Sample records for waste materials appendix

  1. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  2. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  3. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  4. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  5. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity LDR...

  6. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity LDR...

  7. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity LDR...

  8. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity LDR...

  9. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992. Appendixes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-07

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M -more » List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.« less

  10. 40 CFR Appendix V to Part 261 - Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...

  11. 40 CFR Appendix V to Part 261 - Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...

  12. 40 CFR Appendix V to Part 261 - Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...

  13. 40 CFR Appendix V to Part 261 - Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...

  14. 40 CFR Appendix V to Part 261 - Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...

  15. 40 CFR Appendix IV to Part 261 - Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary Materials Wording of the instruments. Appendix IV to Part 261 [Reserved for Radioactive Waste Test Methods] ...

  16. 40 CFR Appendix Vi to Part 261 - Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary Materials Wording of the instruments. Appendix VI to Part 261 [Reserved for Etiologic Agents] ...

  17. 40 CFR Appendix D to Part 63 - Alternative Validation Procedure for EPA Waste and Wastewater Methods

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Alternative Validation Procedure for EPA Waste and Wastewater Methods D Appendix D to Part 63 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) Pt. 63, App. D Appendix D to Part 63—Alternative Validation...

  18. 40 CFR Appendix D to Part 63 - Alternative Validation Procedure for EPA Waste and Wastewater Methods

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Alternative Validation Procedure for EPA Waste and Wastewater Methods D Appendix D to Part 63 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) Pt. 63, App. D Appendix D to Part 63—Alternative Validation...

  19. 40 CFR Appendix D to Part 63 - Alternative Validation Procedure for EPA Waste and Wastewater Methods

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Alternative Validation Procedure for EPA Waste and Wastewater Methods D Appendix D to Part 63 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) Pt. 63, App. D Appendix D to Part 63—Alternative Validation...

  20. 40 CFR Appendix D to Part 63 - Alternative Validation Procedure for EPA Waste and Wastewater Methods

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Alternative Validation Procedure for EPA Waste and Wastewater Methods D Appendix D to Part 63 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) Pt. 63, App. D Appendix D to Part 63—Alternative Validation...

  1. 40 CFR Appendix D to Part 63 - Alternative Validation Procedure for EPA Waste and Wastewater Methods

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Alternative Validation Procedure for EPA Waste and Wastewater Methods D Appendix D to Part 63 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) Pt. 63, App. D Appendix D to Part 63—Alternative Validation...

  2. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiceman, Gary A.; King, J. Phillip; Smith, Geoffrey B.

    1993-02-15

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summary of Technologymore » Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.« less

  3. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  4. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  5. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  6. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  7. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  8. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993. Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-02-15

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive & Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth & Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summarymore » of Technology Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.« less

  9. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR.... D Appendix D to Part 2—Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...

  10. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR.... D Appendix D to Part 2—Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...

  11. 40 CFR Appendix I to Part 261 - Representative Sampling Methods

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Representative Sampling Methods I Appendix I to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...—Representative Sampling Methods The methods and equipment used for sampling waste materials will vary with the...

  12. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part... MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and Export Threshold Limits Radioactive material Category 1 Terabequerels(TBq) Curies(Ci) 1 Category 2...

  13. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part... MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and Export Threshold Limits Radioactive material Category 1 Terabequerels(TBq) Curies(Ci) 1 Category 2...

  14. Incident Waste Decision Support Tool - Waste Materials ...

    EPA Pesticide Factsheets

    Report This is the technical documentation to the waste materials estimator module of I-WASTE. This document outlines the methodology and data used to develop the Waste Materials Estimator (WME) contained in the Incident Waste Decision Support Tool (I-WASTE DST). Specifically, this document reflects version 6.4 of the I-WASTE DST. The WME is one of four primary features of the I-WASTE DST. The WME is both a standalone calculator that generates waste estimates in terms of broad waste categories, and is also integrated into the Incident Planning and Response section of the tool where default inventories of specific waste items are provided in addition to the estimates for the broader waste categories. The WME can generate waste estimates for both common materials found in open spaces (soil, vegetation, concrete, and asphalt) and for a vast array of items and materials found in common structures.

  15. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and...

  16. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and...

  17. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and...

  18. 10 CFR Appendix I to Part 73 - Category 1 and 2 Radioactive Materials

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Category 1 and 2 Radioactive Materials I Appendix I to.... 73, App. I Appendix I to Part 73—Category 1 and 2 Radioactive Materials Table I-1—Quantities of Concern Threshold Limits Radionuclides Category 1 Terabecquerels(TBq) Curies(Ci) 1 Category 2...

  19. 10 CFR Appendix I to Part 73 - Category 1 and 2 Radioactive Materials

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Category 1 and 2 Radioactive Materials I Appendix I to.... 73, App. I Appendix I to Part 73—Category 1 and 2 Radioactive Materials Table I-1—Quantities of Concern Threshold Limits Radionuclides Category 1 Terabecquerels(TBq) Curies(Ci) 1 Category 2...

  20. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Quantities 1 of Licensed Material Requiring Labeling C Appendix C to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. C Appendix C to Part 20—Quantities 1 of Licensed Material Requiring Labeling Radionuclide...

  1. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Quantities 1 of Licensed Material Requiring Labeling C Appendix C to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. C Appendix C to Part 20—Quantities 1 of Licensed Material Requiring Labeling Radionuclide...

  2. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Quantities 1 of Licensed Material Requiring Labeling C Appendix C to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. C Appendix C to Part 20—Quantities 1 of Licensed Material Requiring Labeling Radionuclide...

  3. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Quantities 1 of Licensed Material Requiring Labeling C Appendix C to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. C Appendix C to Part 20—Quantities 1 of Licensed Material Requiring Labeling Radionuclide...

  4. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  5. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analysesmore » that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.« less

  6. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  7. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  8. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  9. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  10. Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  11. 40 CFR Appendix III to Part 261 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false [Reserved] III Appendix III to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Appendix III to Part 261 [Reserved] ...

  12. 40 CFR Appendix II to Part 261 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false [Reserved] II Appendix II to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Appendix II to Part 261 [Reserved] ...

  13. 15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Dredged Material Disposal Sites Within the Sanctuary C Appendix C to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to... National Marine Sanctuary Pt. 922, Subpt. M, App. C Appendix C to Subpart M of Part 922—Dredged Material...

  14. 40 CFR Appendix IV to Part 268 - Wastes Excluded From Lab Packs Under the Alternative Treatment Standards of § 268.42(c)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Wastes Excluded From Lab Packs Under...

  15. 40 CFR Appendix IV to Part 268 - Wastes Excluded From Lab Packs Under the Alternative Treatment Standards of § 268.42(c)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Wastes Excluded From Lab Packs Under...

  16. 40 CFR Appendix IV to Part 268 - Wastes Excluded From Lab Packs Under the Alternative Treatment Standards of § 268.42(c)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Wastes Excluded From Lab Packs Under...

  17. 40 CFR Appendix IV to Part 268 - Wastes Excluded From Lab Packs Under the Alternative Treatment Standards of § 268.42(c)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Wastes Excluded From Lab Packs Under...

  18. 40 CFR Appendix IV to Part 268 - Wastes Excluded From Lab Packs Under the Alternative Treatment Standards of § 268.42(c)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Wastes Excluded From Lab Packs Under...

  19. Multinational Exchange Mechanisms of Educational Audio-Visual Materials. Appendixes.

    ERIC Educational Resources Information Center

    Center of Studies and Realizations for Permanent Education, Paris (France).

    These appendixes contain detailed information about the existing audiovisual material exchanges which served as the basis for the analysis contained in the companion report. Descriptions of the objectives, structure, financing and services of the following national and international organizations are included: (1) Educational Resources Information…

  20. 17 CFR 200.80a - Appendix A-Documentary materials available to the public.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Appendix A-Documentary materials available to the public. 200.80a Section 200.80a Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Information and Requests § 200.80a Appendix A—Documentary...

  1. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic... Completion of NMSS and Commission supervisory review; issuance of construction authorization; NWPA 3-year...

  2. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic... Completion of NMSS and Commission supervisory review; issuance of construction authorization; NWPA 3-year...

  3. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  4. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  5. 40 CFR Appendix Xi to Part 268 - Metal Bearing Wastes Prohibited From Dilution in a Combustion Unit According to 40 CFR 268.3(c)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. XI Appendix XI to Part 268—Metal Bearing Wastes Prohibited From Dilution in a Combustion... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Metal Bearing Wastes Prohibited From...

  6. 40 CFR Appendix Xi to Part 268 - Metal Bearing Wastes Prohibited From Dilution in a Combustion Unit According to 40 CFR 268.3(c)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. XI Appendix XI to Part 268—Metal Bearing Wastes Prohibited From Dilution in a Combustion... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Metal Bearing Wastes Prohibited From...

  7. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    EPA Pesticide Factsheets

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  8. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  9. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...

  10. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  11. In-situ vitrification of waste materials

    DOEpatents

    Powell, James R.; Reich, Morris; Barletta, Robert

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  12. In-situ vitrification of waste materials

    DOEpatents

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  13. Sustainable Materials Management (SMM) WasteWise Data

    EPA Pesticide Factsheets

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  14. 10 CFR Appendix A to Part 440 - Standards for Weatherization Materials

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...] Insulate tank and distribution piping (See insulation section of this appendix). Install heat traps on..., Ceilings, Attics, and Roofs Insulation—organic fiber—conformance to Interim Safety Standard in 16 CFR part 1209; Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor...

  15. 10 CFR Appendix A to Part 440 - Standards for Weatherization Materials

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...] Insulate tank and distribution piping (See insulation section of this appendix). Install heat traps on..., Ceilings, Attics, and Roofs Insulation—organic fiber—conformance to Interim Safety Standard in 16 CFR part 1209; Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor...

  16. 10 CFR Appendix A to Part 440 - Standards for Weatherization Materials

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...] Insulate tank and distribution piping (See insulation section of this appendix). Install heat traps on..., Ceilings, Attics, and Roofs Insulation—organic fiber—conformance to Interim Safety Standard in 16 CFR part 1209; Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor...

  17. 10 CFR Appendix A to Part 440 - Standards for Weatherization Materials

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...] Insulate tank and distribution piping (See insulation section of this appendix). Install heat traps on..., Ceilings, Attics, and Roofs Insulation—organic fiber—conformance to Interim Safety Standard in 16 CFR part 1209; Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor...

  18. 40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Constituents for Detection Monitoring I Appendix I to Part 258 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Pt. 258, App. I Appendix I to Part 258—Constituents...

  19. 40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Constituents for Detection Monitoring I Appendix I to Part 258 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Pt. 258, App. I Appendix I to Part 258—Constituents...

  20. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  1. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  2. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  3. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  4. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  5. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  6. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  7. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  8. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  9. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  10. 40 CFR Appendix V to Part 268 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] V Appendix V to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix V to Part 268 [Reserved] ...

  11. 40 CFR Appendix V to Part 268 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] V Appendix V to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix V to Part 268 [Reserved] ...

  12. 40 CFR Appendix V to Part 268 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] V Appendix V to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix V to Part 268 [Reserved] ...

  13. 40 CFR Appendix V to Part 268 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] V Appendix V to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix V to Part 268 [Reserved] ...

  14. 40 CFR Appendix V to Part 268 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] V Appendix V to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix V to Part 268 [Reserved] ...

  15. 40 CFR Appendix to Part 243 - Recommended Bibliography

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Recommended Bibliography Appendix to Part 243 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES.... Appendix to Part 243—Recommended Bibliography 1. American National Standard Z245.1. Safety standard for...

  16. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  17. Waste Analysis Plan and Waste Characterization Survey, Barksdale AFB, Louisiana

    DTIC Science & Technology

    1991-03-01

    review to assess if analysis is needed, any analyses that are to be provided by generators, and methods to be used to meet specific waste analysis ...sampling method , sampling frequency, parameters of analysis , SW 846 test methods , Department of Transportation (DOT) shipping name and hazard class...S.e.iceA w/Atchs 2. HQ SAC/DEV Ltr, 28 Sep 90 19 119 APPENDIX B Waste Analysis Plan Rationale 21 APPENDIX B 1. SAMPLING METHOD RATIONALE: Composite Liquid

  18. 40 CFR Appendixes I-Ii to Part 268 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] I Appendixes I-II to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendixes I-II to Part 268 [Reserved] ...

  19. 40 CFR Appendixes I-Ii to Part 268 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] I Appendixes I-II to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendixes I-II to Part 268 [Reserved] ...

  20. 40 CFR Appendixes I-Ii to Part 268 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] I Appendixes I-II to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendixes I-II to Part 268 [Reserved] ...

  1. 40 CFR Appendixes I-Ii to Part 268 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] I Appendixes I-II to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendixes I-II to Part 268 [Reserved] ...

  2. 40 CFR Appendixes I-Ii to Part 268 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] I Appendixes I-II to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendixes I-II to Part 268 [Reserved] ...

  3. 29 CFR 1926.252 - Disposal of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fire regulations. (e) All solvent waste, oily rags, and flammable liquids shall be kept in fire... 29 Labor 8 2014-07-01 2014-07-01 false Disposal of waste materials. 1926.252 Section 1926.252..., Use, and Disposal § 1926.252 Disposal of waste materials. (a) Whenever materials are dropped more than...

  4. ANIMAL WASTE COMPOSTING WITH CARBONACEOUS MATERIAL

    EPA Science Inventory

    High rate thermophilic composting of animal wastes with added carbonaceous waste materials followed by land application has considerable potential as a means of treatment and useful final disposal of these wastes. The process described in this report utilizes a mechanically mixed...

  5. Regulatory Exclusions and Alternative Standards for the Recycling of Materials, Solid Wastes and Hazardous Wastes

    EPA Pesticide Factsheets

    Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.

  6. Method for recovering materials from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  7. 40 CFR Appendix to Part 240 - Recommended Bibliography

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Part 240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Pt. 240, App. Appendix to Part 240—Recommended Bibliography 1. The Solid Waste Disposal Act as amended; Title II of Pub. L. 89-272, 89th Cong., S. 306, Oct. 20...

  8. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review

    NASA Astrophysics Data System (ADS)

    Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-05-01

    A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.

  9. 17 CFR 200.80a - Appendix A-Documentary materials available to the public.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 200.80a Appendix A—Documentary materials available to the public. [See footnotes at end of table... Prospectuses (selling circulars) in connection with registration statement 10 Periodic reports (annual... Investment Company Act of 1940 (17 CFR 230.240) 3(b) [See footnotes at end of table] Description Pursuant to...

  10. 17 CFR 200.80a - Appendix A-Documentary materials available to the public.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 200.80a Appendix A—Documentary materials available to the public. [See footnotes at end of table... Prospectuses (selling circulars) in connection with registration statement 10 Periodic reports (annual... Investment Company Act of 1940 (17 CFR 230.240) 3(b) [See footnotes at end of table] Description Pursuant to...

  11. 17 CFR 200.80a - Appendix A-Documentary materials available to the public.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 200.80a Appendix A—Documentary materials available to the public. [See footnotes at end of table... Prospectuses (selling circulars) in connection with registration statement 10 Periodic reports (annual... Investment Company Act of 1940 (17 CFR 230.240) 3(b) [See footnotes at end of table] Description Pursuant to...

  12. 34 CFR Appendix C to Part 300 - National Instructional Materials Accessibility Standard (NIMAS)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Using educationLevel obviates the need for a separate field for gradeRange since dc elements can repeat... 34 Education 2 2011-07-01 2010-07-01 true National Instructional Materials Accessibility Standard (NIMAS) C Appendix C to Part 300 Education Regulations of the Offices of the Department of Education...

  13. Thermodynamic data for biomass conversion and waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domalski, E.S.; Jobe, T.L. Jr; Milne, T.A.

    1986-09-01

    The general purpose of this collection of thermodynamic data of selected materials is to make property information available to the engineering community on chemical mixtures, polymers, composite materials, solid wastes, biomass, and materials not easily identifiable by a single stoichiometric formula. More than 700 materials have been compiled covering properties such as specific heat, gross heat of combustion, heat of fusion, heat of vaporization, and vapor pressure. The information was obtained from the master files of the NBS Chemical Thermodynamics Data Center, the annual issues of the Bulletin of Chemical Thermodynamics, intermittent examinations of the Chemical Abstracts subject indexes, individualmore » articles by various authors, and other general reference sources. The compilation is organized into several broad categories; materials are listed alphabetically within each category. For each material, the physical state, information as to the composition or character of the material, the kind of thermodynamic property reported, the specific property values for the material, and citations to the reference list are given. In addition, appendix A gives an empirical formula that allows heats of combustion of carbonaceous materials to be predicted with surprising accuracy when the elemental composition is known. A spread sheet illustrates this predictability with examples from this report and elsewhere. Appendix B lists some reports containing heats of combustion not included in this publication. Appendix C contains symbols, units, conversion factors, and atomic weights used in evaluating and compiling the thermodynamic data.« less

  14. 40 CFR Appendix IV to Part 266 - Reference Air Concentrations*

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...

  15. 40 CFR Appendix IV to Part 266 - Reference Air Concentrations*

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...

  16. 40 CFR Appendix IV to Part 266 - Reference Air Concentrations*

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...

  17. 40 CFR Appendix IV to Part 266 - Reference Air Concentrations*

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...

  18. Use of selected waste materials in concrete mixes.

    PubMed

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  19. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  20. Waste Materials in Hot Mix Asphalt - An Overview

    DOT National Transportation Integrated Search

    1992-12-01

    Numerous waste materials result from manufacturing operations, service industries, sewage treatment plants, households and mining. Legislation has been enacted by several states in recent years to either mandate the use of some waste materials or to ...

  1. Bacterial leaching of waste uranium materials.

    PubMed

    Barbic, F F; Bracilović, D M; Krajincanić, B V; Lucić, J L

    1976-01-01

    The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid.

  2. 15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Adjacent to the Monterey Bay National Marine Sanctuary D Appendix D to Subpart M of Part 922 Commerce and... SANCTUARY PROGRAM REGULATIONS Monterey Bay National Marine Sanctuary Pt. 922, Subpt. M, App. D Appendix D to Subpart M of Part 922—Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine...

  3. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise [Estimated Plume Rise (in Meters) Based...

  4. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise [Estimated Plume Rise (in Meters) Based...

  5. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  6. Thermal and catalytic coprocessing of coal and waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orr, E.C.; Tuntawiroon, W.; Ding, W.B.

    1995-12-31

    Coprocessing of coal with waste materials to produce liquid fuels with emphasis on finding reasonable reaction pathways and catalysts for such processing is presently the subject of intensive investigation. Polymer wastes such as polyethylene, polystyrene, polypropylene and used rubber tires are not naturally degraded over time. More than 22 million tons of plastic waste are annually discarded in landfills and over 75 percent of used rubber tires are similarly treated. In order to obtain distillate liquids or petroleum compatible refined products from coal, addition of hydrogen is necessary. A possible method for hydrogen addition is coprocessing of coal with polymericmore » waste materials since these latter materials contain hydrogen at levels much higher than are found in coal. The breakdown of waste rubber tires is interesting because the liquids derived may prove to be important as a coal dissolution and/or hydrogen donor solvent. Recently, Badger and coworkers reported that hydrogenated tire oils (hydrogenated in the presence of CoMo catalyst) were effective for the dissolution of coal. Studies on the coprocessing of coal and waste materials have only recently been done intensively. Limited data are available on reaction conditions and catalytic effects for processing coal mixed with post-consumer wastes. The purpose of the present study was to determine the effects of reaction temperature, pressure, catalysts, and mixture ratio on the coprocessing of coal and waste materials.« less

  7. Characterization of radioactive wastes with respect to harmful materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugel, Karin; Steyer, Stefan; Brennecke, Peter

    In addendum 4 to the license of the German KONRAD repository, which considers mainly radiological aspects, a water law permit was issued in order to prevent the pollution of the near-surface groundwater. The water law permit stipulates limitations for 10 radionuclides and 2 groups of radionuclides as well as mass limitations for 94 substances and materials relevant for water protection issues. Two collateral clauses, i.e. additional requirements imposed by the licensing authority, include demands on the monitoring, registering and balancing of non-radioactive harmful substances and materials /1/. In order to fulfill the requirements of the water law permit the Germanmore » Federal Office for Radiation Protection (BfS) being the operator of the KONRAD repository has developed a concept, which ensures the compliance with all requirements of the water law permit and which provides standardized easy manageable guidance for the waste producers to describe their wastes. On 15 March 2011 the competent water authority, the 'Niedersaechsischer Landesbetrieb fuer Wasserwirtschaft, Kuesten- und Naturschutz' (NLWKN) issued the approval for this concept. Being the most essential part of this concept the procedural method and the developed description of nonradioactive waste package constituents by use of standardized lists of materials and containers is addressed and presented in this paper. The waste producer has to describe his waste package in a standardized way on the base of the lists of materials and containers. For each material in the list a comprehensive description is given comprising the composition, scope of application, quality control measures, thresholds and other data. Each entry in the list has to be approved by NLWKN. The scope of the lists is defined by the waste producers' needs. Using some particular materials as examples, the approval procedure for including materials in the list is described. The procedure of describing the material composition has to

  8. 15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Monterey Bay National Marine Sanctuary Pt. 922, Subpt. M, App. C Appendix C to Subpart M of Part 922—Dredged Material...

  9. Youth Solid Waste Educational Materials List, November 1991.

    ERIC Educational Resources Information Center

    Cornell Univ., Ithaca, NY. Cooperative Extension Service.

    This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…

  10. Incentivizing secondary raw material markets for sustainable waste management.

    PubMed

    Schreck, Maximilian; Wagner, Jeffrey

    2017-09-01

    Notwithstanding several policy initiatives in many countries over a number of years, there remains a general sense that too much municipal solid waste is generated and that too much of the waste that is generated is landfilled. There is an emerging consensus that a sustainable approach to waste management requires further development of secondary raw material markets. The purpose of this paper is to propose a theoretical economic model that focuses upon this stage of a sustainable waste management program and explores policy options that could motivate efficiency in secondary raw material markets. In particular, we show how firm profit and social welfare optimizing objectives can be reconciled in a two-product market of waste management processes: landfilling and material reclamation. Our results provide theoretical support for building out recent Circular Economy initiatives as well as for the relatively recent emergence of landfill mining as a means for procuring secondary raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  12. Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  13. 15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Dredged Material Disposal Sites Within the Sanctuary C Appendix C to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF...

  14. 40 CFR Appendix to Part 240 - Recommended Bibliography

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....S. Department of Health, Education, and Welfare, National Air Pollution Control Administration, 1969... FOR THE THERMAL PROCESSING OF SOLID WASTES Pt. 240, App. Appendix to Part 240—Recommended Bibliography...

  15. 40 CFR Appendix to Part 240 - Recommended Bibliography

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....S. Department of Health, Education, and Welfare, National Air Pollution Control Administration, 1969... FOR THE THERMAL PROCESSING OF SOLID WASTES Pt. 240, App. Appendix to Part 240—Recommended Bibliography...

  16. The application of waste fly ash and construction-waste in cement filling material in goaf

    NASA Astrophysics Data System (ADS)

    Chen, W. X.; Xiao, F. K.; Guan, X. H.; Cheng, Y.; Shi, X. P.; Liu, S. M.; Wang, W. W.

    2018-01-01

    As the process of urbanization accelerated, resulting in a large number of abandoned fly ash and construction waste, which have occupied the farmland and polluted the environment. In this paper, a large number of construction waste and abandoned fly ash are mixed into the filling material in goaf, the best formula of the filling material which containing a large amount of abandoned fly ash and construction waste is obtained, and the performance of the filling material is analyzed. The experimental results show that the cost of filling material is very low while the performance is very good, which have a good prospect in goaf.

  17. Materials and Waste Management Research

    EPA Pesticide Factsheets

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  18. Compacting biomass waste materials for use as fuel

    NASA Astrophysics Data System (ADS)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  19. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  20. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  1. Waste Reduction Model (WARM) Material Descriptions and ...

    EPA Pesticide Factsheets

    2017-02-14

    This page provides a summary of the materials included in EPA’s Waste Reduction Model (WARM). The page includes a list of materials, a description of the material as defined in the primary data source, and citations for primary data sources.

  2. Improved method and composition for immobilization of waste in cement-based material

    DOEpatents

    Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.

    1987-10-01

    A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.

  3. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  4. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  5. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  6. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  7. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  8. Waste in Education: The Potential of Materiality and Practice

    ERIC Educational Resources Information Center

    Jørgensen, Nanna Jordt; Madsen, Katrine Dahl; Laessøe, Jeppe

    2018-01-01

    This article explores how waste materials and waste practices figure in education, pointing to educational potentials of waste which have hitherto received little consideration in environmental and sustainability education practice and research. Building on empirical research on waste education in Danish schools and preschools, we discuss how an…

  9. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  10. Serpentinitic waste materials: possible reuses and critical issues

    NASA Astrophysics Data System (ADS)

    Cavallo, Alessandro

    2017-04-01

    The extraction and processing of marbles, rocks and granites produces a significant amount of waste materials, in the form of shapeless blocks, scraps, gravel and sludge. Current regulations and a greater concern to the environment promote the reuse of these wastes: quartz-feldspathic materials are successfully used for ceramics, crushed porphyry as track ballast, whereas carbonatic wastes for lime, cement and fillers. However, there are currently no reuses for serpentinitic materials: a striking example is represented by the Valmalenco area (central Alps, northern Italy), a relatively small productive district. In this area 22 different enterprises operate in the quarrying and/or processing of serpentinites with various textures, schistose to massive, and color shades; the commercial products are used all over the world and are known with many commercial names. The total volume extracted in the quarries is estimated around 68000 m3/yr. and the resulting commercial blocks and products can be estimated around the 40 - 50 % of the extracted material. The processing wastes can vary significantly according to the finished product: 35 % of waste can be estimated in the case of slab production, whereas 50 % can be estimated in the case of gang-saw cutting of massive serpentinite blocks. The total estimate of the processing rock waste in the Valmalenco area is about 12700 m3/yr; together with the quarry waste, the total amount of waste produced in the area is more than 43000 m3/yr. The sludge (approximately 12000 m3/yr, more than 95 % has grain size < 50 micron) mainly derives from the cutting (by diamond disk and gang-saw) and polishing of massive serpentinites; it is filter-pressed before disposal (water content ranging from 11.5 to 19.4 wt. %). All the different waste materials (85 samples) were characterized by quantitative XRPD (FULLPAT software), whole-rock geochemistry (ICP-AES, ICP-MS and Leco®) and SEM-EDS. The mineralogical composition is quite variable from

  11. General RMP Guidance - Appendix B: Selected NAICS Codes

    EPA Pesticide Factsheets

    This appendix contains a list of selected 2002 North American Industry Classification System (NAICS) codes used by Federal statistical agencies, in designating business types or functions in categories such as farming, manufacturing, and waste management.

  12. SHC Project 3.63, Task 2, Beneficial Use of Waste Materials ...

    EPA Pesticide Factsheets

    SHC Project 3.63, Task 2, “Beneficial Use of Waste Materials”, is designed to conduct research and analyses to characterize and quantify the risks and benefits of using or reusing waste materials. There are 6 primary research areas in Task 2 that cover a broad spectrum of topics germane to the beneficial use of waste materials and address Agency, Office, Region and other client needs. The 6 research areas include: 1) Materials Recovery Technology, 2) Beneficial Use of Materials Optimization, 3) Novel Products from Waste Materials, 4) Land Application of Biosolids, 5) Soil Remediation Amendments and 6) Improved Leaching Methods for More Accurate Prediction of Environmental Release of Metals. The objectives of each research area, their intended products and progress to date will be presented. The products of this Task will enable communities and the Agency to better protect and enhance human health, well-being and the environment for current and future generations, through the reduction in material consumption, reuse, and recycling of materials. This presentation is designed to convey the rational, purpose and planned research in EPAs Safe and Healthy Communities (SHC) National Research Program Project 3.63 (Sustainable Materials Management) Task 2, “Beneficial Use of Waste Materials”, which is designed to conduct research and analyses to characterize and quantify the risks and benefits of using or reusing waste materials. . This presentation has bee

  13. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maji, A. K.; Thomson, Bruce M.; Samani, Zohrab A.

    1992-04-07

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M -more » List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.« less

  14. 40 CFR Appendix C to Part 191 - Guidance for Implementation of Subpart B

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... B C Appendix C to Part 191 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Pt. 191, App. C Appendix C to Part 191... establish appropriate markers and records, consistent with § 191.14(c). The Agency assumes that, as long as...

  15. 40 CFR Appendix C to Part 191 - Guidance for Implementation of Subpart B

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... B C Appendix C to Part 191 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Pt. 191, App. C Appendix C to Part 191... establish appropriate markers and records, consistent with § 191.14(c). The Agency assumes that, as long as...

  16. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  17. Screening tests for hazard classification of complex waste materials - Selection of methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different

  18. Corrosion assessment of refractory materials for high temperature waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosionmore » coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.« less

  19. Complementary and Alternative Medicine in the Military Health System: Appendixes

    DTIC Science & Technology

    2017-01-01

    report. Appendixes F through H supply other supplementary material. Appendixes F and G contain the CAM survey instrument and a glossary of CAM services...respectively. Appendix H contains tables of detailed results from the CAM survey and the MHS administrative data analyses. Individual tables in...this appendix are referenced in Chapters Three through Seven of the main report. 2 Table of Contents Appendix F: CAM Survey Instrument

  20. Three-dimensional mapping of crystalline ceramic waste form materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocco, Alex P.; DeGostin, Matthew B.; Wrubel, Jacob A.

    Here, we demonstrate the use of synchrotron-based, transmission X-ray microscopy (TXM) and scanning electron microscopy to image the 3-D morphologies and spatial distributions of Ga-doped phases within model, single- and two-phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba 1.04Cs 0.24Ga 2.32Ti 5.68O 16) could be readily imaged. This analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid-state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. Our results represent a crucial stepmore » in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.« less

  1. Three-dimensional mapping of crystalline ceramic waste form materials

    DOE PAGES

    Cocco, Alex P.; DeGostin, Matthew B.; Wrubel, Jacob A.; ...

    2017-04-21

    Here, we demonstrate the use of synchrotron-based, transmission X-ray microscopy (TXM) and scanning electron microscopy to image the 3-D morphologies and spatial distributions of Ga-doped phases within model, single- and two-phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba 1.04Cs 0.24Ga 2.32Ti 5.68O 16) could be readily imaged. This analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid-state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. Our results represent a crucial stepmore » in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.« less

  2. Testing of candidate waste-package backfill and canister materials for basalt

    NASA Astrophysics Data System (ADS)

    Wood, M. I.; Anderson, W. J.; Aden, G. D.

    1982-09-01

    The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.

  3. Waste glass as eco-friendly replacement material in construction products

    NASA Astrophysics Data System (ADS)

    Sharma, Gayatri; Sharma, Anu

    2018-05-01

    Atpresent time the biggest issue is increasing urban population, industrialization and development all over the world. The quantity of the raw materials of construction products like cement, concrete etc is gradually depleting. This is important because if we don't find the alternative material to accomplish need of this industry, with every year it will put pressure on natural resources which are limited in quantity. This major issue can be solved by partial replacing with waste glass of different construction products. This paper gives an overview of the current growth and recycling situation of waste glass and point out the direction for the proper use of waste glass as replacement of construction material. These will not only help in the reuse of waste glass but also create eco-friendly environment.

  4. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    EPA Pesticide Factsheets

    Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW) generation, recycling, composting, combustion with energy recovery and landfilling. The 2014 report provides information on historical tipping fees for MSW, and information on the construction and demolition debris generation, which is outside of the scope of MSW. The Facts and Figures website includes recent reports (2012 to 2014 as well as historical information on materials in the U.S. Municipal Waste Stream, 1960 to 2014 (in tons). The reports for both current and historical waste prevention can be accessed at EPA's SMM website. The recent Annual Facts and Figures reports are accessible at the following link: https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures-report. Historical data as well as studies and summary tables related to the Advancing Sustainable Materials Management Report are accessible here: https://www.epa.gov/smm/studies-summary-tables-and-data-related-advancing-sustainable-materials-management-report. An excel file containing the data from 1960 - 2014 is located here: https://edg.epa.gov/data/PUBLIC/OLEM/Materials_Municipal_Waste_Stream_1960_to_2014.xlsx. EPA also maintains a list of state and local waste characterization studies (reports are not available for all states). You can search for your state at https://www.epa.gov/smm/advancing-

  5. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials

    NASA Astrophysics Data System (ADS)

    Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.

    2017-09-01

    The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.

  6. Vertical Flume Testing of WIPP Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Schuhen, M.; Kicker, D.

    2012-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. The DOE demonstrates compliance with 40 CFR 194 by means of performance assessment (PA) calculations conducted by Sandia National Laboratories. WIPP PA calculations estimate the probability and consequences of radionuclide releases for a 10,000 year regulatory period. Human intrusion scenarios include cases in which a future borehole is drilled through the repository. Drilling mud flowing up the borehole will apply a hydrodynamic shear stress to the borehole wall which could result in erosion of the waste and radionuclides being carried up the borehole. WIPP PA uses the parameter TAUFAIL to represent the shear strength of the degraded waste. The hydrodynamic shear strength can only be measured experimentally by flume testing. Flume testing is typically performed horizontally, mimicking stream or ocean currents. However, in a WIPP intrusion event, the drill bit would penetrate the degraded waste and drilling mud would flow up the borehole in a predominantly vertical direction. In order to simulate this, a flume was designed and built so that the eroding fluid enters an enclosed vertical channel from the bottom and flows up past a specimen of surrogate waste material. The sample is pushed into the current by a piston attached to a step motor. A qualified data acquisition system controls and monitors the fluid's flow rate, temperature, pressure, and conductivity and the step motor's operation. The surrogate materials used correspond to a conservative estimate of degraded TRU waste at the end of the regulatory period. The recipes were previously developed by SNL based on anticipated future states of the waste

  7. Vertical Flume Testing of WIPP Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Schuhen, M.; Kicker, D.

    2013-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. The DOE demonstrates compliance with 40 CFR 194 by means of performance assessment (PA) calculations conducted by Sandia National Laboratories. WIPP PA calculations estimate the probability and consequences of radionuclide releases for a 10,000 year regulatory period. Human intrusion scenarios include cases in which a future borehole is drilled through the repository. Drilling mud flowing up the borehole will apply a hydrodynamic shear stress to the borehole wall which could result in erosion of the waste and radionuclides being carried up the borehole. WIPP PA uses the parameter TAUFAIL to represent the shear strength of the degraded waste. The hydrodynamic shear strength can only be measured experimentally by flume testing. Flume testing is typically performed horizontally, mimicking stream or ocean currents. However, in a WIPP intrusion event, the drill bit would penetrate the degraded waste and drilling mud would flow up the borehole in a predominantly vertical direction. In order to simulate this, a flume was designed and built so that the eroding fluid enters an enclosed vertical channel from the bottom and flows up past a specimen of surrogate waste material. The sample is pushed into the current by a piston attached to a step motor. A qualified data acquisition system controls and monitors the fluid's flow rate, temperature, pressure, and conductivity and the step motor's operation. The surrogate materials used correspond to a conservative estimate of degraded TRU waste at the end of the regulatory period. The recipes were previously developed by SNL based on anticipated future states of the waste

  8. From waste to sustainable materials management: Three case studies of the transition journey.

    PubMed

    Silva, Angie; Rosano, Michele; Stocker, Laura; Gorissen, Leen

    2017-03-01

    Waste policy is increasingly moving on from the 'prevention of waste' to a 'sustainable materials policy' focused agenda recognising individual wastes as a resource. In order to comparatively analyse policy developments in enhanced waste management, three case studies were selected; San Francisco's Zero Waste Program, Flanders's Sustainable Materials Management Initiative and Japan's Sound Material-Cycle Society Plan. These case studies were chosen as an opportunity to investigate the variety of leading approaches, governance structures, and enhanced waste policy outcomes, emerging globally. This paper concludes that the current transitional state of waste management across the world, is only in the first leg of the journey towards Circular Economy closed loop production models of waste as a resource material. It is suggested that further development in government policy, planning and behaviour change is required. A focus on material policy and incorporating multiple front runners across industry and knowledge institutions are offered as potential directions in the movement away from end-pipe land-fill solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Anode materials for electrochemical waste destruction

    NASA Technical Reports Server (NTRS)

    Molton, Peter M.; Clarke, Clayton

    1990-01-01

    Electrochemical Oxidation (ECO) offers promise as a low-temperature, atmospheric pressure method for safe destruction of hazardous organic chemical wastes in water. Anode materials tend to suffer corrosion in the intensely oxidizing environment of the ECO cell. There is a need for cheaper, more resistant materials. In this experiment, a system is described for testing anode materials, with examples of several common anodes such as stainless steel, graphite, and platinized titanium. The ECO system is simple and safe to operate and the experiment can easily be expanded in scope to study the effects of different solutions, temperatures, and organic materials.

  10. 29 CFR Appendix B to Part 70 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false [Reserved] B Appendix B to Part 70 Labor Office of the Secretary of Labor PRODUCTION OR DISCLOSURE OF INFORMATION OR MATERIALS Appendix B to Part 70 [Reserved] ...

  11. 29 CFR Appendix B to Part 70 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false [Reserved] B Appendix B to Part 70 Labor Office of the Secretary of Labor PRODUCTION OR DISCLOSURE OF INFORMATION OR MATERIALS Appendix B to Part 70 [Reserved] ...

  12. A novel process for preparing fireproofing materials from various industrial wastes.

    PubMed

    Su, Yi; Wang, Lei; Zhang, Fu-Shen

    2018-05-09

    In the current study, the possibility of incorporating various industrial wastes into fireproofing materials was investigated. It was found that the newly developed materials showed excellent air sealing and fireproofing performance, with air permeability coefficients 3 to 4 orders of magnitude smaller than traditional fire prevention materials. The influence of different parameters on the air permeability was investigated, and the air sealing mechanisms were clarified through microstructure analysis. In addition, the workability and mechanical properties of the fireproofing materials for practical application in coal mine were studied. The new materials derived from industrial wastes had a compact and monolithic structure, and the excellent air tightness could be attributed to the pozzolanic activity of the industrial wastes and the film-forming property of organic polymers. Among the industrial wastes examined, a special coal fly ash with high pozzolanic activity and little free calcium oxide derived the best product with air permeability coefficient, tensile strength and breaking elongation of 4.17 × 10 -8  m 2 /s, 2.14 MPa and 48.90%, respectively. This study provides an economical, environmentally friendly and promising approach for industrial wastes recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Fires at storage sites of organic materials, waste fuels and recyclables.

    PubMed

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  14. Preparation of sustainable photocatalytic materials through the valorization of industrial wastes.

    PubMed

    Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Morales, Julián; Sánchez, Luis

    2013-12-01

    A new value-added material was developed from wastes to aim for appropriate waste management and sustainable development. This paper reports the valorization of industrial sandblasting operation wastes (SOWs) as new photocatalytic materials. This waste is composed of Fe2 O3 (60.7 %), SiO2 (29.1 %), and Al2 O3 (3.9 %) as the main components. The high presence of iron oxides was used to develop photocatalytic properties through their thermal transformation into α-Fe2 O3 . The new product, SOW-T, exhibited a good behavior towards the photochemical degradation of organic dyes. The preparation of advanced photocatalytic materials that exhibit self-cleaning and depolluting properties was possible by the inclusion of SOW-T and TiO2 in a cement-based mortar. The synergy observed between both materials enhanced their photocatalytic action. To the best of our knowledge, this is the first report that describes the use of transformed wastes based on iron oxide for the photochemical oxidation of NOx gases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Developing an institutional strategy for transporting defense transuranic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, J.V.; Kresny, H.S.

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key tomore » the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.« less

  16. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false NRC and EPA Requirements for Preclosure Repository Performance II Appendix II to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and...

  17. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false NRC and EPA Requirements for Preclosure Repository Performance II Appendix II to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and...

  18. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false NRC and EPA Requirements for Preclosure Repository Performance II Appendix II to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and...

  19. 10 CFR Appendix I to Part 960 - NRC and EPA Requirements for Postclosure Repository Performance

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false NRC and EPA Requirements for Postclosure Repository Performance I Appendix I to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. I Appendix I to Part 960—NRC and...

  20. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false NRC and EPA Requirements for Preclosure Repository Performance II Appendix II to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and...

  1. Chemical digestion of low level nuclear solid waste material

    DOEpatents

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  2. Waste-efficient materials procurement for construction projects: A structural equation modelling of critical success factors.

    PubMed

    Ajayi, Saheed O; Oyedele, Lukumon O

    2018-05-01

    Albeit the understanding that construction waste is caused by activities ranging from all stages of project delivery process, research efforts have been concentrated on design and construction stages, while the possibility of reducing waste through materials procurement process is widely neglected. This study aims at exploring and confirming strategies for achieving waste-efficient materials procurement in construction activities. The study employs sequential exploratory mixed method approach as its methodological framework, using focus group discussion, statistical analysis and structural equation modelling. The study suggests that for materials procurement to enhance waste minimisation in construction projects, the procurement process would be characterised by four features. These include suppliers' commitment to low waste measures, low waste purchase management, effective materials delivery management and waste-efficient Bill of Quantity, all of which have significant impacts on waste minimisation. This implies that commitment of materials suppliers to such measures as take back scheme and flexibility in supplying small materials quantity, among others, are expected of materials procurement. While low waste purchase management stipulates the need for such measures as reduced packaging and consideration of pre-assembled/pre-cut materials, efficient delivery management entails effective delivery and storage system as well as adequate protection of materials during the delivery process, among others. Waste-efficient specification and bill of quantity, on the other hand, requires accurate materials take-off and ordering of materials based on accurately prepared design documents and bill of quantity. Findings of this study could assist in understanding a set of measures that should be taken during materials procurement process, thereby corroborating waste management practices at other stages of project delivery process. Copyright © 2018. Published by Elsevier Ltd.

  3. Waste Reduction Model (WARM) Material Descriptions and Data Sources

    EPA Pesticide Factsheets

    This page provides a summary of the materials included in EPA’s Waste Reduction Model (WARM). The page includes a list of materials, a description of the material as defined in the primary data source, and citations for primary data sources.

  4. 40 CFR Appendix to Part 240 - Recommended Bibliography

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Safety and Health Act of 1970; Pub. L. 91-596, 91st Cong., S. 2193, Dec. 29, 1970. Washington, U.S... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Recommended Bibliography Appendix to Part 240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES...

  5. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  6. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  7. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false EPA Interim Primary Drinking Water Standards III Appendix III to Part 265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Pt....

  8. Installation restoration program. Site investigation report. Revision 4. Volume 2: Appendix B through Appendix E. 155th Air Refueling Group, Nebraska Air National Guard, Lincoln Municipal Airport, Lincoln, Nebraska. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    This is Site investigation Report, Volume 2 Appendix B through E. A Site Investigation was performed at the 155th Air Refueling Group at Lincoln, NE to evaluate six areas of suspected contamination identified during a Preliminary Assessment. The sites that this investigation were conducted at are: Site 1 - Fuel Farm, POL Storage Area Site 2 - West End of Old Oak Creek, Site 3 - Former Tank Cleaning/Hazardous Waste Storage Area, Site 4 - Access Road, Dust Control Area, Site 5 - Army National Guard Oil Storage Area, and Site 6 - Hydraulic Pressure Check Unit Storage Area. Themore » report recommended no further action for Sites 3 through 6 due to low levels or no contamination being found. The report recommended that the portion of Site 2 that is located downstream of Site 1 should be included in Site 1. Appendix 2 consist of the following appendix: Well Data and Geologic Boring Logs (Appendix B), Survey Data (Appendix C), Quality Control (Appendix D), and Analytical Results (Appendix E).« less

  9. 40 CFR Appendix III to Part 268 - List of Halogenated Organic Compounds Regulated Under § 268.32

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. III Appendix III to... concentration of HOCs in a hazardous waste for purposes of the § 268.32 land disposal prohibition, EPA has...

  10. 40 CFR Appendix III to Part 268 - List of Halogenated Organic Compounds Regulated Under § 268.32

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. III Appendix III to... concentration of HOCs in a hazardous waste for purposes of the § 268.32 land disposal prohibition, EPA has...

  11. 40 CFR Appendix III to Part 268 - List of Halogenated Organic Compounds Regulated Under § 268.32

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. III Appendix III to... concentration of HOCs in a hazardous waste for purposes of the § 268.32 land disposal prohibition, EPA has...

  12. 40 CFR Appendix III to Part 268 - List of Halogenated Organic Compounds Regulated Under § 268.32

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. III Appendix III to... concentration of HOCs in a hazardous waste for purposes of the § 268.32 land disposal prohibition, EPA has...

  13. 40 CFR Appendix III to Part 268 - List of Halogenated Organic Compounds Regulated Under § 268.32

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. III Appendix III to... concentration of HOCs in a hazardous waste for purposes of the § 268.32 land disposal prohibition, EPA has...

  14. Compression device for feeding a waste material to a reactor

    DOEpatents

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  15. Removal of Pb, Cd, and Cr in a water purification system using modified mineral waste materials and activated carbon derived from waste materials

    NASA Astrophysics Data System (ADS)

    Lu, H. R.; Su, L. C.; Ruan, H. D.

    2016-08-01

    This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.

  16. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has

  17. Perspectives of flax processing wastes in building materials production

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    2017-01-01

    The paper discusses the possibility of using the flax boons for thermal insulation materials. The solution for systematization of materials based on flax boon is suggested. It based on the principle of building materials production using the flax waste with different types of binders. The purpose of the research is to obtain heat-insulating materials with different structure based on agricultural production waste - flax boon, mineral and organic binders. The composition and properties of organic filler - flax boons - are defined using infrared spectroscopy and standard techniques. Using the method of multivariate analysis the optimal ratio of flax boons and binders in production of pressed, porous and granular materials are determined. The effect of particles size distribution of flax boons on the strength of samples with the different composition is studied. As a result, the optimized compositions of pressed, porous and granular materials based on flax boons are obtained. Data on the physical and mechanical properties of these materials are given in the paper.

  18. PROCESS DEVELOPMENT FOR THE RECOVERY OF CRITICAL MATERIALS FROM ELECTRONIC WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lister, T. E.; Diaz, L. A.; Clark, G. G.

    As electronic technology continues to evolve there is a growing need to develop processes which recover valuable material from antiquated technology. This need follows from the environmental challenges associated with the availability of raw materials and fast growing generation of electronic waste. Although just present in small quantities in electronic devices, the availability of raw materials, such as rare earths and precious metals, becomes critical for the production of high tech electronic devices and the development of green technologies (i.e. wind turbines, electric motors, and solar panels). Therefore, the proper recycling and processing of increasing volumes of electronic waste presentmore » an opportunity to stabilize the market of critical materials, reducing the demand of mined products, and providing a proper disposal and treatment of a hazardous waste stream. This paper will describe development and techno-economic assessment of a comprehensive process for the recovery of value and critical materials from electronic waste. This hydrometallurgical scheme aims to selectively recover different value segments in the materials streams (base metals, precious metals, and rare earths). The economic feasibility for the recovery of rare earths from electronic waste is mostly driven by the efficient recovery of precious metals, such as Au and Pd (ca. 80 % of the total recoverable value). Rare earth elements contained in magnets (speakers, vibrators and hard disk storage) can be recovered as a mixture of rare earths oxides which can later be reduced to the production of new magnets.« less

  19. Forming artificial soils from waste materials for mine site rehabilitation

    NASA Astrophysics Data System (ADS)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  20. 46 CFR Appendix I to Part 153 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...

  1. 46 CFR Appendix I to Part 153 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...

  2. 46 CFR Appendix I to Part 153 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...

  3. 46 CFR Appendix I to Part 153 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...

  4. 46 CFR Appendix I to Part 153 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...

  5. 40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES POLLUTION CONTINGENCY PLAN Pt. 300, App. D Appendix D to Part 300—Appropriate Actions and Methods... contaminated soil, sediment, or waste, the following types of response actions shall generally be considered: removal, treatment, or containment of the soil, sediment, or waste to reduce or eliminate the potential...

  6. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  7. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  8. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...

  9. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...

  10. 49 CFR Appendixes E-G to Part 173 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false [Reserved] E Appendixes E-G to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Appendixes E-G to Part 173 [Reserved] ...

  11. 49 CFR Appendixes E-G to Part 173 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false [Reserved] E Appendixes E-G to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Appendixes E-G to Part 173 [Reserved] ...

  12. 49 CFR Appendixes E-G to Part 173 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false [Reserved] E Appendixes E-G to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Appendixes E-G to Part 173 [Reserved] ...

  13. Mechanical degradation temperature of waste storage materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, M.C.; Meyer, M.L.

    1993-05-13

    Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90{degrees}C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66{degrees}C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-densitymore » polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185{degrees}C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110{degrees}C; (2) polyvinyl chloride -- 130{degrees}C; (3) high-density polyethylene -- 140{degrees}C; (4) sealing tape -- 140{degrees}C. Testing with LDPE and PVC at temperatures ranging from 110 to 130{degrees}C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185{degrees}C) is not anticipated.« less

  14. WastePD, an innovative center on materials degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankel, Gerald S.; Vienna, John; Lian, Jie

    The US Department of Energy recently awarded funds to create the Center for Performance and Design of Nuclear Waste Forms and Containers (WastePD) as part of the Energy Frontier Research Center (EFRC) program. EFRCs are multi-investigator collaborations of universities, national labs and companies that “conduct fundamental research focusing on one or more “grand challenges” and use-inspired “basic research needs” identified in major strategic planning efforts by the scientific community.” The major performance parameter of nuclear waste forms is their ability to isolate the radionuclides by withstanding degradation in a repository environment over very long periods of time. So WastePD ismore » at heart a center focused on materials degradation.« less

  15. Development of a methodology for electronic waste estimation: A material flow analysis-based SYE-Waste Model.

    PubMed

    Yedla, Sudhakar

    2016-01-01

    Improved living standards and the share of services sector to the economy in Asia, and the use of electronic equipment is on the rise and results in increased electronic waste generation. A peculiarity of electronic waste is that it has a 'significant' value even after its life time, and to add complication, even after its extended life in its 'dump' stage. Thus, in Indian situations, after its life time is over, the e-material changes hands more than once and finally ends up either in the hands of informal recyclers or in the store rooms of urban dwellings. This character makes it extremely difficult to estimate electronic waste generation. The present study attempts to develop a functional model based on a material flow analysis approach by considering all possible end uses of the material, its transformed goods finally arriving at disposal. It considers various degrees of uses derived of the e-goods regarding their primary use (life time), secondary use (first degree extension of life), third-hand use (second degree extension of life), donation, retention at the respective places (without discarding), fraction shifted to scrap vendor, and the components reaching the final dump site from various end points of use. This 'generic functional model' named SYE-Waste Model, developed based on a material flow analysis approach, can be used to derive 'obsolescence factors' for various degrees of usage of e-goods and also to make a comprehensive estimation of electronic waste in any city/country. © The Author(s) 2015.

  16. Lifecycle Management of Hazardous Materials/ Hazardous Waste. Revision 1.

    DTIC Science & Technology

    1997-02-01

    1 WHAT YOU NEED TO KNOW ABOUT HAZARDOUS MATERIALS (HM) ....................... 1 PURCHASING HAZARDOUS MATERIALS...20 Figures 1 . Acquisition Flowchart .................................. 12 2. NRaD Hazardous Material Pre-Purchase Checklist ........ 13 3. NRaD...Hazardous Waste Profile Sheet (Part 111) .................. 18 Tables 1 . Class 1 Ozone Depleting Substances .................... 11 i INTRODUCTION This

  17. Assesment of hydraulics properties of technosoil constructed with waste material using Beerkan infiltration

    NASA Astrophysics Data System (ADS)

    Yilmaz, Deniz; Peyneau, Pierre-Emmanuel; Beaudet, Laure; Cannavo, Patrice; Sere, Geoffroy

    2017-04-01

    For the characterization of hydraulics soils functions, in situ infiltration experiments are commonly used. The BEST method based on the infiltration through a single ring is well suited for soils containing coarse material. Technosols built from Civil engineering waste material such as brick waste, concrete waste, track ballast and demolition rubble wastes contain large part of coarse material. In this work, different materials made of civil engineering wastes mixed with organic wastes are tested for greening applications in an urban environment using in situ lysimeters. Beerkan infiltrations experiments were performed on these technosols. Experimental data are used to estimate hydraulics properties through the BEST method. The results shows from a hydraulic point of view that studied technosols can achieve the role of urban soil for greening application. Five combinations of artefacts were tested either as "growing material" (one combination) or "structural material" (4 combinations) - as support for traffic. Structural materials consisted in 27 wt.% earth material, 60 wt.% mineral coarse material and 3 wt.% organic material. These constructed technosols were studied in situ using lysimeters under two contrasted climatic conditions in two sites in France (Angers, in northwestern France and Homécourt, in northeastern France). Constructed technosols exhibited high porosities (31-48 vol% for structural materials, 70 vol% for the growing material). The dry bulk density of the growing material is estimated to 0.66 kg/m3 and 1.59 kg/m3 for structural material. The particle size distribution analysis, involving manual sieving (> 2 mm) and complemented by a grain size analysis (< 2 mm) were used as described in the BEST method (2006) for the estimation of the shape parameter n of hydraulics functions (Van-Genuchten -Mualem, 1980). This n parameter was estimated to 2.23 for growing materials and 2.29 for structural materials. Beerkan infiltrations experiments data were

  18. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    NASA Astrophysics Data System (ADS)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-02-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper.

  19. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater

  20. 10 CFR Appendix III to Part 960 - Application of the System and Technical Guidelines During the Siting Process

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Application of the System and Technical Guidelines During the Siting Process III Appendix III to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. III Appendix III to Part...

  1. 10 CFR Appendix III to Part 960 - Application of the System and Technical Guidelines During the Siting Process

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Application of the System and Technical Guidelines During the Siting Process III Appendix III to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. III Appendix III to Part...

  2. 10 CFR Appendix III to Part 960 - Application of the System and Technical Guidelines During the Siting Process

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Application of the System and Technical Guidelines During the Siting Process III Appendix III to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. III Appendix III to Part...

  3. 10 CFR Appendix III to Part 960 - Application of the System and Technical Guidelines During the Siting Process

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Application of the System and Technical Guidelines During the Siting Process III Appendix III to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. III Appendix III to Part...

  4. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...

  5. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...

  6. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...

  7. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...

  8. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...

  9. No time to waste organic waste: Nanosizing converts remains of food processing into refined materials.

    PubMed

    Griffin, Sharoon; Sarfraz, Muhammad; Farida, Verda; Nasim, Muhammad Jawad; Ebokaiwe, Azubuike P; Keck, Cornelia M; Jacob, Claus

    2018-03-15

    Modern food processing results in considerable amounts of side-products, such as grape seeds, walnut shells, spent coffee grounds, and harvested tomato plants. These materials are still rich in valuable and biologically active substances and therefore of interest from the perspective of waste management and "up-cycling". In contrast to traditional, often time consuming and low-value uses, such as vermicomposting and anaerobic digestion, the complete conversion into nanosuspensions unlocks considerable potentials of and new applications for such already spent organic materials without the need of extraction and without producing any additional waste. In this study, nanosuspensions were produced using a sequence of milling and homogenization methods, including High Speed Stirring (HSS) and High Pressure Homogenization (HPH) which reduced the size of the particles to 200-400 nm. The resulting nanosuspensions demonstrated nematicidal and antimicrobial activity and their antioxidant activities exceeded the ones of the bulk materials. In the future, this simple nanosizing approach may fulfil several important objectives, such as reducing and turning readily available waste into new value and eventually closing a crucial cycle of agricultural products returning to their fields - with a resounding ecological impact in the fields of medicine, agriculture, cosmetics and fermentation. Moreover, up-cycling via nanosizing adds an economical promise of increased value to residue-free waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark.

    PubMed

    Götze, R; Pivnenko, K; Boldrin, A; Scheutz, C; Astrup, T Fruergaard

    2016-08-01

    Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable fractions within one material type were observed. This indicates that careful planning and performance evaluation of recycling schemes are important to ensure a high quality of collected recyclables. Rare earth elements (REE) were quantified in all waste fractions analysed, with the highest concentrations of REE found in fractions with high content of mineral raw materials, soil materials and dust. The observed REE concentrations represent the background concentration level in non-hazardous waste materials that may serve as a reference point for future investigations related to hazardous waste management. The detailed dataset provided here can be used for assessments of waste management solutions in Denmark and for the evaluation of the quality of recyclable materials in waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Electronic waste (e-waste): material flows and management practices in Nigeria.

    PubMed

    Nnorom, Innocent Chidi; Osibanjo, Oladele

    2008-01-01

    The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT) in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue.

  12. Electronic waste (e-waste): Material flows and management practices in Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nnorom, Innocent Chidi; Osibanjo, Oladele

    The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT)more » in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue.« less

  13. 40 CFR Appendix B to Subpart E of... - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false [Reserved] B Appendix B to Subpart E of Part 763 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Appendix B to Subpart E of Part 763...

  14. 40 CFR Appendix B to Subpart E of... - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false [Reserved] B Appendix B to Subpart E of Part 763 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Appendix B to Subpart E of Part 763...

  15. 40 CFR Appendix B to Subpart E of... - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false [Reserved] B Appendix B to Subpart E of Part 763 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Appendix B to Subpart E of Part 763...

  16. 40 CFR Appendix B to Subpart E of... - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false [Reserved] B Appendix B to Subpart E of Part 763 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Appendix B to Subpart E of Part 763...

  17. 40 CFR Appendix B to Subpart E of... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false [Reserved] B Appendix B to Subpart E of Part 763 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Appendix B to Subpart E of Part 763...

  18. Laser-aided material identification for the waste sorting process

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Burmester, Ingo; Engel, Kai

    1994-03-01

    The LZH has carried out investigations in the field of rapid laser-supported material- identification systems for automatic material-sorting systems. The aim of this research is the fast identification of different sorts of plastics coming from recycled rubbish or electronic waste. Within a few milliseconds a spot on the sample which has to be identified is heated with a CO2 laser. The different and specific chemical and physical material properties of the examined sample cause a different temperature distribution on the surface which is measured with an IR thermographic system. This `thermal impulse response' has to be analyzed by means of a computer system. The results of previous investigations have shown that material identification of different sorts of plastics can possibly be done at a frequency of 30 Hz. Due to economic efficiency, a high velocity identification process is necessary to sort huge waste currents.

  19. 15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary D Appendix D to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND...

  20. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  1. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  2. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production.

    PubMed

    Shahzad, Khurram; Narodoslawsky, Michael; Sagir, Muhammad; Ali, Nadeem; Ali, Shahid; Rashid, Muhammad Imtiaz; Ismail, Iqbal Mohammad Ibrahim; Koller, Martin

    2017-09-01

    The utilization of industrial waste streams as input materials for bio-mediated production processes constitutes a current R&D objective not only to reduce process costs at the input side but in parallel, to minimize hazardous environmental emissions. In this context, the EU-funded project ANIMPOL elaborated a process for the production of polyhydroxyalkanoate (PHA) biopolymers starting from diverse waste streams of the animal processing industry. This article provides a detailed economic analysis of PHA production from this waste biorefinery concept, encompassing the utilization of low-quality biodiesel, offal material and meat and bone meal (MBM). Techno-economic analysis reveals that PHA production cost varies from 1.41 €/kg to 1.64 €/kg when considering offal on the one hand as waste, or, on the other hand, accounting its market price, while calculating with fixed costs for the co-products biodiesel (0.97 €/L) and MBM (350 €/t), respectively. The effect of fluctuating market prices for offal materials, biodiesel, and MBM on the final PHA production cost as well as the investment payback time have been evaluated. Depending on the current market situation, the calculated investment payback time varies from 3.25 to 4.5years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Recycling and reuse of chosen kinds of waste materials in a building industry

    NASA Astrophysics Data System (ADS)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  4. Credit PSR. The flammable waste materials shed appears as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. The flammable waste materials shed appears as seen when looking south (186°) from South Liquid Loop Road. Note the catch basin for retaining accidentally spilled substances. Wastes are stored in drums and other safety containers until disposal by burning at the Incinerator (4249/E-50) or by other means. Note the nearby sign warning of corrosive, flammable materials, and calling attention to a fire extinguisher; a telephone is provided to call for assistance in the event of an emergency. This structure is isolated to prevent the spread of fire, and it is lightly built so damage from a fire will be inexpensive to repair - Jet Propulsion Laboratory Edwards Facility, Waste Flammable Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  5. Use of industrial waste for the manufacturing of sustainable building materials.

    PubMed

    Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Martín, Francisco; Morales, Julián; Sánchez, Luis

    2012-04-01

    Presently, appropriate waste management is one of the main requisites for sustainable development; this task is tackled by the material construction industry. The work described herein is focused on the valorization of granite waste through incorporation, as a filler-functional admixture, into cement-based mortar formulations. The main components of the waste are SiO(2) (62.1 %), Al(2)O(3) (13.2 %), Fe(2)O(3) (10.1 %), and CaO (4.6 %). The presence of iron oxides is used to develop the photocatalytic properties of the waste. Following heating at 700 °C, α-Fe(2)O(3) forms in the waste. The inclusion of the heated sample as a filler admixture in a cement-based mortar is possible. Moreover, this sample exhibits a moderate ability in the photodegradation of organic dye solutions. Also, the plastering mortars, in which the heated samples have been used, show self-cleaning properties. The preparation of sustainable building materials is demonstrated through the adequate reuse of the granite waste. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biodegradable containers from green waste materials

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Schettini, Evelia; Pandini, Stefano; Bignotti, Fabio; Vox, Giuliano; D'Amore, Alberto

    2016-05-01

    Novel biodegradable polymeric materials based on protein hydrolysate (PH), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) were obtained and their physico-chemical properties and mechanical behaviour were evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, were used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable-based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of PH or in packaging.

  7. Application of material flow analysis to municipal solid waste in Maputo City, Mozambique.

    PubMed

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-03-01

    Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×10 3  tonnes in 2007 to 437×10 3  tonnes in 2014, whereas the total material recovery was insignificant in both years - 3×10 3 and 7×10 3  tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×10 3 to 253×10 6  tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×10 3 to 158×10 3  tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.

  8. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  9. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  10. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  11. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  12. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  13. Waste processing: new near infrared technologies for material identification and selection

    NASA Astrophysics Data System (ADS)

    Cesetti, M.; Nicolosi, P.

    2016-09-01

    The awareness of environmental issues on a global scale increases the opportunities for waste handling companies. Recovery is set to become all the more important in areas such as waste selection, minerals processing, electronic scrap, metal and plastic recycling, refuse and the food industry. Effective recycling relies on effective sorting. Sorting is a fundamental step of the waste disposal/recovery process. The big players in the sorting market are pushing for the development of new technologies to cope with literally any type of waste. The purpose of this tutorial is to gain an understanding of waste management, frameworks, strategies, and components that are current and emerging in the field. A particular focus is given to spectroscopic techniques that pertains the material selection process with a greater emphasis placed on the NIR technology for material identification. Three different studies that make use of NIR technology are shown, they are an example of some of the possible applications and the excellent results that can be achieved with this technique.

  14. Incorporating waste into an experimental school prototype: lessons regarding materials reclamation opportunities.

    PubMed

    Yeap, Kong Seng; Mohd Yaacob, Naziaty; Rao, Sreenivasaiah Purushothama; Hashim, Nor Rasidah

    2012-12-01

    This article presents lessons learned from a design project that explored the possibility of incorporating waste into the design of a school prototype. The authors worked with professional architects, a waste artist, environmental scientists and local waste operators to uncover new uses and applications for discarded items. As a result, bottles, aluminium cans, reclaimed doors, crushed concrete and second-hand bricks, etc. were identified, explored and integrated into the architectural design. This article serves as a catalyst that advocates the use of reclaimed materials in the field of design and planning. In particular, it highlights the challenges and issues that need to be addressed in carrying out design work with waste. Designers and practitioners interested in minimizing waste generation by proposing the use of reclaimed materials will find this article useful.

  15. 49 CFR Appendix B to Part 172 - Trefoil Symbol

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Trefoil Symbol B Appendix B to Part 172 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SECURITY PLANS Pt. 172, App. B Appendix B to Part 172—Trefoil Symbol 1. Except as provided in paragraph 2...

  16. 49 CFR Appendix B to Part 172 - Trefoil Symbol

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Trefoil Symbol B Appendix B to Part 172 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SECURITY PLANS Pt. 172, App. B Appendix B to Part 172—Trefoil Symbol 1. Except as provided in paragraph 2...

  17. Power plant wastes capitalization as geopolymeric building materials

    NASA Astrophysics Data System (ADS)

    Ciobanu, Gabriela; Litu, Loredana; Harja, Maria

    2017-11-01

    In this innovative study, we are present an investigation over the properties of geopolymeric materials prepared using ash supplied by power plant Iasi, Romania and sodium hydroxide solutions/pellets. Having as objective a minimum consumption of energy and materials was developed a class of advanced eco-materials. New synthesized materials can be used as a binder for cement replacement or for the removal/immobilization of pollutants from waste waters or soils. It offers an advanced and low cost-effective solution too many problems, where waste must be capitalized. The geopolymer formation, by hydrothermal method, is influenced by: temperature (20-600°C), alkali concentration (2M-6M), solid /liquid ratio (1-2), ash composition, time of heating (2-48 h), etc. The behaviour of the FTIR peak of 6M sample indicated upper quantity of geopolymer formation at the first stage of the reaction. XRD spectra indicated phases like sodalite, faujasite, Na-Y, which are known phases of geopolymer/zeolite. Advanced destroyed of ash particles due to geopolymerisation reaction were observed when the temperature was higher. At the constant temperature the percentage of geopolymer increases with increasing of curing time, from 4-48 h. Geopolymer materials are environmentally friendly, for its obtaining energy consumption, and CO2 emission is reduced compared to cement binder.

  18. ReSource Your Waste: A Teacher's Guide.

    ERIC Educational Resources Information Center

    Missouri State Dept. of Natural Resources, Jefferson City.

    This curriculum guide is intended for teachers of students in grades 4-8 and may be used as supplementary lessons, especially for science and social studies. The guide is divided into four major sections, a glossary, and large appendix. Sections include: (1) Sources of Resources; (2) Sources of Wastes; (3) Integrated Waste Management; and (4)…

  19. THE FEASIBILITY OF UTILIZING SOLID WASTES FOR BUILDING MATERIALS. EXECUTIVE SUMMARY

    EPA Science Inventory

    This report focuses on two phases of a suggested four phase study to evaluate the technological and commercial possibilities of waste - derived composites. The first phase involved a joint and comprehensive literature search to identify wastes with potential as building materials...

  20. 40 CFR Appendix I to Part 257 - Maximum Contaminant Levels (MCLs)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Maximum Contaminant Levels (MCLs) I Appendix I to Part 257 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Part 257—Maximum Contaminant Levels (MCLs) Maximum Contaminant Levels (MCLs) Promulgated Under the Safe...

  1. Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior.

    PubMed

    Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E

    2015-07-07

    The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.

  2. The applicability of different waste materials for the production of lightweight aggregates.

    PubMed

    Ducman, V; Mirtic, B

    2009-08-01

    The applicability of different waste materials for the production of lightweight aggregates has been studied. The following waste materials were investigated: silica sludge, superfluous clay in the quarry, waste glass, and residue from the polishing process of different types of stone. SiC and MnO(2) were selected as foaming agents. Feldspar containing minerals and scrap glass were added in order to lower the softening point of the waste materials. The granules were prepared by mixing together finely ground waste with one or both of the selected foaming agents. The granules were then fired at different temperatures above the softening point of the glassy phase within the temperature range from 1150 to 1220 degrees C, where the foaming agent degasses, and the resulting gasses remain trapped in the glassy structure. The foaming process was observed by hot-stage microscopy. The properties of the so-obtained granules, such as their apparent density and compressive strength, were determined, and their microstructures were evaluating using SEM and polarizing microscopy. With the addition to clay of polishing residue from granite-like rocks, after firing at 1220 degrees C homogeneously porous granules with a density down to 0.42 g/cm(3) were obtained, whereas with the addition to waste silica sludge of polishing residue from granite-like rocks and waste glass with a foaming agent, after firing at 1220 degrees C densities from 0.57 to 0.82 g/cm(3) were obtained.

  3. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  4. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  5. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  6. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  7. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  8. Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.

  9. Characteristics of and sorption to biochars derived from waste material

    NASA Astrophysics Data System (ADS)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (<1% ash), sewage sludge (50-70% ash) and pig manure (30-60% ash), as well as a commercial biochar derived from grain husks (40% ash), were extensively characterized (e.g., element composition, surface area, porosity, Fourier transform infrared spectroscopy). The contents of potentially toxic elements (i.e., heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 < Log Kd < 6.5 L

  10. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.

    PubMed

    Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2017-04-01

    Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. SHC Project 3.63, Task 2, Beneficial Use of Waste Materials

    EPA Science Inventory

    SHC Project 3.63, Task 2, “Beneficial Use of Waste Materials”, is designed to conduct research and analyses to characterize and quantify the risks and benefits of using or reusing waste materials. There are 6 primary research areas in Task 2 that cover a broad spectr...

  12. Method of encapsulating solid radioactive waste material for storage

    DOEpatents

    Bunnell, Lee Roy; Bates, J. Lambert

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

  13. HANDBOOK: MATERIAL RECOVERY FACILITIES FOR MUNICIPAL SOLID WASTE.

    EPA Science Inventory

    The purpose of this document is to address the technical and economic aspects of material recovery facility (MRF) equipment and technology in such a manner that the document may be of assistance to solid waste planners and engineers at the local community level. This docum...

  14. Utilization of waste of chicken feathers and waste of cardboard as the material of acoustic panel maker

    NASA Astrophysics Data System (ADS)

    Ansarullah; Rahim, Ramli; Kusno, Asniawaty; Baharuddin; Jamala, Nurul

    2018-03-01

    In The existence of chicken fur is a waste of chicken slaughterhouse Which is produced daily and still not widely used. Likewise cartons everywhere we can see its being because its function is so great in all human activities In the fulfillment of the need for storage and packaging of goods for human purposes such as electronic goods, commodity, Because it has a relatively large thickness of paper. Several studies have proven that Quill and cardboard can be used for acoustic materials. This study aims to identify the potential of chicken fur and cardboard to be created as panel materials Which acts as an acoustic panel. . This study uses an experimental method by combining two materials, Including waste Quill and carton waste by performing several stages in the formation of panels, Such as the selection of chicken fur material and cardboard cleaning process, drying process, enumeration process, panel modeling process. The result of this research is acoustic panel model with size 20x20cm2 with thickness 9 and 18 mm, The study also produced a Ø9,8 cm diameter-shaped panel model with 1.5cm, 2.5cm, and 5cm thickness for use in testing absorption coefficients using impedance tubes.

  15. Evaluation of municipal solid waste management performance by material flow analysis: Theoretical approach and case study.

    PubMed

    Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura

    2015-10-01

    The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%. © The Author(s) 2015.

  16. Basic features of waste material storage in underground space in relation to geomechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konecny, P.

    1994-12-31

    It is logical to consider utilizing underground cavities for waste material disposal because, during mining, great volumes of rock materials are extracted, and underground hollow areas and communicating workings are created that can, in general, be utilized for waste disposal. Additionally, in many cases, underground waste disposal favorably supports mining process technology (for instance, application of power plant fly ash and preparation plant tailings as hardened backfill). However, it is necessary to give particular attention to the preparation, operation, and isolation of underground tip areas; errors and, in extreme cases, emergencies in underground tips are generally more difficult to dealmore » with than those in surface tips. A tip place constructed underground becomes part of the rock massif; therefore, all natural laws that rule the rock massif must be respected. Of course, such an approach requires knowledge of processes and natural regularities that will occur in rock strata where tip places have been constructed. Such knowledge is gained through familiarity with contemporary geomechanical science. The paper discusses basic geomechanical principles of underground waste disposal; geomechanical aspects of rock massif evaluation in view of waste material storage in mine workings; and plans for an experimental project for waste disposal in the Dul Ostrava underground mine.« less

  17. 47 CFR Appendix - Technical Appendix 2

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAM Waiver of household eligibility. Pt. 301, App. 2 Technical Appendix 2 TECHNICAL APPENDIX 2—NTIA... promotional prices Equipment cannot be sold conditioned on the purchase of a Smart Antenna or other equipment...

  18. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    PubMed

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  19. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    PubMed

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. MOVING FROM SOLID WASTE DISPOSAL TO MATERIALS MANAGEMENT IN THE UNITED STATES

    EPA Science Inventory

    The desire for less waste and more sustainable use of resources has resulted in the U.S. EPA's Resource Conservation Challenge. This initiative is directed towards helping the U.S. transition from waste disposal towards materials management. Understanding the potential environmen...

  1. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Response Plans C Appendix C to Part 155 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND.... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General 1.1The....3The material in this appendix C is not all-inclusive and is provided for guidance only. 2. Elements To...

  2. Wood plastic composites from agro-waste materials: Analysis of mechanical properties.

    PubMed

    Nourbakhsh, Amir; Ashori, Alireza

    2010-04-01

    This article presents the application of agro-waste materials (i.e., corn stalk, reed stalk, and oilseed stalk) in order to evaluate and compare their suitability as reinforcement for thermoplastics as an alternative to wood fibers. The effects of fiber loading and CaCO(3) content on the mechanical properties were also studied. Overall trend shows that with addition of agro-waste materials, tensile and flexural properties of the composites are significantly enhanced. Oilseed fibers showed superior mechanical properties due to their high aspect ratio and chemical characteristics. The order of increment in the mechanical properties of the composites is oilseed stalk >corn stalk>reed stalk at all fiber loadings. The tensile and flexural properties of the composite significantly decreased with increasing CaCO(3) content, due to the reduction of interface bond between the fiber and matrix. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Physico-chemical characterisation of material fractions in household waste: Overview of data in literature.

    PubMed

    Götze, Ramona; Boldrin, Alessio; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2016-03-01

    State-of-the-art environmental assessment of waste management systems rely on data for the physico-chemical composition of individual material fractions comprising the waste in question. To derive the necessary inventory data for different scopes and systems, literature data from different sources and backgrounds are consulted and combined. This study provides an overview of physico-chemical waste characterisation data for individual waste material fractions available in literature and thereby aims to support the selection of data fitting to a specific scope and the selection of uncertainty ranges related to the data selection from literature. Overall, 97 publications were reviewed with respect to employed characterisation method, regional origin of the waste, number of investigated parameters and material fractions and other qualitative aspects. Descriptive statistical analysis of the reported physico-chemical waste composition data was performed to derive value ranges and data distributions for element concentrations (e.g. Cd content) and physical parameters (e.g. heating value). Based on 11,886 individual data entries, median values and percentiles for 47 parameters in 11 individual waste fractions are presented. Exceptional values and publications are identified and discussed. Detailed datasets are attached to this study, allowing further analysis and new applications of the data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)

  5. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-01-31

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited (BNFL).

  6. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    PubMed

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Sorption of mercury onto waste material derived low-cost activated carbon

    NASA Astrophysics Data System (ADS)

    Bhakta, Jatindra N.; Rana, Sukanta; Lahiri, Susmita; Munekage, Yukihiro

    2017-03-01

    The present study was performed to develop the low-cost activated carbon (AC) from some waste materials as potential mercury (Hg) sorbent to remove high amount of Hg from aqueous phase. The ACs were prepared from banana peel, orange peel, cotton fiber and paper wastes by pyrolysis and characterized by analyzing physico-chemical properties and Hg sorption capacity. The Brunauer Emmett and Teller surface areas (cotton 138 m2/g; paper 119 m2/g), micropore surface areas (cotton 65 m2/g; paper 54 m2/g) and major constituent carbon contents (cotton 95.04 %; paper 94.4 %) were higher in ACs of cotton fiber and paper wastes than the rest two ACs. The Hg sorption capacities and removal percentages were greater in cotton and paper wastes-derived ACs compared to those of the banana and orange peels. The results revealed that elevated Hg removal ability of cotton and paper wastes-derived ACs is largely regulated by their surface area, porosity and carbon content properties. Therefore, ACs of cotton and paper wastes were identified as potential sorbent among four developed ACs to remove high amount of Hg from aqueous phase. Furthermore, easily accessible precursor material, simple preparation process, favorable physico-chemical properties and high Hg sorption capacity indicated that cotton and paper wastes-derived ACs could be used as potential and low-cost sorbents of Hg for applying in practical field to control the severe effect of Hg contamination in the aquatic environment to avoid its human and environmental health risks.

  8. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  9. Using shredded waste tires as a lightweight fill material for road subgrades : summary report

    DOT National Transportation Integrated Search

    1994-04-01

    Waste tires have been a disposal problem in the past and are continuing to accumulate throughout the U.S. today. Using shredded waste tires as a lightweight fill material for road construction has proven to be a beneficial use of this waste product. ...

  10. Using shredded waste tires as a lightweight fill material for road subgrades. Summary report

    DOT National Transportation Integrated Search

    1994-04-01

    Waste tires have been a disposal problem in the past and are continuing to accumulate throughout the U.S. today. Using shredded waste tires as a lightweight fill material for road construction has proven to be a beneficial use of this waste product. ...

  11. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    NASA Technical Reports Server (NTRS)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  12. 75 FR 31843 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ...On January 2, 2009, the Environmental Protection Agency (EPA or the Agency) issued an Advanced Notice of Proposed Rulemaking (ANPRM) to solicit comment on which non-hazardous secondary materials that are used as fuels or ingredients in combustion units are solid wastes under the Resource Conservation and Recovery Act (RCRA). The meaning of ``solid waste'' as defined under RCRA is of particular importance since it will determine whether a combustion unit is required to meet emissions standards for solid waste incineration units issued under section 129 of the Clean Air Act (CAA) or emissions standards for commercial, industrial, and institutional boilers issued under CAA section 112. CAA section 129 states that the term ``solid waste'' shall have the meaning ``established by the Administrator pursuant to [RCRA].'' EPA is proposing a definition of non-hazardous solid waste that would be used to identify whether non-hazardous secondary materials burned as fuels or used as ingredients in combustion units are solid waste. EPA is also proposing that non-hazardous secondary materials that have been discarded, and are therefore solid wastes, may be rendered products after they have been processed (altered chemically or physically) into a fuel or ingredient product. This proposed rule is necessary to identify units for the purpose of developing certain standards under sections 112 and 129 of the CAA. In addition to this proposed rule, EPA is concurrently proposing air emission requirements under CAA section 112 for industrial, commercial, and institutional boilers and process heaters, as well as air emission requirements under CAA section 129 for commercial and industrial solid waste incineration units.

  13. Material Flow Analysis as a Tool to improve Waste Management Systems: The Case of Austria.

    PubMed

    Allesch, Astrid; Brunner, Paul H

    2017-01-03

    This paper demonstrates the power of material flow analysis (MFA) for designing waste management (WM) systems and for supporting decisions with regards to given environmental and resource goals. Based on a comprehensive case study of a nationwide WM-system, advantages and drawbacks of a mass balance approach are discussed. Using the software STAN, a material flow system comprising all relevant inputs, stocks and outputs of wastes, products, residues, and emissions is established and quantified. Material balances on the level of goods and selected substances (C, Cd, Cr, Cu, Fe, Hg, N, Ni, P, Pb, Zn) are developed to characterize this WM-system. The MFA results serve well as a base for further assessments. Based on given goals, stakeholders engaged in this study selected the following seven criteria for evaluating their WM-system: (i) waste input into the system, (ii) export of waste (iii) gaseous emissions from waste treatment plants, (iv) long-term gaseous and liquid emissions from landfills, (v) waste being recycled, (vi) waste for energy recovery, (vii) total waste landfilled. By scenario analysis, strengths and weaknesses of different measures were identified. The results reveal the benefits of a mass balance approach due to redundancy, data consistency, and transparency for optimization, design, and decision making in WM.

  14. Enhanced materials from nature: nanocellulose from citrus waste.

    PubMed

    Mariño, Mayra; Lopes da Silva, Lucimara; Durán, Nelson; Tasic, Ljubica

    2015-04-03

    Nanocellulose is a relatively inexpensive, highly versatile bio-based renewable material with advantageous properties, including biodegradability and nontoxicity. Numerous potential applications of nanocellulose, such as its use for the preparation of high-performance composites, have attracted much attention from industry. Owing to the low energy consumption and the addition of significant value, nanocellulose extraction from agricultural waste is one of the best alternatives for waste treatment. Different techniques for the isolation and purification of nanocellulose have been reported, and combining these techniques influences the morphology of the resultant fibers. Herein, some of the extraction routes for obtaining nanocellulose from citrus waste are addressed. The morphology of nanocellulose was determined by Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM), while cellulose crystallinity indexes (CI) from lyophilized samples were determined using solid-state Nuclear Magnetic Resonance (NMR) and X-Ray Diffraction (XRD) measurements. The resultant nanofibers had 55% crystallinity, an average diameter of 10 nm and a length of 458 nm.

  15. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  16. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    PubMed

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  17. Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials

    NASA Astrophysics Data System (ADS)

    Misri, Z.; Ibrahim, M. H. W.; Awal, A. S. M. A.; Desa, M. S. M.; Ghadzali, N. S.

    2018-04-01

    Concrete is well-known as a construction material which is widely used in building and infrastructure around the world. However, its widespread use has affected the reduction of natural resources. Hence, many approached have been made by researchers to study the incorporation of waste materials in concrete as a substitution for natural resources besides reducing waste disposal problems. Concrete is basically verified by determining its properties; strengths, permeability, shrinkage, durability, thermal properties etc. In various thermal properties of concrete, thermal conductivity (TC) has received a large amount of attention because it is depend upon the composition of concrete. Thermal conductivity is important in building insulation to measure the ability of a material to transfer heat. The aim of this paper is to discuss the methods and influence factors of TC of concrete containing various type of waste materials.

  18. Utilization and recycling of industrial magnesite refractory waste material for removal of certain radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcos, T.N.; Tadrous, N.A.; Borai, E.H.

    2007-07-01

    Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less

  19. Partial replacement of non renewable fossil fuels energy by the use of waste materials as alternative fuels

    NASA Astrophysics Data System (ADS)

    Indrawati, V.; Manaf, A.; Purwadi, G.

    2009-09-01

    This paper reports recent investigations on the use of biomass like rice husk, palm kernel shell, saw dust and municipal waste to reduce the use of fossil fuels energy in the cement production. Such waste materials have heat values in the range approximately from 2,000 to 4,000 kcal/kg. These are comparable to the average value of 5800 kcal/kg from fossil materials like coals which are widely applied in many industrial processing. Hence, such waste materials could be used as alternative fuels replacing the fossil one. It is shown that replacement of coals with such waste materials has a significant impact on cost effectiveness as well as sustainable development. Variation in moisture content of the waste materials, however should be taken into account because this is one of the parameter that could not be controlled. During fuel combustion, some amount of the total energy is used to evaporate the water content and thus the net effective heat value is less.

  20. Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.

  1. Resource Conservation and Recovery Act, Part B permit application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 11, Chapter D, Appendix D4--Chapter D, Appendix D17: Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    This volume contains appendices D4 through D17 which cover the following: Waste Isolation Pilot Plant site environmental report; ecological monitoring program at the Waste Isolation Pilot Plant; site characterization; regional and site geology and hydrology; general geology; dissolution features; ground water hydrology; typical carbon sorption bed efficiency; VOC monitoring plan for bin-room tests; chemical compatibility analysis of waste forms and container materials; probable maximum precipitation; WHIP supplementary roof support system room 1, panel 1; and corrosion risk assessment of the Waste Isolation Pilot Plant ``humid`` test bins.

  2. Investigation of potential waste material insulating properties at different temperature for thermal storage application

    NASA Astrophysics Data System (ADS)

    Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.

    2013-12-01

    Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.

  3. An alternative method for the treatment of waste produced at a dye and a metal-plating industry using natural and/or waste materials.

    PubMed

    Fatta, Despo; Papadopoulos, Achilleas; Stefanakis, Nikos; Loizidou, Maria; Savvides, Chrysanthos

    2004-08-01

    The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.

  4. 10 CFR Appendix C to Part 835 - Derived Air Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. C Appendix C to Part 835—Derived Air... Material a. The data presented in appendix C are to be used for controlling occupational exposures in...

  5. 10 CFR Appendix C to Part 835 - Derived Air Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. C Appendix C to Part 835—Derived Air... Material a. The data presented in appendix C are to be used for controlling occupational exposures in...

  6. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions basedmore » on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.« less

  7. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  8. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  9. Mechanical Properties of Composite Waste Material Based Styrofoam, Baggase and Eggshell Powder for Application of Drone Frames

    NASA Astrophysics Data System (ADS)

    Perdana, Mastariyanto; Prastiawan; Hadi, Syafrul

    2017-12-01

    The garbage issue becomes a very serious problem at the moment. Much research has been done to make waste into useful materials. One of the utilization of waste is as the basic material of composite material that can be applied in the field of engineering. Some of the wastes generated are styrofoam, bagasse and eggshell. Styrofoam, bagasse and eggshell can be applied to a composite material. Styrofoam serves as a composite binder material while the bagasse and eggshells serve as a reinforcement. Volume fraction between styrofoam, bagasse and eggshell are 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25%. The aims of research are determine the mechanical properties of composite material based waste materials from styrofoam, bagasse and eggshell. Mechanical properties tested in this study are bending strength and toughness of composite materials. The results showed bending strength of composite for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 5.07 MPa, 8.45 MPa, 8.68 MPa, and 11.01 MPa, respectively. Toughness of composite materials for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 0.33 J/mm2, 0.42 J/mm2, 0.75 J/mm2, and 0.75 J/mm2, respectively. Composite materials based on waste materials from styrofoam, bagasse and eggshell can be used as an alternative material for drone frames.

  10. Financial Analysis of the Northeast Corridor Development Project : Volume 2. Appendixes E Through I.

    DOT National Transportation Integrated Search

    1976-11-01

    This appendix consists of two parts. The first part, Program Capability, contains a description of the capability of the program and is intended to bridge the gap between the descriptive material contained in Appendix D and the explanation of procedu...

  11. 49 CFR Appendix B to Part 386 - Penalty Schedule; Violations and Monetary Penalties

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Penalty Schedule; Violations and Monetary Penalties B Appendix B to Part 386 Transportation Other Regulations Relating to Transportation (Continued... HAZARDOUS MATERIALS PROCEEDINGS Pt. 386, App. B Appendix B to Part 386— Penalty Schedule; Violations and...

  12. Methane generation from waste materials

    DOEpatents

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  13. Dealing with emerging waste streams: used tyre assessment in Thailand using material flow analysis.

    PubMed

    Jacob, Paul; Kashyap, Prakriti; Suparat, Tasawan; Visvanathan, Chettiyappan

    2014-09-01

    Increasing urbanisation and automobile use have given rise to an increase in global tyre waste generation. A tyre becomes waste once it wears out and is no longer fit for its original purpose, and is thus in its end-of-life state. Unlike in developed countries, where waste tyre management has already become a significant issue, it is rarely a priority waste stream in developing countries. Hence, a large quantity of waste tyres ends up either in the open environment or in landfill. In Thailand, waste tyre management is in its infancy, with increased tyre production and wider use of vehicles, but low levels of recycling, leaving scope for more appropriate policies, plans and strategies to increase waste tyre recycling. This article describes the journey of waste tyres in Thailand in terms of recycling and recovery, and disposal. Material flow analysis was used as a tool to quantify the flows and accumulation of waste tyres in Thailand in 2012. The study revealed that, in Thailand in 2012, waste tyre management was still biased towards destructive technologies (48.9%), rather than material recovery involving rubber reclamation, retreading tyres and whole and shredded tyre applications (6.7%). Despite having both economic and environmental benefits, 44.4% of used tyres in 2012 were dumped in the open environment, and the remaining 0.05% in landfills. © The Author(s) 2014.

  14. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    NASA Astrophysics Data System (ADS)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  15. Awareness about biomedical waste management and knowledge of effective recycling of dental materials among dental students

    PubMed Central

    Ranjan, Rajeev; Pathak, Ruchi; Singh, Dhirendra K.; Jalaluddin, Md.; Kore, Shobha A.; Kore, Abhijeet R.

    2016-01-01

    Aims and Objectives: Biomedical waste management has become a concern with increasing number of dental practitioners in India. Being health care professionals, dentists should be aware regarding safe disposal of biomedical waste and recycling of dental materials to minimize biohazards to the environment. The aim of the present study was to assess awareness regarding biomedical waste management as well as knowledge of effective recycling and reuse of dental materials among dental students. Materials and Methods: This cross-sectional study was conducted among dental students belonging from all dental colleges of Bhubaneswar, Odisha (India) from February 2016 to April 2016. A total of 500 students (208 males and 292 females) participated in the study, which was conducted in two phases. A questionnaire was distributed to assess the awareness of biomedical waste management and knowledge of effective recycling of dental materials, and collected data was examined on a 5-point unipolar scale in percentages to assess the relative awareness regarding these two different categorizes. The Statistical Package for Social Sciences was used to analyzed collected data. Results: Forty-four percent of the dental students were not at all aware about the management of biomedical waste, 22% were moderately aware, 21% slightly aware, 7% very aware, and 5% fell in extremely aware category. Similarly, a higher percentage of participants (61%) were completely unaware regarding recycling and reusing of biomedical waste. Conclusion: There is lack of sufficient knowledge among dental students regarding management of biomedical waste and recycling or reusing of dental materials. Considering its impact on the environment, biomedical waste management requires immediate academic assessment to increase the awareness during training courses. PMID:27891315

  16. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    PubMed

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  17. Solidification of radioactive waste resins using cement mixed with organic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laili, Zalina, E-mail: liena@nm.gov.my; Waste and Environmental Technology Division, Malaysian Nuclear Agency; Yasir, Muhamad Samudi

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  18. Converting inert plastic waste into energetic materials: A study on the light-accelerated decomposition of plastic waste with the Fenton reaction.

    PubMed

    Chow, Cheuk-Fai; Wong, Wing-Leung; Chan, Ching-Wan; Chan, Chung-Sum

    2018-05-01

    Better treatment and management strategies than landfilling are needed to address the large quantities of unrecycled plastic waste generated by daily human activities. Waste-to-energy conversion is an ideal benchmark for developing future large-scale waste management technologies. The present study explores a new approach for producing energetic materials by converting inert plastic waste into energy (thermal and mechanical energies) via a light-controlled process through the simple chemical activation of plastic waste, including polyethylene, polypropylene, and polyvinyl chloride. The inert and non-polar polymer surfaces of the plastics were modified by generating a number of sulfonic groups (SO 3 - ) using chlorosulfuric acid, followed by grafting of Fe(III) catalyst onto the polymer chains to obtain activated polymer. Elemental analyses of these activated materials showed that the carbon-to-sulfur ratio ranged from 3:1 to 5:1. The FTIR spectra indicated the presence of CC bonds (v C=C : 1615-1630 cm -1 ) and SO bonds (v S=O : 1151-1167 cm -1 ) in the activated polymers after chemical reaction. These activated materials were energetic, as light could be used to convert them into thermal (1800-3200 J/g) and mechanical energies (380-560 kPa/g) using hydrogen peroxide as the oxidant under ambient conditions within 1 h. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of this...

  20. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of this...

  1. Comparative studies on acid leaching of zinc waste materials

    NASA Astrophysics Data System (ADS)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  2. Container Technology Study : Volume 2. Appendixes.

    DOT National Transportation Integrated Search

    1980-10-01

    Volume II has nine appendixes as follows: Appendix A - Railroad Flatcar Data; Appendix B - Calculations; Appendix C - Record of Telephone Calls; Appendix D - Industry Interviews; Appendix E - Field Trips and Conferences; Appendix F - Annotated biblio...

  3. 40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Pt. 414, App. B Appendix B to Part... (including metallized) Organic pigments, miscellaneous lakes and toners Copper Disperse dyes Acid dyes Direct..., metallized/Azo dye + metal acetate Direct dyes, Azo Disperse dyes, Azo and Vat Organic pigment Green 7/Copper...

  4. 40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Pt. 414, App. B Appendix B to Part... (including metallized) Organic pigments, miscellaneous lakes and toners Copper Disperse dyes Acid dyes Direct..., metallized/Azo dye + metal acetate Direct dyes, Azo Disperse dyes, Azo and Vat Organic pigment Green 7/Copper...

  5. Urban pedestrian accident countermeasures experimental evaluation. Volume 2 Appendix A, Review of education and public information materials

    DOT National Transportation Integrated Search

    1975-02-01

    This technical appendix presents an overview of the national pedestrian safety effort. The appendix also reports the results of a survey of 48 ongoing educational programs being conducted in eight U.S. urban centers. A final chapter suggests procedur...

  6. Teaching Interactive Art Lessons with Recycled Waste Materials as Instructional Resources

    ERIC Educational Resources Information Center

    Yeboah, Rita; Asante, Eric Appau; Opoku-Asare, Nana Afia

    2016-01-01

    The study examines the use of waste materials as instructional resources in teaching and learning Art lessons. Primary, Junior and Senior High School Art teachers in Ghana mostly teach their lessons without instructional resources because the government is not able to provide materials to create the needed resources. The study therefore explored…

  7. Development of bio based plastic materials for packaging from soybeans waste

    NASA Astrophysics Data System (ADS)

    Muhammad, A.; Rashidi, A. R.; Roslan, A.; Idris, S. A.

    2017-09-01

    Demands of plastic material which increase with the increasing of human population encourage researchers to find alternative solution to replace petro based plastic. Thus, in the present study, a novel "green bioplastic" packaging was developed using soybean waste which is a major waste in soy sauce food industry. The evaluation of the effect of ratio of starch, soy waste and plasticizer in this bioplastic production was studied and their characteristics were compared with available bioplastics. Characteristics study was done in terms of burning test, water absorption capacity, thermal and tensile strength measurement and the result obtained were analyzed. The glass transition temperature (Tg) for soy waste bioplastic is 117˚C. The water absorption test shows that an increase in mass up to 114.17% which show large amount of water uptake capacity of this bioplastics. And about 38% of percentage loss was observed when compared with other novel bioplastics. The results clearly show that the amount of glycerol as a plasticizer had an inversely proportional relationship with the Glass Transition Temperature (Tg). The average maximum force value for tensile strength test is 6.71 N. The burning test show that the soy wastes bioplastic release a very faint smell of soy and glue-like substance. The flame ignited a Yellowish-Orange colour and released some sparks. Based on the overall results, soy-based have been proven to become an excellent bio-based packaging materials.

  8. A novel multiple batch extraction test to assess contaminant mobilization from porous waste materials

    NASA Astrophysics Data System (ADS)

    Iden, S. C.; Durner, W.; Delay, M.; Frimmel, F. H.

    2009-04-01

    Contaminated porous materials, like soils, dredged sediments or waste materials must be tested before they can be used as filling materials in order to minimize the risk of groundwater pollution. We applied a multiple batch extraction test at varying liquid-to-solid (L/S) ratios to a demolition waste material and a municipal waste incineration product and investigated the release of chloride, sulphate, sodium, copper, chromium and dissolved organic carbon from both waste materials. The liquid phase test concentrations were used to estimate parameters of a relatively simple mass balance model accounting for equilibrium partitioning. The model parameters were estimated within a Bayesian framework by applying an efficient MCMC sampler and the uncertainties of the model parameters and model predictions were quantified. We tested isotherms of the linear, Freundlich and Langmuir type and selected the optimal isotherm model by use of the Deviance Information Criterion (DIC). Both the excellent fit to the experimental data and a comparison between the model-predicted and independently measured concentrations at the L/S ratios of 0.25 and 0.5 L/kg demonstrate the applicability of the model for almost all studied substances and both waste materials. We conclude that batch extraction tests at varying L/S ratios provide, at moderate experimental cost, a powerful complement to established test designs like column leaching or single batch extraction tests. The method constitutes an important tool in risk assessments, because concentrations at soil water contents representative for the field situation can be predicted from easier-to-obtain test concentrations at larger L/S ratios. This helps to circumvent the experimental difficulties of the soil saturation extract and eliminates the need to apply statistical approaches to predict such representative concentrations which have been shown to suffer dramatically from poor correlations.

  9. Low Carbon Footprint mortar from Pozzolanic Waste Material

    NASA Astrophysics Data System (ADS)

    Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra

    2017-04-01

    Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  10. Mini review: hydrogen and ethanol co-production from waste materials via microbial fermentation.

    PubMed

    Soo, Chiu-Shyan; Yap, Wai-Sum; Hon, Wei-Min; Phang, Lai-Yee

    2015-10-01

    The simultaneous production of hydrogen and ethanol by microorganisms from waste materials in a bioreactor system would establish cost-effective and time-saving biofuel production. This review aims to present the current status of fermentation processes producing hydrogen accompanied by ethanol as a co-product. We outlined the microbes used and their fundamental pathways for hydrogen and ethanol fermentation. Moreover, we discussed the exploitation of renewable and sustainable waste materials as promising feedstock and the limitations encountered. The low substrate bioconversion rate in hydrogen and ethanol co-production is regarded as the primary constraint towards the development of large scale applications. Thus, microbes with an enhanced capability have been generated via genetic manipulation to diminish the inefficiency of substrate consumption. In this review, other potential approaches to improve the performance of co-production through fermentation were also elaborated. This review will be a useful guide for the future development of hydrogen and ethanol co-production using waste materials.

  11. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    NASA Astrophysics Data System (ADS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  12. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, Appendix A to...

  13. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, Appendix A to...

  14. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households.

    PubMed

    Lau, Winifred Ka-Yan; Chung, Shan-Shan; Zhang, Chan

    2013-03-01

    A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Awareness about biomedical waste management and knowledge of effective recycling of dental materials among dental students.

    PubMed

    Ranjan, Rajeev; Pathak, Ruchi; Singh, Dhirendra K; Jalaluddin, Md; Kore, Shobha A; Kore, Abhijeet R

    2016-01-01

    Biomedical waste management has become a concern with increasing number of dental practitioners in India. Being health care professionals, dentists should be aware regarding safe disposal of biomedical waste and recycling of dental materials to minimize biohazards to the environment. The aim of the present study was to assess awareness regarding biomedical waste management as well as knowledge of effective recycling and reuse of dental materials among dental students. This cross-sectional study was conducted among dental students belonging from all dental colleges of Bhubaneswar, Odisha (India) from February 2016 to April 2016. A total of 500 students (208 males and 292 females) participated in the study, which was conducted in two phases. A questionnaire was distributed to assess the awareness of biomedical waste management and knowledge of effective recycling of dental materials, and collected data was examined on a 5-point unipolar scale in percentages to assess the relative awareness regarding these two different categorizes. The Statistical Package for Social Sciences was used to analyzed collected data. Forty-four percent of the dental students were not at all aware about the management of biomedical waste, 22% were moderately aware, 21% slightly aware, 7% very aware, and 5% fell in extremely aware category. Similarly, a higher percentage of participants (61%) were completely unaware regarding recycling and reusing of biomedical waste. There is lack of sufficient knowledge among dental students regarding management of biomedical waste and recycling or reusing of dental materials. Considering its impact on the environment, biomedical waste management requires immediate academic assessment to increase the awareness during training courses.

  16. Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.

    PubMed

    Wang, Kuen-Sheng; Chiou, Ing-Jia

    2004-10-01

    The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.

  17. Improvement of the material and transport component of the system of construction waste management

    NASA Astrophysics Data System (ADS)

    Kostyshak, Mikhail; Lunyakov, Mikhail

    2017-10-01

    Relevance of the topic of selected research is conditioned with the growth of construction operations and growth rates of construction and demolition wastes. This article considers modern approaches to the management of turnover of construction waste, sequence of reconstruction or demolition processes of the building, information flow of the complete cycle of turnover of construction and demolition waste, methods for improvement of the material and transport component of the construction waste management system. Performed analysis showed that mechanism of management of construction waste allows to increase efficiency and environmental safety of this branch and regions.

  18. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    NASA Astrophysics Data System (ADS)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  19. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... PERFORMANCE FOR NEW STATIONARY SOURCES Operator Training and Qualification Air Curtain Incinerators That Burn... incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of this...

  20. Toxic heavy metal capture using a novel electronic waste-based material-mechanism, modeling and comparison.

    PubMed

    Hadi, Pejman; Barford, John; McKay, Gordon

    2013-08-06

    In the modern communication era, the disposal of printed circuit boards is ecologically of dire concern on a global scale. The two prevalent methods applied for the disposal of this waste are either incineration or landfilling both of which are viewed with skepticism due to their negative environmental impact. Activation of the nonmetallic fraction of this waste leads to the development of a mesoporous material with highly functional groups which can potentially be applied for heavy metal uptake. The removal of copper, lead, and zinc was studied employing a cost-effective novel adsorbent based on waste printed circuit boards. The results indicate that the modification of the original e-waste material has a considerable effect on its surface area enhancement. Adsorption experiments revealed that the modified novel material had uptake capacities of 2.9 mmol Cu, 3.4 mmol Pb, and 2.0 mmol Zn per each gram of the adsorbent which are significantly higher values than its commercial counterparts used in industry.

  1. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste.

    PubMed

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-04-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties in relation to BMP, protein content, lipids, lignocellulose biofibres and easily degradable carbohydrates (carbohydrates other than lignocellulose biofibres). The three components in lignocellulose biofibres, i.e. lignin, cellulose and hemicellulose, were differentiated, and theoretical BMP (TBMP) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability of material fractions such as vegetation waste, moulded fibres, animal straw, dirty paper and dirty cardboard, however, was constrained by lignin content. BMP for overall SSOHW (untreated) was 404 mL CH4 per g VS, which might increase if the relative content of material fractions, such as animal and vegetable food waste, kitchen tissue and dirty paper in the waste, becomes larger. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Critical review of real-time methods for solid waste characterisation: Informing material recovery and fuel production.

    PubMed

    Vrancken, C; Longhurst, P J; Wagland, S T

    2017-03-01

    Waste management processes generally represent a significant loss of material, energy and economic resources, so legislation and financial incentives are being implemented to improve the recovery of these valuable resources whilst reducing contamination levels. Material recovery and waste derived fuels are potentially valuable options being pursued by industry, using mechanical and biological processes incorporating sensor and sorting technologies developed and optimised for recycling plants. In its current state, waste management presents similarities to other industries that could improve their efficiencies using process analytical technology tools. Existing sensor technologies could be used to measure critical waste characteristics, providing data required by existing legislation, potentially aiding waste treatment processes and assisting stakeholders in decision making. Optical technologies offer the most flexible solution to gather real-time information applicable to each of the waste mechanical and biological treatment processes used by industry. In particular, combinations of optical sensors in the visible and the near-infrared range from 800nm to 2500nm of the spectrum, and different mathematical techniques, are able to provide material information and fuel properties with typical performance levels between 80% and 90%. These sensors not only could be used to aid waste processes, but to provide most waste quality indicators required by existing legislation, whilst offering better tools to the stakeholders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  4. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  5. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment.

    PubMed

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  6. Radiological assessment of target materials for accelerator transmutation of waste (ATW) applications

    NASA Astrophysics Data System (ADS)

    Vickers, Linda Diane

    This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal

  7. Material Recover and Waste Form Development--2016 Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Terry A.; Vienna, John; Paviet, Patricia

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. Thismore » report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.« less

  8. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Winifred Ka-Yan; Chung, Shan-Shan, E-mail: sschung@hkbu.edu.hk; Zhang, Chan

    2013-03-15

    Highlights: ► Most household TWARC waste is sold directly to private e-waste collectors in HK. ► The current e-waste recycling network is popular with HK households. ► About 80% of household generated TWARC is exported overseas each year. ► Over 7000 tonnes/yr of household generated TWARC reach landfills. ► It is necessary to upgrade safety and awareness in HK’s e-waste recycling industry. - Abstract: A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish anmore » e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.« less

  9. Networks of recyclable material waste-picker’s cooperatives: An alternative for the solid waste management in the city of Rio de Janeiro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirado-Soto, Magda Martina, E-mail: magda@pep.ufrj.br; Zamberlan, Fabio Luiz, E-mail: fabio@pep.ufrj.br

    Highlights: ► In the marketing of recyclable materials, the waste-pickers are the least wins. ► It is proposed creating a network of recycling cooperatives to achieve viability. ► The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city’s main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are aroundmore » five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers’ cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.« less

  10. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Test Procedure F Appendix F to Part 23...—Test Procedure Part I—Acceptable Test Procedure for Self-Extinguishing Materials for Showing Compliance With §§ 23.853, 23.855, and 23.1359 Acceptable test procedure for self-extinguishing materials for...

  11. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Test Procedure F Appendix F to Part 23...—Test Procedure Part I—Acceptable Test Procedure for Self-Extinguishing Materials for Showing Compliance With §§ 23.853, 23.855, and 23.1359 Acceptable test procedure for self-extinguishing materials for...

  12. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  13. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  14. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  15. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  16. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  17. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    PubMed

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Iron-nickel alloys as canister material for radioactive waste disposal in underground repositories

    NASA Astrophysics Data System (ADS)

    Apps, J. A.

    1982-09-01

    Canisters containing high-level radioactive waste must retain their integrity in an underground waste repository for at least one thousand years after burial (Nuclear Regulatory Commission, 1981). Since no direct means of verifying canister integrity is plausible over such a long period, indirect methods must be chosen. A persuasive approach is to examine the natural environment and find a suitable material which is thermodynamically compatible with the host rock under the environmental conditions with the host rock under the environmental conditions expected in a waste repository. Several candidates have been proposed, among them being iron-nickel alloys that are known to occur naturally in altered ultramafic rocks. The following review of stability relations among iron-nickel alloys below 3500 C is the initial phase of a more detailed evaluation of these alloys as suitable canister materials.

  19. Experimental Study on the Interaction Between Contacting Barrier Materials for Containment of Radioactive Wastes

    NASA Astrophysics Data System (ADS)

    Huang, W. H.; Chang, H. C.

    2017-12-01

    The disposal of low- and intermediate-level radioactive wastes requires use of multi-barriers for isolation of the wastes from the biosphere. Typically, the engineered barriers are composed of a concrete vault, buffer and backfill materials. Zhishin clay and Black Hill bentonite were used as raw clay material in making buffer and backfill materials in this study. These clays were compacted to make buffer material, or mixed with Taitung area argillite to produce backfill material for potential application as barriers for the disposal of low- and intermediate-level radioactive wastes. The interaction between concrete barrier and the buffer/backfill material is simulated by an accelerated migration test to investigate the effect of contacting concrete on the expected functions of buffer/backfill material. The results show buffer material close to the contact with concrete exhibits significant change in the ratio of calcium/sodium exchange capacity, due to the move of calcium ions released from the concrete. The shorter the distance from the contacting interface, the ratio of the calcium/sodium concentration in buffer/backfill materials increases. The longer the distance from the interface, the effect of the contact on alteration in clays become less significant. Also, some decreases in swelling capacity in the buffer/backfill material near the concrete-backfill interface are noted. Finally, a comparison is made between Zhisin clay and Balck Hill bentonite on the interaction between concrete and the two clays. Black Hill bentonite was found to be influenced more by the interaction, because of the higher content of montmorillonite. On the other hand, being a mixture of clay and sand, backfill material is less affected by the decalsification of concrete at the contact than buffer material.

  20. Reuse of Boron Waste as an Additive in Road Base Material

    PubMed Central

    Zhang, Yutong; Guo, Qinglin; Li, Lili; Jiang, Ping; Jiao, Yubo; Cheng, Yongchun

    2016-01-01

    The amount of boron waste increases year by year. There is an urgent demand to manage it in order to reduce the environmental impact. In this paper, boron waste was reused as an additive in road base material. Lime and cement were employed to stabilize the waste mixture. Mechanical performances of stabilized mixture were evaluated by experimental methods. A compaction test, an unconfined compressive test, an indirect tensile test, a modulus test, a drying shrinkage test, and a frost resistance test were carried out. Results indicated that mechanical strengths of lime-stabilized boron waste mixture (LSB) satisfy the requirements of road base when lime content is greater than 8%. LSB can only be applied in non-frozen regions as a result of its poor frost resistance. The lime–cement-stabilized mixture can be used in frozen regions when lime and cement contents are 8% and 5%, respectively. Aggregate reduces the drying shrinkage coefficient effectively. Thus, aggregate is suggested for mixture stabilization properly. This work provides a proposal for the management of boron waste. PMID:28773539

  1. Recycling of inorganic waste in monolithic and cellular glass‐based materials for structural and functional applications

    PubMed Central

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna

    2016-01-01

    Abstract The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass‐based materials, in the form of monolithic and cellular glass‐ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica‐rich waste favours the obtainment of glass, iron‐rich wastes affect the functionalities, influencing the porosity in cellular glass‐based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste‐derived glasses into glass‐ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low‐cost alternative for glass‐ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up‐to‐date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste‐derived, glass‐based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27818564

  2. CH-TRU Waste Content Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  3. Modification of hydraulic conductivity in granular soils using waste materials.

    PubMed

    Akbulut, S; Saglamer, A

    2004-01-01

    This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils.

  4. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false NRC and EPA Requirements for Preclosure Repository... SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and EPA Requirements for Preclosure Repository Performance Under proposed 40 CFR part 191, subpart A...

  5. 10 CFR Appendix I to Part 960 - NRC and EPA Requirements for Postclosure Repository Performance

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false NRC and EPA Requirements for Postclosure Repository... SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. I Appendix I to Part 960—NRC and EPA Requirements for Postclosure Repository Performance Under proposed 40 CFR part 191, subpart B...

  6. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  7. 33 CFR Appendix D to Part 154 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Response Plans D Appendix D to Part 154 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Pt. 154, App. D Appendix D to Part 154—Training Elements for Oil Spill Response Plans 1. General 1.1The portion of the plan...

  8. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  9. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  10. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  11. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  12. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  13. Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach.

    PubMed

    Chen, Ying-Chu

    2016-12-01

    Energy recovery and greenhouse gas (GHG) emissions from wastes are getting noticed in recent years. This study evaluated the potential for energy recovery and GHG mitigation from municipal solid waste (MSW) with a waste-to-material (WTM) approach. Waste generated in Taiwan contains a large amount of paper, food waste, and plastics, which previously were mostly sent to waste-to-energy (WTE) plants for incineration. However, the mitigation of GHGs by the WTM approach has been especially successful in the recycling of metals (averaging 1.83×10 6 kgCO 2 -eq/year) and paper (averaging 7.38×10 5 kgCO 2 -eq/year). In addition, the recycling of paper (1.33×10 10 kWh) and plastics (1.26×10 10 kWh) has contributed greatly to energy saving. Both metal and glass are not suitable for incineration due to their low energy content. The volumes of paper and food waste contained in the MSW are positively related to the carbon concentration, which may contribute to increased GHGs during incineration. Therefore, the recycling of paper, metals, and food waste is beneficial for GHG mitigation. Measures to reduce GHGs were also suggested in this study. The development of the WTM approach may be helpful for the proper management of MSW with regards to GHG mitigation. The results of this study can be a successful example for other nations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Method for co-processing waste rubber and carbonaceous material

    DOEpatents

    Farcasiu, Malvina; Smith, Charlene M.

    1991-01-01

    In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The depolymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on depolymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380.degree.-600.degree. C. and 70-280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

  15. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  16. 14 CFR Appendix G to Part 151 - Appendix G to Part 151

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Appendix G to Part 151 G Appendix G to Part 151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Pt. 151, App. G Appendix G to Part 151 There is set forth below an...

  17. 14 CFR Appendix G to Part 151 - Appendix G to Part 151

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Appendix G to Part 151 G Appendix G to Part 151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Pt. 151, App. G Appendix G to Part 151 There is set forth below an...

  18. 14 CFR Appendix G to Part 151 - Appendix G to Part 151

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Appendix G to Part 151 G Appendix G to Part 151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Pt. 151, App. G Appendix G to Part 151 There is set forth below an...

  19. 14 CFR Appendix G to Part 151 - Appendix G to Part 151

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Appendix G to Part 151 G Appendix G to Part 151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Pt. 151, App. G Appendix G to Part 151 There is set forth below an...

  20. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material.

    PubMed

    Gürü, Metin; Çubuk, M Kürşat; Arslan, Deniz; Farzanian, S Ali; Bilici, İbrahim

    2014-08-30

    This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3 -- Appendix B: Technical findings and conclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. Sections B1.1 through B1.4 present an overview of the environmental setting of WAG 5, including location, population, land uses, ecology, and climate, and Sects. B1.5 through B1.7 give site-specific details (e.g., topography, soils, geology, and hydrology). The remediation investigation (RI) of WAGmore » 5 did not entail en exhaustive characterization of all physical attributes of the site; the information presented here focuses on those most relevant to the development and verification of the WAG 5 conceptual model. Most of the information presented in this appendix was derived from the RI field investigation, which was designed to complement the existing data base from earlier, site-specific studies of Solid Waste Storage Area (SWSA) 5 and related areas.« less

  2. Utilization of household food waste for the production of ethanol at high dry material content.

    PubMed

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  3. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    NASA Astrophysics Data System (ADS)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  4. 14 CFR Appendix B to Part 25 - Appendix B to Part 25

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Appendix B to Part 25 B Appendix B to Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. B Appendix B to Part 25 EC28SE91.055 EC28SE91...

  5. 45 CFR Appendix A to Part 13 - Appendix A to Part 13

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Appendix A to Part 13 A Appendix A to Part 13 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN AGENCY PROCEEDINGS Pt. 13, App. A Appendix A to Part 13 Proceedings covered Statutory authority Applicable regulations...

  6. 45 CFR Appendix A to Part 13 - Appendix A to Part 13

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Appendix A to Part 13 A Appendix A to Part 13 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN AGENCY PROCEEDINGS Pt. 13, App. A Appendix A to Part 13 Proceedings covered Statutory authority Applicable regulations...

  7. 45 CFR Appendix A to Part 13 - Appendix A to Part 13

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Appendix A to Part 13 A Appendix A to Part 13 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN AGENCY PROCEEDINGS Pt. 13, App. A Appendix A to Part 13 Proceedings covered Statutory authority Applicable regulations...

  8. 14 CFR Appendix C to Part 151 - Appendix C to Part 151

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Appendix C to Part 151 C Appendix C to Part...) AIRPORTS FEDERAL AID TO AIRPORTS Pt. 151, App. C Appendix C to Part 151 There is set forth below an... Items 1. Maintenance-type work, including: (a) Seal coats. (b) Crack filling. (c) Resealing joints. (d...

  9. 14 CFR Appendix C to Part 25 - Appendix C to Part 25

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Appendix C to Part 25 C Appendix C to Part... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. C Appendix C to Part 25 Part I—Atmospheric....062 EC28SE91.063 (c) Takeoff maximum icing. The maximum intensity of atmospheric icing conditions for...

  10. 14 CFR Appendix C to Part 25 - Appendix C to Part 25

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Appendix C to Part 25 C Appendix C to Part... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. C Appendix C to Part 25 Part I—Atmospheric....062 EC28SE91.063 (c) Takeoff maximum icing. The maximum intensity of atmospheric icing conditions for...

  11. 14 CFR Appendix C to Part 25 - Appendix C to Part 25

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Appendix C to Part 25 C Appendix C to Part... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. C Appendix C to Part 25 Part I—Atmospheric....062 EC28SE91.063 (c) Takeoff maximum icing. The maximum intensity of atmospheric icing conditions for...

  12. 14 CFR Appendix H to Part 151 - Appendix H to Part 151

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Appendix H to Part 151 H Appendix H to Part...) AIRPORTS FEDERAL AID TO AIRPORTS Pt. 151, App. H Appendix H to Part 151 There is set forth below the...)). H. Withholding for unpaid wages and liquidated damages, and priority of payment (1) The FAA may...

  13. Distribution of materials in construction and demolition waste in Portugal.

    PubMed

    Coelho, André; de Brito, Jorge

    2011-08-01

    It may not be enough simply to know the global volume of construction and demolition waste (CDW) generated in a certain region or country if one wants to estimate, for instance, the revenue accruing from separating several types of materials from the input entering a given CDW recycling plant. A more detailed determination of the distribution of the materials within the generated CDW is needed and the present paper addresses this issue, distinguishing different buildings and types of operation (new construction, retrofitting and demolition). This has been achieved by measuring the materials from buildings of different ages within the Portuguese building stock, and by using direct data from demolition/retrofitting sites and new construction average values reported in the literature. An attempt to establish a benchmark with other countries is also presented. This knowledge may also benefit industry management, especially that related to CDW recycling, helping to optimize procedures, equipment size and operation and even industrial plant spatial distribution. In an extremely competitive market, where as in Portugal low-tech and high environmental impact procedures remain the norm in the construction industry (in particular, the construction waste industry), the introduction of a successful recycling industry is only possible with highly optimized processes and based on a knowledge-based approach to problems.

  14. Construction demolition wastes, Waelz slag and MSWI bottom ash: a comparative technical analysis as material for road construction.

    PubMed

    Vegas, I; Ibañez, J A; San José, J T; Urzelai, A

    2008-01-01

    The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.

  15. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...

  16. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...

  17. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks.

    PubMed

    Belmonte, Louise Josefine; Ottosen, Lisbeth M; Kirkelund, Gunvor Marie; Jensen, Pernille Erland; Vestbø, Andreas Peter

    2016-11-10

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different particulate waste materials, were fired and material properties and heavy metal leaching tests were conducted before and after firing. Remediation techniques (washing in distilled water and electrodialytical treatment) applied to the fly ash reduced leaching before firing. The mine tailings and bottom ash brick discs obtained satisfactory densities (1669-2007 kg/m 3 ) and open porosities (27.9-39.9%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m 3 ) and high open porosities (42.1-51. %). However, leaching tests on crushed brick discs revealed that heavy metals generally became more available after firing for all the investigated materials and that further optimisation is therefore necessary prior to incorporation in bricks.

  18. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    PubMed Central

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  19. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    PubMed

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  20. Towards increased recycling of household waste: Documenting cascading effects and material efficiency of commingled recyclables and biowaste collection.

    PubMed

    Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik

    2015-07-01

    Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system

  1. Evaluation of waste concrete road materials for use in oyster aquaculture - phase 3 : research summary.

    DOT National Transportation Integrated Search

    2016-08-01

    The use of recycled materials has gained increased attention for the environmental benefits, and the reuse of industrial by-products and waste materials can provide a stream of revenue for producers and a durable, cost-effective material option for e...

  2. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 3

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume consists of Appendices C, D, E, and F to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix C is the photographic appendix of the test panels. Appendix D details methods and procedures. Appendix E lists application equipment costs. Appendix F is a compilation of the solicitation of the candidate coating systems.

  3. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... impracticable, an equivalent (except for closure) open head drum may be used for the hazardous waste. (b) Lab....101 Hazardous Materials Table may be used in place of specific chemical names, when two or more... exceeding 4 L (1 gallon) rated capacity, or metal or plastic, not exceeding 20 L (5.3 gallons) rated...

  4. Research Involving Children: Appendix to Report and Recommendations.

    ERIC Educational Resources Information Center

    Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, Washington, DC.

    The appendix contains papers, reports, and other materials that were reviewed by the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research during its deliberations on research involving children. Entries include the following titles and authors: "Research Involving Children" (Survey Research Center); "Law…

  5. 40 CFR Appendix to Part 30 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NON-PROFIT ORGANIZATIONS Pt. 30, App. Appendix to Part 30—Contract Provisions All contracts awarded by a recipient, including small purchases, shall contain the following provisions as applicable: 1... unsanitary, hazardous or dangerous. These requirements do not apply to the purchases of supplies or materials...

  6. Utilization of flotation wastes of copper slag as raw material in cement production.

    PubMed

    Alp, I; Deveci, H; Süngün, H

    2008-11-30

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.

  7. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    NASA Astrophysics Data System (ADS)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  8. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... stakeholder input regarding the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...

  9. Enzymatic hydrolysis of pretreated waste paper--source of raw material for production of liquid biofuels.

    PubMed

    Brummer, Vladimir; Jurena, Tomas; Hlavacek, Viliam; Omelkova, Jirina; Bebar, Ladislav; Gabriel, Petr; Stehlik, Petr

    2014-01-01

    Enzymatic hydrolysis of waste paper is becoming a perspective way to obtain raw material for production of liquid biofuels. Reducing sugars solutions that arise from the process of saccharification are a precursors for following or simultaneous fermentation to ethanol. Different types of waste paper were evaluated, in terms of composition and usability, in order to select the appropriate type of the waste paper for the enzymatic hydrolysis process. Novozymes® enzymes NS50013 and NS50010 were used in a laboratory scale trials. Technological conditions, which seem to be the most suitable for hydrolysis after testing on cellulose pulp and filter paper, were applied to hydrolysis of widely available waste papers - offset paper, cardboard, recycled paper in two qualities, matte MYsol offset paper and for comparison again on model materials. The highest yields were achieved for the cardboard, which was further tested using various pretreatment combinations in purpose of increasing the hydrolysis yields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste.

    PubMed

    Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta

    2017-06-01

    Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of

  11. Direct catalytic production of sorbitol from waste cellulosic materials.

    PubMed

    Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro

    2017-05-01

    Cotton wool, cotton textile, tissue paper and printing paper, all potential waste cellulosic materials, were directly converted to sorbitol using a Ru/CNT catalyst in the presence of H 2 and using only water as solvent, without any acids. Conversions up to 38% were attained for the raw substrates, with sorbitol yields below 10%. Ball-milling of the materials disrupted their crystallinity, allowing reaching 100% conversion of cotton wool, cotton textile and tissue paper after 4h, with sorbitol yields around 50%. Mix-milling these materials with the catalyst greatly enhanced their conversion rate, and the materials were efficiently converted to sorbitol with a yield around 50% in 2h. However, ball- and mix-milled printing paper presented a conversion of only 50% after 5h, with sorbitol yields of 7%. Amounts of sorbitol of 0.525, 0.511 and 0.559g could be obtained from 1g of cotton wool, cotton textile and tissue paper, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    NASA Astrophysics Data System (ADS)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  13. Construction materials as a waste management solution for cellulose sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.

    2011-02-15

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less

  14. Utilization of household food waste for the production of ethanol at high dry material content

    PubMed Central

    2014-01-01

    Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could

  15. Resource management performance in Bahrain: a systematic analysis of municipal waste management, secondary material flows and organizational aspects.

    PubMed

    Al Sabbagh, Maram K; Velis, Costas A; Wilson, David C; Cheeseman, Christopher R

    2012-08-01

    This paper presents a detailed review of municipal solid waste (MSW) and resource management in Bahrain, using the recently developed UN-Habitat city profile methodology. Performance indicators involve quantitative assessment of waste collection and sweeping, controlled disposal, materials recovery and financial sustainability together with qualitative assessment of user and provider inclusivity and institutional coherence. MSW management performance in Bahrain is compared with data for 20 other cities. The system in Bahrain is at an intermediate stage of development. A waste/material flow diagram allows visualization of the MSW system and quantifies all inputs and outputs, with the vast majority of MSW deposited in a controlled, but not engineered landfill. International comparative analysis shows that recycling and material recovery rates in Bahrain (8% wt. for domestic waste, of which 3% wt. due to informal sector) are generally lower than other cities, whereas waste quantities and generation rates at 1.1 kg capita(-1) day(-1)) are relatively high. The organic fraction (60% wt.) is comparable to that in middle- and low-income cities (50-80% wt.), although on the basis of gross domestic product Bahrain is classified as a high-income city, for which the average is generally less than 30% wt. Inclusivity in waste governance is at a medium stage as not all waste system stakeholders are considered in decision-making. While the system now appears to be financially stable, key pending issues are cost-effectiveness, improving the standards of disposal and deployment of extensive materials recovery/recycling services.

  16. Innovative approach to facilitate reuse of nonhazardous industrial solid waste as building material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Laurent, S.G.; Boutin, A.

    1997-12-31

    The steel industry generates large volumes of inorganic nonhazardous solid waste. During the last five years, Quebec`s steel industry has developed new technologies to recover metal from slags and tailings. Since these processes recover 10 to 30 percent of the metal, large volumes of nonhazardous residues still need to be recycled or disposed of. In order to encourage recycling initiatives, le Ministere de l`Environnement et de la Faune du Quebec (MEF) (Quebec`s Ministry of Environment and Wildlife) established guidelines for the management of nonhazardous industrial solid waste. The aim of these guidelines is to propose a test procedure to evaluatemore » the quality of the material and to define material classes based on their potential for reuse. The evaluation procedure is based on standard tests, generally used for the evaluation of stabilized and solidified hazardous waste. The protocol includes an analysis of the total content of metals in the residue, the determination of the acid neutralization capacity and the prediction of the acid generation potential when the residue contains significant levels of sulfides. The protocol includes three different leachate tests in order to evaluate the mobility of contaminants present in the residue. The leaching procedures are: (1) an equilibrium extraction with water, (2) a modified TCLP extraction, and (3) an acid rain simulation effect extraction. A method is actually under development to collect leachate from a material pile subject to 18 months of rainfall. Materials are categorized into different classes according to their test results. Various potential reuse options are associated with material classes. Evaluation criteria were defined by using water quality standards and results obtained by testing reference construction material supplied by the Quebec`s Ministere des Transports (Ministry of Transportation).« less

  17. Catalytic oxidation of waste materials

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1977-01-01

    Aqueous stream of human waste is mixed with soluble ruthenium salts and is introduced into reactor at temperature where ruthenium black catalyst forms on internal surfaces of reactor. This provides catalytically active surface to convert oxidizable wastes into breakdown products such as water and carbon dioxide.

  18. 18 CFR Appendix A to Subpart H of... - Appendix A to Subpart H of Part 35

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Appendix A to Subpart H of Part 35 A Appendix A to Subpart H of Part 35 Conservation of Power and Water Resources FEDERAL... Rates Pt. 35, Subpt. H, App. A Appendix A to Subpart H of Part 35 Appendix A Standard Screen Format...

  19. Rheological characteristics of waste rock materials in abandoned mine deposit and debris flow hazards

    NASA Astrophysics Data System (ADS)

    Jeong, Sueng-Won; Lee, Choonoh; Cho, Yong-Chan; Wu, Ying-Hsin

    2015-04-01

    In Korea, approximately 5,000 metal mines are spread, but 50% of them are still abandoned without any proper remediation and cleanup. Summer heavy rainfall can result in the physicochemical modification of waste rock materials in the mountainous. From the geotechnical monitoring and field investigation, there are visible traces of mass movements every year. Soil erosion is one of severe phenomena in the study area. In particular, study area is located in the upper part of the Busan Metropolitan City and near the city's water supply. With respect to the supply of drinking water and maintenance of ecological balance, proper disposal of waste rock materials is required. For this reason, we examine the rheological properties of waste rock materials as a function of solid content using a ball- and vane-penetrated rheometer. In the flow curves, which are the relationship between the shear stress and shear rate of waste rock materials, we found that the soil samples exhibited a shear thinning beahivor regardless of solid content. The Bingham, Herschel-Bulkley, Power-law, and Papanastasiou models are used to determine the rheological properties. Assuming that the soil samples behaved as the viscoplastic behavior, the yield stress and viscosity are determined for different water contents. As a result, there are clear relationships between the solid content and rheological values (i.e., Bingham yield stress and plastic viscosity). From these relationships, the maximum and minimum of Bingham yield stresses are ranged from 100 to 2000 Pa. The debris flow mobilization is analysed using a 1D BING and 2D Debris flow models. In addition, the effect of wall slip and test apparatus are discussed.

  20. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrild, Hanna; Larsen, Anna W., E-mail: awla@env.dtu.dk; Christensen, Thomas H.

    Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the casemore » if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.« less

  1. Selective classification and quantification model of C&D waste from material resources consumed in residential building construction.

    PubMed

    Mercader-Moyano, Pilar; Ramírez-de-Arellano-Agudo, Antonio

    2013-05-01

    The unfortunate economic situation involving Spain and the European Union is, among other factors, the result of intensive construction activity over recent years. The excessive consumption of natural resources, together with the impact caused by the uncontrolled dumping of untreated C&D waste in illegal landfills have caused environmental pollution and a deterioration of the landscape. The objective of this research was to generate a selective classification and quantification model of C&D waste based on the material resources consumed in the construction of residential buildings, either new or renovated, namely the Conventional Constructive Model (CCM). A practical example carried out on ten residential buildings in Seville, Spain, enabled the identification and quantification of the C&D waste generated in their construction and the origin of the waste, in terms of the building material from which it originated and its impact for every m(2) constructed. This model enables other researchers to establish comparisons between the various improvements proposed for the minimization of the environmental impact produced by building a CCM, new corrective measures to be proposed in future policies that regulate the production and management of C&D waste generated in construction from the design stage to the completion of the construction process, and the establishment of sustainable management for C&D waste and for the selection of materials for the construction on projected or renovated buildings.

  2. RMP Guidance for Warehouses - Appendix D: OSHA Guidance on PSM

    EPA Pesticide Factsheets

    This text is taken directly from OSHA's appendix C to the Process Safety Management standard (29 CFR 1910.119). Compiled information required by this standard, including material safety data sheets (MSDS), is essential to process hazards analysis (PHA).

  3. 29 CFR Appendix A to Part 70 - Disclosure Officers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Directorate of Information Technology, OSHA 9. Director, Directorate of Enforcement Programs, OSHA 10..., MSHA 17. Director of Program Evaluation and Information Resources, MSHA Office of Administrative Law... the Secretary of Labor PRODUCTION OR DISCLOSURE OF INFORMATION OR MATERIALS Pt. 70, App. A Appendix A...

  4. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    NASA Astrophysics Data System (ADS)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  5. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches

    PubMed Central

    Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta

    2017-01-01

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates. PMID:29186854

  6. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches.

    PubMed

    Chung, Sang-Yeop; Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta; Stephan, Dietmar

    2017-11-25

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  7. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation andmore » decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  8. Possibility of using waste tire rubber and fly ash with Portland cement as construction materials.

    PubMed

    Yilmaz, Arin; Degirmenci, Nurhayat

    2009-05-01

    The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications.

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  18. 10 CFR Appendix A to Part 73 - U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...

  19. 10 CFR Appendix A to Part 73 - U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...

  20. 10 CFR Appendix A to Part 73 - U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...

  1. 10 CFR Appendix A to Part 73 - U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...

  2. 10 CFR Appendix A to Part 73 - U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...

  3. Biodegradable packing materials from hydrolysates of collagen waste proteins.

    PubMed

    Langmaier, F; Mokrejs, P; Kolomaznik, K; Mladek, M

    2008-01-01

    Enzymatic hydrolysates of waste collagen proteins (H), from current industrial manufacture (leather, edible meat product casings, etc.) of mean molecular mass 20-30 kDa by a reaction with dialdehyde starch (DAS), produces hydrogels applicable as biodegradable (or even edible) packaging materials for food, cosmetic and pharmaceutical products. Thermo-reversibility of prepared hydrogels is given by concentrations of H and DAS in a reaction mixture. At concentrations of H 25-30% (w/w) and that of DAS 15-20% (related to weight of hydrolysate), thermo-reversible hydrogels arise, which can be processed into packaging materials by a technique similar to that of soft gelatin capsules (SGC). Exceeding the limit of 20% DAS leads to hydrogels that are thermo-reversible only in part, a further increase in DAS concentration then leads to thermo-irreversible gels whose processing into biodegradable packaging materials necessitates employment of other procedures.

  4. Characterization of the carbonaceous materials obtained from different agro-industrial wastes.

    PubMed

    Ensuncho-Muñoz, A E; Carriazo, J G

    2015-01-01

    This paper reports the preparation and characterization of carbonaceous materials obtained from three types of vegetable wastes provided by agricultural industries. Soft carbonization (280°C) and H3PO4-activation procedures were used to convert the agricultural wastes to carbon powders with high adsorbent capacities. This process is excellent for eliminating and exploiting the huge masses (many tons) of vegetable residues remaining after each harvest every year in several Colombian agro-industries. The powders were characterized by X-ray diffraction (XRD), IR spectroscopy, scanning electron microscopy (SEM), and N2-adsorption isotherms. XRD and IR verified the formation of carbons, and SEM showed small particles (20-500 µm) with characteristic morphology for each type of residue used and abundant cavities of different sizes. The N2-adsorption analyses showed that the carbons had high adsorption capacities with important surface area values and large pore volumes. The use of the activated carbonaceous materials as adsorbent of azo dyes (allura red and sunset yellow) from aqueous solutions was evaluated. The results showed a good adsorption capacity indicating the potentiality of these materials as pollutant adsorbents in food industry wastewaters. These results indicate that these powders can be used as potential adsorbents for different gaseous or liquid pollutants.

  5. 22 CFR Appendix A to Part 226 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-GOVERNMENTAL ORGANIZATIONS Pt. 226, App. A Appendix A to Part 226—Contract Provisions All contracts, awarded by a recipient including small purchases, shall contain the following provisions as applicable: 1... not apply to the purchases of supplies or materials or articles ordinarily available on the open...

  6. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water.

    PubMed

    Méndez, A; Barriga, S; Fidalgo, J M; Gascó, G

    2009-06-15

    This paper deals with the removal of Cu(2+) from water using adsorbent materials prepared from paper industry waste materials (one de-inking paper sludge and other sludge from virgin pulp mill). Experimental results showed that de-inking paper sludge leads to mesoporous materials (V(mic)/V(T)=0.13 and 0.14), whereas the sludge from virgin pulp mill produces high microporous adsorbents (V(mic)/V(T)=0.39 and 0.41). Adsorbent materials were then used for Cu(2+) removal from water at acid pH. During water treatment, heavy metals lixiviation from adsorbent materials was not produced. However, important Ca and Mg leaching was observed. Final pH significantly increases after treatment of water with adsorbent materials probably due to their elevated CaCO(3) content. In general, highest Cu(2+) removal was obtained using adsorbent materials from de-inking paper sludge. This result could be due to their higher content in oxygenated surface groups, high average pore diameter, elevated superficial charge density, high CaCO(3) amount and high Ca and Mg exchange content.

  7. Matt waste from glass separated collection: an eco-sustainable addition for new building materials.

    PubMed

    Bignozzi, M C; Saccani, A; Sandrolini, F

    2009-01-01

    Matt waste (MW), a by-product of purification processes of cullet derived from separated glass waste collection, has been studied as filler for self-compacting concrete and as an addition for newly blended cement. Properties of self-compacting concrete compared to reference samples are reported. They include characteristics at the fresh and hardened states, and the compressive strength and porosity of mortar samples that were formulated with increasing amounts of MW to be used as cement replacement (up to 50wt.%). The effects of matt waste are discussed with respect to the mechanical and microstructural characteristics of the resulting new materials.

  8. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  9. Safety in the Chemical Laboratory: Certifications for Professional Hazardous Materials and Waste Management.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1988-01-01

    Discusses the need for determining a curriculum to provide qualified hazardous waste personnel. Describes the needed role of colleges and universities and current hazardous materials certification requirements. Lists requirements for 18 professional certifications. (MVL)

  10. Report: Potential environmental impact of exempt site materials - a case study of bituminous road planings and waste soils.

    PubMed

    Bark, Marjorie; Bland, Michael; Grimes, Sue

    2009-09-01

    The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.

  11. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cafferty, Kara Grace

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.

  12. Material flow and sustainability analyses of biorefining of municipal solid waste.

    PubMed

    Sadhukhan, Jhuma; Martinez-Hernandez, Elias

    2017-11-01

    This paper presents material flow and sustainability analyses of novel mechanical biological chemical treatment system for complete valorization of municipal solid waste (MSW). It integrates material recovery facility (MRF); pulping, chemical conversion; effluent treatment plant (ETP), anaerobic digestion (AD); and combined heat and power (CHP) systems producing end products: recyclables (24.9% by mass of MSW), metals (2.7%), fibre (1.5%); levulinic acid (7.4%); recyclable water (14.7%), fertiliser (8.3%); and electricity (0.126MWh/t MSW), respectively. Refuse derived fuel (RDF) and non-recyclable other waste, char and biogas from MRF, chemical conversion and AD systems, respectively, are energy recovered in the CHP system. Levulinic acid gives profitability independent of subsidies; MSW priced at 50Euro/t gives a margin of 204Euro/t. Global warming potential savings are 2.4 and 1.3kg CO 2 equivalent per kg of levulinic acid and fertiliser, and 0.17kg CO 2 equivalent per MJ of grid electricity offset, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 36 CFR Appendix A to Part 1210 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pt. 1210, App. A Appendix A to Part 1210—Contract Provisions All contracts, awarded by a recipient including small purchases, shall contain the following... not apply to the purchases of supplies or materials or articles ordinarily available on the open...

  14. 7 CFR Appendix A to Part 3019 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pt. 3019, App. A Appendix A to Part 3019—Contract Provisions All contracts, awarded by a recipient including small purchases, shall contain the... not apply to the purchases of supplies or materials or articles ordinarily available on the open...

  15. 15 CFR Appendix A to Part 14 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMERCIAL ORGANIZATIONS Pt. 14, App. A Appendix A to Part 14—Contract Provisions All contracts, awarded by a recipient including small purchases, shall contain the following provisions as applicable: 1. Equal... dangerous. These requirements do not apply to the purchases of supplies or materials or articles ordinarily...

  16. 34 CFR Appendix A to Part 74 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pt. 74, App. A Appendix A to Part 74—Contract Provisions All contracts, awarded by a recipient including small purchases, shall... not apply to the purchases of supplies or materials or articles ordinarily available on the open...

  17. 28 CFR Appendix A to Part 70 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NON-PROFIT ORGANIZATIONS Pt. 70, App. A Appendix A to Part 70—Contract Provisions All contracts, awarded by a recipient including small purchases, must contain the following provisions as applicable: 1... purchases of supplies or materials or articles ordinarily available on the open market, or contracts for...

  18. 38 CFR Appendix A to Part 49 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pt. 49, App. A Appendix A to Part 49—Contract Provisions All contracts, awarded by a recipient including small purchases, shall contain the following provisions as... purchases of supplies or materials or articles ordinarily available on the open market, or contracts for...

  19. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... generally be neighborhood, urban or regional scale. For example, according to Figure E-1 of this appendix... waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to... Research Board, Washington, DC. January 1978.) 4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of...

  20. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... generally be neighborhood, urban or regional scale. For example, according to Figure E-1 of this appendix... waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to... Research Board, Washington, DC. January 1978.) 4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of...

  1. Infectious waste feed system

    DOEpatents

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  2. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume consists of Appendices A and B to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix A holds the coating system, surface preparation, and application data. Appendix B holds the coating material infrared spectra.

  3. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis.

    PubMed

    Robinson, James Stephen; Baumann, Karen; Hu, Yongfeng; Hagemann, Philipp; Kebelmann, Lutz; Leinweber, Peter

    2018-01-01

    Strategies are needed to increase the sustainability of phosphorus (P) fertiliser management in agriculture. This paper reports on the potential of pyrolysis treatment to recycle P from renewable materials previously regarded as wastes. The study used K-edge X-ray absorption near-edge structure (XANES) spectroscopy to examine chemical forms of P in the waste feedstock materials and corresponding biochars (pyrolysis at 480-500 °C) of four ligno-cellulosic, plant-based residues and five relatively P-rich livestock and water-treatment by-products, to acquire information on changes in potential P fertiliser value. Pyrolysis enriched P in the biochars by factors of 1.3-4.3, thus offering wide-ranging P fertiliser potential. XANES spectroscopy revealed hydroxyapatite (HAP) as one of the dominant chemical P compounds in the feedstocks, ranging from 14% (rice husks) to 98% (animal bone) of total P. For most materials, pyrolysis increased the proportion of HAP, and pyrophosphates were generated in several cases. These alterations possibly lead to diversity in the P solubility characteristics of the biochars if used as soil amendments; this is an important property of environmentally sound P fertilisers.

  4. Congenital absence of the vermiform appendix.

    PubMed

    Sarkar, Aniruddha

    2012-09-01

    Agenesis of the vermiform appendix is very rare. The incidence is estimated to be one in 100,000 laparotomies for suspected appendicitis. During a routine dissection of the abdomen in a 60-year-old donated male cadaver, the vermiform appendix was found to be absent. The ileocaecal junction and retrocaecal area were thoroughly searched, but the vermiform appendix was not found or appeared to resemble a tubercle. This is likely the first reported case of agenesis of a vermiform appendix in India. This suggests the possibility that the human vermiform appendix would ultimately become rudimentary or absent in the course of evolution.

  5. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  6. Joint Services Electronics Program. Annual Report (16th). Appendix

    DTIC Science & Technology

    1993-10-01

    Lee and R.J. Burkholder, "A Three-Dimensional Implementation of the Hybrid Ray-FDTD Method for Modeling Electromagnetic Scattering from Electrically ...thin material-coated metallic surfaces. Each of the It is noted that expressions for the constants A1 electrically thin material coatings is modeled by...ElectroSdiece Laboratory Department of Electrical Engineering Columbus, Ohio 43212I ODTIC.. . •L•ELECTIE 1 Annual Report Appendix 721563-6 JAN I At ,94

  7. Flow Distribution Control Characteristics in Marine Gas Turbine Waste- Heat Recovery Systems. Phase 2. Flow Distribution Control in Waste-Heat Steam Generators

    DTIC Science & Technology

    1982-07-01

    waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed

  8. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  9. Synchrotron-based X-Ray Spectroscopy Studies for Redox-based Remediation of Lead, Zinc, and Cadmium in Mine Waste Materials.

    PubMed

    Karna, Ranju R; Hettiarachchi, Ganga M; Newville, Matthew; Sun, ChengJun; Ma, Qing

    2016-11-01

    Several studies have examined the effect of submergence on the mobility of metals present in mine waste materials. This study examines the effect of organic carbon (OC) and sulfur (S) additions and submergence time on redox-induced biogeochemical transformations of lead (Pb), zinc (Zn), and cadmium (Cd) present in mine waste materials collected from the Tri-State mining district located in southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. A completely randomized design, with a two-way treatment structure, was used for conducting a series of column experiments. Two replicates were used for each treatment combination. Effluent samples were collected at several time points, and soil samples were collected at the end of each column experiment. Because these samples are highly heterogeneous, we used a variety of synchrotron-based techniques to identify Pb, Zn, and Cd speciation at both micro- and bulk-scale. Spectroscopic analysis results from the study revealed that the addition of OC, with and without S, promoted metal-sulfide formation, whereas metal carbonates dominated in the nonamended flooded materials and in mine waste materials only amended with S. Therefore, the synergistic effect of OC and S may be more promising for managing mine waste materials disposed of in flooded subsidence mine pits instead of individual S or OC treatments. The mechanistic understanding gained in this study is also relevant for remediation of waste materials using natural or constructed wetland systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments

    USGS Publications Warehouse

    Landa, E.R.

    2003-01-01

    Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.

  11. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  12. 36 CFR Appendix A to Part 1275 - Settlement Agreement

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Settlement Agreement A... MATERIALS OF THE NIXON ADMINISTRATION Pt. 1275, App. A Appendix A to Part 1275—Settlement Agreement Settlement Agreement filed April 12, 1996, in Stanley I. Kutler and Public Citizen v. John W. Carlin...

  13. 36 CFR Appendix A to Part 1275 - Settlement Agreement

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Settlement Agreement A... MATERIALS OF THE NIXON ADMINISTRATION Pt. 1275, App. A Appendix A to Part 1275—Settlement Agreement Settlement Agreement filed April 12, 1996, in Stanley I. Kutler and Public Citizen v. John W. Carlin...

  14. 36 CFR Appendix A to Part 1275 - Settlement Agreement

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Settlement Agreement A... MATERIALS OF THE NIXON ADMINISTRATION Pt. 1275, App. A Appendix A to Part 1275—Settlement Agreement Settlement Agreement filed April 12, 1996, in Stanley I. Kutler and Public Citizen v. John W. Carlin...

  15. Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells.

    PubMed

    Chen, Wei; Feng, Huajun; Shen, Dongsheng; Jia, Yufeng; Li, Na; Ying, Xianbin; Chen, Ting; Zhou, Yuyang; Guo, Jiayun; Zhou, Mengjiao

    2018-03-15

    In this study, carbonized waste tires were directly used as a high-performance anode material in microbial fuel cells (MFCs). The effect of the pyrolysis temperature used for waste tire carbonization on the current output performance was investigated to determine the optimal pyrolysis temperature. Thermal gravimetric analysis/differential scanning calorimetry showed that tire carbonization started at 200°C and ended at about 500°C; the weight loss was about 64%. When used in an MFC, the electrode obtained from waste tires carbonized at 800°C gave a current density of 23.1±1.4Am -2 , which is much higher than that achieved with traditional graphite felt anodes (5.5±0.1Am -2 ). The results of this study will be useful in optimizing the design of carbonized waste tire anodes for enhancing MFC performances and will alleviate the environmental problems caused by waste tires. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scale. For example, according to Figure E-1 of this appendix, if a PM sampler is primarily influenced by... waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to... Research Board, Washington, DC. January 1978.) 4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of...

  17. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  18. Appendix A : literature review.

    DOT National Transportation Integrated Search

    2013-03-01

    This appendix contains a review of the literature and other background information : germane to the experimental and analytical research presented in subsequent appendices. Table : 1 lists the sections and topics contained in this appendix and those ...

  19. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  20. Efficient exfoliation of layered materials by waste liquor

    NASA Astrophysics Data System (ADS)

    Ding, Jiheng; Zhao, Hongran; Zheng, Yan; Wang, Qiaolei; Chen, Hao; Dou, Huimin; Yu, Haibin

    2018-03-01

    Based on their unique material properties, two-dimensional (2D) nanomaterials such as graphene, molybdenum disulfide (MoS2), and boron nitride (BN) have been attracting increased research interest. The potential of 2D materials, in the form of nanoplatelets that are used as new materials, will be important to both nanomaterials and advanced materials. Water is usually considered to be the ideal dispersed medium, and the essential hydrophobicity and limitations to mass production of 2D nanoplatelets have become quite serious obstacles to their usage in various fields. In this paper, pulping black liquor was used as dispersant, with high concentration of lignin to get single- and few-layered nanoplatelets. The whole process required only the high-shear mixing of 2D layered materials and pulping waste liquor. This method was not only simple and efficient but also environmentally friendly and resource-recycling. Moreover, the fabricated single- or few-layered nanoplatelets possessed good solubility in aqueous solution due to their edge functionalization, and could be well dispersed in water at concentrations (10 mg ml-1 for graphene, 6.3 mg ml-1 for MoS2, and 6.0 mg ml-1 for BN) which were much higher than that of other methods. The dispersions of graphene, MoS2, and BN nanosheets were highly stable over several months, which allowed us to easily prepare graphene, MoS2, and BN films through simple vacuum filtration or spraying. These results indicated that pulping black liquor can be used as a material or reagent, and the mass production of 2D material is possible in a simple and fast method.

  1. Microbial detoxification of waste rubber material by wood-rotting fungi.

    PubMed

    Bredberg, Katarina; Andersson, B Erik; Landfors, Eva; Holst, Olle

    2002-07-01

    The extensive use of rubber products, mainly tires, and the difficulties to recycle those products, has resulted in world wide environmental problems. Microbial devulcanisation is a promising way to increase the recycling of rubber materials. One obstacle is that several microorganisms tested for devulcanisation are sensitive to rubber additives. A way to overcome this might be to detoxify the rubber material with fungi prior to the devulcanisation. In this study, 15 species of white-rot and brown-rot fungi have been screened with regard to their capacity to degrade an aromatic model compound in the presence of ground waste tire rubber. The most effective fungus, Resinicium bicolor, was used for detoxification of rubber material. Increase in growth of the desulfurising bacterium Thiobacillus ferrooxidans in presence of the rubber treated with Resinicium bicolor compared to untreated rubber demonstrated that detoxification with fungi is possible.

  2. Utilization of ethyl cellulose polymer and waste materials for roofing tile production

    NASA Astrophysics Data System (ADS)

    Sam, Suubitaa Spencer; Ng, ChoonAun; Chee, Swee Yong; Habib, NoorZainab; Nadeem, Humayon; Teoh, Wei Ping

    2017-05-01

    The aim of this study was to utilize ethyl cellulose, mixture of waste engine oil and waste vegetable oil as a binder in the environmental friendly roofing tile production. The waste engine-vegetable oil wasmix together with ethyl cellulose, fly ash, coarse aggregates, fine aggregatesand a catalyst. The Fourier Transform Infrared (FTIR) analysis showed that the oil mixture added with ethyl cellulose has the relatively high binding effect due to the presence of strong carbonyl group especially after being heat cured at 1900C for 24 hours. The mixed proportion of materials with different amount of ethyl cellulose used was studied in the production of tile specimen. The results showed that the ethyl cellulose composed roofing tile specimens passed the transverse breaking strength, durability, permeabilityand the ultraviolet accelerated test. The shrinkage on the tile can be overcome by adding temperature resistance polymer on the exterior of the tile.

  3. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ethan W. Brown

    2001-09-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.« less

  4. Turning Waste Chemicals into Wealth-A New Approach To Synthesize Efficient Cathode Material for an Li-O2 Battery.

    PubMed

    Yao, Ying; Wu, Feng

    2017-09-20

    An Li-O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li-O 2 battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing "waste" such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.

  5. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Test Procedure F Appendix F to Part 23...—Test Procedure Acceptable test procedure for self-extinguishing materials for showing compliance with... as sandwich panels, may not be separated for a test. The specimen thickness must be no thicker than...

  6. 45 CFR Appendix A to Part 604 - Certification Regarding Lobbying

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Certification Regarding Lobbying A Appendix A to Part 604 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... accordingly. This certification is a material representation of fact upon which reliance was placed when this...

  7. 45 CFR Appendix A to Part 604 - Certification Regarding Lobbying

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Certification Regarding Lobbying A Appendix A to Part 604 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... accordingly. This certification is a material representation of fact upon which reliance was placed when this...

  8. 45 CFR Appendix A to Part 604 - Certification Regarding Lobbying

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Certification Regarding Lobbying A Appendix A to Part 604 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... accordingly. This certification is a material representation of fact upon which reliance was placed when this...

  9. 45 CFR Appendix A to Part 604 - Certification Regarding Lobbying

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Certification Regarding Lobbying A Appendix A to Part 604 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... accordingly. This certification is a material representation of fact upon which reliance was placed when this...

  10. 45 CFR Appendix A to Part 604 - Certification Regarding Lobbying

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Certification Regarding Lobbying A Appendix A to Part 604 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... accordingly. This certification is a material representation of fact upon which reliance was placed when this...

  11. Compatibility analysis of material and energy recovery in a regional solid waste management system.

    PubMed

    Chang, Ying-Hsi; Chang, Ni-Bin

    2003-01-01

    The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.

  12. Densified waste form and method for forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less

  13. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Optimisation of industrial wastes reuse as construction materials.

    PubMed

    Collivignarelli, C; Sorlini, S

    2001-12-01

    This study concerns the reuse of two inorganic wastes, foundry residues and fly ashes from municipal solid waste incineration, as "recycled aggregate" in concrete production. This kind of reuse was optimised by waste treatment with the following steps: waste washing with water; waste stabilisation-solidification treatment with inorganic reagents; final grinding of the stabilised waste after curing for about 10-20 days. Both the treated wastes were reused in concrete production with different mix-designs. Concrete specimens were characterised by means of conventional physical-mechanical tests (compression, elasticity modulus, shrinkage) and different leaching tests. Experimental results showed that a good structural and environmental quality of "recycled concrete" is due both to a correct waste treatment and to a correct mix-design for concrete mixture.

  15. 13 CFR Appendix A to Part 112 - Appendix A to Part 112

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... enterprise Executive Order 12138. Small business innovation and research Small Business Act, sec. 9... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Appendix A to Part 112 A Appendix A to Part 112 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NONDISCRIMINATION IN...

  16. 13 CFR Appendix A to Part 1171 - Appendix A to Part 1171

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... International Trade Program Small Business Act, section 22. Technical and Management Assistance Small Business... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Appendix A to Part 1171 A Appendix A to Part 1171 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NONDISCRIMINATION IN...

  17. Characterization of industrial wastes as raw materials for Emulsified Modified Bitumen (EMB) formulation

    NASA Astrophysics Data System (ADS)

    Najib Razali, Mohd; Isa, Syarifah Nur Ezatie Mohd; Salehan, Noor Adilah Md; Musa, Musfafikri; Aziz, Mohd Aizudin Abd; Nour, Abdurahman Hamid; Yunus, Rosli Mohd

    2018-04-01

    This study was conducted to characterize industrial wastes for formulation of emulsified modified bitumen (EMB) in relation to their physical characteristic and elemental composition. This analysis will give information either raw materials from industrial wastes can be used for EMB formulation. Bitumen is produced from crude oil that is extracted from the ground which categorizes the crude oil as one of the non-renewable form of product. A vast environmental problem issues arises in Malaysia cause by the excessive manufacturing activity that lead to a miss-management of industrial waste has leads to the used of industrial waste in the EMB formulation. Industrial waste such as polystyrene, polyethylene and used automotive oil can be used as alternative to formulate bitumen. Then a suitable emulsifier needs to be added to produce the final product which is EMB. The emulsifier will yield a charge depends on its properties to bind the oily bitumen with water. Physical characteristic studies were performed by thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), flash point test, density rest and moisture content test. Fourier Transform Infrared Spectroscopy (FTIR) analysis was measured to determine the material’s molecular composition and structure.

  18. Finite element analysis of ion transport in solid state nuclear waste form materials

    NASA Astrophysics Data System (ADS)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  19. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review.

    PubMed

    Sud, Dhiraj; Mahajan, Garima; Kaur, M P

    2008-09-01

    Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal and/or recovery of metal ions from aqueous solutions. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. Cellulosic agricultural waste materials are an abundant source for significant metal biosorption. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. have affinity for heavy metal ions to form metal complexes or chelates. The mechanism of biosorption process includes chemisorption, complexation, adsorption on surface, diffusion through pores and ion exchange etc. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agricultural waste materials for heavy metal removal. Agricultural waste material being highly efficient, low cost and renewable source of biomass can be exploited for heavy metal remediation. Further these biosorbents can be modified for better efficiency and multiple reuses to enhance their applicability at industrial scale.

  20. Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quercia, G., E-mail: g.quercia@tue.nl; Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven; Putten, J.J.G. van der

    2013-12-15

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 μm. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO{sub 2}, this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopymore » (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO{sub 2} footprint and the environmental impact of concrete. -- Highlights: •Three different samples of PV nano-silica sludge (nSS) were fully characterized. •nSS is composed of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. •Dispersability studies demonstrated that nSS agglomerates are broken to