metals on workers in formal recycling plants. The objective of this study was to evaluate workers' exposure to metals, using biomarkers of exposure in combination with monitoring of personal air exposure. We assessed exposure to 20 potentially toxic metals among 55 recycling workers and 10 office workers at three formal e-waste recycling plants in Sweden. Workers at two of the plants were followed-up after 6 months. We collected the inhalable fraction and OFC (37-mm) fraction of particles, using personal samplers, as well as spot samples of blood and urine. We measured metal concentrations in whole blood, plasma, urine, and air filters using inductively coupled plasma-mass spectrometry following acid digestion. The air sampling indicated greater airborne exposure, 10 to 30 times higher, to most metals among the recycling workers handling e-waste than among the office workers. The exposure biomarkers showed significantly higher concentrations of chromium, cobalt, indium, lead, and mercury in blood, urine, and/or plasma of the recycling workers, compared with the office workers. Concentrations of antimony, indium, lead, mercury, and vanadium showed close to linear associations between the inhalable particle fraction and blood, plasma, or urine. In conclusion, our study of formal e-waste recycling shows that workers performing recycling tasks are exposed to multiple toxic metals. Copyright © 2014. Published by Elsevier Ltd.

  4. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no...

  5. Integrated management of hazardous waste generated from community sources in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yodnane, P.; Spaeder, D.J.

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less

  6. Provisional Peer-Reviewed Toxicity Values for Guanidine Nitrate

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  7. Provisional Peer-Reviewed Toxicity Values for Perfluorobutane Sulfonate

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  8. Provisional Peer-Reviewed Toxicity Values for 1-Chlorooctadecane

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  9. Provisional Peer-Reviewed Toxicity Values for O-Phenylenediamine

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  10. Provisional Peer-Reviewed Toxicity Values for 2-Methylphenol

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  11. Provisional Peer-Reviewed Toxicity Values for N-Heptane

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  12. Provisional Peer-Reviewed Toxicity Values for O-Aminophenol

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  13. Provisional Peer-Reviewed Toxicity Values for Picric Acid

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  14. Provisional Peer-Reviewed Toxicity Values for Aroclor 5460

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  15. Provisional Peer-Reviewed Toxicity Values for Triethylene Glycol

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  16. Provisional Peer-Reviewed Toxicity Values for P-Phenylenediamine

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  17. Provisional Peer-Reviewed Toxicity Values for P-Chloronitrobenzene

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  18. Provisional Peer-Reviewed Toxicity Values for Diundecyl Phthalate

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  19. Provisional Peer-Reviewed Toxicity Values for Carbonyl Sulfide

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  20. Provisional Peer-Reviewed Toxicity Values for 2-Mercaptobenzothiazole

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  1. Provisional Peer-Reviewed Toxicity Values for 3-Methylphenol

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  2. Provisional Peer-Reviewed Toxicity Values for Diphenyl Ether

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  3. Provisional Peer-Reviewed Toxicity Values for Guanidine Chloride

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  4. Provisional Peer-Reviewed Toxicity Values for n-Heptanal

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  5. Managing America`s solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  6. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less

  7. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  8. Assessing the management of healthcare waste in Hawassa city, Ethiopia.

    PubMed

    Israel Deneke Haylamicheal; Mohamed Aqiel Dalvie; Biruck Desalegn Yirsaw; Hanibale Atsbeha Zegeye

    2011-08-01

    Inadequate management of healthcare waste is a serious concern in many developing countries due to the risks posed to human health and the environment. This study aimed to evaluate healthcare waste management in Hawassa city, Ethiopia. The study was conducted in nine healthcare facilities (HCFs) including hospitals (four), health centres (two) and higher clinics (three) in two phases, first to assess the waste management aspect and second to determine daily waste generation rate. The result showed that the median quantity of waste generated at the facilities was 3.46 kg bed(-1) day(-1) (range: 1.48-8.19 kg bed(-1) day(-1)). The quantity of waste per day generated at a HCF increased as occupancy increased (p < 0.001). The percentage hazardous waste generated at government HCFs was more than at private HCFs (p < 0.05). The proportion of hazardous waste (20-63.1%) generated at the different HCFs was much higher than the WHO recommendation (10-25%). There was no waste segregation in most HCFs and only one used a complete color coding system. Solid waste and wastewater were stored, transported, treated and disposed inappropriately at all HCFs. Needle-stick injuries were prevalent in 25-100% of waste handlers employed at these HCFs. Additionally, low levels of training and awareness of waste legislation was prevalent amongst staff. The study showed that management of healthcare waste at HCFs to be poor. Waste management practices need to be improved through improved legislation and enforcement, and training of staff in the healthcare facilities in Hawassa.

  9. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    PubMed Central

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629

  10. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    PubMed

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  11. 77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... Solid Waste Amendments of 1984 (HSWA). New federal requirements and prohibitions imposed by federal...; Definition of Solid Waste; Toxicity Characteristic, Checklist 199, March 13, 2002 (67 FR 11251); [[Page 15968... Solid Waste Disposal Act as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: February 29, 2012. Susan...

  12. Radioactive waste management and practice in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.; Rahman, M.M.

    1993-12-31

    A large amount of low- and medium-level radioactive wastes are being generated in different parts of Bangladesh. The solid wastes are being collected in steel containers and liquid wastes are collected in plastic carboys and drums. Gaseous Ar-41 is discharged into the atmosphere through the 25 m height stack under controlled conditions after proper monitoring. The solid radioactive wastes collected are approximately 5 m{sup 3} (1988--1992) with gross beta-gamma surface dose rates from 0.30 {micro}Sv/h to 250 {micro}Sv/h. The liquid radioactive wastes are approximately 200 liters (1988--1992) with gross-beta-gamma surface dose rates from 0.30 {micro}Sv/h to 1 mSv/h. The solidmore » and liquid wastes presently being collected are mostly short lived and low level and safely stored according to international safety codes of practice. Radioactive waste packages collected during the 5-yrs study totaled 16, representing a collective volume of {approximately} 7.5 m{sup 3}. The problem of management of radioactive waste in Bangladesh is not so serious at present because the wastes arising are small now. A computerized data base has been developed to document inventory of all radioactive waste arising in the country. The current practices of collection, handling, safe storage and management of the radioactive wastes are reported in this paper.« less

  13. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What is a waste management plan? 62.14580 Section 62.14580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A...

  14. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are

  15. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    PubMed Central

    Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559

  16. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste.

    PubMed

    Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona

    2015-08-20

    Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana.

  17. Solid Waste Management Practices in EBRP Schools.

    ERIC Educational Resources Information Center

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  18. The radioactive waste management policy and practice in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucerka, M.

    1996-12-31

    In recent period, the new Czech Atomic Law is in the final stage of preparation, and the author expects that Parliament of the Czech Republic will approve it in the first half of the year 1996. Partly the law deals with new distribution of responsibilities among bodies involved in utilization of nuclear energy and ionizing radiation, the state and local authorities. The new provisions include also radioactive waste management activities. These provisions clarify the relations between radioactive waste generators and state, and define explicitly duties of waste generators. One of the most important duties is to cover all expenses formore » radioactive waste management now and in the future, including radioactive waste disposal and decommissioning of nuclear facilities. The law establishes radioactive waste management and decommissioning funds and the new, on waste generators independent radioactive waste management organization, controlled by state, to ensure the safety of inhabitants and the environment, and a optimization of expenses. Parallel to the preparation of the law, the Ministry of Industry and Trade prepares drafts of a statute of the radioactive waste management organization and its control board, and of the methodology and rules of management the radioactive waste fund. First drafts of these documents are expected to be complete in January 1996. The paper will describe recent practice and policy of the radioactive waste management including uranium mining and milling tailings, amounts of waste and its activities, economical background, and safety. A special attention will be paid to description of expected changes in connection with the new Atomic Law and expected steps and time schedule of reorganization of the radioactive waste management structure in the Czech Republic.« less

  19. Is Industry Managing Its Wastes Properly?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Industry is faced with handling, disposing and recovering vast amounts of waste, much of it as a result of present pollution control technology. Industry has found the technology available, expensive and, without regulation, easy to ignore. Many industries are therefore improperly managing their wastes. (BT)

  20. Privatization of municipal waste management services in Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arner, R.

    As the cost of waste management has increased dramatically in recent years, public works and environmental services officials in Virginia responsible for waste management are exploring how various delivery systems can enhance the efficiency and effectiveness of these services. Shifting some service delivery from the public to the private sector, or vice versa, are approaches that may have the potential to improve efficiency. However, each jurisdiction's waste management requirements differ, and there is no cookie-cutter approach. The following discusses various privatization/publicization opportunities and under what conditions these strategies may be developed to the benefit of localities.

  1. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: some strategies for improving current conditions.

    PubMed

    Taghipour, Hassan; Amjad, Zahra; Jafarabadi, Mohamad Asghari; Gholampour, Akbar; Norouz, Prviz

    2014-07-01

    From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products' useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Nontechnical issues in waste management: ethical, institutional, and political concerns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebert, J.A.; Rankin, W.L.; Brown, P.G.

    1978-05-01

    The report consists of a presentation and distillation of major nontechnical issues surrounding commercial waste management, followed by ethical, institutional, and political analyses of these issues. The ethical analysis consists of a discusson of what is meant by ''ethics'' and ''morality'' in the waste management context and an illustrative attempt at an ethical analysis of the commercial nuclear waste problem. Two institutional analyses are presented: one is an analysis of the possible problems of long-term human institutions in waste management; the other is a presentation of institutional arrangements for the short term. A final chapter discusses issues and concerns involvingmore » intergovernmental relations--that is, local, state, and federal interface problems in waste management.« less

  3. A solid waste management survey in Davao del Sur (school and household waste management survey)

    NASA Astrophysics Data System (ADS)

    Trondillo, Mark Jude F.; Amaba, Jeneley A.; Paniza, Lyndelle Ann D.; Cubol, John Rhico V.

    2018-02-01

    Environmental degradation has become a very alarming issue at present. Human activities have been the primary cause of this unfortunate event which has resulted to other complications such as health problems. The resources are limited and people solely depend on it for living. Thus, the necessity to address these concerns arises. Various solid waste management programs have been established however the people's commitment has continued to challenge the local authorities as well as the cooperating agencies. This study was conducted in order to assess the awareness, practice and attitude towards the existing solid waste management programs of the selected students in Davao del Sur. It also aims to measure the effectiveness and current status of these implemented programs. The study used survey method. One hundred sixty eight of 227 students were surveyed using a validated, self-administered instrument. The study revealed that majority of the students is well aware of the existing solid waste management programs, practice them and is willing to learn more about the issue. Others, on the other hand, do the opposite. It is of great importance that all citizens must commit in the implementation of environmental programs so as to be more effective.

  4. Hazardous waste generation and management in China: a review.

    PubMed

    Duan, Huabo; Huang, Qifei; Wang, Qi; Zhou, Bingyan; Li, Jinhui

    2008-10-30

    Associated with the rapid economic growth and tremendous industrial prosperity, continues to be the accelerated increase of hazardous waste generation in China. The reported generation of industrial hazardous waste (IHW) was 11.62 million tons in 2005, which accounted for 1.1% of industrial solid waste (ISW) volume. An average of 43.4% of IHW was recycled, 33.0% was stored, 23.0% was securely disposed, and 0.6% was discharged without pollution controlling. By the end of 2004, there were 177 formal treatment and disposal centers for IHW management. The reported quantity of IHW disposed in these centers was only 416,000 tons, 65% of which was landfilled, 35% was incinerated. The quantity of waste alkali and acid ranked the first among IHW categories, which accounted for 30.9%. And 39.0% of IHW was generated from the raw chemical materials and chemical products industry sectors. South west China had the maximum generation of IHW, accounted for 40.0%. In addition, it was extrapolated that 740,000 tons of medical wastes were generated per year, of which only 10% was soundly managed. The generation of discarded household hazardous waste (HHW) is another important source of hazardous waste. A great proportion of HHW was managed as municipal solid waste (MSW). Hazardous waste pollution controlling has come into being a huge challenge faced to Chinese environmental management.

  5. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...

  6. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...

  7. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...

  8. Hazardous waste status of discarded electronic cigarettes.

    PubMed

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Municipal Solid Waste - Sustainable Materials Management

    EPA Science Inventory

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  10. National information network and database system of hazardous waste management in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less

  11. Industrial Program of Waste Management - Cigeo Project - 13033

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butez, Marc; Bartagnon, Olivier; Gagner, Laurent

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less

  12. Waste management activities and carbon emissions in Africa.

    PubMed

    Couth, R; Trois, C

    2011-01-01

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Tank waste remediation system configuration management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Projectmore » personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.« less

  14. Challenges and opportunities associated with waste management in India

    PubMed Central

    Kumar, Sunil; Smith, Stephen R.; Fowler, Geoff; Velis, Costas; Kumar, S. Jyoti; Arya, Shashi; Rena; Kumar, Rakesh

    2017-01-01

    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India. PMID:28405362

  15. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste

    PubMed Central

    Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona

    2015-01-01

    Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana. PMID:26308016

  16. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaelen, Gunter van; Verheyen, Annick

    2007-07-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less

  17. Solid Waste Management in Recreational Forest Areas.

    ERIC Educational Resources Information Center

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  18. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future.

    PubMed

    Man, Ming; Naidu, Ravi; Wong, Ming H

    2013-10-01

    The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Waste dumps in local communities in developing countries and hidden danger to health.

    PubMed

    Anetor, Gloria O

    2016-07-01

    The rapid industrialisation and urbanisation fuelled by a fast-growing population has led to the generation of a huge amount of waste in most communities in developing countries. The hidden disorders and health dangers in waste dumps are often ignored. The waste generated in local communities is usually of a mixed type consisting of domestic waste and waste from small-scale industrial activities. Among these wastes are toxic metals, lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), halogenated organic compounds, plastics, remnants of paints that are themselves mixtures of hazardous substances, hydrocarbons and petroleum product-contaminated devices. Therefore, there is the urgent need to create an awareness of the harmful health effect of toxic wastes in developing countries, especially Nigeria. This is a review aimed at creating awareness on the hidden dangers of waste dumps to health in local communities in developing countries. Many publications in standard outlets use the following keywords: cancer, chemical toxicity, modern environmental health hazards, waste management and waste speciation in PubMed, ISI, Toxbase environmental digest, related base journals, and some standard textbooks, as well as the observation of the researcher between 1959 and 2014. Studies revealed the preponderance of toxic chemicals such as Pb, Cd, As and Hg in dump sites that have the risk of entering food chain and groundwater supplies, and these can give rise to endemic malnutrition and may also increase susceptibility to mutagenic substances, thereby increasing the incidence of cancer in developing countries. Industrialisation and urbanisation have brought about a change in the waste that is generated in contemporary communities in developing countries. Therefore, there is the need to embrace speciation and sound management of waste, probably including bioremediation. The populations in the local communities need regulatory agencies who are health educators as positive change

  20. 77 FR 36447 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... the point of waste generation. C. How did ExxonMobil sample and analyze the data in this petition? To support its petition, ExxonMobil submitted: (1) Historical information on waste generation and management... North Landfarm underflow water twice during the first six months of waste generation. ExxonMobil would...

  1. Vermi composting--organic waste management and disposal.

    PubMed

    Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada

    2012-01-01

    Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public.

  2. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  3. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  4. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  5. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  6. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...

  7. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  8. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  9. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...

  10. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  11. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  12. Evaluation of municipal solid waste management in egyptian rural areas.

    PubMed

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  13. Dover AFB Characterization/Hazardous Waste Management Survey, Dover AFB, Delaware.

    DTIC Science & Technology

    1986-07-01

    chromium ion (chromate, chromic acid) needs to be reduced to the insoluble trivalent ion ( chromium oxide, chromic hydroxide) to facilitate effective...precipitation. The good removal efficiency seen in the Jar tests indicates the chromium may already be in the trivalent oxidation state, possibly reduced...fails the EP toxicity test for chromium alone, the waste may be excluded from being a hazardous waste, if the chromium is primarily in the trivalent

  14. Radiation safety requirements for radioactive waste management in the framework of a quality management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salgado, M.M.; Benitez, J.C.; Pernas, R.

    2007-07-01

    The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in themore » Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)« less

  15. A Subject Reference: Benefit-Cost Analysis of Toxic Substances, Hazardous Materials and Solid Waste Control (1977)

    EPA Pesticide Factsheets

    Discussion of methodological issues for conducting benefit-cost analysis and provides guidance for selecting and applying the most appropriate and useful mechanisms in benefit-cost analysis of toxic substances, hazardous materials, and solid waste control

  16. Research challenges in municipal solid waste logistics management.

    PubMed

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less

  18. Provisional Peer-Reviewed Toxicity Values for 1,3-Dibromobenzene

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  19. Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (Rubidium)

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  20. Provisional Peer-Reviewed Toxicity Values for 2-Chlorobenzoic Acid

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  1. Provisional Peer-Reviewed Toxicity Values for Soluble Tungsten Compounds

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  2. Provisional Peer-Reviewed Toxicity Values for Isopropanol (Isobutyl Alcohol)

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  3. Provisional Peer-Reviewed Toxicity Values for P-Chlorobenzenesulfonic Acid

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  4. Provisional Peer-Reviewed Toxicity Values for N,N-Dimethylaniline

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  5. Provisional Peer-Reviewed Toxicity Values for Potassium Perfluorobutane Sulfonate

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  6. Provisional Peer-Reviewed Toxicity Values for Sodium Tungstate Dihydrate

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  7. Provisional Peer-Reviewed Toxicity Values for Tert Butyl Formate

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  8. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...

  9. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...

  10. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must my waste management plan be... Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your...

  11. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no later than the date specified in table 1 of this...

  12. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...

  13. Sustainable solutions for solid waste management in Southeast Asian countries.

    PubMed

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  14. Sustainable solutions for solid waste management in Southeast Asian countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-06-15

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less

  15. Analysis of the healthcare waste management status in Tehran hospitals.

    PubMed

    Malekahmadi, Fariba; Yunesian, Masud; Yaghmaeian, Kamyar; Nadafi, Kazem

    2014-01-01

    Considering the importance of healthcare waste management, following the ratification of the Waste Management law in 2005 and the subsequent approval of its executive bylaw in 2006 and finally the healthcare waste management criteria passing by the parliament in 2008, a review on the status of healthcare waste management is needed to implement the mentioned law properly. In this retrospective study during six months period all public hospitals in Iran's capital city, Tehran, were selected to conduct the survey. Data collected through an expert-standardized questionnaire was analyzed by using SPSS software. The results of the current status of healthcare waste management in Tehran hospitals showed 5.6% of hospitals were ranked excellent, 50.7% good, 26.4% medium, and the 13.9% of hospitals were ranked weak and 3.5% ranked very poor. The findings showed that appropriate technologies should be used to have better disposal stage. As the ratified criteria were not fully observed by all the selected hospitals, training courses and comprehensive program conducting by each hospital could be enjoyed as practical tools to implement the all stages of healthcare waste management properly.

  16. Waste Management Using Request-Based Virtual Organizations

    NASA Astrophysics Data System (ADS)

    Katriou, Stamatia Ann; Fragidis, Garyfallos; Ignatiadis, Ioannis; Tolias, Evangelos; Koumpis, Adamantios

    Waste management is on top of the political agenda globally as a high priority environmental issue, with billions spent on it each year. This paper proposes an approach for the disposal, transportation, recycling and reuse of waste. This approach incorporates the notion of Request Based Virtual Organizations (RBVOs) using a Service Oriented Architecture (SOA) and an ontology that serves the definition of waste management requirements. The populated ontology is utilized by a Multi-Agent System which performs negotiations and forms RBVOs. The proposed approach could be used by governments and companies searching for a means to perform such activities in an effective and efficient manner.

  17. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, P.H.

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  18. Rules and management of biomedical waste at Vivekananda Polyclinic: a case study.

    PubMed

    Gupta, Saurabh; Boojh, Ram; Mishra, Ajai; Chandra, Hem

    2009-02-01

    Hospitals and other healthcare establishments have a "duty of care" for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedical waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state

  19. Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.

    ERIC Educational Resources Information Center

    Richardson, John G.

    The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…

  20. Review of Waste Management Symposium 2007, Tucson, AZ, USA

    DOE PAGES

    Luna, Robert E.; Yoshimura, R. H.

    2007-03-01

    The Waste Management Symposium 2007 is the most recent in a long series that has been held at Tucson, Arizona. The meeting has become extremely popular as a venue for technical exchange, marketing, and networking involving upward of 1800 persons involved with various aspects of radioactive waste management. However, in a break with tradition, the symposium organizers reported that next year’s Waste Management Symposium would be held at the Phoenix, AZ convention center. Additionally, most of the WM07 sessions dealt with the technical and institutional issues relating to the resolution of waste disposal and processing challenges, including a number ofmore » sessions dealing with related transport activities.« less

  1. Environmental management aspects for TBT antifouling wastes from the shipyards.

    PubMed

    Kotrikla, Anna

    2009-02-01

    Tributyltin (TBT)-based antifouling paints have been successfully used for over 40 years to protect a ship's hull from biofouling. However, due to its high toxicity to marine organisms, the International Maritime Organization (IMO), in 1990, adopted a resolution recommending governments to adopt measures to eliminate antifouling paints containing TBT. High concentrations of TBT are detected in the vicinity of ports and shipyards. TBT is also usually detected in the sediment, in which it accumulates. This study reviews recent literature for the best management practices (BMPs) in order to minimize the environmental effects of TBT. The paper focuses on the evaluation of the available techniques for the removal of TBT from shipyard wastes and from the sediment. The most effective treatment methods are highlighted. BMPs include recycling of abrasive materials, use of cleaner abrasive materials, reuse of spent abrasive materials, substitution of hydroblasting by vacuum blasting or containment or ultra-high-pressure water blasting and confinement of pollution by enclosure and containment systems. The treatment of the TBT wastes by conventional biological wastewater treatment processes is probably not suitable, because the concentrations of TBT found in shipyards' wastewaters are toxic to microorganisms. Advanced technologies such as activated carbon adsorption and dissolved air flotation, in combination with filtration and coagulation-clarification, photodegradation and electrochemical treatment, are required to remove TBT. However, advanced methods should be further optimized to meet the regulatory limit of 200 ng/L. To date, only one published work examines the efficiency of incineration for the treatment of solid sandblast wastes. Regarding the treatment of sediment, land deposition of the less polluted fraction of sediment is a feasible option. Such treatment must take into account the risk of contamination of groundwater and the surroundings, and it requires

  2. Characteristics and management of infectious industrial waste in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, M.-C.; Lin, Jim Juimin

    Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwanmore » increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator.« less

  3. Hazardous waste status of discarded electronic cigarettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Testmore » (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.« less

  4. Generation and management of waste electric vehicle batteries in China.

    PubMed

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-09-01

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  5. A review of mechanochemistry applications in waste management.

    PubMed

    Guo, Xiuying; Xiang, Dong; Duan, Guanghong; Mou, Peng

    2010-01-01

    Mechanochemistry is defined to describe the chemical and physicochemical transformation of substances during the aggregation caused by the mechanical energy. Mechanochemical technology has several advantages, such as simple process, ecological safety and the possibility of obtaining a product in the metastable state. It potentially has a prospective application in pollution remediation and waste management. Therefore, this paper aims to give an overall review of the mechanochemistry applications in waste management and the related mechanisms. Based on our study, the modification of fly ash and asbestos-containing wastes (ACWs) can be achieved by mechanochemical technology. Waste metal oxides can be transformed into easily recyclable sulfide by mechanochemical sulfidization. Besides, the waste plastics and rubbers, which are usually very difficult to be recycled, can also be recycled by mechanochemical technology.

  6. Controlling changes - lessons learned from waste management facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.; Koplow, A.S.; Stoll, F.E.

    This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less

  7. Hazardous waste management in the Pacific basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used tomore » address them so that new program activities can be designed more efficiently.« less

  8. Infrastructure Task Force Tribal Solid Waste Management

    EPA Pesticide Factsheets

    These documents describe 1) issues to consider when planning and designing community engagement approaches for tribal integrated waste management programs and 2) a proposed approach to improve tribal open dumps data and solid waste projects, and 3) an MOU.

  9. Between hype and veracity; privatization of municipal solid waste management and its impacts on the informal waste sector.

    PubMed

    Sandhu, Kiran; Burton, Paul; Dedekorkut-Howes, Aysin

    2017-01-01

    The informal waste recycling sector has been an indispensable but ironically invisible part of the waste management systems in developing countries as India, often completely disregarded and overlooked by decision makers and policy frameworks. The turn towards liberalization of economy since 1991 in India opened the doors for privatization of urban services and the waste sector found favor with private companies facilitated by the local governments. In joining the privatization bandwagon, the local governments aim to create an image of a progressive city demonstrated most visibly through apt management of municipal solid waste. Resultantly, the long important stakeholder, the informal sector has been sidelined and left to face the adverse impacts of privatization. There is hardly any recognition of its contributions or any attempt to integrate it within the formal waste management systems. The study investigates the impacts of privatization on the waste pickers in waste recycling operations. Highlighting the other dimension of waste collection and management in urban India the study focuses on the waste pickers and small time informal scrap dealers and this is done by taking the case study of Amritsar city, which is an important historic centre and a metropolitan city in the state of Punjab, India. The paper develops an analytical framework, drawing from literature review to analyze the impacts. In conclusion, it supports the case for involving informal waste sector towards achieving sustainable waste management in the city. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Toxicities of chimeric antigen receptor T cells: recognition and management

    PubMed Central

    Brudno, Jennifer N.

    2016-01-01

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy. PMID:27207799

  11. Trend of the research on construction and demolition waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Hongping, E-mail: hpyuan2005@gmail.com; Shen Liyin, E-mail: bsshen@polyu.edu.hk

    2011-04-15

    Research interests in addressing construction and demolition (C and D) waste management issues have resulted in a large amount of publications during the last decade. This study demonstrates that there is no systematic examination on the research development in literature in the discipline of C and D waste management. This study presents the latest research trend in the discipline through analyzing the publications from 2000 to 2009 in eight major international journals. The analysis is conducted on the number of papers published annually, main authors' contributions, research methods and data analysis methods adopted, and research topics covered. The results exhibitmore » an increasing research interest in C and D waste management in recent years. Researchers from developed economies have contributed significantly to the development of the research in the discipline. Some developing countries such as Malaysia and China have also been making good efforts in promoting C and D waste management research. The findings from this study also indicate that survey and case study are major methods for data collection, and the data are mostly processed through descriptive analysis. It is anticipated that more future studies on C and D waste management will be led by researchers from developing economies, where construction works will remain their major economic activities. On the other hand, more sophisticated modeling and simulating techniques have been used effectively in a number of studies on C and D waste management research, and this is considered a major methodology for future research in the discipline. C and D waste management will continue to be a hot research topic in the future, in particularly, the importance of human factors in C and D waste management has emerged as a new challenging topic.« less

  12. Trend of the research on construction and demolition waste management.

    PubMed

    Yuan, Hongping; Shen, Liyin

    2011-04-01

    Research interests in addressing construction and demolition (C&D) waste management issues have resulted in a large amount of publications during the last decade. This study demonstrates that there is no systematic examination on the research development in literature in the discipline of C&D waste management. This study presents the latest research trend in the discipline through analyzing the publications from 2000 to 2009 in eight major international journals. The analysis is conducted on the number of papers published annually, main authors' contributions, research methods and data analysis methods adopted, and research topics covered. The results exhibit an increasing research interest in C&D waste management in recent years. Researchers from developed economies have contributed significantly to the development of the research in the discipline. Some developing countries such as Malaysia and China have also been making good efforts in promoting C&D waste management research. The findings from this study also indicate that survey and case study are major methods for data collection, and the data are mostly processed through descriptive analysis. It is anticipated that more future studies on C&D waste management will be led by researchers from developing economies, where construction works will remain their major economic activities. On the other hand, more sophisticated modeling and simulating techniques have been used effectively in a number of studies on C&D waste management research, and this is considered a major methodology for future research in the discipline. C&D waste management will continue to be a hot research topic in the future, in particularly, the importance of human factors in C&D waste management has emerged as a new challenging topic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. 40 CFR 60.2755 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...

  14. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  15. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  16. 40 CFR 60.2755 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...

  17. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  18. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  19. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ...

  20. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must my waste management plan be... POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious Waste Incinerators Constructed On Or Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed...

  1. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  2. 75 FR 67919 - Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ...-R05-RCRA-2010-0843; SW-FRL-9221-2] Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... hazardous wastes. The Agency has tentatively decided to grant the petition based on an evaluation of waste...

  3. The Spanish General Radioactive Waste Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espejo, J.M.; Abreu, A.

    This paper mainly describes the strategies, the necessary actions and the technical solutions to be developed by ENRESA in the short, medium and long term, aimed at ensuring the adequate management of radioactive waste, the dismantling and decommissioning of nuclear and radioactive facilities and other activities, including economic and financial measures required to carry them out. Starting with the Spanish administrative organization in this field, which identifies the different agents involved and their roles, and after referring to the waste generation, the activities to be performed in the areas of LILW, SF and HLW management, decommissioning of installations and othersmore » are summarized. Finally, the future management costs are estimated and the financing system currently in force is explained. The so-called Sixth General Radioactive Waste Plan (6. GRWP), approved by the Spanish Government, is the 'master document' of reference where all the above mentioned issues are contemplated. In summary: The 6. GRWP includes the strategies and actions to be performed by Enresa in the coming years. The document, revised by the Government and subject to a process of public information, underlines the fact that Spain possesses an excellent infrastructure for the safe and efficient management of radioactive waste, from the administrative, technical and economic-financial points of view. From the administrative point of view there is an organisation, supported by ample legislative developments, that contemplates and governs the main responsibilities of the parties involved in the process (Government, CSN, ENRESA and waste producers). As regards the technical aspect, the experience accumulated to date by Enresa is particularly significant, as are the technologies now available in the field of management and for dismantling processes. As regards the economic-financial basis, a system is in place that guarantees the financing of radioactive waste management costs. This

  4. Indicators of waste management efficiency related to different territorial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it; Vassura, Ivano, E-mail: ivano.vassura@unibo.it; Monti, Francesco, E-mail: fmonti84@gmail.com

    2011-04-15

    The amount of waste produced and the control of separate collection are crucial issues for the planning of a territorial Integrated Waste Management System, enabling the allocation of each sorted waste fraction to the proper treatment and recycling processes. The present study focuses on assessing indicators of different waste management systems in areas characterized by different territorial conditions. The investigated case study concerns the municipalities of Emilia Romagna (northern Italy), which present a rather uniform socioeconomic situation, but a variety of geographic, urban and waste management characteristics. A survey of waste generation and collection rates was carried out, and correlatedmore » with the different territorial conditions, classifying the municipalities according to altitude and population density. The best environmental performances, in terms of high separate collection rate, were found on average in rural areas in the plain, while the lowest waste generation was associated with rural hill towns.« less

  5. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    ERIC Educational Resources Information Center

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

  6. 40 CFR 60.2755 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Recordkeeping and Reporting § 60.2755 When must I submit my waste management plan? You must submit the waste management plan...

  7. A novel approach for reducing toxic emissions during high temperature processing of electronic waste.

    PubMed

    Saini, R; Khanna, R; Dutta, R K; Cayumil, R; Ikram-Ul-Haq, M; Agarwala, V; Ellamparuthy, G; Jayasankar, K; Mukherjee, P S; Sahajwalla, V

    2017-06-01

    A novel approach is presented to capture some of the potentially toxic elements (PTEs), other particulates and emissions during the heat treatment of e-waste using alumina adsorbents. Waste PCBs from mobile phones were mechanically crushed to sizes less than 1mm; their thermal degradation was investigated using thermo-gravimetric analysis. Observed weight loss was attributed to the degradation of polymers and the vaporization of organic constituents and volatile metals. The sample assembly containing PCB powder and adsorbent was heat treated at 600°C for times ranging between 10 and 30min with air, nitrogen and argon as carrier gases. Weight gains up to ∼17% were recorded in the adsorbent thereby indicating the capture of significant amounts of particulates. The highest level of adsorption was observed in N 2 atmosphere for small particle sizes of alumina. SEM/EDS results on the adsorbent indicated the presence of Cu, Pb, Si, Mg and C. These studies were supplemented with ICP-OES analysis to determine the extent of various species captured as a function of operating parameters. This innovative, low-cost approach has the potential for utilization in the informal sector and/or developing countries, and could play a significant role in reducing toxic emissions from e-waste processing towards environmentally safe limits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sustainable waste management through end-of-waste criteria development.

    PubMed

    Zorpas, Antonis A

    2016-04-01

    The Waste Framework Directive 2000/98 (WFD) contains specific requirements to define end-of-waste criteria (EWC). The main goal of EWC is to remove and eliminate the administrative loads of waste legislation for safe and high-quality waste materials, thereby facilitating and assisting recycling. The target is to produce effective with high quality of recyclables materials, promoting product standardization and quality and safety assurance, and improving harmonization and legal certainty in the recyclable material markets. At the same time, those objectives aim to develop a plan in order to improve the development and wider use of environmental technologies, which reduce pressure on environment and at the same time address the three dimensions of the Lisbon strategy: growth, jobs and environment. This paper presents the importance of EWC, and the approach of setting EWC as EWC affect several management systems as well as sustainable and clean technologies.

  9. Bio-Medical Waste Managment in a Tertiary Care Hospital: An Overview.

    PubMed

    Pandey, Anita; Ahuja, Sanjiv; Madan, Molly; Asthana, Ajay Kumar

    2016-11-01

    Bio-Medical Waste (BMW) management is of utmost importance as its improper management poses serious threat to health care workers, waste handlers, patients, care givers, community and finally the environment. Simultaneously, the health care providers should know the quantity of waste generated in their facility and try to reduce the waste generation in day-to-day work because lesser amount of BMW means a lesser burden on waste disposal work and cost saving. To have an overview of management of BMW in a tertiary care teaching hospital so that effective interventions and implementations can be carried out for better outcome. The observational study was carried out over a period of five months from January 2016 to May 2016 in Chhatrapati Shivaji Subharti Hospital, Meerut by the Infection Control Team (ICT). Assessment of knowledge was carried out by asking set of questions individually and practice regarding awareness of BMW Management among the Health Care Personnel (HCP) was carried out by direct observation in the workplace. Further, the total BMW generated from the present setup in kilogram per bed per day was calculated by dividing the mean waste generated per day by the number of occupied beds. Segregation of BMW was being done at the site of generation in almost all the areas of the hospital in color coded polythene bags as per the hospital protocol. The different types of waste being collected were infectious solid waste in red bag, soiled infectious waste in yellow bag and sharp waste in puncture proof container and blue bag. Though awareness (knowledge) about segregation of BMW was seen in 90% of the HCP, 30%-35% did not practice. Out of the total waste generated (57912 kg.), 8686.8 kg. (15%) was infectious waste. Average infectious waste generated was 0.341 Kg per bed per day. The transport, treatment and disposal of each collected waste were outsourced and carried out by 'Synergy' waste management Pvt. Ltd. The practice of BMW Management was lacking in 30

  10. Bio-Medical Waste Managment in a Tertiary Care Hospital: An Overview

    PubMed Central

    Ahuja, Sanjiv; Madan, Molly; Asthana, Ajay Kumar

    2016-01-01

    Introduction Bio-Medical Waste (BMW) management is of utmost importance as its improper management poses serious threat to health care workers, waste handlers, patients, care givers, community and finally the environment. Simultaneously, the health care providers should know the quantity of waste generated in their facility and try to reduce the waste generation in day-to-day work because lesser amount of BMW means a lesser burden on waste disposal work and cost saving. Aim To have an overview of management of BMW in a tertiary care teaching hospital so that effective interventions and implementations can be carried out for better outcome. Materials and Methods The observational study was carried out over a period of five months from January 2016 to May 2016 in Chhatrapati Shivaji Subharti Hospital, Meerut by the Infection Control Team (ICT). Assessment of knowledge was carried out by asking set of questions individually and practice regarding awareness of BMW Management among the Health Care Personnel (HCP) was carried out by direct observation in the workplace. Further, the total BMW generated from the present setup in kilogram per bed per day was calculated by dividing the mean waste generated per day by the number of occupied beds. Results Segregation of BMW was being done at the site of generation in almost all the areas of the hospital in color coded polythene bags as per the hospital protocol. The different types of waste being collected were infectious solid waste in red bag, soiled infectious waste in yellow bag and sharp waste in puncture proof container and blue bag. Though awareness (knowledge) about segregation of BMW was seen in 90% of the HCP, 30%-35% did not practice. Out of the total waste generated (57912 kg.), 8686.8 kg. (15%) was infectious waste. Average infectious waste generated was 0.341 Kg per bed per day. The transport, treatment and disposal of each collected waste were outsourced and carried out by ‘Synergy’ waste management Pvt. Ltd

  11. Assessment of medical waste management in seven hospitals in Lagos, Nigeria.

    PubMed

    Awodele, Olufunsho; Adewoye, Aishat Abiodun; Oparah, Azuka Cyril

    2016-03-15

    Medical waste (MW) can be generated in hospitals, clinics and places where diagnosis and treatment are conducted. The management of these wastes is an issue of great concern and importance in view of potential public health risks associated with such wastes. The study assessed the medical waste management practices in selected hospitals and also determined the impact of Lagos Waste Management Authority (LAWMA) intervention programs. A descriptive cross-sectional survey method was used. Data were collected using three instrument (questionnaire, site visitation and in -depth interview). Two public (hospital A, B) and five private (hospital C, D, E, F and G) which provide services for low, middle and high income earners were used. Data analysis was done with SPSS version 20. Chi-squared test was used to determine level of significance at p < 0.05. The majority 56 (53.3%) of the respondents were females with mean age of 35.46 (±1.66) years. The hospital surveyed, except hospital D, disposes both general and medical waste separately. All the facilities have the same process of managing their waste which is segregation, collection/on-site transportation, on-site storage and off-site transportation. Staff responsible for collecting medical waste uses mainly hand gloves as personal protective equipment. The intervention programs helped to ensure compliance and safety of the processes; all the hospitals employ the services of LAWMA for final waste disposal and treatment. Only hospital B offered on-site treatment of its waste (sharps only) with an incinerator while LAWMA uses hydroclave to treat its wastes. There are no policies or guidelines in all investigated hospitals for managing waste. An awareness of proper waste management amongst health workers has been created in most hospitals through the initiative of LAWMA. However, hospital D still mixes municipal and hazardous wastes. The treatment of waste is generally done by LAWMA using hydroclave, to prevent environmental

  12. Medical Waste Management Implications for Small Medical Facilities.

    ERIC Educational Resources Information Center

    Byrns, George; Burke, Thomas

    1992-01-01

    Discusses the implications of the Medical Waste Management Act of 1988 for small medical facilities, public health, and the environment. Reviews health and environmental risks associated with medical waste, current regulatory approaches, and classifications. Concludes that the health risk of medical wastes has been overestimated; makes…

  13. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum cans, metals-containing devices); segregation of non-recyclable wastes (e.g., polychlorinated biphenyl... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management plan. 60.55c Section...

  14. The analysis of the program to develop the Nuclear Waste Management System: Allocated requirements for the Office of Civilian Radioactive Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, T.W.

    1991-09-01

    This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)

  15. Compost: Brown gold or toxic trouble?

    USGS Publications Warehouse

    Kovacic, D.A.; Cahill, R.A.; Bicki, T.J.

    1992-01-01

    Limited data are available regarding the occurrence of potentially hazardous constituents in raw, uncomposted yard wastes, partially composted yard wastes, and finished compost (15, 16). Environmental monitoring at composting operations or facilities is lacking, and currently published research on the environmental fate of composted yard waste constituents is extremely limited. The cost of thoroughly investigating the fate of toxicants in yard waste may seem needlessly expensive, but it is much less than the cost of cleaning up contaminated sites and groundwater. Could yard waste compost sites become Superfund sites? The cost of a thorough testing program throughout the United States may be several million dollars, but that is only a fraction of the funds spent initiating and developing yard waste composting facilities, let alone the potentially much greater cost of environmental remediation. There is still time to address these problems and to develop sound state and federal guidelines for siting and operating yard waste compost facilities. The rush to implement landfill alternatives such as composting should not be the major driving force in determining legislation governing solid waste management. ?? 1991 American Chemical Society.

  16. Rules and management of biomedical waste at Vivekananda Polyclinic: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Saurabh; Boojh, Ram; Mishra, Ajai

    Hospitals and other healthcare establishments have a 'duty of care' for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedicalmore » waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state

  17. Use of theoretical waste inventories in planning and monitoring of hazardous waste management systems.

    PubMed

    Yilmaz, Ozge; Can, Zehra S; Toroz, Ismail; Dogan, Ozgur; Oncel, Salim; Alp, Emre; Dilek, Filiz B; Karanfil, Tanju; Yetis, Ulku

    2014-08-01

    Hazardous waste (HW) generation information is an absolute necessity for ensuring the proper planning, implementation, and monitoring of any waste management system. Unfortunately, environmental agencies in developing countries face difficulties in gathering data directly from the creators of such wastes. It is possible, however, to construct theoretical HW inventories using the waste generation factors (WGFs). The objective of this study was to develop a complete nationwide HW inventory of Turkey that relies on nation-specific WGFs to support management activities of the Turkish Ministry of Environment and Urbanization (MoEU). Inventory studies relied on WGFs from: (a) the literature and (b) field studies and analysis of waste declarations reflecting country-specific industrial practices. Moreover, new tools were introduced to the monitoring infrastructure of MoEU to obtain a comprehensive waste generation data set. Through field studies and a consideration of country specific conditions, it was possible to more thoroughly elucidate HW generation trends in Turkey, a method that was deemed superior to other alternatives. Declaration and literature based WGFs also proved most helpful in supplementing field observations that could not always be conducted. It was determined that these theoretical inventories could become valuable assets in supporting regulating agencies in developing countries for a more thorough implementation of HW management systems. © The Author(s) 2014.

  18. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit...

  19. Land Use Management for Solid Waste Programs

    ERIC Educational Resources Information Center

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

  20. Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.

    2017-07-01

    Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.