Sample records for waste melter study

  1. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  2. Numerical assessment of bureau of mines electric arc melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, S.; Hawkes, G.; Nguyen, H.D.

    1994-12-31

    An electric arc melter used for the waste treatment process at Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM) has been numerically studied. The arc melter is being used for vitrification of thermally oxidized, buried, transuranic (TRU) contaminated wastes by INEL in conjunction with the USBM as a part of the Buried Waste Integrated Demonstration project. The purpose of this study is to numerically investigate the performance of the laboratory-scale arc melter simulating the USBM arc melter. Initial results of modeling the full-scale USBM arc melter are also reported in this paper.

  3. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Kevin M.; Peeler, David K.; Kruger, Albert A.

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment withmore » Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.« less

  4. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A A.; Joseph, Innocent; Matlack, Keith S.

    2012-11-13

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth ofmore » ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.« less

  5. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    DOE PAGES

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized.more » Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe 2O 3 (with higher Al 2O 3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  6. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Meltermore » Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling« less

  7. Characterization of Radioactive Waste Melter Feed Vitrified By Microwave Energy,

    DTIC Science & Technology

    processed in the Defense Waste Processing Facility ( DWPF ) and poured into stainless steel canisters for eventual disposal in a geologic repository...Vitrification of melter feed samples is necessary for DWPF process and product control. Microwave fusion of melter feed at approximately 12OO deg C for 10

  8. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Vienna, John D.; Peeler, David

    This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advancedmore » glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe 2O 3 (also with high Al 2O 3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both the as poured state and after being slowly cooled according to the canister centerline cooling (CCC) profile. Glass formulation development was also completed on other Hanford tank wastes that were identified to further challenge waste loading due to the presence of appreciable quantities (>750 g) of plutonium in the waste tanks. In addition to containing appreciable Pu quantities, the C-102 waste tank and the 244-TX waste tank contain high concentrations of aluminum and iron, respectively that will further challenge vitrification processing. Glass formulation testing also demonstrated that high waste loadings could be achieved with these tank compositions using the attributes afforded by the CCIM technology.« less

  10. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides amore » review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and Include noble metals in glass melt experiments because of their potential to act as nucleation sites for spinel crystallization.« less

  11. High level radioactive waste vitrification process equipment component testing

    NASA Astrophysics Data System (ADS)

    Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

  12. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass andmore » liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn{sub 2}O{sub 3} species to MnO during melter preprocessing. At the lower redox limit of Fe{sup +2}/{summation}Fe {approx} 0.09 about 99% of the Mn{sup +4}/Mn{sup +3} is converted to Mn{sup +2}. Therefore, the lower REDOX limits eliminates melter foaming from deoxygenation.« less

  13. Final Report - Testing of Optimized Bubbler Configuration for HLW Melter VSL-13R2950-1, Rev. 0, dated 6/12/2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Pegg, I. L.; Callow, R. A.

    2013-11-13

    The principal objective of this work was to determine the glass production rate increase and ancillary effects of adding more bubbler outlets to the current WTP HLW melter baseline. This was accomplished through testing on the HLW Pilot Melter (DM1200) at VSL. The DM1200 unit was selected for these tests since it was used previously with several HLW waste streams including the four tank wastes proposed for initial processing at Hanford. This melter system was also used for the development and optimization of the present baseline WTP HLW bubbler configuration for the WTP HLW melter, as well as for MACTmore » testing for both HLW and LAW. Specific objectives of these tests were to: Conduct DM1200 melter testing with the baseline WTP bubbling configuration and as augmented with additional bubblers. Conduct DM1200 melter testing to differentiate the effects of total bubbler air flow and bubbler distribution on glass production rate and cold cap formation. Collect melter operating data including processing rate, temperatures at a variety of locations within the melter plenum space, melt pool temperature, glass melt density, and melter pressure with the baseline WTP bubbling configuration and as augmented with additional bubblers. Collect melter exhaust samples to compare particulate carryover for different bubbler configurations. Analyze all collected data to determine the effects of adding more bubblers to the WTP HLW melter to inform decisions regarding future lid re-designs. The work used a high aluminum HLW stream composition defined by ORP, for which an appropriate simulant and high waste loading glass formulation were developed and have been previously processed on the DM1200.« less

  14. One-dimensional cold cap model for melters with bubblers

    DOE PAGES

    Pokorny, Richard; Hilliard, Zachary J.; Dixon, Derek R.; ...

    2015-07-28

    The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer of reacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for themore » dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale melter studies. Lastly, the cold cap model will become part of the full three-dimensional mathematical model of the waste glass melter.« less

  15. Baseline tests for arc melter vitrification of INEL buried wastes. Volume II: Baseline test data appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Conner, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  16. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  17. Use of Optical and Imaging Techniques for Inspection of Off-Line Joule-Heated Melter at the West Valley Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plodinec, M. J.; Jang, P-R; Long, Z.

    2003-02-25

    The West Valley melter has been taken out of service. Its design is the direct ancestor of the current melter design for the Hanford Waste Treatment Plant. Over its eight years of service, the West Valley melter has endured many of the same challenges that the Hanford melter will encounter with feeds that are similar to many of the Hanford double shell tank wastes. Thus, inspection of the West Valley melter prior to its disposal could provide valuable--even crucial--information to the designers of the melters to be used at the Hanford Site, particularly if quantitative information can be obtained. Themore » objective of Mississippi State University's Diagnostic Instrumentation and Analysis Laboratory's (DIAL) efforts is to develop, fabricate, and deploy inspection tools for the West Valley melter that will (i) be remotely operable in the West Valley process cell; (ii) provide quantitative information on melter refractory wear and deposits on the refractory; and (iii) indicate areas of heterogeneity (e.g., deposits) requiring more detailed characterization. A collaborative arrangement has been established with the West Valley Demonstration Project (WVDP) to inspect their melter.« less

  18. 2. VIEW OF THE MICROWAVE MELTER DEVELOPED BY THE RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF THE MICROWAVE MELTER DEVELOPED BY THE RESEARCH AND DEVELOPMENT GROUP LOCATED IN BUILDING 701. THE MICROWAVE MELTER TRANSFORMED WASTE INTO A VITREOUS GLASS-LIKE SUBSTANCE, IMMOBILIZING THE WASTE, SO THAT IT COULD BE SHIPPED OFF SITE FOR DISPOSAL. (1/31/91) - Rocky Flats Plant, Design Laboratory, Northwest quadrant of Plant, between buildings 776-777 & 771, Golden, Jefferson County, CO

  19. FINAL REPORT SUMMARY OF DM 1200 OPERATION AT VSL VSL-06R6710-2 REV 0 9/7/06

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; DIENER G

    2011-12-29

    The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project -more » Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m{sup 2} installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m{sup 2} low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification system with the specific train of unit operations that has been selected for both HLW and LAW RPP-WTP off-gas treatment.« less

  20. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.; Fowley, M.

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reducemore » hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.« less

  1. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Peeler, D.; Herman, C.

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objectivemore » is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.« less

  2. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.

    2013-11-13

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter,more » conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases in melter operating temperature. Glass composition development was based on one of the HLW waste compositions specified by ORP that has a high concentration of aluminum. Small-scale tests were used to provide an initial screening of various glass formulations with respect to melt rates; more definitive screening was provided by the subsequent DM100 tests. Glass properties evaluated included: viscosity, electrical conductivity, crystallinity, gross glass phase separation and the 7- day Product Consistency Test (ASTM-1285). Glass property limits were based upon the reference properties for the WTP HLW melter. However, the WTP crystallinity limit (< 1 vol% at 950oC) was relaxed slightly as a waste loading constraint for the crucible melts.« less

  3. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations. That simulant can be used in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. This document describes the method used to formulate a simulant of this LAW Melter Off-Gas Condensate stream, which, after pH adjustment, is the feed to the evaporator in the EMF.« less

  4. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potentialmore » issues associated with recycling.« less

  5. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  6. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  7. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  8. Effect of Bubbles and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.

    As the nuclear waste glass melter feed is converted to molten glass, the feed becomes a continuous glass-forming melt where dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion as it occurs during melting. We studied the melter feed viscosity during heating and correlated it with volume fractions of dissolving quartz particles and gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles,more » gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases.« less

  9. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubilitymore » data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ≈ TiO2 < CaO < P2O5 ≈ ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ≈ ZrO2 > Al2O3.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, Alex D.; McCabe, Daniel J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to themore » LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations and use it in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. The objective of this task was to test immobilization options for this evaporator bottoms aqueous stream. This document describes the method used to formulate a simulant of this EMF evaporator bottoms stream, immobilize it, and determine if the immobilized waste forms meet disposal criteria.« less

  11. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE PAGES

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; ...

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO 3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, whichmore » in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO 3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li 2O > V 2O 5> CaO ≈ P 2O 5 > Na 2O ≈ B 2O 3 > K 2O. The components that most decrease sulfur solubility are Cl > Cr 2O 3 > Al 2O 3 > ZrO 2 ≈ SnO 2 > Others ≈ SiO 2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  12. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating themore » need for an environmental impact statement.« less

  13. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  14. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE PAGES

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; ...

    2017-08-30

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  15. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; GONG W

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The datamore » provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of comparison, the tests reported here were performed with AZ-102 and C-106/AY-102 HLW simulants and glass compositions that are essentially the same as those used for recent DM1200 tests. One exception was the use of an alternate, higher-waste-loading C-106/AY-102 glass composition that was used in previous DM100 tests to further evaluate the performance of the optimized bubbler configuration.« less

  16. Melter Throughput Enhancements for High-Iron HLW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Gan, Hoa; Joseph, Innocent

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and themore » maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.« less

  17. Experimental Plan for Crystal Accumulation Studies in the WTP Melter Riser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.; Fowley, M.

    2015-04-28

    This experimental plan defines crystal settling experiments to be in support of the U.S. Department of Energy – Office of River Protection crystal tolerant glass program. The road map for development of crystal-tolerant high level waste glasses recommends that fluid dynamic modeling be used to better understand the accumulation of crystals in the melter riser and mechanisms of removal. A full-scale version of the Hanford Waste Treatment and Immobilization Plant (WTP) melter riser constructed with transparent material will be used to provide data in support of model development. The system will also provide a platform to demonstrate mitigation or recoverymore » strategies in off-normal events where crystal accumulation impedes melter operation. Test conditions and material properties will be chosen to provide results over a variety of parameters, which can be used to guide validation experiments with the Research Scale Melter at the Pacific Northwest National Laboratory, and that will ultimately lead to the development of a process control strategy for the full scale WTP melter. The experiments described in this plan are divided into two phases. Bench scale tests will be used in Phase 1 (using the appropriate solid and fluid simulants to represent molten glass and spinel crystals) to verify the detection methods and analytical measurements prior to their use in a larger scale system. In Phase 2, a full scale, room temperature mockup of the WTP melter riser will be fabricated. The mockup will provide dynamic measurements of flow conditions, including resistance to pouring, as well as allow visual observation of crystal accumulation behavior.« less

  18. Effect of Silica Particle Size of Nuclear Waste-to-Glass Conversion - 17319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Cutforth, Derek A.; Vanderveer, Bradley J.

    The process for converting nuclear waste-to-glass in an electric melter occurs in the cold cap, a crust of reacting solids floating on the glass pool. As the melter feed (a mixture of the nuclear waste and glass forming and modifying additives) heats up in the cold cap, glass-forming reactions ensue, causing the feed matrix to connect, trapping reaction gases to create a foam layer. The foam layer reduces the rate of melting by separating the reacting feed from the melt pool. The size of the silica particle additives in the melter feed affects melt viscosity and, hence, foam stability. Tomore » investigate this effect, seven nuclear waste simulant feeds of a high-level waste were batched as slurries and prepared with dissimilar ranges of silica particle size. Each slurry feed was charged into a laboratory-scale melter (LSM) to produce a cold cap and the propensity of feeds to foam was determined by pressing dried feeds into pellets and monitoring the change of pellet volume in response to heating. Two of these slurries were designed to have dissimilar glass viscosities at 1150°C. In the low temperature region of the cold cap, before the melter feed connects, the feeds without fine silica particles behaved similar to the high viscosity feed as their volume contracted while the feed with silica particles no larger than 5 µm reacted like the low viscosity feed. However, the feed volume similarities reversed as the feed connected and expanded through the foam region of the cold cap.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.

    During the first two years of radioactive operation of the Defense Waste Processing Facility process, several areas for improvement in melter design were identified. Due to the need for a process that allows continuous melter operation, the down time associated with disruption to melter operation and pouring has significant cost impact. A major objective of this task is to address performance limitations and deficiencies identified by the user.

  20. Testing Report: Littleford-Day Dryer Operation: Dryer Operation Impacts of Proposed MIS Mitigation Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimskey, Rick W.; Buchmiller, William C.; Elmore, Monte R.

    2007-06-01

    Pacific Northwest National Laboratory performed a series of tests using the Littleford Day 22-liter dryer during investigations that evaluated changes in the melter-feed composition for the Demonstration Bulk Vitrification System. During testing, a new melter-feed formulation was developed that improved dryer performance while improving the retention of waste salts in the melter feed during vitrification.

  1. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  2. Iron Phosphate Glass-Containing Hanford Waste Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less

  3. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  4. The role of frit in nuclear waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202)more » and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.« less

  5. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process, as shown in Figure 1. Borosilicate beads of various diameters were also procured for initial testing.« less

  6. Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abboud, Alexander William; Guillen, Donna Post

    2016-01-01

    At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblersmore » into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.« less

  7. Final Report - Enhanced LAW Glass Formulation Testing, VSL-07R1130-1, Rev. 0, dated 10/05/07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Pegg, I. L.; Matlack, K. S.

    2013-11-13

    The principal objective of this work was to extend the glass formulation methodology developed in the earlier work [2, 5, 6] for Envelope A, B and C waste compositions for development of compliant glass compositions targeting five high sodium-sulfur waste loading regions. This was accomplished through a combination of crucible-scale tests, and tests on the DM10 melter system. The DM10 was used for several previous tests on LAW compositions to determine the maximum feed sulfur concentrations that can be processed without forming secondary sulfate phases on the surface of the melt pool. This melter is the most efficient melter platformmore » for screening glass compositions over a wide range of sulfate concentrations and therefore was selected for the present tests. The tests were conducted to provide information on melter processing characteristics and off-gas data, including sulfur incorporation and partitioning. As described above, the main objective was to identify the limits of waste loading in compliant glass formulations spanning the range of expected Na{sub 2}O and SO{sub 3} concentrations in the LAW glasses.« less

  8. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction ofmore » accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.« less

  9. Effect of melter feed foaming on heat flux to the cold cap

    NASA Astrophysics Data System (ADS)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  10. Effect of melter feed foaming on heat flux to the cold cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolvedmore » gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.« less

  11. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.; Smith III, F. G.; McCabe, D. J.

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how themore » varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.« less

  12. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.; Stone, M. E.; Miller, D. H.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) tomore » address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12 th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.« less

  13. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Mcclane, D.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to demonstrate evaporation of a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, in order to predict the composition of the effluents from the EMF evaporator to aid in planning for their disposition. This document describes the results of that test using the core simulant. This simulant formulation is designated as the “core simulant”; other additives will be included for specific testing, such as volatiles for evaporation or hazardous metals for measuring leaching properties of waste forms. The results indicate that the simulant can easily be concentrated via evaporation. During that the pH adjustment step in simulant preparation, ammonium is quickly converted to ammonia, and most of the ammonia was stripped from the simulated waste and partitioned to the condensate. Additionally, it was found that after concentrating (>12x) and cooling that a small amount of LiF and Na 3(SO 4)F precipitate out of solution. With the exception of ammonia, analysis of the condensate indicated very low to below detectable levels of many of the constituents in the simulant, yielding very high decontamination factors (DF).« less

  14. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without themore » formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.« less

  15. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  16. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Pareizs, John M.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  17. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls formore » the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)« less

  18. Gaseous and particulate emissions from a DC arc melter.

    PubMed

    Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M

    2003-01-01

    Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.

  19. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, D.W.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  20. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Washton, Nancy

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700°C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500°C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (~8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  1. The U.S. Department of Energy - Office of Environmental Management Cooperation Program with the Russian Federal Atomic Energy Agency (ROSATOM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerdes, K.D.; Holtzscheiter, E.W.

    2006-07-01

    The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with the Russian Federal Atomic Energy Agency - Rosatom (formerly Minatom) for 14 years on waste management challenges of mutual concern. Currently, EM is cooperating with Rosatom to explore issues related to high-level waste and investigate Russian experience and technologies that could support EM site cleanup needs. EM and Rosatom are currently implementing six collaborative projects on high-level waste issues: 1) Advanced Melter Technology Application to the U.S. DOE Defense Waste Processing Facility (DWPF) - Cold Crucible Induction Heated Melter (CCIM); 2) - Design Improvements to themore » Cold Crucible Induction Heated Melter; 3) Long-term Performance of Hanford Low-Activity Glasses in Burial Environments; 4) Low-Activity-Waste (LAW) Glass Sulfur Tolerance; 5) Improved Retention of Key Contaminants of Concern in Low Temperature Immobilized Waste Forms; and, 6) Documentation of Mixing and Retrieval Experience at Zheleznogorsk. Preliminary results and the path forward for these projects will be discussed. An overview of two new projects 7) Entombment technology performance and methodology for the Future 8) Radiation Migration Studies at Key Russian Nuclear Disposal Sites is also provided. The purpose of this paper is to provide an overview of EM's objectives for participating in cooperative activities with the Russian Federal Atomic Energy Agency, present programmatic and technical information on these activities, and outline specific technical collaborations currently underway and planned to support DOE's cleanup and closure mission. (authors)« less

  2. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, themore » acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.« less

  3. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less

  4. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M.; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, whichmore » mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)« less

  5. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)« less

  6. Final Report - Glass Formulation Testing to Increase Sulfate Volatilization from Melter, VSL-04R4970-1, Rev. 0, dated 2/24/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Matlack, K. A.; Pegg, I. L.

    2013-11-13

    The principal objectives of the DM100 and DM10 tests were to determine the impact of four different organics and one inorganic feed additive on sulfate volatilization and to determine the sulfur partitioning between the glass and the off-gas system. The tests provided information on melter processing characteristics and off-gas data including sulfur incorporation and partitioning. A series of DM10 and DM100 melter tests were conducted using a LAW Envelope A feed. The testing was divided into three parts. The first part involved a series of DM10 melter tests with four different organic feed additives: sugar, polyethylene glycol (PEG), starch, andmore » urea. The second part involved two confirmatory 50-hour melter tests on the DM100 using the best combination of reductants and conditions based on the DM10 results. The third part was performed on the DM100 with feeds containing vanadium oxide (V{sub 2}O{sub 5}) as an inorganic additive to increase sulfur partitioning to the off-gas. Although vanadium oxide is not a reductant, previous testing has shown that vanadium shows promise for partitioning sulfur to the melter exhaust, presumably through its known catalytic effect on the SO{sub 2}/SO{sub 3} reaction. Crucible-scale tests were conducted prior to the melter tests to confirm that the glasses and feeds would be processable in the melter and that the glasses would meet the waste form (ILAW) performance requirements. Thus, the major objectives of these tests were to: Perform screening tests on the DM10 followed by tests on the DM100-WV system using a LAW -Envelope A feed with four organic additives to assess their impact on sulfur volatilization. Perform tests on the DM100-WV system using a LAW -Envelope A feed containing vanadium oxide to assess its impact on sulfur volatilization. Determine feed processability and product quality with the above additives. Collect melter emissions data to determine the effect of additives on sulfur partitioning and melter emissions. Collect and analyze discharged glass to determine sulfur retention in the glass. Prepare and characterize feeds and glasses with the additives to confirm that the feeds and the glass melts are suitable for processing in the DM100 melter. Prepare and characterize glasses with the additives to confirm that the glasses meet the waste form (ILAW) performance requirements.« less

  7. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M. M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax ® K-3 refractory and Inconel ® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing andmore » reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  8. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets;more » however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  9. Defense Waste Processing Facility Process Enhancements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bricker, Jonathan

    2010-11-01

    Jonathan Bricker provides an overview of process enhancements currently being done at the Defense Waste Processing Facility (DWPF) at SRS. Some of these enhancements include: melter bubblers; reduction in water use, and alternate reductant.

  10. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  11. EFFECTS OF QUARTZ PARTICLE SIZE AND SUCROSE ADDITION ON MELTING BEHAVIOR OF A MELTER FEED FOR HIGH-LEVEL GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MARCIAL J; KRUGER AA; HRMA PR

    2010-07-28

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only inmore » feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5-{micro}m quartz particles substantially increased because of foaming. The extent of foaming decreased as the particle size of quartz increased. Moreover, samples containing quartz particles 195 {micro}m formed agglomerates at temperatures above 900 C that only slowly dissolved in the melt. This study continues previous work on the feed-melting process, specifically on the effects of the size of silica particles on the formation of nuclear-waste glasses to determine a suitable range of silica particle sizes that causes neither excessive foaming nor undesirable agglomeration. Apart from varying the silica-particle size, carbon was added in the form of sucrose. Sucrose has been used to accelerate the rate of melting. In this study, we have observed its impact on feed foaming and quartz dissolution.« less

  12. The Effect of Foaming and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.

    As the nuclear waste glass melter feed is converted to molten glass, the feed eventually becomes a continuous glass-forming melt in which dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the melter feed is crucial for understanding the feed-to-glass conversion as it occurs in the cold cap. We measured the viscosity during heating of the feed and correlated it with the independently determined volume fractions of dissolving quartz particles and the gas phase. The measurement was performed with a rotating spindle rheometer on the melter feed heated at 5 K/min starting at severalmore » different temperatures. The effect of quartz particles, gas bubbles, and compositional inhomogeneity on the glass-forming melt viscosity was determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases to data.« less

  13. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc 4+ state, 104Ru in the melt as reduced Ru +4 state as insoluble RuO 2, and hazardous volatile Cr 6+ in themore » less soluble and less volatile Cr +3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H 2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.« less

  14. Review of Options for Ammonia/Ammonium Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C. A.

    This report is a review of literature supporting practical ammonia/ammonium destruction processes. Melter research supporting Hanford Low Activity Waste (LAW) glass production has shown that significant amounts of ammonia will be in the melter offgas condensate. Further work with secondary waste forms indicates the potential need to remove the ammonia, perhaps by an oxidative process. This review finds likely practical chemical methods to oxidize ammonia in aqueous solution at moderate temperatures and atmospheric pressure, using easily obtained reagents. Leading candidates include nitrite oxidation to produce nitrogen gas, various peroxide oxidative processes, and air stripping. This work reviews many other processesmore » and provides reasoning to not consider those processes further for this application.« less

  15. Multiphase, multi-electrode Joule heat computations for glass melter and in situ vitrification simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowery, P.S.; Lessor, D.L.

    Waste glass melter and in situ vitrification (ISV) processes represent the combination of electrical thermal, and fluid flow phenomena to produce a stable waste-from product. Computational modeling of the thermal and fluid flow aspects of these processes provides a useful tool for assessing the potential performance of proposed system designs. These computations can be performed at a fraction of the cost of experiment. Consequently, computational modeling of vitrification systems can also provide and economical means for assessing the suitability of a proposed process application. The computational model described in this paper employs finite difference representations of the basic continuum conservationmore » laws governing the thermal, fluid flow, and electrical aspects of the vitrification process -- i.e., conservation of mass, momentum, energy, and electrical charge. The resulting code is a member of the TEMPEST family of codes developed at the Pacific Northwest Laboratory (operated by Battelle for the US Department of Energy). This paper provides an overview of the numerical approach employed in TEMPEST. In addition, results from several TEMPEST simulations of sample waste glass melter and ISV processes are provided to illustrate the insights to be gained from computational modeling of these processes. 3 refs., 13 figs.« less

  16. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Hrma, Pavel R; Schweiger, Michael J

    2010-08-11

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds withmore » 5-μm quartz particles; particles >150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles >150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.« less

  17. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Howe, A.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to themore » LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF evaporator to aid in planning for their disposition, and (3) generate concentrated evaporator bottoms for use in immobilization testing.« less

  18. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  19. Final Report - Crystal Settling, Redox, and High Temperature Properties of ORP HLW and LAW Glasses, VSL-09R1510-1, Rev. 0, dated 6/18/09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Wang, C.; Gan, H.

    2013-11-13

    The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated meltersmore » with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of representative WTP HLW and LAW glasses over a wide range of temperatures, from the melter operating temperature to the glass transition.« less

  20. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    DOE PAGES

    Amoroso, Jake W.; Marra, James; Dandeneau, Christopher S.; ...

    2017-01-18

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. We identified primary hollandite,more » pyrochlore/zirconolite, and perovskite phases in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.« less

  1. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE PAGES

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav; ...

    2017-07-03

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  2. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  3. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)« less

  4. Characterization of off-gases from a small-scale, joule-heated ceramic melter for nuclear waste vitrification. [Ru, Cl, F, /sup 137/Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolsey, G.B.; Wilhite, E.L.

    1980-01-01

    This paper confirmed with actual nuclear waste the thermodynamic predictions of the fate of some of the semivolatiles in off-gas. Ruthenium behaves erratically and it is postulated that it migrates as a finely divided solid, rather than as a volatile oxide. Provisions for handling these waste off-gasses will be incorporated in the design of facilities for vitrifying SRP waste.

  5. Letter report on PCT/Monolith glass ceramic corrosion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Charles L.

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline networkmore » while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).« less

  6. PNNL Delivers Expertise, Technology to Biofuels Start-up, InEnTec

    ScienceCinema

    Surma, Jeff

    2017-12-09

    Initially through its Entrepreneurial Leave of Absence Program, PNNL gives biofuels innovators a start in opening up a new business based on technology developed for incinerating waste on the Hanford Site. Today, the companies Plasma Enhanced Melters are in operation around the world converting organic waste into valuable, clean fuels.

  7. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Edwards, T.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.« less

  8. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of FY2016 experiements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.; Miller, D.

    2016-12-01

    Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods.more » Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National Laboratory, and coordinated with modeling efforts underway at Idaho National Laboratory.« less

  9. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter suchmore » as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)« less

  10. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J. H.

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscositymore » arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.« less

  11. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  12. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, Jhon T.; Krenzien, Susan K.

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  13. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.; Fowley, M. D.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previouslymore » to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.« less

  15. Effect of Feed Composition on Cold-Cap Formation in Laboratory-Scale Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Lee, Seung Min

    The development of advanced glass formulations are a part of the plan for reducing the cost and time for treatment and vitrification of the 210,000 m3 of nuclear waste at the Hanford Site in southeastern Washington State. One property of interest in this development is melt viscosity, which has a decisive influence on the rate of glass production. In an electric melter, the conversion process from feed-to-glass above the melt pool occurs in the cold cap. At the final stage of conversion when the glass-forming melt becomes connected, gas evolving reactions cause foaming. The melt viscosity affects foam stability. Threemore » glasses were formulated with viscosities of 1.5, 3.5, and 9.5 Pa s at 1150°C by varying the SiO2 content at the expense of B2O3, Li2O, and Na2O kept at constant proportions. Cold caps were produced by charging simulated high-alumina, high-level waste feeds in a laboratory-scale melter (LSM). The spread of the feed on the cold cap during charging and the cross-sectional structure of the final cold caps were compared. The amount of the foam and the size of the bubbles increased as the viscosity increased.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, J; Miller, D; Stone, M

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less

  17. Options for the Separation and Immobilization of Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R Jeffrey; Crum, Jarrod V.; Riley, Brian J.

    Among radioactive constituents present in the Hanford tank waste, technetium-99 (Tc) presents a unique challenge in that it is significantly radiotoxic, exists predominantly in the liquid low-activity waste (LAW), and has proven difficult to effectively stabilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant, the LAW fraction will be converted to a glass waste form in the LAW vitrification facility, but a significant fraction of Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment system. This necessitates recycle of the off-gas condensate solution to the LAW glassmore » melter feed. The recycle process is effective in increasing the loading of Tc in the immobilized LAW (ILAW), but it also disproportionately increases the sulfur and halides in the LAW melter feed, which have limited solubility in the LAW glass and thus significantly reduce the amount of LAW (glass waste loading) that can be vitrified and still maintain good waste form properties. This increases both the amount of LAW glass and either the duration of the LAW vitrification mission or requires the need for supplemental LAW treatment capacity. Several options are being considered to address this issue. Two approaches attempt to minimize the off-gas recycle by removing Tc at one of several possible points within the tank waste processing flowsheet. The separated Tc from these two approaches must then be dispositioned in a manner such that the Tc can be safely disposed. Alternative waste forms that do not have the Tc volatility issues associated with the vitrification process are being sought for immobilization of Tc for subsequent storage and disposal. The first objective of this report is to provide insights into the compositions and volumes of the Tc-bearing waste streams including the ion exchange eluate from processing LAW and the off-gas condensate from the melter. The first step to be assessed will be the processing of ion exchange eluate. The second objective of this report is to assess the compatibility of the available waste forms with the anticipated waste streams. Two major categories of Tc-specific waste forms are considered in this report including mineral and metal waste forms. Overall, it is concluded that a metal alloy waste form is the most promising and mature Tc-specific waste form and offers several benefits. One obvious advantage of the disposition of Tc in the metal alloy waste form is the significant reduction of the generated waste form volume, which leads to a reduction of the required storage facility footprint. Among mineral waste forms, glass-bonded sodalite and possibly goethite should also be considered for the immobilization of Tc.« less

  18. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J. H.

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO 4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic,more » thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.« less

  19. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  20. Technology and equipment based on induction melters with ``cold'' crucible for reprocessing active metal waste

    NASA Astrophysics Data System (ADS)

    Pastushkov, V. G.; Molchanov, A. V.; Serebryakov, V. P.; Smelova, T. V.; Shestoperov, I. N.

    2000-07-01

    The paper discusses specific features of technology, equipment and control of a single stage RAMW decontamination and melting process in an induction furnace equipped with a "cold" crucible. The calculated and experimental data are given on melting high activity level stainless steel and Zr simulating high activity level metal waste. The work is under way in SSC RF VNIINM.

  1. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processedmore » into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; KOT WK

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Testmore » Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger WVDP facility, lending confidence to the tests results [1]. Since the inclusion or exclusion of a bubbler has significant design implications, the Project commissioned further tests to address this issue. In an effort to identify factors that might increase the glass production rate for projected WTP melter feeds, a subsequent series of tests was performed on the DM100 system. Several tests variables led to glass production rate increases to values significantly above the 400 kg/m2/d requirement. However, while small-scale melter tests are useful for screening relative effects, they tend to overestimate absolute glass production rates, particularly for un-bubbled tests. Consequently, when scale-up effects were taken into account, it was not clear that any of the variables investigated would conclusively meet the 400 kg/m{sup 2}/d requirement without bubbling. The present series of tests was therefore performed on the DM1200 one-third scale HLW pilot melter system to provide the required basis for a final decision on whether bubblers would be included in the HLW melter. The present tests employed the same AZ-101 waste simulant and glass composition that was used for previous testing for consistency and comparability with the results from the earlier tests.« less

  3. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO 2 containing glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO 2, Na 2O, Li 2O and Fe 2O 3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).« less

  4. Tracking the Key Constituents of Concern of the WTP LAW Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabrouki, Ridha B.; Matlack, Keith S.; Abramowitz, Howard

    The testing results presented in the present report were also obtained on a DM10 melter system operated with the primary WTP LAW offgas system components with recycle, as specified in the statement of work (SOW) [6] and detailed in the Test Plan for this work [7]. The primary offgas system components include the SBS, the WESP, and a recycle system that allows recycle of liquid effluents back to the melter, as in the present baseline for the WTP LAW vitrification. The partitioning of technetium and other key constituents between the glass waste form, the offgas system liquid effluents, the offgasmore » stream that exits the WESP, and the liquid condensate from the vacuum evaporator were quantified in this work. The tests employed three different LAW streams spanning a range of waste compositions anticipated for WTP. Modifications to the offgas system and operational strategy were made to expedite the approach to steady state concentrations of key constituents in the glass and offgas effluent solutions during each test.« less

  5. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less

  6. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE PAGES

    Jantzen, Carol M.

    2017-03-27

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less

  7. Yield Stress Reduction of DWPF Melter Feed Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.E.; Smith, M.E.

    2007-07-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah Rivermore » National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process. Yield stress reduction was measured by preparing melter feed slurries (using nonradioactive HLW simulants) that contain beads and comparing the yield stress with melter feed containing frit. A second set of tests was performed with beads of various diameters to determine if a decrease in diameter affected the results. Smaller particle size was shown to increase yield stress when frit is utilized. The settling rate of the beads was required to match the settling rate of the frit, therefore a decrease in particle size was anticipated. Settling tests were conducted in water, xanthan gum solutions, and in non-radioactive simulants of the HLW. The tests used time-lapse video-graphy as well as solids sampling to evaluate the settling characteristics of beads compared to frit of the same particle size. A preliminary melt rate evaluation was performed using a dry-fed Melt Rate Furnace (MRF) developed by SRNL. Preliminary evaluation of the impact of beading the frit on the frit addition system were completed by conducting flow loop testing. A recirculation loop was built with a total length of about 30 feet. Pump power, flow rate, outlet pressure, and observations of the flow in the horizontal upper section of the loop were noted. The recirculation flow was then gradually reduced and the above items recorded until settling was noted in the recirculation line. Overall, the data shows that the line pressure increased as the solids were increased for the same flow rate. In addition, the line pressure was higher for Frit 320 than the beads at the same solids level and flow. With the observations, a determination of minimum velocity to prevent settling could be done, but a graph of the line pressures versus velocity for the various tests was deemed to more objective. The graph shows that the inflection point in pressure drop is about the same for the beads and Frit 320. This indicates that the bead slurry would not require higher flows rates than frit slurry at DWPF during transfers. Another key finding was that the pump impeller was not significantly damaged by the bead slurry, while the Frit 320 slurry rapidly destroyed the impeller. Evidence of this was first observed when black particles were seen in the Frit 320 slurry being recirculated and then confirmed by a post-test inspection of the impeller. Finally, the pumping of bead slurry could be recovered even if flow is stopped. The Frit 320 slurry could not be restarted after stopping flow due to the nature of the frit to pack tightly when settled. Beads were shown to represent a significant process improvement versus frit for the DWPF process in lowering yield stress of the melter feed. Lower erosion of process equipment is another expected benefit.« less

  8. Thermodynamic and Microstructural Mechanisms in the Corrosion of Advanced Ceramic Tc-bearing Waste Forms and Thermophysical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Thomas

    Technetium-99 (Tc, t 1/2 = 2.13x10 5 years) is a challenge from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes found in used nuclear fuel (UNF). Within the Hanford Tank Waste Treatment and Immobilization Plant, technetium volatilizes at typical glass melting temperature, is captured in the off-gas treatment system and recycled back into the feed to eventually increase Tc-loadings of the glass. The aim of this NEUP project was to provide an alternative strategy to immobilize fission technetium as durable ceramic waste form and also to avoid the accumulation of volatile technetium within the offmore » gas melter system in the course of vitrifying radioactive effluents in a ceramic melter. During this project our major attention was turned to the fabrication of chemical durable mineral phases where technetium is structurally bond entirely as tetravalent cation. These mineral phases will act as the primary waste form with optimal waste loading and superior resistance against leaching and corrosion. We have been very successful in fabricating phase-pure micro-gram amounts of lanthanide-technetium pyrochlores by dry-chemical synthesis. However, upscaling to a gram-size synthesis route using either dry- or wet-chemical processing was not always successful, but progress can be reported on a variety of aspects. During the course of this 5-year NEUP project (including a 2-year no-cost extension) we have significantly enhanced the existing knowledge on the fabrication and properties of ceramic technetium waste forms.« less

  9. Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.

    The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility thatmore » houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS), was deployed at the West Valley Demonstration Project to remove this radioactively dilute, residual molten material from the melter before Vit system operations were brought to a formal end. The ECS consists of a stainless steel canister of the same size and dimensions as a standard HLW canister that is equipped with a special L-shaped snorkel assembly made of 304L stainless steel. Both the canister and snorkel assembly fit into a stainless steel cage that allows the entire canister assembly to be positioned over the melter as molten glass is drawn out by a vacuum applied to the canister. This paper describes the process used to prepare and apply the ECS to complete molten glass removal before declaring a formal end to Vit system operations and placing the Vit Facility into a safe standby mode awaiting potential deactivation.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surfacemore » of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative properties for the cold cap region is more difficult, as this region is not a true liquid, but rather a multilayer region consisting of a porous and a foamy layer. Physical properties affecting heat transfer, namely the thermal conductivity and heat capacity, have been fit to closely match data and observations from laboratory experiments. Data from xray tomography and quenching of laboratory-scale cold caps provide insight into the topology of bubble distribution within the cold cap at various temperatures. Heat transfer within the melter was validated by comparison with VSL data for the pilot-scale melter.« less

  11. TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramowitz, Howard; Brandys, Marek; Cecil, Richard

    2012-12-11

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed,more » built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.« less

  12. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Fowley, M. D.; Miller, D. H.

    2016-05-01

    The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer atmore » the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.« less

  13. Final Report. LAW Glass Formulation to Support AP-101 Actual Waste Testing, VSL-03R3470-2, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, I. S.; Pegg, I. L.; Rielley, Elizabeth

    2015-06-22

    The main objective of the work was to develop and select a glass formulation for vitrification testing of the actual waste sample of LAW AP-101 at Battelle - Pacific Northwest Division (PNWD). Other objectives of the work included preparation and characterization of glasses to demonstrate compliance with contract and processing requirements, evaluation of the ability to achieve waste loading requirements, testing to demonstrate compatibility of the glass melts with melter materials of construction, comparison of the properties of simulant and actual waste glasses, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  14. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; GONG W

    2011-12-29

    The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. Themore » baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The DM1200 system was reconfigured to enable testing of the baseline HLW or LAW off-gas trains to perform off-gas emissions testing with both LAW and HLW simulants in the present work. During 2002 and 2003, many of these off-gas components were tested individually and in an integrated manner with the DM1200 Pilot Melter. Data from these tests are being used to support engineering design confirmation and to provide data to support air permitting activities. In fiscal year 2004, the WTP Project was directed by the Office of River Protection (ORP) to comply with Environmental Protection Agency (EPA) Maximum Achievable Control Technology (MACT) requirements for organics. This requires that the combined melter and off-gas system have destruction and removal efficiency (DRE) of >99.99% for principal organic dangerous constituents (PODCs). In order to provide confidence that the melter and off-gas system are able to achieve the required DRE, testing has been directed with both LAW and HLW feeds. The tests included both 'normal' and 'challenge' WTP melter conditions in order to obtain data for the potential range of operating conditions for the WTP melters and off-gas components. The WTP Project, Washington State Department of Ecology, and ORP have agreed that naphthalene will be used for testing to represent semi-volatile organics and allyl alcohol will be used to represent volatile organics. Testing was also performed to determine emissions of halides, metals, products of incomplete combustion (PICs), dioxins, furans, coplanar PCBs, total hydrocarbons, and COX and NOX, as well as the particle size distribution (PSD) of particulate matter discharged at the end of the off-gas train. A description of the melter test requirements and analytical methods used is provided in the Test Plan for this work. Test Exceptions were subsequently issued which changed the TCO catalyst, added total organic emissions (TOE) to exhaust sampling schedule, and allowing modification of the test conditions in response to attainable plenum temperatures as well as temperature increases in the sulfur impregnated activated carbon (AC-S) column. Data are provided in this final report for all the required emission samples as well as melter and off-gas conditions during all the sampling periods. Appended to this report are previously issued VSL Letter Reports on method development for monitoring allyl alcohol in melter exhaust streams, on the results of characterization of the selected AC-S carbon media (Donnau BAT37), and on DM1200 off-line tests on the AC-S bed; also appended are reports from Air Tech on emissions sampling, and reports from Keika Ventures on validation of analytical data provided by Severn Trent Laboratories of Knoxville, Tennessee.« less

  15. Cold-Cap Temperature Profile Comparison between the Laboratory and Mathematical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-01

    The rate of waste vitrification in an electric melter is connected to the feed-to-glass conversion process, which occurs in the cold cap, a layer of reacting feed on top of molten glass. The cold cap consists of two layers: a low temperature (~100°C – ~800°C) region of unconnected feed and a high temperature (~800°C – ~1100°C) region of foam with gas bubbles and cavities mixed in the connected glass melt. A recently developed mathematical model describes the effect of the cold cap on glass production. For verification of the mathematical model, a laboratory-scale melter was used to produce a coldmore » cap that could be cross-sectioned and polished in order to determine the temperature profile related to position in the cold cap. The cold cap from the laboratory-scale melter exhibited an accumulation of feed ~400°C due to radiant heat from the molten glass creating dry feed conditions in the melter, which was not the case in the mathematical model where wet feed conditions were calculated. Through the temperature range from ~500°C – ~1100°C, there was good agreement between the model and the laboratory cold cap. Differences were observed between the two temperature profiles due to the temperature of the glass melts and the lack of secondary foam, large cavities, and shrinkage of the primary foam bubbles upon the cooling of the laboratory-scale cold cap.« less

  16. World first in high level waste vitrification - A review of French vitrification industrial achievements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brueziere, J.; Chauvin, E.; Piroux, J.C.

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less

  17. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan tomore » conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.« less

  18. Preliminary low-level waste feed definition guidance - LLW pretreatment interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shade, J.W.; Connor, J.M.; Hendrickson, D.W.

    1995-02-01

    The document describes limits for key constituents in the LLW feed, and the bases for these limits. The potential variability in the stream is then estimated and compared to the limits. Approaches for accomodating uncertainty in feed inventory, processing strategies, and process design (melter and disposal system) are discussed. Finally, regulatory constraints are briefly addressed.

  19. Goethite Bench-scale and Large-scale Preparation Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetiummore » that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Johnson, F. C.

    Increased loading of high level waste in glass can lead to crystallization within the glass. Some crystalline species, such as spinel, have no practical impact on the chemical durability of the glass, and therefore may be acceptable from both a processing and a product performance standpoint. In order to operate a melter with a controlled amount of crystallization, options must be developed for remediating an unacceptable accumulation of crystals. This report describes preliminary experiments designed to evaluate the ability to dissolve spinel crystals in simulated waste glass melts via the addition of glass forming chemicals (GFCs).

  1. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  2. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  3. IMPACT OF PARTICLE AGGLOMERATION ON ACCUMULATION RATES IN THE GLASS DISCHARGE RISER OF HLW MELTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Jansik, Danielle P.; Owen, Antionette T.

    2013-08-05

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with X-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, andmore » on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185±155 µm, and produced >3 mm thick layer after 120 h at 850 °C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.« less

  4. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Rodriguez, C. A.; Matyas, J.

    2012-11-12

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, andmore » on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.« less

  5. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to developmore » a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a sulfur salt layer is not formed on top of the melt pool while allowing higher sulfur based feeds to be processed through DWPF.« less

  6. Induction melter apparatus

    DOEpatents

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  7. Operating an induction melter apparatus

    DOEpatents

    Roach, Jay A.; Richardson, John G.; Raivo, Brian D.; Soelberg, Nicholas R.

    2006-01-31

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  8. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less

  9. Baseline LAW Glass Formulation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  10. Phase 2 testing results of immobilization of WTP effluent management facility vaporator bottoms simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.; Cozzi, A.; McCabe, D.

    2017-09-08

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the primary off-gas system. This work examined three waste form formulations based on previous testing with related simulants: 8 wt% ordinary portland cement (OPC), 47 wt% blast furnace slag (BFS), 45 wt% fly ash (FA) known as Cast Stone formulation; 20 wt% Aquaset® II-GH and 80 wt% BFS; 20 wt% OPC and 80 wt% BFS. These tests successfully produced one waste form that set within five days (Cast Stone formulation); however the other twomore » formulations, Aquaset® II-GH/BFS and OPC/BFS, took approximately eight and fourteen days to set, respectively.« less

  11. Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery

    DOEpatents

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.

  12. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and datamore » interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to limited accessibility. However, the consistency and the adequacy of sampling and mixing at SRS could at least be studied under the controlled process conditions based on samples discussed by Ray and others [2012a] in Waste Form Qualification Report (WQR) Volume 2 and the transfers from Tanks 40H and 51H to the Sludge Receipt and Adjustment Tank (SRAT) within DWPF. It is important to realize that the need for sample representativeness becomes more stringent as the material gets closer to the melter, and the tanks within DWPF have been studied extensively to meet those needs.« less

  13. Nitric-glycolic flowsheet reduction/oxidation (redox) model for the defense waste processing facility (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Williams, M. S.; Edwards, T. B.

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, retains radionuclides in the melt and thus the final glass. Specifically, long-lived radioactive 99Tc species are less volatile in the reduced Tc 4+ state as TcO 2 than as NaTcO 4 or Tc 2O 7, and ruthenium radionuclides in the reduced Ru 4+ state are insoluble RuO 2 inmore » the melt which are not as volatile as NaRuO 4 where the Ru is in the +7 oxidation state. Similarly, hazardous volatile Cr 6+ occurs in oxidized melt pools as Na 2CrO 4 or Na 2Cr 2O 7, while the Cr +3 state is less volatile and remains in the melt as NaCrO 2 or precipitates as chrome rich spinels. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam.« less

  14. Lid heater for glass melter

    DOEpatents

    Phillips, Terrance D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

  15. Lid heater for glass melter

    DOEpatents

    Phillips, T.D.

    1993-12-14

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures.

  16. Melter Technologies Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, J.M. Jr.; Schumacher, R.F.; Forsberg, C.W.

    1996-05-01

    The problem of controlling and disposing of surplus fissile material, in particular plutonium, is being addressed by the US Department of Energy (DOE). Immobilization of plutonium by vitrification has been identified as a promising solution. The Melter Evaluation Activity of DOE`s Plutonium Immobilization Task is responsible for evaluating and selecting the preferred melter technologies for vitrification for each of three immobilization options: Greenfield Facility, Adjunct Melter Facility, and Can-In-Canister. A significant number of melter technologies are available for evaluation as a result of vitrification research and development throughout the international communities for over 20 years. This paper describes an evaluationmore » process which will establish the specific requirements of performance against which candidate melter technologies can be carefully evaluated. Melter technologies that have been identified are also described.« less

  17. Volatile species of technetium and rhenium during waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongsang; Kruger, Albert A.

    Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less

  18. Volatile species of technetium and rhenium during waste vitrification

    DOE PAGES

    Kim, Dongsang; Kruger, Albert A.

    2017-10-26

    Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less

  19. Materials for Tc Capture to Increase Tc Retention in Glass Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Hrma, Pavel R.; Kruger, Albert A.

    99Technetium is a long-lived fission product found in the tank waste at the Hanford site in Washington State. In its heptavalent species, it is volatile at the temperatures used in Hanford Tank Waste Treatment and Immobilization Plant vitrification melters, and thus is challenging to incorporate into waste glass. In order to decrease volatility and thereby increase retention, technetium can be converted into more thermally stable species. Several mineral phases, such as spinel, are able to incorporate tetravalent technetium in a chemically durable and thermally stable lattice, and these hosts may promote the decreased volatility that is desired. In order tomore » be usefully implemented, there must be a synthetic rout to these phases that is compatible with both technetium chemistry and current Hanford Tank Waste Treatment and Immobilization Plant design. Synthetic routes for spinel and other potential host phases are examined.« less

  20. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components,more » antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).« less

  1. Final Report. Baseline LAW Glass Formulation Testing, VSL-03R3460-1, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Isabelle S.; Pegg, Ian L.; Gan, Hao

    2015-06-18

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  2. Modeling of Thermal Treatment of Hazardous Solid Wastes in a DC Arc Melter.

    PubMed

    Wenger, Ashley; Farouk, Bakhtier; Wittle, Kenneth

    1996-12-01

    Ashley Wenger is a graduate student in the Mechanical Engineering and Mechanics (MEM) Department at Drexel University. Dr. Bakhtier Farouk is a professor in the MEM Department at Drexel University, 32nd and Chestnut Streets, Philadelphia, PA 19104. Dr. J. Kenneth Wittle is the vice president of Electro-Pyrolysis, Inc., Suite 1118, 996 Old Eagle School Road, Wayne, PA 19087. Please address all correspondence to Dr. Bakhtier Farouk.

  3. Determination of heat conductivity of waste glass feed and its applicability for modeling the batch-to-glass conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hujova, Miroslava; Pokorny, Richard; Klouzek, Jaroslav

    The heat conductivity of reacting melter feed affects the heat transfer and conversion process in the cold cap (the reacting feed floating on molten glass). To investigate it, we simulated the feed conditions and morphology in the cold-cap by preparing “fast-dried slurry blocks”, formed by rapidly evaporating water from feed slurry poured onto a 200°C surface. A heat conductivity meter was used to measure heat conductivity of samples cut from the fast-dried slurry blocks, samples of a cold cap retrieved from a laboratory-scale melter, and loose dry powder feed samples. Our study indicates that the heat conductivity of the feedmore » in the cold cap is significantly higher than that of loose dry powder feed, resulting from the feed solidification during the water evaporation from the feed slurry. To assess the heat transfer at higher temperatures when feed turns into foam, we developed a theoretical model that predicts the foam heat conductivity based on morphology data from in-situ X-ray computed tomography. The implications for the mathematical modeling of the cold cap are discussed.« less

  4. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less

  5. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the radionuclides that is volatile in the melter and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 (99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentrations in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and 241Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. At this time, these scoping tests did not evaluate the partitioning of the radionuclides to the evaporator condensate, since ample data are available separately from other experience in the DOE complex. Results from the evaporation testing show that the neutral SBS simulant first forms turbidity at ~7.5X concentration, while the alkaline-adjusted simulant became turbid at ~3X concentration. The major solid in both cases was Kogarkoite, Na3FSO4. Sodium and lithium fluorides were also detected. Minimal solids were formed in the evaporator bottoms until a substantial fraction of liquid was removed, indicating that evaporation could minimize storage volume issues. Achievable concentration factors without significant insoluble solids were 17X at alkaline pH, and 23X at neutral pH. In both runs, significant ammonia carried over and was captured in the condenser with the water condensate. Results also indicate that with low insoluble solids formation in the initial testing at neutral pH, the use of Reverse Osmosis is a potential alternate method for concentrating the solution, although an evaluation is needed to identify equipment that can tolerate insoluble solids. Most of the ammonia remains in the evaporator bottoms during the neutral pH evaporation, but partitions to the condensate during alkaline evaporation. Disposition of both streams needs to consider the management of ammonia vapor and its release. Since this is an initial phase of testing, additional tasks related to evaporation methods are expected to be identified for development. These tasks likely include evaluation and testing of composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and evaporator condensate disposition.« less

  6. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Matlack, Keith S.; Pegg, Ian L.

    2012-12-13

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics,more » glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts.« less

  7. Conversion of Nuclear Waste into Nuclear Waste Glass: Experimental Investigation and Mathematical Modeling

    DOE PAGES

    Hrma, Pavel

    2014-12-18

    The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated usingmore » thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.« less

  8. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.

    Technetium retention during Hanford waste vitrification can be increased by inhibiting technetium volatility from the waste glass melter. Incorporating technetium into a mineral phase, such as sodalite, is one way to achieve this. Rhenium-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glasses. After melting feeds of these two glasses, the retention of rhenium was measured and compared with the rhenium retention in glass prepared from a feed containing Re2O7 as a standard. The rhenium retention was 21% higher for HLW glass and 85% highermore » for LAW glass when added to samples in the form of sodalite as opposed to when it was added as Re2O7, demonstrating the efficacy of this type of an approach.« less

  9. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T. B.

    2013-03-14

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF’s melter operation during the processing of Sludge Batch 8 (SB8). SRNL’s support has been in response to technical task requests that have been made by SRR’s Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory aremore » presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF’s strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.« less

  10. Cold Test Operation of the German VEK Vitrification Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleisch, J.; Schwaab, E.; Weishaupt, M.

    2008-07-01

    In 2007 the German High-Level Liquid Waste (HLLW) Vitrification plant VEK (Verglasungseinrichtung Karlsruhe) has passed a three months integral cold test operation as final step before entering the hot phase. The overall performance of the vitrification process equipment with a liquid-fed ceramic glass melter as main component proved to be completely in line with the requirements of the regulatory body. The retention efficiency of main radioactive-bearing elements across melter and wet off-gas treatment system exceeded the design values distinctly. The strategy to produce a specified waste glass could be successfully demonstrated. The results of the cold test operation allow enteringmore » the next step of hot commissioning, i.e. processing of approximately 2 m{sup 3} of diluted HLLW. In summary: An important step of the VEK vitrification plant towards hot operation has been the performance of the cold test operation from April to July 2007. This first integral operation was carried out under boundary conditions and rules established for radioactive operation. Operation and process control were carried out following the procedure as documented in the licensed operational manuals. The function of the process technology and the safe operation could be demonstrated. No severe problems were encountered. Based on the positive results of the cold test, application of the license for hot operation has been initiated and is expected in the near future. (authors)« less

  11. Method for melting glass by measurement of non-bridging oxygen

    DOEpatents

    Jantzen, Carol M.

    1992-01-01

    A method for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a "non-bridging oxygen" term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.

  12. Method for melting glass by measurement of non-bridging oxygen

    DOEpatents

    Jantzen, C.M.

    1992-04-07

    A method is described for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a non-bridging oxygen' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term. 4 figs.

  13. Method for making glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.M.

    1991-12-31

    A method for making better quality molten (borosilicate and other) glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the a ass constituents that are fed into the melterin accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter`s operating temperature until they meltmore » and homogenize. The equations include the calculation of a ``non-bridging oxygen`` term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.« less

  14. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE PAGES

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  15. INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; GONG W

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  16. Tunable molten oxide pool assisted plasma-melter vitrification systems

    DOEpatents

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.

  17. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  18. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  19. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  20. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  1. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models formmore » the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO 2-, Na 2O-, and Cs 2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO 2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO 2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and the modified property acceptable region limits for the durability constraints be incorporated in the next revision of the technical bases for PCCS and then implemented into PCCS. It is also recommended that an reduction of constraints of 4 wt% Al 2O 3 be implemented with no restrictions on the amount of alkali in the glass for TiO 2 values ≥2 wt%. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less

  2. Incorporating technetium in minerals and other solids: A review

    NASA Astrophysics Data System (ADS)

    Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael; Hrma, Pavel

    2015-11-01

    Technetium (Tc) can be incorporated into a number of different solids including spinel, sodalite, rutile, tin dioxide, pyrochlore, perovskite, goethite, layered double hydroxides, cements, and alloys. Synthetic routes are possible for each of these phases, ranging from high-temperature ceramic sintering to ball-milling of constituent oxides. However, in practice, Tc has only been incorporated into solid materials by a limited number of the possible syntheses. A review of the diverse ways in which Tc-immobilizing materials can be made shows the wide range of options available. Special consideration is given to hypothetical application to the Hanford Tank Waste and Vitrification Plant, such as adding a Tc-bearing mineral to waste glass melter feed. A full survey of solid Tc waste forms, the common synthesis routes to those waste forms, and their potential for application to vitrification processes are presented. The use of tin dioxide or ferrite spinel precursors to reduce Tc(VII) out of solution and into a durable form are shown to be of especially high potential.

  3. Conceptual design study for Infrared Limb Experiment (IRLE)

    NASA Technical Reports Server (NTRS)

    Baker, Doran J.; Ulwick, Jim; Esplin, Roy; Batty, J. C.; Ware, Gene; Tew, Craig

    1989-01-01

    The phase A engineering design study for the Infrared Limb Experiment (IRLE) instrument, the infrared portion of the Mesosphere-Lower Thermosphere Explorer (MELTER) satellite payload is given. The IRLE instrument is a satellite instrument, based on the heritage of the Limb Infrared Monitor of the Stratosphere (LIMS) program, that will make global measurements of O3, CO2, NO, NO2, H2O, and OH from earth limb emissions. These measurements will be used to provide improved understanding of the photochemistry, radiation, dynamics, energetics, and transport phenomena in the lower thermosphere, mesosphere, and stratosphere. The IRLE instrument is the infrared portion of the MELTER satellite payload. MELTER is being proposed to NASA Goddard by a consortium consisting of the University of Michigan, University of Colorado and NASA Langley. It is proposed that the Space Dynamics Laboratory at Utah State University (SDL/USU) build the IRLE instrument for NASA Langley. MELTER is scheduled for launch in November 1994 into a sun-synchronous, 650-km circular orbit with an inclination angle of 97.8 deg and an ascending node at 3:00 p.m. local time.

  4. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errorsmore » in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and melter operating details will be provided in the final report. A summary of the tests that were conducted is provided in Table 1. Each of the seven tests was of nominally one hundred hours in duration. Test B was conducted in two equal segments: the first with nominal additives, and the second with the replacement of borax with a mixture of boric acid and soda ash to determine the effect of alternative OPC sources on production rates and processing characteristics. Interestingly, sugar additions were required near mid points of Tests W and Z to reduce excessive foaming that severely limited feed processing rates. The sugar additions were very effective in recovering manageable processing conditions, albeit over the relatively short remainder of the test duration. Tests W and Z employed the highest melt viscosities but not by a particularly wide margin. Other tests, which did not exhibit such foaming Issues, employed higher concentrations of manganese or iron or both. These results highlight the need for the development of protocols for the a priori determination of which HLW feeds will require sugar additions and the appropriate amounts of sugar to be added in order to control foaming (and maintain throughput) without over-reduction of the melt (which could lead to molten metal formation). In total, over 8,800 kg of feed was processed to produce over 3200 kg of glass. Steady-state processing rates were achieved, and no secondary sulfate phases were observed during any of the tests. Analysis was performed on samples of the glass product taken throughout the tests to verify composition and properties. Sampling and analysis was also performed on melter exhaust to determine the effect of the feed and glass changes on melter emissions.« less

  5. Method for making glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.M.

    1991-01-01

    A method for making better quality molten (borosilicate and other) glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the a ass constituents that are fed into the melterin accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they meltmore » and homogenize. The equations include the calculation of a non-bridging oxygen'' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.« less

  6. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    DOE PAGES

    Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav; ...

    2017-05-10

    The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less

  7. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav

    The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less

  8. The effects of glass doping, temperature and time on the morphology, composition, and iron redox of spinel crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Amonette, James E.; Kukkadapu, Ravi K.

    2014-10-31

    Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals weremore » extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fe total ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.« less

  9. Application of the TEMPEST computer code to canister-filling heat transfer problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch fillingmore » mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs.« less

  10. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tankmore » farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts of impurities such as formic and diglycolic acid that were then carried over in the SME products. Oxalic acid present in the simulated tank farm waste was also detected. Finally, numerous other compounds, at low concentrations, were observed present in etheric extracts of aqueous supernate solutions of the SME samples and are thought to be breakdown products of antifoam 747. The data collectively suggest that although addition of glycolic acid and antifoam 747 will introduce a number of impurities and breakdown products into the melter feed, the concentrations of these organics is expected to remain low and may not significantly impact REDOX or off-gas flammability predictions. In the SME products examined presently, which contained variant amounts of glycolic acid and antifoam 747, no unexpected organic degradation product was found at concentrations above 500 mg/kg, a reasonable threshold concentration for an organic compound to be taken into account in the REDOX modeling. This statement does not include oxalic or formic acid that were sometimes observed above 500 mg/kg and acetic acid that has an analytical detection limit of 1250 mg/kg due to high glycolate concentration in the SME products tested. Once a finalized REDOX equation has been developed and implemented, REDOX properties of known organic species will be determined and their impact assessed. Although no immediate concerns arose during the study in terms of a negative impact of organics present in SME products of the glycolic flowsheet, evidence of antifoam degradation suggest that an alternative antifoam to antifoam 747 is worth considering. The determination and implementation of an antifoam that is more hydrolysis resistant would have benefits such as increasing its effectiveness over time and reducing the generation of degradation products.« less

  11. Apparatus for continuous feed material melting

    DOEpatents

    Surma, Jeffrey E.; Perez, Jr., Joseph M.

    1998-01-01

    The apparatus of the present invention is a melter housing having a pretreat chamber heated with a feed material heater that is partially isolated from a melter chamber. The method of the present invention has the steps of introducing feed material into a pretreat chamber and heating the feed material to a softening temperature of the feed material, and passing the pretreated feed material to a melter chamber.

  12. Evaluation of quartz melt rate furnace with the nitric-glycolic flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the Nitric-Glycolic (NG) flowsheet. The work is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 20141 and the Slurry-fed Melt Rate Furnace (SMRF) testing conducted in 20162 that supported Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR).3 The Quartz Melt Rate Furnace (QMRF) was evaluated as a bench-scale scoping tool to potentially be used in lieu of or simply prior to the use of the larger-scale SMRF or CEF.more » The QMRF platform has been used previously to evaluate melt rate behavior and offgas compositions of DWPF glasses prepared from the Nitric-Formic (NF) flowsheet but not for the NG flowsheet and not with continuous feeding.4 The overall objective of the 2016-2017 testing was to evaluate the efficacy of the QMRF as a lab-scale platform for steady state, continuously fed melter testing with the NG flowsheet as an alternative to more expensive and complex testing with the SMRF or CEF platforms.« less

  13. Chemical Composition Measurements of LAWA44 Glass Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T.; Riley, W.

    2016-11-15

    DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. Both low-activity and high-level wastes will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass. One area of work is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, the Savannah River National Laboratory provides chemical analysis results for severalmore » samples of a simulated low-activity waste glass, LAWA44, provided by the Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 97.9 to 102.6 wt %, indicating acceptable recovery of the glass components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. It was noted that the measured B 2O 3 concentrations are somewhat above the targeted values for the study glasses. No obvious trends were observed with regard to the multiple melting steps used to prepare the study glasses, indicating that any potential effects of volatility were below measurable thresholds.« less

  14. Hanford’s Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.

    2008-02-22

    The GeoMelt® In-Container Vitrification™ (ICV™) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford’s low-activity waste (LAW). Also referred to as “bulk vitrification,” this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILLmore » Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV™ process before operating the Hanford pilot-plant. In 2007, the project’s fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV™ melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV™ melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D.« less

  15. Corrosion assessment of refractory materials for high temperature waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosionmore » coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.« less

  16. [Methodological aspects of the assessment of phytotoxicic properties of ice-melter reagents].

    PubMed

    Sbitnev, A V; Vodianova, M A; Kriatov, I A; Donerian, L G; Evseeva, I S; Ushakova, O V; Ushakov, D I; Matveeva, I S; Rodionova, O M

    One of the main criteria which determine the possibility of the use of a particular type of ice-melter reagents (IMR) is the degree of their safety for the environment and human health, which is reflected in the establishment of safe doses and concentrations. In this regard, the current area of research is to improve the ecological and epidemiological principles of risk assessment of modern types of anti-icing agents. Currently available data concerning monitoring soil studies and the snow held in various cities of Russia, show that there is a process of accumulation of the main components of IMR - sodium and chlorine ions in the areas related to the roadway. The article is designated a problem of existing methodological approaches to the assessment of the phytotoxic impact in the investigation of anti-icing agents in the laboratory. There was executed the comparative characteristics of the results of the preliminary pilot studies on the phytotoxic properties of IMR under using different substrates for germination of seeds - soil and filter paper. The data obtained are characterized by differences in the degree of phytotoxic action of the same species depending upon ice-melter reagents methodical setting circuit laboratory experiment. As a result, there was shown the imperfection of the existing method of rapid analysis in relation to ice-melter materials (IMM).

  17. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.; Lambert, D.

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. Tomore » address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments. Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.« less

  18. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ( 99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove 90Sr and actinides, inorganic reducing agents for 99Tc, and zeolites for 137Cs. Test results indicate that excellent removal of 99Tc was achieved using Sn(II)Cl 2 as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alkaline pH, with a DF of 17.9. As anticipated, ammonium ion probably interfered with the Ionsiv®a IE-95 zeolite uptake of 137Cs. Although this DF of 137Cs was moderate, additional testing is expected to identify more effective conditions. Similarly, Monosodium Titanate (MST) was more effective at alkaline pH at removing Sr, Pu, and U, with a DF of 319, 11.6, and 10.5, respectively, within 24 hours. Actually, the Ionsiv® IE-95, which was targeting removal of Cs, was also moderately effective for Sr, and highly effective for Pu and U at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}Tc during the SnCl 2 reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Results of this separation testing indicate that sorption/precipitation was a viable concept and has the potential to decontaminate the stream. All radionuclides were at least partially removed by one or more of the materials tested. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl 2) and sorbent at neutral pH to remove the Tc, followed by pH adjustment and the addition of zeolite (Ionsiv® IE-95) to remove the Cs, Sr, and actinides. Addition of MST to remove Sr and actinides may not be needed. Since this was an initial phase of testing, additional tasks to improve separation methods were expected to be identified. Primarily, further testing is needed to identify the conditions for the decontamination process. Once these conditions are established, follow-on tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated LAW Off-Gas Condensate evaporation and solidification.« less

  19. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicero-Herman, C.A.; Workman, P.; Poole, K.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification processmore » utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.« less

  20. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures andmore » are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluate if this stream is compatible with the evaporator and the other wastes in the tank farm. It should be noted that prior experience in evaporation of another melter off-gas stream, the Recycle Stream at the SRS Defense Waste Processing Facility, unexpectedly caused deleterious impacts on evaporator scaling and formation of aluminosilicate solids before controls were implemented. The compatibility of this stream with other wastes and components in the tank farms has not been fully investigated, whether it is sent for storage in AW-102 in preparation for evaporation in 242-A evaporator, or if it is pre-concentrated in an auxiliary evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion, precipitation, flammable gases, and scale in the tank farm system. Testing is needed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. Alternate disposition of this LAW Recycle stream could beneficially impact WTP, and may also remove a sizeable fraction of the 99Tc from the source term at the IDF. The alternative radionuclide removal process envisioned for this stream parallels the Actinide Removal Process that has been successfully used at SRS for several years. In that process, Monosodium Titanate (MST) is added to the tank waste to adsorb 90Sr and actinides, and then the MST and radionuclides are removed by filtration. The process proposed for investigation for the Hanford WTP LAW Recycle stream would similarly add MST to remove 90Sr and actinides, along with other absorbents or precipitating agents for the remaining radionuclides. These include inorganic reducing agents for Tc, and zeolites for 137Cs. After treatment, disposition of the decontaminated Recycle stream may be suitable for the Effluent Treatment Facility, where it could be evaporated and solidified. The contaminated slurry stream containing the absorbents and radionuclides will be preliminarily characterized in this phase of the program to evaluate disposal options, and disposition routes will be tested in the next phase. The testing described herein will aid in selection of the best disposal pathway. Several research tasks have been identified that are needed for this initial phase: imulant formulation- Concentration of Recycle to reduce storage volume; Blending of concentrated Recycle with tank waste; Sorption of radionuclides; Precipitation of radionuclides. After this initial phase of testing, additional tasks are expected to be identified for development. These tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated Recycle evaporation and solidification. Although there are a number of unknown parameters listed in the technical details of the concepts described here, many of these parameters have precedence and do not generally require fundamental new scientific breakthroughs. Many of the materials and processes described are already used in radioactive applications in the DOE complex, or have been tested previously in comparable conditions. Some of these materials and equipment are already used in High Level Waste applications, which are much more complex and aggressive conditions than the LAW Recycle stream. In some cases, the unknown parameters are simply extensions of already studied conditions, such as tank waste corrosion chemistry. The list of testing needs at first appears daunting, but virtually all have been done before, although there are potential issues with compatibility with this unique waste stream. It is anticipated that the challenge will be more in integrating the system and complying with process limitations than in developing entirely new technologies. Several assumptions have been made in this document about the acceptability of radionuclide decontamination and potential waste forms for disposal. These assumptions have been used to define acceptability criteria for feasibility studies on removal. These limits are not intended to define regulatory or facility limits, but rather provide a starting point for evaluating various technologies.« less

  1. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.

    PubMed

    Pratt, C; Shilton, A

    2009-01-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewater. A number of researchers have suggested that adsorption isotherms are a useful tool for predicting P retention capacity. However, to date the appropriateness of using isotherms for slag filter design remains unverified due to the absence of benchmark data from a full-scale, field filter operated to exhaustion. This investigation compared the isotherm-predicted P retention capacity of a melter slag with the P adsorption capacity determined from a full-scale, melter slag filter which had reached exhaustion after five years of successfully removing P from waste stabilization pond effluent. Results from the standard laboratory batch test showed that P adsorption correlated more strongly with the Freundlich Isotherm (R(2)=0.97, P<0.01) than the Langmuir Isotherm, a similar finding to previous studies. However, at a P concentration of 10 mg/L, typical of domestic effluent, the Freundlich equation predicted a retention capacity of 0.014 gP/kg slag; markedly lower than the 1.23 gP/kg slag adsorbed by the field filter. Clearly, the result generated by the isotherm bears no resemblance to actual field capacity. Scanning electron microscopy analysis revealed porous, reactive secondary minerals on the slag granule surfaces from the field filter which were likely created by weathering. This slow weathering effect, which generates substantial new adsorption sites, is not accounted for by adsorption isotherms rendering them ineffective in slag filter design.

  2. Eliminating Medical Waste Liabilities Through Mobile Maceration and Disinfection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. A. Rankin; N. R. Soelberg; K. M. Klingler

    2006-02-01

    Commercial medical waste treatment technologies include incineration, melting, autoclaving, and chemical disinfection. Incineration disinfects, destroys the original nature of medical waste, and reduces the waste volume by converting organic waste content to carbon dioxide and water, leaving only residual inorganic ash. However, medical waste incinerator numbers have plummeted from almost 2,400 in 1995 to 115 in 2003 and to about 62 in 2005, due to negative public perception and escalating compliance costs associated with increasingly strict regulations. High-temperature electric melters have been designed and marketed as incinerator alternatives, but they are also costly and generally must comply with the samemore » incinerator emissions regulations and permitting requirements. Autoclave processes disinfect medical waste at much lower operating temperatures than incinerators operate at, but are sometimes subject to limitations such as waste segregration requirements to be effective. Med-Shred, Inc. has developed a patented mobile shredding and chemical disinfecting process for on-site medical waste treatment. Medical waste is treated on-site at customer facilities by shredding and disinfecting the waste. The treated waste can then be transported in compliance with Health Insurance Portability and Accountability Act of 1996 (HIPAA) requirements to a landfill for disposal as solid municipal waste. A team of Idaho National Laboratory engineers evaluated the treatment process design. The process effectiveness has been demonstrated in mycobacterium tests performed by Analytical Services Incorporated. A process description and the technical and performance evaluation results are presented in the paper. A treatment demonstration and microbiological disinfecting tests show that the processor functions as it was intended.« less

  3. FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; BARDAKCI T

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test successmore » criteria), along with how they were met, are outlined in a table.« less

  4. Non-combustible waste vitrification with plasma torch melter.

    PubMed

    Park, J K; Moon, Y P; Park, B C; Song, M J; Ko, K S; Cho, J M

    2001-05-01

    Non-combustible radioactive wastes generated from Nuclear Power Plants (NPPs) are composed of concrete, glass, asbestos, metal, sand, soil, spent filters, etc. The melting tests for concrete, glass, sand, and spent filters were carried out using a 60 kW plasma torch system. The surrogate wastes were prepared for the tests. Non-radioactive Co and Cs were added to the surrogates in order to simulate the radioactive waste. Several kinds of surrogate prepared by their own mixture or by single waste were melted with the plasma torch system to produce glassy waste forms. The characteristics of glassy waste forms were examined for the volume reduction factor (VRF) and the leach rate. The VRFs were estimated through the density measurement of the surrogates and the glassy waste forms, and were turned out to be 1.2-2.4. The EPA (Environmental Protection Agency) Toxicity Characteristic Leaching Procedure (TCLP) was used to determine the leach resistance for As, Ba, Hg, Pb, Cd, Cr, Se, Co, and Cs. The leaching index was calculated using the total content of each element in both the waste forms and the leachant. The TCLP tests resulted in that the leach rates for all elements except Co and Cs were lower than those of the Universal Treatment Standard (UTS) limits. There were no UTS limits for Co and Cs, and their leach rate & index from the experiments were resulted in around 10 times higher than those of other elements.

  5. Earth melter with rubble walls and method of use

    DOEpatents

    Chapman, Chris C.

    1998-01-01

    The present invention is an improvement to the earth melter described and claimed in U.S. Pat. No. 5,443,618. The improvement is the use of rubble for retaining walls. More specifically, the retaining walls rest on ground level and extend above ground level piling rubble around a melt zone. A portion of the melter may be below grade wherein sidewalls are formed by the relatively undisturbed native soil or rock, and the rubble may be used as a backfill liner for the below grade sidewalls.

  6. Rapid Conditioning for the Next Generation Melting System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rue, David M.

    This report describes work on Rapid Conditioning for the Next Generation Melting System under US Department of Energy Contract DE-FC36-06GO16010. The project lead was the Gas Technology Institute (GTI). Partners included Owens Corning and Johns Manville. Cost share for this project was provided by NYSERDA (the New York State Energy Research and Development Authority), Owens Corning, Johns Manville, Owens Illinois, and the US natural gas industry through GTI’s SMP and UTD programs. The overreaching focus of this project was to study and develop rapid refining approaches for segmented glass manufacturing processes using high-intensity melters such as the submerged combustion melter.more » The objectives of this project were to 1) test and evaluate the most promising approaches to rapidly condition the homogeneous glass produced from the submerged combustion melter, and 2) to design a pilot-scale NGMS system for fiberglass recycle.« less

  7. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection andmore » administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV{sup TM} melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D. (authors)« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been amore » limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.« less

  9. Milliwave melter monitoring system

    DOEpatents

    Daniel, William E [North Augusta, SC; Woskov, Paul P [Bedford, MA; Sundaram, Shanmugavelayutham K [Richland, WA

    2011-08-16

    A milliwave melter monitoring system is presented that has a waveguide with a portion capable of contacting a molten material in a melter for use in measuring one or more properties of the molten material in a furnace under extreme environments. A receiver is configured for use in obtaining signals from the melt/material transmitted to appropriate electronics through the waveguide. The receiver is configured for receiving signals from the waveguide when contacting the molten material for use in determining the viscosity of the molten material. Other embodiments exist in which the temperature, emissivity, viscosity and other properties of the molten material are measured.

  10. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF BUBBLER CONFIGURATIONS USING HLW AZ-101 SIMULANTS VSL-04R4800-4 REV 0 10/5/04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; GONG W

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on themore » results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was achieved, which was used as an indicator of a maximized feed rate for each test. The first day of each test was used to build the cold cap and decrease the plenum temperature. The remainder of each test was split into two- to six-day segments, each with a different bubbling rate, bubbler orientation, or feed concentration of chloride and sulfur.« less

  11. Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau, Mark William

    Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and/or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the moltenmore » material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.« less

  12. Refractory electrodes for joule heating and methods of using same

    DOEpatents

    Lamar, David A.; Chapman, Chris C.; Elliott, Michael L.

    1998-01-01

    A certain group of electrically conductive refractory materials presently known for use in high temperature applications as throat constructions, melter sidewalls, forehearth, stacks, port sills, hot face lining for slagging coal gasifiers, slag runners, and linings for nuclear waste encapsulation furnaces may be used as electrodes permitting joule heating at temperatures in excess of 1200 C. in excess of about 4400 hours even in the presence of transition group element(s). More specifically, the invention is an electrode for melting earthen materials, wherein the electrode is made from an electrically conductive refractory material, specifically at least one metal oxide wherein the metal is selected from the group consisting of chrome, ruthenium, rhodium, tin and combinations thereof.

  13. Enhanced LAW Glass Correlation - Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Isabelle S.; Matlack, Keith S.; Pegg, Ian L.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.« less

  14. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.; Jantzen, C.; Burket, P.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H 2 gas which requires monitoring of certain vessel’s vapor spaces.more » A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H 2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H 2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.« less

  15. Melter Feed Reactions at T ≤ 700°C for Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel R.; Rice, Jarrett A.

    2015-07-23

    Batch reactions and phase transitions in a nuclear waste feed heated at 5 K min-1 up to 600°C were investigated by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometer, and X-ray diffraction. Quenched samples were leached in deionized water at room temperature and 80°C to extract soluble salts and early glass-forming melt, respectively. To determine the content and composition of leachable phases, the leachates were analyzed by the inductively-coupled plasma spectroscopy. By ~400°C, gibbsite and borax lost water and converted to amorphous and intermediate crystalline phases. Between 400°C and 600°C, the sodium borate early glass-forming melt reacted withmore » amorphous aluminum oxide and calcium oxide to form intermediate products containing Al and Ca. At ~600°C, half Na and B converted to the early glass-forming melt, and quartz began to dissolve in the melt.« less

  16. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamecnik, J.; Edwards, T.

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) statemore » of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.« less

  17. Recirculating Molten Metal Supply System And Method

    DOEpatents

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-07-01

    The melter furnace includes a heating chamber (16), a pump chamber (18), a degassing chamber (20), and a filter chamber (22). The pump chamber (18) is located adjacent the heating chamber (16) and houses a molten metal pump (30). The degassing chamber (20) is located adjacent and in fluid communication with the pump chamber (18), and houses a degassing mechanism (36). The filter chamber (22) is located adjacent and in fluid communication with the degassing chamber (20). The filter chamber (22) includes a molten metal filter (38). The melter furnace (12) is used to supply molten metal to an externally located holder furnace (14), which then recirculates molten metal back to the melter furnace (12).

  18. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maio, Vince

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are tomore » complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.« less

  19. Foaming in simulated radioactive waste.

    PubMed

    Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C

    2001-10-01

    Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.

  20. Refractory electrodes for joule heating and methods of using same

    DOEpatents

    Lamar, D.A.; Chapman, C.C.; Elliott, M.L.

    1998-05-12

    A certain group of electrically conductive refractory materials presently known for use in high temperature applications as throat constructions, melter sidewalls, forehearth, stacks, port sills, hot face lining for slagging coal gasifiers, slag runners, and linings for nuclear waste encapsulation furnaces may be used as electrodes permitting joule heating at temperatures in excess of 1,200 C in excess of about 4400 hours even in the presence of transition group element(s). More specifically, the invention is an electrode for melting earthen materials, wherein the electrode is made from an electrically conductive refractory material, specifically at least one metal oxide wherein the metal is selected from the group consisting of chrome, ruthenium, rhodium, tin and combinations thereof. 2 figs.

  1. Design, Development and Operational Experience of Demonstration Facility for Cs-137 Source Pencil Production at Trombay - 13283

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S.B.; Srivastava, P.; Mishra, S.K.

    2013-07-01

    Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of itsmore » longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)« less

  2. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the Savannah River Site. It is not expected that the exact equipment used during this testing will be used during the waste feed qualification testing for WTP, but functionally similar equipment will be used such that the techniques demonstrated would be applicable. For example, the mixing apparatus could use any suitable mixer capable of being remoted and achieving similar mixing speeds to those tested.« less

  3. JPRS Report, Science and Technology, Europe.

    DTIC Science & Technology

    1991-02-15

    VIDP furnace is a further development of the conventional vacuum induction melter (VIM). It has an independent smelting and processing unit, to...which various casting systems can be linked according to the modular principle. Unlike the conventional vacuum induction melter, the VIDP furnace does... induction coil and the crucible. The furnace body can be extracted for relining or replacement with another, ready-lined, fur- nace body. This

  4. Experimental Study on Charging Process in the COREX Melter Gasifier

    NASA Astrophysics Data System (ADS)

    Luo, Zhiguo; You, Yang; Li, Haifeng; Zhou, Heng; Zou, Zongshu

    2018-04-01

    Burden distribution plays an important role in achieving high stability and energy efficiency in the COREX melter gasifier. In this work, a 1/7.5 scale experimental apparatus is established to investigate the burden distribution under the independent and mixed charging conditions. The effects of GIMBAL distributor angle, rotational speed, DRI-flap angle, and charging pattern on these charging conditions are investigated. The results show that the non-uniform distribution of pellet in circumferential direction is intrinsic to the discharge system due to the shape of the DRI flap. The charging pattern has a significant impact on the ore-to-coal volume ratio and bed voidage. The ore-to-coal volume ratio reaches the peak at 550 to 650 mm, indicating that the reduction burden near the wall is heavier than that in the center. The voidage in the middle region is smaller than that of the center and near-wall region. The results also reveal the size segregation along the radial direction of the burden pile. The smaller particles tend to accumulate in the center while the larger ones segregate more near the wall. The findings obtained from experiments should be helpful for the efficient operation of the COREX melter gasifier.

  5. Recirculation bubbler for glass melter apparatus

    DOEpatents

    Guerrero, Hector [Evans, GA; Bickford, Dennis [Folly Beach, SC

    2007-06-05

    A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.

  6. Earth melter and method of disposing of feed materials

    DOEpatents

    Chapman, Christopher C.

    1994-01-01

    An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

  7. Earth melter and method of disposing of feed materials

    DOEpatents

    Chapman, C.C.

    1994-10-11

    An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamecnik, J. R.; Edwards, T. B.

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processingmore » Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.« less

  9. Zirconium-Based Metal–Organic Framework for Removal of Perrhenate from Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Xu, Wenqian; Nie, Zimin

    2016-09-06

    Efficient removal of pertechnetate (TcO4-) anions from liquid waste or melter off-gas solution for alternative treatment is one of the promising options to manage 99Tc in legacy nuclear waste. Safe immobilization of 99Tc is of major importance due to its long half-life (t1/2= 2.13 × 105 yrs) and environmental mobility. Different types of inorganic and solid state ion-exchange materials such as layered double hydroxides have been shown to absorb TcO4- anions from water. However, both high capacity and selectivity have yet to be achieved in a single material. Herein, we show that a protonated version of an ultra-stable zirconium basedmore » metal-organic framework can adsorb perrhenate (ReO4-) anions, a non-radioactive sur-rogate for TcO4-, from water even in the presence of other common anions. Synchrotron based powder X-ray diffraction and molecular simulations were used to identify the position of the adsorbed ReO4- (surrogate for TcO4-) molecule within the framework.« less

  10. Depleted uranium dioxide melting in cold crucible melter and production of granules from the melt for use in casks for spent nuclear fuel and radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotovchikov, V.T.; Seredenko, V.A.; Shatalov, V.V.

    2007-07-01

    This paper describes the results of a joint research program between the Russian Research Institute of Chemical Technology and Oak Ridge National Laboratory in the United States to develop new radiation shielding materials for use in the construction of casks for spent nuclear fuel (SNF) and radioactive wastes. Research and development is underway to develop SNF storage, transport, and disposal casks using shielding made with two new depleted uranium dioxide (DUO{sub 2}) materials: a DUO{sub 2}-steel cermet, and, DUCRETE with DUAGG (DUO{sub 2} aggregate). Melting the DUO{sub 2} and allowing it to freeze will produce a near 100% theoretical densitymore » product and assures that the product produces no volatile materials upon subsequent heating. Induction cold-crucible melters (ICCM) are being developed for this specific application. An ICCM is, potentially, a high throughput low-cost process. Schematics of a pilot facility were developed for the production of molten DUO{sub 2} from DU{sub 3}O{sub 8} to produce granules <1 mm in diameter in a continuous mode of operation. Thermodynamic analysis was conducted for uranium-oxygen system in the temperature range from 300 to 4000 K in various gas mediums. Temperature limits of stability for various uranium oxides were determined. Experiments on melting DUO{sub 2} were carried out in a high frequency ICCM in a cold crucible with a 120 mm in diameter. The microstructure of molten DUO{sub 2} was studied and lattice parameters were determined. It was experimentally proved, and validated by X-ray analysis, that an opportunity exists to produce molten DUO{sub 2} from mixed oxides (primarily DU{sub 3}O{sub 8}) by reduction melting in ICCM. This will allow using DU{sub 3}O{sub 8} directly to make DUO{sub 2}-a separate unit operation to produce UO{sub 2} feed material is not needed. Experiments were conducted concerning the addition of alloying components, gadolinium et al. oxides, into the DUO{sub 2} melt while in the crucible. These additives improve neutron and gamma radiation shielding and operation properties of the final solids. Cermet samples of 50 wt % DUO{sub 2} were produced. (authors)« less

  11. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features inmore » a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.« less

  12. Rhenium volatilisation as caesium perrhenate from simulated vitrified high level waste from a melter crucible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T.A.; Short, R.J.; Gribble, N.R.

    2013-07-01

    The Waste Vitrification Plant (WVP) converts Highly Active Liquor (HAL) from spent nuclear fuel reprocessing into a stable vitrified product. Recently WVP have been experiencing accumulation of solids in their primary off gas (POG) system leading to potential blockages. Chemical analysis of the blockage material via Laser Induced Breakdown Spectroscopy (LIBS) has shown it to exclusively consist of caesium, technetium and oxygen. The solids are understood to be caesium pertechnetate (CsTcO{sub 4}), resulting from the volatilisation of caesium and technetium from the high level waste glass melt. Using rhenium as a chemical surrogate for technetium, a series of full scalemore » experiments have been performed in order to understand the mechanism of rhenium volatilisation as caesium perrhenate (CsReO{sub 4}), and therefore technetium volatilisation as CsTcO{sub 4}. These experiments explored the factors governing volatilisation rates from the melt, potential methods of minimising the amount of volatilisation, and various strategies for mitigating the deleterious effects of the volatile material on the POG. This paper presents the results from those experiments, and discusses potential methods to minimise blockages that can be implemented on WVP, so that the frequency of the CsTcO{sub 4} blockages can be reduced or even eradicated altogether. (authors)« less

  13. Advances in Glass Formulations for Hanford High-Aluminum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-07-01

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved. (author)« less

  14. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-01-16

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved.« less

  15. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pajunen, A. J.; Tedeschi, A. R.

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  16. VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER STATION IN THE CASTING SHOP. (OTHER UNITS MELT BRASS ALLOYS.) THIS IS THE SOUTHERNMOST FURNACE OF THE FOUR PRESENTLY IN SITU. THE CURRENT CASTING SHOP WAS CONSTRUCTED DURING THE EARLY 1970'S, REPLACING THE ORIGINAL PRE-WWI FACILITY. STATIONS #02, 03, AND 04 EACH CONSIST OF A HOLDER FLANKED BY A PAIR OF 800 KW ELECTRIC MELTERS. THE HOLDER IS REHEATED AT 85,000 LBS. SHAKER BOX, LOCATED AT THE REAR OF EACH MELTER SUPPLY THE MIXTURE OF INGREDIENTS REQUIRED FOR EACH PARTICULAR ALLOY. ONE MEMBER OF THE THREE-MAN CASTING TEAMS IS RESPONSIBLE FOR SHAKING METAL INTO THE MELTERS. IN THE LOWER RIGHT ARE SHOWN THE MOLD STORAGE AREA AND THE FURNACE BUILDERS' AREA FOR CHIPPING AND REBRICKING OFF-LINE UNITS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  17. VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER STATION IN THE CASTING SHOP. (OTHER UNITS MELT BRASS ALLOYS.) THIS IS THE SOUTHERNMOST FURNACE OF THE FOUR PRESENTLY IN SITU. THE CURRENT CASTING SHOP WAS CONSTRUCTED DURING THE EARLY 1970'S, REPLACING THE ORIGINAL PRE-WWI FACILITY. STATIONS #02,03, AND 04 EACH CONSIST OF A HOLDER FLANKED BY A PAIR OF 800 KW ELECTRIC MELTERS. THE HOLDER IS RATED AT 85,000 LBS. SHAKER BOXES, LOCATED AT THE REAR OF EACH MELTER SUPPLY THE MIXTURE OF INGREDIENTS REQUIRED FOR EACH PARTICULAR ALLOY. ONE MEMBER OF THE THREE-MAN CASTING TEAMS IS RESPONSIBLE FOR SHAKING METAL INTO THE MELTERS. IN THE LOWER RIGHT ARE SHOWN THE MOLD STORAGE AREA AND THE FURNACE BUILDERS' AREA FOR CHIPPING AND REBRICKING OFF-LINE UNITS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  18. Effect of Sulfate on Rhenium Partitioning during Melting of Low-Activity Waste Glass Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Kim, Dong-Sang; Schweiger, Michael J.

    2015-10-01

    The volatile loss of technetium-99 (99Tc) is a major concern of the low-activity waste (LAW) vitrification at Hanford. We investigated the incorporation and volatile loss of Re (a nonradioactive surrogate for 99Tc) during batch-to-glass conversion up to 1100°C. The AN-102 feed, which is one of the representative Hanford LAW feeds, containing 0.59 wt% of SO3 (in glass if 100% retained) was used. The modified sulfate-free AN-102_0S feed was also tested to investigate the effect of sulfate on Re partitioning and retention during melting. After heating of the dried melter feed (mixture of LAW simulant and glass forming/modifying additives) to differentmore » temperatures, the heat-treated samples were quenched. For each heat-treated sample, the salts (soluble components in room temperature leaching), early glass forming melt (soluble components in 80°C leaching), and insoluble solids were separated by a two-step leaching and the chemical compositions of each phase were quantitatively analyzed. The final retention ratio of AN-102 and AN-102_0S in glass (insoluble solids) are 32% and 63% respectively. The presence of sulfate in the salt phase between 600 and 800°C leads to a significantly higher Re loss via volatilization from the salt layer. At ≥800°C, for both samples, there is no more incorporation of Re into the insoluble phase because: for AN-102_0S there is no salt left i.e., the split into the insoluble and gas phases is complete by 800°C and for AN-102 all the Re contained in the remaining salt phase is lost through volatilization. The present results on the effect of sulfate, although not directly applicable to LAW vitrification in the melter, will be used to understand the mechanism of Re incorporation into glass to eventually develop the methods that can increase the 99Tc retention during LAW vitrification at Hanford.« less

  19. 2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A.

    2014-05-08

    Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas datamore » were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard deviation of the average vapor space temperature during each steady state ranged from 2 to 6°C; however, those of the measured off-gas data were much larger due to the inherent cold cap instabilities in the slurry-fed melters. In order to predict the off-gas composition at the sampling location downstream of the film cooler, the measured feed composition was charge-reconciled and input into the DWPF melter off-gas flammability model, which was then run under the conditions for each of the six Phase 1 steady states. In doing so, it was necessary to perform an overall heat/mass balance calculation from the melter to the Off-Gas Condensate Tank (OGCT) in order to estimate the rate of air inleakage as well as the true gas temperature in the CEF vapor space (T{sub gas}) during each steady state by taking into account the effects of thermal radiation on the measured temperature (T{sub tw}). The results of Phase 1 data analysis and subsequent model runs showed that the predicted concentrations of H{sub 2} and CO by the DWPF model correctly trended and further bounded the respective measured data in the CEF off-gas by over predicting the TOC-to-H{sub 2} and TOC-to-CO conversion ratios by a factor of 2 to 5; an exception was the 7X over prediction of the latter at T{sub gas} = 371°C but the impact of CO on the off-gas flammability potential is only minor compared to that of H{sub 2}. More importantly, the seemingly-excessive over prediction of the TOC-to-H{sub 2} conversion by a factor of 4 or higher at T{sub gas} < ~350°C was attributed to the conservative antifoam decomposition scheme added recently to the model and therefore is considered a modeling issue and not a design issue. At T{sub gas} > ~350°C, the predicted TOC-to-H{sub 2} conversions were closer to but still higher than the measured data by a factor of 2, which may be regarded as adequate from the safety margin standpoint. The heat/mass balance calculations also showed that the correlation between T{sub tw} and T{sub gas} in the CEF vapor space was close to that of the ½ scale SGM, whose data were taken as directly applicable to the DWPF melter and thus used to set all the parameters of the original model. Based on these results of the CEF Phase 1 off-gas and thermal data analyses, it is concluded that: (1) The thermal characteristics of the CEF vapor space are prototypic thanks to its prototypic design; and (2) The CEF off-gas data are scalable in terms of predicting the flammability potential of the DWPF melter off-gas. These results also show that the existing DWPF safety controls on the TOC and antifoam as a function of nitrate are conservative by the same order of magnitude shown by the Phase 1 data at T{sub gas} < ~350°C, since they were set at T{sub gas} = 294°C, which falls into the region of excessive conservatism for the current DWPF model in terms of predicting the TOC-to-H{sub 2} conversion. In order to remedy the overly-conservative antifoam decomposition scheme used in the current DWPF model, the data from two recent tests will be analyzed in detail in order to gain additional insights into the antifoam decomposition chemistry in the cold cap. The first test was run in a temperature-programmed furnace using both normal and spiked feeds with fresh antifoam under inert and slightly oxidizing vapor space conditions. Phase 2 of the CEF test was run with the baseline nitric-glycolic acid flowsheet feeds that contained the “processed antifoam” and those spiked with fresh antifoam in order to study the effects of antifoam concentration as well as processing history on its decomposition chemistry under actual melter conditions. The goal is to develop an improved antifoam decomposition model from the analysis of these test data and incorporate it into a new multistage cold cap model to be developed concurrently for the nitric-glycolic acid flowsheet feeds. These activities will be documented in the Phase 2 report. Finally, it is recommended that some of the conservatism in the existing DWPF safety controls be removed by improving the existing measured-vs.-true gas temperature correlation used in the melter vapor space combustion calculations. The basis for this recommendation comes from the fact that the existing correlation was developed by linearly extrapolating the SGM data taken over a relatively narrow temperature range down to the safety basis minimum of 460°C, thereby under predicting the true gas temperature considerably, as documented in this report. Specifically, the task of improving the current temperature correlation will involve; (1) performing a similar heat/mass balance analysis used in this study on actual DWPF data, (2) validating the measured-vs.-true gas temperature correlation for the CEF developed in this study against the DWPF melter heat/mass balance results, and (3) making adjustments to the CEF correlation, if necessary, before incorporating it into the DWPF safety basis calculations. The steps described here can be completed with relatively minimum efforts.« less

  20. Earth melter

    DOEpatents

    Chapman, Christopher C.

    1995-01-01

    An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed either by excavating a melt zone in a quantity of soil or rock, or by constructing a melt zone in an apparatus above grade and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

  1. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Newell, J. D.; Williams, M. S.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorablemore » with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.« less

  2. Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Kim, Dong-Sang; Skorski, Daniel C.

    2013-07-01

    Recent glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminarymore » in nature and will change in the coming years. Plus the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose. A fundamental tenet underlying the research reported in this document is to try to be less conservative than previous studies when developing constraints for estimating the glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that has to be considered along with other system uncertainties such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.« less

  3. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less

  4. Self-cleaning feed distributing delivery device for glass melters

    DOEpatents

    Mensink, Daniel L.

    1992-01-01

    A self cleaning, plug resistant, adjustable parameter feed distributing and delivery apparatus for a glass melter comprising a housing with a passage therethrough for a glass slurry, a cold finger within the passage for creating a dispersion pattern of the slurry, a movable slotted tube for controlling the confluence of air propellant and slurry in the passage, and a plurality of ribs that extend through the slots in the slotted tube to urge the slurry forward if it becomes stuck or resists forward movement. Coolant passages in the housing and the cold finger maintain the slurry temperature below that of the melter plenum. The cold finger is axially movable to adjust the dispersion pattern to the desired consistency. Other design features of size can be applied for use in situations requiring different parameters of pattern, particle size, rate, and feed consistencies. The device utilizes air as both a propellant and a surface cleansing mechanism. Other fluids may be used as propellants where process compatibility requires.

  5. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Kim, Dong-Sang; Vienna, John D.

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc throughout the WTP flowsheet and the underlying mechanisms that dictate its partitioning between streams within the LAW vitrification facility. These studies are aimed at increasing the single-pass Tc retention in glass and the potential use of high-temperature mineral phases to capture Tc. The Tc-bearing mineral phases would be thermally stable and resistant to Tc release during feed melting reactions or they could serve as alternative waste forms. The LAW glass research and development is focused on reducing the total volume of LAW glass produced and minimizing the impact of (or potentially eliminating) the need for recycle.« less

  6. Technetium Getters to Improve Cast Stone Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Lawter, Amanda R.; Serne, R. Jeffrey

    2015-10-15

    The cementitious material known as Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. Two radionuclides of particular concern in these waste streams are technetium-99 (99Tc) and iodine-129 (129I). These radioactive tank waste components contribute the most tomore » the environmental impacts associated with the cleanup of the Hanford site. A recent environmental assessment of Cast Stone performance, which assumes a diffusion controlled release of contaminants from the waste form, calculates groundwater in excess of the allowable maximum permissible concentrations for both contaminants. There is, therefore, a need and an opportunity to improve the retention of both 99Tc and 129I in Cast Stone. One method to improve the performance of Cast Stone is through the addition of “getters” that selectively sequester Tc and I, therefore reducing their diffusion out of Cast Stone. In this paper, we present results of Tc and I removal from solution with various getters with batch sorption experiments conducted in deionized water (DIW) and a highly caustic 7.8 M Na Ave LAW simulant. In general, the data show that the selected getters are effective in DIW but their performance is comprised when experiments are performed with the 7.8 M Na Ave LAW simulant. Reasons for the mitigated performance in the LAW simulant may be due to competition with Cr present in the 7.8 M Na Ave LAW simulant and to a pH effect.« less

  7. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents. The sorbents, hydroxyapatite and sodium oxalate, were expected to sorb the precipitated technetium dioxide and facilitate removal. The Phase 1 tests examined a broad range of conditions and used the initial baseline simulant. The Phase 2 tests narrowed the conditions based on Phase 1 results, and used a slightly modified simulant. Test results indicate that excellent removal of {sup 99}Tc was achieved using SnCl{sub 2} as a reductant, and was effective with or without sorption onto hydroxyapatite. This reaction worked even in the presence of air (which could oxidize the stannous ion) and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >199 in one hour with only 1 g/L of SnCl{sub 2}. Prior work had shown that it was much less effective at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}c during the SnCl{sub 2} reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Reduction using FeSO{sub 4} was not effective at removing {sup 99}Tc, but did remove the Cr. Chromium is present due to partial volatility and entrainment in the off-gas, and is highly oxidizing, so would be expected to react with reducing agents more quickly than pertechnetate. Testing showed that sufficient reducing agent must be added to completely reduce the chromium before the technetium is reduced and removed. Other radionuclides are also present in this off-gas condensate stream. To enable sending this stream to the Hanford ETF, and thereby divert it from the recycle where it impacts the LAW glass volume, several of these also need to be removed. Samples from optimized conditions were also measured for actinide removal in order to examine the effect of the Tc-removal process on the actinides. Plutonium was also removed by the SnCl{sub 2} precipitation process. Results of this separation testing indicate that sorption/precipitation is a viable concept and has the potential to decontaminate the {sup 99}Tc from the stream, allowing it to be diverted away from WTP and thus eliminating the impact of the recycled halides and sulfate on the LAW glass volume. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl{sub 2}) with or without sorbent at neutral pH to remove the Tc. Although hydroxyapatite was not necessary to effect the {sup 99}Tc removal, it may be beneficial in solid-liquid separations. Other testing will examine removal of the other radionuclides. This testing was the second phase of testing, which aimed at optimizing the process by examining the minimum amount of reductant needed and the minimum reaction time. Although results indicated that SnCl{sub 2} was effective, further work on a pH-adjusted Fe(SO{sub 4}) mixture are needed. Additional tasks are needed to examine removal of the other radionuclides, solid-liquid separation technologies, slurry rheology measurements, composition variability impacts, corrosion and erosion, and slurry storage and immobilization.« less

  8. Dissimilar behavior of technetium and rhenium in borosilicatewaste glass as determined by X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Wayne W.; McKeown, David A.; Buechele, Andrew C.

    2006-11-09

    Technetium-99 is an abundant, long-lived (t1/2 = 213,000 yr)fission product that creates challenges for the safe, long-term disposalof nuclear waste. While 99Tc receives attention largely due to its highenvironmental mobility, it also causes problems during its incorporationinto nuclear waste glass due to the volatility of Tc(VII) compounds. Thisvolatility decreases the amount of 99Tc stabilized in the waste glass andcauses contamination of the waste glass melter and off-gas system. Theapproach to decrease the volatility of 99Tc that has received the mostattention is reduction of the volatile Tc(VII) species to less volatileTc(IV) species in the glass melt. On engineering scale experiments,rhenium ismore » often used as a non-radioactive surrogate for 99Tc to avoidthe radioactive contamination problems caused by volatile 99Tc compounds.However, Re(VII) is more stable towards reduction than Tc(VII), so morereducing conditions would be required in the glass melt to produceRe(IV). To better understand the redox behavior of Tc and Re in nuclearwaste glass, a series of glasses were prepared under different redoxconditions. The speciation of Tc and Re in the resulting glasses wasdetermined by X-ray absorption fine structure spectroscopy. Surprisingly,Re and Tc do not behave similarly in the glass melt. Although Tc(0),Tc(IV), and Tc(VII) were observed in these samples, only Re(0) andRe(VII) were found. In no case was Re(IV) (or Re(VI))observed.« less

  9. Additive manufacturing method for SRF components of various geometries

    DOEpatents

    Rimmer, Robert; Frigola, Pedro E; Murokh, Alex Y

    2015-05-05

    An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.

  10. Glass melter off-gas system

    DOEpatents

    Jantzen, Carol M.

    1997-01-01

    Apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

  11. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development ofmore » a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.« less

  12. EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Laurinat, J.

    2011-08-15

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plusmore » adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain an annual canister production goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment 8.2 of the DWPF Waste Compliance Plan (WCP).« less

  13. THE DOE OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL COOPERATIVE PROGRAM: OVERVIEW OF TECHNICAL TASKS AND RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.; Fox, K.; Farfan, E.

    2009-12-08

    The DOE Office of Environmental Management (DOE-EM) Office of Engineering and Technology is responsible for implementing EM's International Cooperative Program. Over the past 15 years, collaborative work has been conducted through this program with researchers in Russia, Ukraine, France, United Kingdom and Republic of Korea. Currently, work is being conducted with researchers in Russia and Ukraine. Efforts aimed at evaluating and advancing technologies to support U.S. high-level waste (HLW) vitrification initiatives are being conducted in collaboration with Russian researchers. Work at Khlopin Radium Institute (KRI) is targeted at improving the throughput of current vitrification processes by increasing melting rate. Thesemore » efforts are specifically targeted at challenging waste types identified at the Savannah River Site (SRS) and Hanford Site. The objectives of current efforts at SIA Radon are to gain insight into vitrification process limits for the cold crucible induction melter (CCIM) technology. Previous demonstration testing has shown that the CCIM offers the potential for dramatic increases in waste loading and waste throughput. However, little information is known regarding operational limits that could affect long-term, efficient CCIM operations. Collaborative work with the Russian Electrotechnical University (ETU) 'LETI' is aimed at advancing CCIM process monitoring, process control and design. The goal is to further mature the CCIM technology and to establish it as a viable HLW vitrification technology. The greater than two year effort conducted with the International Radioecology Laboratory in the Ukraine recently completed. The objectives of this study were: to assess the long-term impacts to the environment from radiation exposure in the Chernobyl Exclusion Zone (ChEZ); and to provide information on remediation guidelines and ecological risk assessment within radioactively contaminated territories around the Chernobyl Nuclear Power Plant (ChNPP) based on the results of long-term field monitoring, analytical measurements, and numerical modeling of soils and groundwater radioactive contamination.« less

  14. Synthesis and Characterization of Tc(I) Carbonyl Nitrosyl Species Relevant to the Hanford Tank Waste: FY 2016 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Gabriel B.; Chatterjee, Sayandev; Levitskaia, Tatiana G.

    Among long-lived radioactive constituents in the Hanford tank waste, Tc presents a unique challenge in that it exists predominantly in the liquid phase, generally in the anionic form of pertechnetate, TcO 4 -, which is highly volatile at low-activity waste (LAW) vitrification melter temperatures and mobile in the Hanford site’s subsurface environment. The complex behavior of Tc under storage, treatment, and immobilization conditions significantly affects its management options, which to-date remain uncertain. In strongly alkaline environments, Tc exists as pertechnetate, TcO 4 - (oxidation state +7), and in the reduced forms (oxidation state < +7) collectively known as non-pertechnetate species.more » Pertechnetate is a well-characterized, anionic Tc species that can be removed from LAW by anion exchange or solvent extraction methods. There is no definitive information on the origin of the non-pertechnetate Tc species, nor is there a comprehensive description of their composition and behavior. It has been recently proposed that the non-pertechnetate species can comprise Tc(I) metal center and carbonyl or mixed carbonyl nitrosyl ligands stabilizing low-valent Tc. Recent work by our group has significantly expanded this previous work, generating a series of Tc(I) carbonyl compounds and demonstrating that they can be generated from reduction of TcO 4 - in the simulated Hanford tank waste in presence of CO at elevated temperature (Levitskaia et al. 2014). These results are consistent with the previous proposal that [Tc(CO) 3] + species can be present in the Hanford tank waste and suggest that the low Tc(I) oxidation state is stabilized by the π-accepting ability of the CO ligands. The continuation work has been initiated to develop model Tc carbonyl nitrosyl compounds and investigate their potential presence in the Hanford tank wastes. This report summarizes our to-date results.« less

  15. Analysis of the factors that impact the reliability of high level waste canister materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, W.K.; Hall, A.M.

    1977-09-19

    The analysis encompassed identification and analysis of potential threats to canister integrity arising in the course of waste solidification, interim storage at the fuels reprocessing plant, wet and dry shipment, and geologic storage. Fabrication techniques and quality assurance requirements necessary to insure optimum canister reliability were considered taking into account such factors as welding procedure, surface preparation, stress relief, remote weld closure, and inspection methods. Alternative canister materials and canister systems were also considered in terms of optimum reliability in the face of threats to the canister's integrity, ease of fabrication, inspection, handling and cost. If interim storage in airmore » is admissible, the sequence suggested comprises producing a glass-type waste product in a continuous ceramic melter, pouring into a carbon steel or low-alloy steel canister of moderately heavy wall thickness, storing in air upright on a pad and surrounded by a concrete radiation shield, and thereafter placing in geologic storage without overpacking. Should the decision be to store in water during the interim period, then use of either a 304 L stainless steel canister overpacked with a solution-annealed and fast-cooled 304 L container, or a single high-alloy canister, is suggested. The high alloy may be Inconel 600, Incoloy Alloy 800, or Incoloy Alloy 825. In either case, it is suggested that the container be overpacked with a moderately heavy wall carbon steel or low-alloy steel cask for geologic storage to ensure ready retrievability. 19 figs., 5 tables.« less

  16. Evaluation of Wet Chemical ICP-AES Elemental Analysis Methods usingSimulated Hanford Waste Samples-Phase I Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Charles J.; Edwards, Thomas B.

    2005-04-30

    The wet chemistry digestion method development for providing process control elemental analyses of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Melter Feed Preparation Vessel (MFPV) samples is divided into two phases: Phase I consists of: (1) optimizing digestion methods as a precursor to elemental analyses by ICP-AES techniques; (2) selecting methods with the desired analytical reliability and speed to support the nine-hour or less turnaround time requirement of the WTP; and (3) providing baseline comparison to the laser ablation (LA) sample introduction technique for ICP-AES elemental analyses that is being developed at the Savannah River National Laboratory (SRNL).more » Phase II consists of: (1) Time-and-Motion study of the selected methods from Phase I with actual Hanford waste or waste simulants in shielded cell facilities to ensure that the methods can be performed remotely and maintain the desired characteristics; and (2) digestion of glass samples prepared from actual Hanford Waste tank sludge for providing comparative results to the LA Phase II study. Based on the Phase I testing discussed in this report, a tandem digestion approach consisting of sodium peroxide fusion digestions carried out in nickel crucibles and warm mixed-acid digestions carried out in plastic bottles has been selected for Time-and-Motion study in Phase II. SRNL experience with performing this analytical approach in laboratory hoods indicates that well-trained cell operator teams will be able to perform the tandem digestions in five hours or less. The selected approach will produce two sets of solutions for analysis by ICP-AES techniques. Four hours would then be allocated for performing the ICP-AES analyses and reporting results to meet the nine-hour or less turnaround time requirement. The tandem digestion approach will need to be performed in two separate shielded analytical cells by two separate cell operator teams in order to achieve the nine-hour or less turnaround time. Because of the simplicity of the warm mixed-acid method, a well-trained cell operator team may in time be able to perform both sets of digestions. However, having separate shielded cells for each of the methods is prudent to avoid overcrowding problems that would impede a minimal turnaround time.« less

  17. COMSOL Multiphysics Model for HLW Canister Filling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesterson, M. R.

    2016-04-11

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. Wastes containing high concentrations of Al 2O 3 and Na 2O can contribute to nepheline (generally NaAlSiO 4) crystallization, which can sharply reduce the chemical durability of high level waste (HLW) glass. Nepheline crystallization canmore » occur during slow cooling of the glass within the stainless steel canister. The purpose of this work was to develop a model that can be used to predict temperatures of the glass in a WTP HLW canister during filling and cooling. The intent of the model is to support scoping work in the laboratory. It is not intended to provide precise predictions of temperature profiles, but rather to provide a simplified representation of glass cooling profiles within a full scale, WTP HLW canister under various glass pouring rates. These data will be used to support laboratory studies for an improved understanding of the mechanisms of nepheline crystallization. The model was created using COMSOL Multiphysics, a commercially available software. The model results were compared to available experimental data, TRR-PLT-080, and were found to yield sufficient results for the scoping nature of the study. The simulated temperatures were within 60 ºC for the centerline, 0.0762m (3 inch) from centerline, and 0.2286m (9 inch) from centerline thermocouples once the thermocouples were covered with glass. The temperature difference between the experimental and simulated values reduced to 40 ºC, 4 hours after the thermocouple was covered, and down to 20 ºC, 6 hours after the thermocouple was covered. This level of precision is considered acceptable for the scoping nature of the model and the subsequent laboratory glass studies Using the model, two additional glass pouring cycles were conducted. Representative thermocouple data were plotted to show the variations between the two cycles. This provides preliminary data that will be used in laboratory experiments to determine the potential for controlling nepheline crystallization in glass by varying the glass pouring conditions.« less

  18. Resistance heater for use in a glass melter

    DOEpatents

    Routt, K.R.; Porter, M.A.

    1984-01-01

    A resistance heating element that includes: a resistance heating medium of a mixture of electrically conductive and insulative particles in powdered form mixed together in predetermined proportions to achieve a given resistivity; a hollow outer electrode surrounding the resistance heating medium; and an inner electrode coaxially disposed within said outer electrode. In its preferred embodiments, the electrically conductive powder is selected from the group consisting essentially of graphite, Inconel alloy, molybdenum, nichrome alloy and stainless steel, while the insulator powder is silicon dioxide or alumina. The resistance heating element, being resistant to damage from mechanical shock and corrosion at elevated temperatures, is used in a glass melter.

  19. Space Technology for the Iron Foundry

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electric Power Research Institute (EPRI) initiated development of a plasma melter intended to solve a major problem in the U.S. foundry industry. EPRI is a non-profit organization that manages research and development for some 600 electric utility member companies. For the plasma melter program, EPRI enlisted as co-sponsors Westinghouse Electric's Environmental Systems and Services Division, General Motors Corporation, and Modern Equipment Company, supplier of equipment and services to the foundry industry. General Motor's plasma melter, first in the U.S., is an advanced technology system designed to improve the efficiency of coke-burning cupolas that melt iron to produce automotive castings. The key elements are six Westinghouse plasma torches. Electrically-powered plasma torch creates an ionized gas that superheats air entering the cupola to 10,000 degrees Fahrenheit. That great heat, three times higher than that attainable by oil or natural gas systems, is the key to making iron cheaper, cleaner, and faster. System offers an environmental bonus in reduced cupola emissions. Plasma torches increase GM's electric bill at Defiance, but that cost is more than compensated by the savings in charge material. The EPRI-sponsored Center for Materials Production (CMP) is evaluating the potential of plasma cupola technology.

  20. Progress in the Assessment of Waste-forms for the Immobilisation of UK Civil Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, M.T.; Scales, C.R.; Maddrell, E.R.

    The alternatives for the disposition of the UK's civil plutonium stocks are currently being investigated by Nexia Solutions Ltd. on behalf of the Nuclear Decommissioning Authority (NDA). A number of scenarios are currently being considered depending on the strategic requirements of the UK. The two main disposition options are: re-use as MOX (Mixed Oxide) fuel in reactors, or immobilisation in the event of any material being declared surplus to requirements. The amount of Pu which will require immobilisation will depend on future UK nuclear strategy, along with the extent of any stocks deemed unsuitable for re-use. However, it is likelymore » that some portion will have to be immobilised and therefore three credible waste-forms are under consideration; ceramic, glass and 'immobilisation' MOX. These are currently being developed and assessed in a systematic programme that involves periodic evaluation against a range of criteria. In this way, by down-selecting on the basis of robust and technical review, the most appropriate option for immobilising surplus civil plutonium in the UK can be recommended. The latest results from the immobilisation experimental programme are presented following the de-selection of the least favourable glass and ceramic candidates. The main criteria for this decision were waste loading, durability, processability, criticality and proliferation resistance. In addition, the durability of unirradiated MOX fuel is being examined to determine its potential as a wasteform for Pu, and recent leach test data is discussed. The current evaluation comprises not only a comparison of the relevant physical properties of the various waste-forms, but also key processing parameters, e.g. glass viscosity and melter technology, ceramic fabrication routes, and criticality issues. Other important aspects of the long-term behaviour of the waste-forms under consideration in a potential repository environment, such as radiation damage, criticality control and the properties of any neutron poisons present, are also included. (authors)« less

  1. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey

    2015-11-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII)more » species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 ( 99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively short-term (63 day) leach tests conducted on both LAW and secondary waste Cast Stone monoliths indicated that 99Tc diffusivities were at or near diffusivities where the groundwater at the 100-m down-gradient well would exceed the allowable maximum permissible 99Tc concentrations. There is, therefore, a need and an opportunity to improve the retention of Tc in the Cast Stone waste form. One method to improve the performance of the Cast Stone waste form is through the addition of “getters” that selectively sequester Tc inside Cast Stone.« less

  2. HLW system plan - revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-14

    The projected ability of the Tank Farm to support DWPF startup and continued operation has diminished somewhat since revision 1 of this Plan. The 13 month delay in DWPF startup, which actually helps the Tank Farm condition in the near term, was more than offset by the 9 month delay in ITP startup, the delay in the Evaporator startups and the reduction to Waste Removal funding. This Plan does, however, describe a viable operating strategy for the success of the HLW System and Mission, albeit with less contingency and operating flexibility than in the past. HLWM has focused resources frommore » within the division on five near term programs: The three evaporator restarts, DWPF melter heatup and completion of the ITP outage. The 1H Evaporator was restarted 12/28/93 after a 9 month shutdown for an extensive Conduct of Operations upgrade. The 2F and 2H Evaporators are scheduled to restart 3/94 and 4/94, respectively. The RHLWE startup remains 11/17/97.« less

  3. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in themore » final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.« less

  4. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  5. Property/composition relationships for Hanford high-level waste glasses melting at 115{degrees}C volume 1: Chapters 1-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g} ), thermalmore » expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.« less

  6. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPFmore » to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.« less

  7. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are addedmore » to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests and was spiked with the required amount of noble metals immediately prior to performing the test. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. SME cycles were also performed during six of the tests.« less

  8. Assessment of the impact of TOA partitioning on DWPF off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-06-01

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in themore » effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.« less

  9. Reactions during melting of low-activity waste glasses and their effects on the retention of rhenium as a surrogate for technetium-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Kim, Dong-Sang; Tucker, Abigail E.

    2015-10-01

    Volatile loss of radioactive 99Tc to offgas is a concern with processing the low-activity waste (LAW) at Hanford site. We investigated the partitioning and incorporation of Re (a nonradioactive surrogate for 99Tc) into the glass melt during crucible melting of two simulated LAW feeds that resulted in a large difference in 99mTc/Re retention in glass from the small-scale melter tests. Each feed was prepared from a simulated liquid LAW and chemical and mineral additives (boric acid, silica sand, etc.). The as-mixed slurry feeds were dried at 105°C and heated to 600–1100°C at 5 K/min. The dried feeds and heat treatedmore » samples were leached with deionized water for 10 min at room temperature followed by 24-h leaching at 80°C. Chemical compositions of the resulting solutions and insoluble solids were analyzed. Volume expansion measurement and X-ray diffraction were performed on dried feeds and heat treated samples to characterize the progress of feed-to-glass conversion reactions. It was found that the incorporation of Re into glass melt virtually completed during the major feed-to-glass conversion reactions were going on at ≤ 700°C. The present results suggest that the different composition of the salt phase is responsible for the large difference in Re incorporation into glass melt during early stages of glass melting at ≤ 700°C. Additional studies with modified and simplified feeds are underway to understand the details on how the different salt composition affects the Re incorporation.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prod'homme, A.; Drouvot, O.; Gregory, J.

    In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) atmore » the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)« less

  11. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Newell; Pareizs, J. M.; Martino, C. J.

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allowsmore » for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis« less

  12. Advanced High-Level Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less

  13. RESULTS OF THE FY09 ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F.; Edwards, T.

    2010-06-23

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this task is to develop data, assess property models, and refine or develop the necessary models to support increased WL of HLW at SRS. It is a continuationmore » of the studies initiated in FY07, but is under the specific guidance of a Task Change Request (TCR)/Work Authorization received from DOE headquarters (Project Number RV071301). Using the data generated in FY07, FY08 and historical data, two test matrices (60 glasses total) were developed at the Savannah River National Laboratory (SRNL) in order to generate data in broader compositional regions. These glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), viscosity, liquidus temperature (TL) measurement and durability as defined by the Product Consistency Test (PCT). The results of this study are summarized below: (1) In general, the current durability model predicts the durabilities of higher waste loading glasses quite well. A few of the glasses exhibited poorer durability than predicted. (2) Some of the glasses exhibited anomalous behavior with respect to durability (normalized leachate for boron (NL [B])). The quenched samples of FY09EM21-02, -07 and -21 contained no nepheline or other wasteform affecting crystals, but have unacceptable NL [B] values (> 10 g/L). The ccc sample of FY09EM21-07 has a NL [B] value that is more than one half the value of the quenched sample. These glasses also have lower concentrations of Al{sub 2}O{sub 3} and SiO{sub 2}. (3) Five of the ccc samples (EM-13, -14, -15, -29 and -30) completely crystallized with both magnetite and nepheline, and still had extremely low NL [B] values. These particular glasses have more CaO present than any of the other glasses in the matrix. It appears that while all of the glasses contain nepheline, the NL [B] values decrease as the CaO concentration increases from 2.3 wt% to 4.3 wt%. A different form of nepheline may be created at higher concentrations of CaO that does not significantly reduce glass durability. (4) The T{sub L} model appears to be under-predicting the measured values of higher waste loading glasses. Trends in T{sub L} with composition are not evident in the data from these studies. (5) A small number of glasses in the FY09 matrix have measured viscosities that are much lower than the viscosity range over which the current model was developed. The decrease in viscosity is due to a higher concentration of non-bridging oxygens (NBO). A high iron concentration is the cause of the increase in NBO. Durability, viscosity and T{sub L} data collected during FY07 and FY09 that specifically targeted higher waste loading glasses was compiled and assessed. It appears that additional data may be required to expand the coverage of the T{sub L} and viscosity models for higher waste loading glasses. In general, the compositional regions of the higher waste loading glasses are very different than those used to develop these models. On the other hand, the current durability model seems to be applicable to the new data. At this time, there is no evidence to modify this model; however additional experimental studies should be conducted to determine the cause of the anomalous durability data.« less

  14. An Ice Core Melter System for Continuous Major and Trace Chemical Analyses of a New Mt. Logan Summit Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Handley, M. J.; Sneed, S. D.; Mayewski, P. A.; Kreutz, K. J.; Fisher, D. A.

    2004-12-01

    The ice core melter system at the University of Maine Climate Change Institute has been recently modified and updated to allow high-resolution (<1-2 cm ice/sample), continuous and coregistered sampling of ice cores, most notably the 2001 Mt. Logan summit ice core (187 m to bedrock), for analyses of 34 trace elements (Sr, Cd, Sb, Cs, Ba, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, REE suite) by inductively coupled plasma mass spectrometry (ICP-MS), 8 major ions (Na+, Ca2+, Mg2+, K+, Cl-, SO42-, NO3-, MSA) by ion chromatography (IC), stable water isotopes (δ 18O, δ D, d) and volcanic tephra. The UMaine continuous melter (UMCoM) system is housed in a dedicated clean room with HEPA filtered air. Standard clean room procedures are employed during melting. A Wagenbach-style continuous melter system has been modified to include a pure Nickel melthead that can be easily dismantled for thorough cleaning. The system allows melting of both ice and firn without wicking of the meltwater into unmelted core. Contrary to ice core melter systems in which the meltwater is directly channeled to online instruments for continuous flow analyses, the UMCoM system collects discrete samples for each chemical analysis under ultraclean conditions. Meltwater from the pristine innermost section of the ice core is split between one fraction collector that accumulates ICP-MS samples in acid pre-cleaned polypropylene vials under a class-100 HEPA clean bench, and a second fraction collector that accumulates IC samples. A third fraction collector accumulates isotope and tephra samples from the potentially contaminated outer portion of the core. This method is advantageous because an archive of each sample remains for subsequent analyses (including trace element isotope ratios), and ICP-MS analytes are scanned for longer intervals and in replicate. Method detection limits, calculated from de-ionized water blanks passed through the entire UMCoM system, are below 10% of average Mt. Logan values. A strong correlation (R2>0.9) between Ca and S concentrations measured on different fractions of the same sample by IC and ICP-MS validates sample coregistration. Preliminary analyses of data from the 2001 Mt. Logan summit ice core confirm subannual resolution sampling and annual scale variability of major and trace elements. Accumulation rate models and isotope data suggest that annual resolution will be possible to 1000-2000 y.b.p., with multi-annual to centennial resolution for the remainder of the Holocene and possibly including the last deglaciation. Dust proxy elements, including REEs, strongly co-vary in time-series and reveal concentration ratio fluctuations interpreted as source region changes. Volcanic eruptions are characterized by elevated concentrations of S, SO42-, Cu, Sb, Zn and other trace elements. Concentrations of potential anthropogenic contaminants are also discussed.

  15. IMPROVED ANTIFOAM AGENT STUDY END OF YEAR REPORT, EM PROJECT 3.2.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D.; Koopman, D.; Newell, J.

    2011-09-30

    Antifoam 747 is added to minimize foam produced by process gases and water vapor during chemical processing of sludge in the Defense Waste Processing Facility (DWPF). This allows DWPF to maximize acid addition and evaporation rates to minimize the cycle time in the Chemical Processing Cell (CPC). Improvements in DWPF melt rate due to the addition of bubblers in the melter have resulted in the need for further reductions in cycle time in the CPC. This can only be accomplished with an effective antifoam agent. DWPF production was suspended on March 22, 2011 as the result of a Flammable Gasmore » New Information/(NI) Potential Inadequacy in the Safety Analysis (PISA). The issue was that the DWPF melter offgas flammability strategy did not take into account the H and C in the antifoam, potentially flammable components, in the melter feed. It was also determined the DWPF was using much more antifoam than anticipated due to a combination of longer processing in the CPC due to high Hg, longer processing due to Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) additions, and adding more antifoam than recommended. The resolution to the PISA involved and assessment of the impact of the antifoam on melter flammability and the implementation of a strategy to control additions within acceptable levels. This led to the need to minimize the use of Antifoam 747 in processing beginning in May 2011. DWPF has had limited success in using Antifoam 747 in caustic processing. Since starting up the ARP facility, the ARP product (similar chemically to caustic sludge) is added to the Sludge Receipt and Adjustment Tank (SRAT) at boiling and evaporated to maintain a constant SRAT volume. Although there is very little offgas generated during caustic boiling, there is a large volume of water vapor produced which can lead to foaming. High additions and more frequent use of antifoam are used to mitigate the foaming during caustic boiling. The result of these three issues above is that DWPF had three antifoam needs in FY2011: (1) Determine the cause of the poor Antifoam 747 performance during caustic boiling; (2) Determine the decomposition products of Antifoam 747 during CPC processing; and (3) Improve the effectiveness of Antifoam 747, in order to minimize the amount used. Testing was completed by Illinois Institute of Technology (IIT) and Savannah River National Laboratory (SRNL) researchers to address these questions. The testing results reported were funded by both DWPF and DOE/EM 31. Both sets of results are reported in this document for completeness. The results of this research are summarized: (1) The cause for the poor Antifoam 747 performance during caustic boiling was the high hydrolysis rate, cleaving the antifoam molecule in two, leading to poor antifoam performance. In testing with pH solutions from 1 to 13, the antifoam degraded quickly at a pH < 4 and pH > 10. As the antifoam decomposed it lost its spreading ability (wetting agent performance), which is crucial to its antifoaming performance. During testing of a caustic sludge simulants, there was more foam in tests with added Antifoam 747 than in tests without added antifoam. (2) Analyses were completed to determine the composition of the two antifoam components and Antifoam 747. In addition, the decomposition products of Antifoam 747 were determined during CPC processing of sludge simulants. The main decomposition products were identified primarily as Long Chain Siloxanes, boiling point > 400 C. Total antifoam recovery was 33% by mass. In a subsequent study, various compounds potentially related to antifoam were found using semi-volatile organic analysis and volatile organic analysis on the hexane extractions and hexane rinses. These included siloxanes, trimethyl silanol, methoxy trimethyl silane, hexamethyl disiloxane, aliphatic hydrocarbons, dioctyl phthalate, and emulsifiers. Cumulatively, these species amounted to less than 3% of the antifoam mass. The majority of the antifoam was identified using carbon analysis of the SRAT product (40-80% by mass) and silicon analysis (23-83% by mass) of the condensate. Both studies recommended a better solvent for antifoam and more specific tests for antifoam degradation products than the Si and C analyses used. (3) The DWPF Antifoam 747 Purchase Specification was revised in Month, 2011 with a goal of increasing the quality of Antifoam 747. The purchase specification was changed to specify the manufacturer and product for both components that are blended by Siovation to produce Antifoam 747 for DWPF. Testing of Antifoam produced using both the old and new antifoam specifications perform very similarly in testing. Since the change in purchase specification has not improved antifoam performance, an improved antifoam agent is required.« less

  16. 40 CFR 61.161 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material charger systems, heat exchangers, melter cooling system, exhaust system, refractory brick work... the bottom, sidewalls, or roof of the melting vessel; replacement of refractory work in the heat exchanger; and replacement of refractory portions of the glass conditioning and distribution system...

  17. 40 CFR 61.161 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... material charger systems, heat exchangers, melter cooling system, exhaust system, refractory brick work... the bottom, sidewalls, or roof of the melting vessel; replacement of refractory work in the heat exchanger; and replacement of refractory portions of the glass conditioning and distribution system...

  18. 40 CFR 61.161 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... material charger systems, heat exchangers, melter cooling system, exhaust system, refractory brick work... the bottom, sidewalls, or roof of the melting vessel; replacement of refractory work in the heat exchanger; and replacement of refractory portions of the glass conditioning and distribution system...

  19. 40 CFR 61.161 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material charger systems, heat exchangers, melter cooling system, exhaust system, refractory brick work... the bottom, sidewalls, or roof of the melting vessel; replacement of refractory work in the heat exchanger; and replacement of refractory portions of the glass conditioning and distribution system...

  20. Industrial scale-plant for HLW partitioning in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzekun, E.G.; Glagolenko, Y.V.; Drojko, E.G.

    1996-12-31

    Radiochemical plant of PA <> at Ozersk, which was come on line in December 1948 originally for weapon plutonium production and reoriented on the reprocessing of spent fuel, till now keeps on storage HLW of the military program. Application of the vitrification method since 1986 has not essentially reduced HLW volumes. So, as of September 1, 1995 vitrification installations had been processed 9590 m{sup 3} HLW and 235 MCi of radionuclides was included in glass. However only 1100 m{sup 3} and 20.5 MCi is part of waste of the military program. The reason is the fact, that the technology andmore » equipment of vitrification were developed for current waste of Purex-process, for which low contents of corrosion-dangerous impurity to materials of vitrification installation is characteristic of. With reference to HLW, which are growing at PA <> in the course of weapon plutonium production, the program of Science-Research Works includes the following main directions of work. Development of technology and equipment of installations for immobilising HLW with high contents of impurity into a solid form at induction melter. Application of High-temperature Adsorption Method for sorption of radionuclides from HLW on silica gel. Application of Partitioning Method of radionuclides from HLW, based on extraction cesium and strontium into cobalt dicarbollyde or crown-ethers, but also on recovery of cesium radionuclides by sorption on inorganic sorbents. In this paper the results of work on creation of first industrial scale-plant for partitioning HLW by the extraction and sorption methods are reported.« less

  1. 40 CFR 63.1381 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wool fiberglass to which a phenol-formaldehyde binder has been applied. Building insulation means bonded wool fiberglass insulation, having a loss on ignition of less than 8 percent and a density of less... charger systems, heat exchangers, melter cooling system, exhaust system, refractory brick work, fuel...

  2. 40 CFR 63.1381 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wool fiberglass to which a phenol-formaldehyde binder has been applied. Building insulation means bonded wool fiberglass insulation, having a loss on ignition of less than 8 percent and a density of less... charger systems, heat exchangers, melter cooling system, exhaust system, refractory brick work, fuel...

  3. THE IMPACT OF THE MCU LIFE EXTENSION SOLVENT ON DWPF GLASS FORMULATION EFFORTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D; Edwards, T

    2011-03-24

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NG-CSSX), a new strip acid, and modified monosodium titanate (mMST) will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing with the next generation solvent and mMST is required to determine the impact of these changes in 512-S operations as well as Chemical Process Cell (CPC), Defense Waste Processing Facility (DWPF) glass formulation activities, and melter operations at DWPF. To support programmatic objectives,more » the downstream impacts of the boric acid strip effluent (SE) to the glass formulation activities and melter operations are considered in this study. More specifically, the impacts of boric acid additions to the projected SB7b operating windows, potential impacts to frit production temperatures, and the potential impact of boron volatility are evaluated. Although various boric acid molarities have been reported and discussed, the baseline flowsheet used to support this assessment was 0.01M boric acid. The results of the paper study assessment indicate that Frit 418 and Frit 418-7D are robust to the implementation of the 0.01M boric acid SE into the SB7b flowsheet (sludge-only or ARP-added). More specifically, the projected operating windows for the nominal SB7b projections remain essentially constant (i.e., 25-43 or 25-44% waste loading (WL)) regardless of the flowsheet options (sludge-only, ARP added, and/or the presence of the new SE). These results indicate that even if SE is not transferred to the Sludge Receipt and Adjustment Tank (SRAT), there would be no need to add boric acid (from a trim tank) to compositionally compensate for the absence of the boric acid SE in either a sludge-only or ARP-added SB7b flowsheet. With respect to boron volatility, the Measurement Acceptability Region (MAR) assessments also suggest that Slurry Mix Evaporator (SME) acceptability decisions would not be different assuming either 100% of the B{sub 2}O{sub 3} from the SE were retained or volatilized. More specifically, the 0.84 wt% B{sub 2}O{sub 3} in the SE is so minor that its presence in the SME analysis does not influence SME acceptability decisions. In fact, using the 100% retention and 100% volatilization composition projections, only minor differences in the predicted properties of the glass product occur with all of the glasses being acceptable over a WL interval of 32-42%. Based on the 0.01M boric acid flowsheet, there is very little difference between Frit 418 and Frit 418-7D (a frit that was compositionally altered to account for the 0.84 wt% B{sub 2}O{sub 3} in the SE) with respect to melt temperature. In fact, when one evaluates the composition of Frit 418-7D, it lies within the current Frit 418 vendor specifications and therefore could have been produced by the vendor targeting the nominal composition of Frit 418.« less

  4. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.« less

  5. PRELIMINARY EVALUATION OF DWPF IMPACTS OF BORIC ACID USE IN CESIUM STRIP FOR SWPF AND MCU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.

    2010-09-28

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix,more » or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Experimental testing with the improved solvent is required to determine the impact of any changes in the entrained solvent on DWPF processing.« less

  6. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system mustmore » also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer aerodynamic diameter were injected into the environmental chamber and drawn through the conditioning system, which included a filter to capture droplets that passed through the conditioner. The droplets were tagged with a fluorescent dye which allowed quantification of droplet deposition on each component of the system. The tests demonstrated the required reductions in temperature and moisture, with no condensation forming when heat tracing was added on the upstream end of the sample conditioner. Additionally, tests indicated that the system, operating at several flow rates and in both vertical and horizontal orientations, delivers nearly all of the sampled particles for analysis. Typical aerosol penetration values were between 98 and 99%. PNNL, Bechtel National Inc., and the instrument vendor are working to implement the sample conditioner into the air monitoring systems used for the melter off-gas exhaust streams. Similar technology may be useful for processes in other facilities with air exhaust streams with elevated temperature and/or humidity.« less

  7. NRC Perspectives on Waste Incidental to Reprocessing Consultations and Monitoring - 13398

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenney, Christepher A.; Suber, Gregory F.; Felsher, Harry D.

    2013-07-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations to assess compliance with NRC regulations in 10 CFR Part 61, Subpart C. The NDAA applies to DOE activities that will remain within the States of South Carolina and Idaho. DOE has chosen to, under DOE Order 435.1, engage in consultation with NRC for similar activities inmore » the State of Washington and New York, however, the NRC has no monitoring responsibilities. In 2007, the NRC developed a draft Final Report for Interim Use entitled, NUREG-1854: NRC Staff Guidance for Activities Related to U.S. Department of Energy Waste Determinations. Since the law was enacted, the DOE and NRC have consulted on three waste determinations within the affected States: (1) the Saltstone Disposal Facility at the Savannah River Site (SRS) within the State of South Carolina in 2005, (2) the INTEC Tank Farm at the Idaho National Laboratory within the State of Idaho in 2006, and (3) the F Tank Farm at SRS in 2011. After the end of consultation and issuance by DOE of the final waste determination, monitoring began at each of these sites, including the development of monitoring plans. In addition to the NDAA sites, DOE has requested NRC consultation support on both individual tanks and the entire C Tank Farm at the Hanford Nuclear Reservation in the State of Washington. DOE also requested consultation of waste determinations performed on the melter and related feed tanks at the West Valley site in New York that would be disposed offsite. In the next few years, NRC and DOE will consult on the last of the NDAA waste determinations for a while, the H Tank Farm waste determination at SRS. DOE may identify other activities in the future but largely NRC's role will change from doing both consultation and monitoring to being focused on monitoring activities within NDAA. DOE has identified other activities at the Hanford Nuclear Reservation that would continue consultation activities but outside of the NDAA in the future. During the past seven years of consultations and monitoring a number of lessons learned about the process, communication issues, and technical guidance have been identified. With the change in focus from reviewing initial performance assessments and draft waste determinations to long-term monitoring (e.g., individual waste tank closure, at F Tank Farm or complete tank farm closure at INTEC expected in the near future), the NRC is going to revise and update its guidance over the next few years to reflect the lessons learned and the change in focus. In addition to the lessons learned, improvements in the guidance will have to account possible rule and guidance changes underway within Part 61. This paper will discuss the initial plans, approaches, and time lines to revise the guidance within NUREG-1854, including opportunities for public involvement. (authors)« less

  8. Cooler and particulate separator for an off-gas stack

    DOEpatents

    Wright, George T.

    1992-01-01

    An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  9. Discrete Jordan curve theorem

    NASA Astrophysics Data System (ADS)

    Chen, Li

    1999-09-01

    According to a general definition of discrete curves, surfaces, and manifolds (Li Chen, 'Generalized discrete object tracking algorithms and implementations, ' In Melter, Wu, and Latecki ed, Vision Geometry VI, SPIE Vol. 3168, pp 184 - 195, 1997.). This paper focuses on the Jordan curve theorem in 2D discrete spaces. The Jordan curve theorem says that a (simply) closed curve separates a simply connected surface into two components. Based on the definition of discrete surfaces, we give three reasonable definitions of simply connected spaces. Theoretically, these three definition shall be equivalent. We have proved the Jordan curve theorem under the third definition of simply connected spaces. The Jordan theorem shows the relationship among an object, its boundary, and its outside area. In continuous space, the boundary of an mD manifold is an (m - 1)D manifold. The similar result does apply to regular discrete manifolds. The concept of a new regular nD-cell is developed based on the regular surface point in 2D, and well-composed objects in 2D and 3D given by Latecki (L. Latecki, '3D well-composed pictures,' In Melter, Wu, and Latecki ed, Vision Geometry IV, SPIE Vol 2573, pp 196 - 203, 1995.).

  10. Cooler and particulate separator for an off-gas stack

    DOEpatents

    Wright, G.T.

    1991-04-08

    This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  11. SCIX IMPACT ON DWPF CPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D.

    2011-07-14

    A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheetmore » includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not consider the impact of proposed future alternative DWPF CPC flowsheets. The impact of the SCIX streams on DWPF processing using the selected flowsheet need to be considered as part of the technical baseline studies for coupled processing with the selected flowsheet. In addition, the downstream impact of aluminum dissolution on waste containing CST and MST has not yet been evaluated. The current baseline would not subject CST to the aluminum dissolution process and technical concerns with performing the dissolution with CST have been expressed. Should this option become feasible, the downstream impact should be considered. The main area of concern for DWPF from aluminum dissolution is an impact on rheology. The SCIX project is planning for SRNL to complete MST, CST, and sludge rheology testing to evaluate any expected changes. The impact of ground CST transport and flush water on the DWPF CPC feed tank (and potential need for decanting) has not been defined or studied.« less

  12. Americium-Curium Stabilization - 5'' Cylindrical Induction Melter System Design Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witt, D.C.

    1999-11-08

    Approximately 11,000 liters (3,600) gallons of solution containing isotopes of Am and Cm are currently stored in F-Canyon Tank 17.1. These isotopes were recovered during plutonium-242 production campaigns in the mid- and late-1970s. Experimental work for the project began in 1995 by the Savannah River Technology Center (SRTC). Details of the process are given in the various sections of this document.

  13. Deployment of Cesium Recovered from High Level Liquid Waste for Irradiation - Indian Scenario - 13128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, Tessy; Shah, J.G.; Kumar, Amar

    2013-07-01

    Recovery of Cs-137 from HLW and its utilisation as source pencil in place of Co-60 is vital for medical and sewage treatment applications in India. For separation of Cs, specific ion exchange resins as well as 'Calyx crown' solvent have been developed and synthesized indigenously. A flow sheet involving separation of Cs from acidic HLW using Ammonium Molybdo Phosphate (AMP) resins, recovery of Cs from the loaded AMP column by dissolving it in alkali, ion exchange purification of Cs rich alkaline solution using Resorcinol-Formaldehyde Poly condensate (RF) resins and its elution in cesium nitrate form was developed and demonstrated. Solventmore » extraction route employing 0.03 Molar, 1-3-octyl oxy Calyx (4) arene crown-6 in 30% isodecyl alcohol and dodecane was also established using mixer settlers. Cesium lithium borosilicate glass based formulations have been considered as a glass matrix for Cs irradiation pencils. While choosing this vitreous matrix, attributes addressing maximum possible Cs-137 loading, low glass pouring temperature to minimise Cs volatility, reasonably good mechanical strength and good chemical durability have been considered. Recovered cesium nitrate solution was vitrified along with glass additives in an induction heated metallic melter and subsequently poured into 12 numbers of Cs irradiation pencils positioned on turn-table equipped with the load cell. The complete cycle involving recovery of Cs from HLW followed by its conversion into Cs pencil was demonstrated. (authors)« less

  14. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; Vance, Eric R.; Amoroso, Jake W.

    2018-04-01

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba1.0Cs0.3Cr1.0Al0.3Fe1.0Ti5.7O16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayed prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed "islands" rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.

  15. Neutral and charged gallium clusters: structures, physical properties and implications for the melting features

    NASA Astrophysics Data System (ADS)

    Núñez, Sara; López, José M.; Aguado, Andrés

    2012-09-01

    We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims.We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims. Electronic supplementary information (ESI) available: Atomic coordinates (in xyz format and Å units) and point group symmetries for the global minimum structures reported in this paper. See DOI: 10.1039/c2nr31222k

  16. Improved Casting Furnace Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielding, Randall Sidney; Tolman, David Donald

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  17. The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D. K.; Edwards, T. B.

    2013-06-26

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01 M) boric acid streammore » into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B203 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 - SB8 flowsheet to additions of B203 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 - SB8 system regardless of the presence or absence of ARP and SE (up to 2 wt% B203 contained in the SRAT and up to 2000 gallons of ARP). It should be noted that 0.95 wt% B203 is the nominal projected concentration in the SRAT based on a 0.0125M boric acid flowsheet with 70,000 liters of SE being added to the SRAT.« less

  18. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less

  19. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    DOE PAGES

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; ...

    2018-02-08

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less

  20. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.

    2010-10-07

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was anmore » investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was requested to conduct. SRNL issued a Task Technical and Quality Assurance (TT&QA) plan [4] in response to the SRR request. The conclusions provided in this report are that no changes need to be made to the SME acceptability process (i.e., no modifications to WSRC-TR-95-00364, Revision 5, are needed) and no changes need to be made to the Product Composition Control System (PCCS) itself (i.e. the spreadsheet utilized by Waste Solidification Engineering (WSE) for acceptability decisions does not require modification) in response to thorium becoming a reportable element for DWPF operations. In addition, the inputs and results for the two test cases requested by WSE for use in confirming the successful activation of thorium as a reportable element for DWPF operations during the processing of SB6 are presented in this report.« less

  1. Characterization of structure and thermophysical properties of three ESR slags

    NASA Astrophysics Data System (ADS)

    Plotkowski, A.; deBarbadillo, J.; Krane, Matthew J. M.

    2016-07-01

    The structure and properties of electroslag remelting (ESR) slags were characterized. Slags samples of three compositions were obtained from industrial remelting processes at Special Metals Corporation and from casting in a laboratory vacuum induction melter. The structure of the slag samples was observed using optical and electron microscopy, and phases were identified and their relative amounts quantified using X-ray diffraction. Laser flash thermal diffusivity, density, and differential scanning calorimetry measurements for specific heat were performed to determine the bulk thermal conductivity of the samples. Sample porosity was measured as a function of depth using a serial sectioning technique, and a onedimensional computational model was developed to estimate the thermal conductivity of the fully dense slags. These results are discussed in context with previous studies, and opportunities for future research are identified. AFRL Case Number: 88ABW-2015-1871.

  2. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, K.R.

    1985-07-29

    A drain valve for use in furnace for the melting of thermoplastic material is disclosed. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace.

  3. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D.; Zamecnik, J.; Best, D.

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah Rivermore » National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.« less

  4. Results from tests of TFL Hydragard sampling loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimke, J.L.

    When the Defense Waste Processing Facility (DWPF) is operational, processed radioactive sludge will be transferred in batches to the Slurry Mix Evaporator (SME), where glass frit will be added and the contents concentrated by boiling. Batches of the slurry mixture are transferred from the SME to the Melter Feed Tank (MFT). Hydragard{reg_sign} sampling systems are used on the SME and the MFT for collecting slurry samples in vials for chemical analysis. An accurate replica of the Hydragard sampling system was built and tested in the thermal Fluids Laboratory (TFL) to determine the hydragard accuracy. It was determined that the originalmore » Hydragard valve frequently drew a non-representative sample stream through the sample vial that ranged from frit enriched to frit depleted. The Hydragard valve was modified by moving the plunger and its seat backwards so that the outer surface of the plunger was flush with the inside diameter of the transfer line when the valve was open. The slurry flowing through the vial accurately represented the composition of the slurry in the reservoir for two types of slurries, different dilution factors, a range of transfer flows and a range of vial flows. It was then found that the 15 ml of slurry left in the vial when the Hydragard valve was closed, which is what will be analyzed at DWPF, had a lower ratio of frit to sludge as characterized by the lithium to iron ratio than the slurry flowing through it. The reason for these differences is not understood at this time but it is recommended that additional experimentation be performed with the TFL Hydragard loop to determine the cause.« less

  5. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.S.

    1999-08-11

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitationmore » process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.« less

  6. Final Report - DuraMelter 100 Tests to Support LAW Glass Formulation Correlation Development, VSL-06R6480-1, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Muller, I. S.; Gong, W.

    2013-12-03

    This report describes the results of work and testing specified by Test Specifications 24590-LAW-TSP-RT-04-004, Rev. 0, Test Plans VSL-05T5480-1, Rev. 0 and Text Exceptions 24590-LAW-TEF-RT-05-00002. The work and any associated testing followed established quality assurance requirements and was conducted as authorized. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Results required by the Test Plan are reported. Also reported are any unusual or anomalous occurences that are different from the starting hypotheses. The test results and this report have been reviewed and verified.

  7. Definition of an Acceptable Glass composition Region (AGCR) via an Index System and a Partitioning Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D. K.; Taylor, A. S.; Edwards, T.B.

    2005-06-26

    The objective of this investigation was to appeal to the available ComPro{trademark} database of glass compositions and measured PCTs that have been generated in the study of High Level Waste (HLW)/Low Activity Waste (LAW) glasses to define an Acceptable Glass Composition Region (AGCR). The term AGCR refers to a glass composition region in which the durability response (as defined by the Product Consistency Test (PCT)) is less than some pre-defined, acceptable value that satisfies the Waste Acceptance Product Specifications (WAPS)--a value of 10 g/L was selected for this study. To assess the effectiveness of a specific classification or index systemmore » to differentiate between acceptable and unacceptable glasses, two types of errors (Type I and Type II errors) were monitored. A Type I error reflects that a glass with an acceptable durability response (i.e., a measured NL [B] < 10 g/L) is classified as unacceptable by the system of composition-based constraints. A Type II error occurs when a glass with an unacceptable durability response is classified as acceptable by the system of constraints. Over the course of the efforts to meet this objective, two approaches were assessed. The first (referred to as the ''Index System'') was based on the use of an evolving system of compositional constraints which were used to explore the possibility of defining an AGCR. This approach was primarily based on ''glass science'' insight to establish the compositional constraints. Assessments of the Brewer and Taylor Index Systems did not result in the definition of an AGCR. Although the Taylor Index System minimized Type I errors which allowed access to composition regions of interest to improve melt rate or increase waste loadings for DWPF as compared to the current durability model, Type II errors were also committed. In the context of the application of a particular classification system in the process control system, Type II errors are much more serious than Type I errors. A Type I error only reflects that the particular constraint system being used is overly conservative (i.e., its application restricts access to glasses that have an acceptable measured durability response). A Type II error results in a more serious misclassification that could result in allowing the transfer of a Slurry Mix Evaporator (SME) batch to the melter, which is predicted to produce a durable product based on the specific system applied but in reality does not meet the defined ''acceptability'' criteria. More specifically, a nondurable product could be produced in DWPF. Given the presence of Type II errors, the Index System approach was deemed inadequate for further implementation consideration at the DWPF. The second approach (the JMP partitioning process) was purely data driven and empirically derived--glass science was not a factor. In this approach, the collection of composition--durability data in ComPro was sequentially partitioned or split based on the best available specific criteria and variables. More specifically, the JMP software chose the oxide (Al{sub 2}O{sub 3} for this dataset) that most effectively partitions the PCT responses (NL [B]'s)--perhaps not 100% effective based on a single oxide. Based on this initial split, a second request was made to split a particular set of the ''Y'' values (good or bad PCTs based on the 10 g/L limit) based on the next most critical ''X'' variable. This ''splitting'' or ''partitioning'' process was repeated until an AGCR was defined based on the use of only 3 oxides (Al{sub 2}O{sub 3}, CaO, and MgO) and critical values of > 3.75 wt% Al{sub 2}O{sub 3}, {ge} 0.616 wt% CaO, and < 3.521 wt% MgO. Using this set of criteria, the ComPro database was partitioned in which no Type II errors were committed. The automated partitioning function screened or removed 978 of the 2406 ComPro glasses which did cause some initial concerns regarding excessive conservatism regardless of its ability to identify an AGCR. However, a preliminary review of glasses within the 1428 ''acceptable'' glasses defining the ACGR includes glass systems of interest to support the accelerated mission.« less

  8. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 2. Waste Glass.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWD) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  9. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation). Final Report. Volume 3. Waste Tires.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  10. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 1. Municipal Waste Combustor Ash.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evlauate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  11. Method for starting operation of a resistance melter

    DOEpatents

    Chapman, Christopher Charles

    1977-01-01

    A method for starting the operation of a resistance furnace, where heating occurs by passing a current through the charge between two furnace electrodes and the charge is a material which is essentially electrically nonconductive when in a solid physical state but which becomes more electrically conductive when in a molten physical state, by connecting electrical resistance heating wire between the furnace electrodes, placing the wire in contact with the charge material between the electrodes and passing a current through the wire to heat the wire to a temperature sufficient to melt the material between the furnace electrodes so that as the material melts, current begins to pass between the electrodes through the melted material, further heating and melting more material until all current between the electrodes passes through the charge material without the aid or presence of the resistance element.

  12. Soft ferromagnetic properties of Ni44Fe6Mn32Al18 doped Co partially

    NASA Astrophysics Data System (ADS)

    Notonegoro, Hamdan Akbar; Kurniawan, Budhy; Kurniawan, Candra; Manaf, Azwar

    2017-01-01

    Research in finding suitable magnetocaloric material around room temperature made ferromagnetic (FM) (Ni-Mn)-based Heusler alloys receive considerable attention as a potential candidate for the magnetic refrigerator. This compound are associated with the shape-memory effect, magnetic superelasticity, and more others magneto-functional properties. The compounds were prepared by vacuum arc melter (VAM) under argon atmosphere which sintering and annealing process were running with quartz cube in vacuum condition. A small amount of coercivity value at σ = 0 in the hysteresis curve occurred whereas magnetization of the sample in various temperature does not reach saturation. The Currie temperature Tc of the sample was obtained at 358 K. Nevertheless, this is dubious value because at T = 300 K the curves had swooped down. Additional measurements necessary to taken as a comparison to verify this value.

  13. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  14. Discussion on the methodology for determining food waste in household waste composition studies.

    PubMed

    Lebersorger, S; Schneider, F

    2011-01-01

    Food waste has become an increasingly discussed topic in recent years. However, there is little authoritative data on food waste quantities and composition and systematic and comparable data are missing. Household waste composition analyses, which are often carried out routinely at regular or irregular intervals, provide an opportunity for obtaining data about food waste at both local and regional levels. The results of prior waste composition studies are not really comparable due to the different classifications, definitions and methods used; in addition, these are mostly insufficiently described and not reproducible by a third party. The aim of this paper is to discuss a methodology for determining the proportion of food waste in household waste composition studies, by analysing specific problems and possible solutions. For that purpose, findings from the literature are analysed and the approach and results of a composition analysis of residual waste of a stratified sample (urban, rural area) are presented. The study suggests that in order to avoid a significant loss of information, waste should not be sieved before sorting and packed food waste should be classified into the relevant food waste category together with its packaging. The case study showed that the overall influence of the proportion of food packaging included in the food waste category, which amounted to only 8%, did not significantly influence the results and can therefore be disregarded. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Solid Waste Composition and Quantification at Taman Melewar, Parit Raja, Batu Pahat

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Abidin, S. S. S. Z.

    2016-07-01

    The poor management of solid waste is noticeable through the increasing of the solid waste each year and the difficulties in disposing the waste in the current available landfill. This study was undertaken to analyze the quantity and composition of waste generation in Taman melewar. Taman Melewar is a student residential area and this study is focusing on student's daily waste composition. The objective of this study was to identify the amount of solid waste generation, analyze and classify the composition of solid waste in Taman Melewar. The waste collection was conducted for 50 houses on a daily basis for two weeks. The average household waste generation rate was 0.082 kg/person/day. Organic waste was the major constituent of waste production. The average of organic waste represents about 72.4% followed by paper (9%), plastics film (5.5%), plastics rigid (4.7%), napkins (3.8%), tetrapek (1.3%), glass (1.1%), household hazardous waste (0.85%), textiles (0.52%), metal (0.51%) and rubber (0.34%). The moisture content was ranging from 27.67% to 28.68%. An evaluation was made based on student's behavior towards waste production and recycling. In conclusion, the results revealed that organic waste is the highest waste generated and recycling habits is also poor in Taman Melewar.

  16. Does industrial waste taxation contribute to reduction of landfilled waste? Dynamic panel analysis considering industrial waste category in Japan.

    PubMed

    Sasao, Toshiaki

    2014-11-01

    Waste taxes, such as landfill and incineration taxes, have emerged as a popular option in developed countries to promote the 3Rs (reduce, reuse, and recycle). However, few studies have examined the effectiveness of waste taxes. In addition, quite a few studies have considered both dynamic relationships among dependent variables and unobserved individual heterogeneity among the jurisdictions. If dependent variables are persistent, omitted variables cause a bias, or common characteristics exist across the jurisdictions that have introduced waste taxes, the standard fixed effects model may lead to biased estimation results and misunderstood causal relationships. In addition, most existing studies have examined waste in terms of total amounts rather than by categories. Even if significant reductions in total waste amounts are not observed, some reduction within each category may, nevertheless, become evident. Therefore, this study analyzes the effects of industrial waste taxation on quantities of waste in landfill in Japan by applying the bias-corrected least-squares dummy variable (LSDVC) estimators; the general method of moments (difference GMM); and the system GMM. In addition, the study investigates effect differences attributable to industrial waste categories and taxation types. This paper shows that industrial waste taxes in Japan have minimal, significant effects on the reduction of final disposal amounts thus far, considering dynamic relationships and waste categories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The role of waste bank partnership in efforts to decrease waste volume in urban: A case study at a waste bank in Kalibaru, Cilodong, Depok City

    NASA Astrophysics Data System (ADS)

    Suparmini; Junadi, Purnawan

    2018-03-01

    Waste Bank is a program that the government uses as one of the efforts to tackle the increasingly growing garbage day. The Waste Bank in Depok City serves as a collection of non-organic waste that still has economic value. This study attempts to examine the factors that make Depok City Waste Bank play its role today and its relationship with the community involved in the activities of the Waste Bank. Through qualitative approach with a case study, the authors make observations on the object and conduct in-depth interviews with some informants. This study found four factors that make a Waste Bank continues to play a role, namely the presence of leaders who are reliable (leadership), good management (management), incentive (incentive) and the involvement of partners (partnership). While the characteristics of community-based on the level of education, income levels also affect the community participation in receiving the Waste Bank as a form of waste management in the city of Depok.

  18. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  19. Correlates of domestic waste management and related health outcomes in Sunyani, Ghana: a protocol towards enhancing policy.

    PubMed

    Addo, Henry O; Dun-Dery, Elvis J; Afoakwa, Eugenia; Elizabeth, Addai; Ellen, Amposah; Rebecca, Mwinfaug

    2017-07-03

    Domestic waste generation has contributed significantly to hampering national waste management efforts. It poses serious threat to national development and requires proper treatment and management within and outside households. The problem of improper waste management has always been a challenge in Ghana, compelling several national surveys to report on the practice of waste management. However, little is known about how much waste is generated and managed within households and there is a serious dearth of information for national policy and planning. This paper seeks to document the handling and practice of waste management, including collection, storage, transportation and disposal along with the types and amount of waste generated by Households and their related health outcome. The study was a descriptive cross-sectional study and used a multi-stage sampling technique to sample 700 households. The study was planned and implemented from January to May 2015. It involved the use of structured questionnaires in the data collection over the period. Factors such as demographic characteristics, amount of waste generated, types of waste bins used within households, waste recycling, cost of disposing waste, and distance to dumpsite were all assessed. The paper shows that each surveyed household generated 0.002 t of waste per day, of which 29% are both organic and inorganic. Though more than half of the respondents (53.6%) had positive attitude towards waste management, only 29.1% practiced waste management. The study reveals that there is no proper management of domestic waste except in few households that segregate waste. The study identified several elements as determinants of waste management practice. Female respondents were less likely to practice waste management (AOR 0.45; 95% Cl 0.29, 0.79), household size also determined respondents practice (AOR 0.26; Cl 0.09, 0.77). Practice of recycling (AOR 0.03; Cl 0.02, 0.08), distance to dumpsite (AOR 0.45; Cl 0.20, 0.99), were all significant predictors of waste management practice. Cholera which is a hygiene related disease was three times more likely to determine households' waste management practice (AOR 3.22; Cl 1.33, 7.84). Considering the low waste management practice among households, there is the need for improved policy and enhanced education on proper waste management practice among households.

  20. Applying multi-criteria decision-making to improve the waste reduction policy in Taiwan.

    PubMed

    Su, Jun-Pin; Hung, Ming-Lung; Chao, Chia-Wei; Ma, Hwong-wen

    2010-01-01

    Over the past two decades, the waste reduction problem has been a major issue in environmental protection. Both recycling and waste reduction policies have become increasingly important. As the complexity of decision-making has increased, it has become evident that more factors must be considered in the development and implementation of policies aimed at resource recycling and waste reduction. There are many studies focused on waste management excluding waste reduction. This study paid more attention to waste reduction. Social, economic, and management aspects of waste treatment policies were considered in this study. Further, a life-cycle assessment model was applied as an evaluation system for the environmental aspect. Results of both quantitative and qualitative analyses on the social, economic, and management aspects were integrated via the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method into the comprehensive decision-making support system of multi-criteria decision-making (MCDM). A case study evaluating the waste reduction policy in Taoyuan County is presented to demonstrate the feasibility of this model. In the case study, reinforcement of MSW sorting was shown to be the best practice. The model in this study can be applied to other cities faced with the waste reduction problems.

  1. The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D. K.; Edwards, T. B.; Stone, M. E.

    2013-08-14

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01M) boric acid stream intomore » the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B2O3 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 – SB8 flowsheet to additions of B2O3 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 – SB8 system regardless of the presence or absence of ARP and SE (up to 2 wt% B2O3 contained in the SRAT and up to 2000 gallons of ARP). It should be noted that 0.95 wt% B2O3 is the nominal projected concentration in the SRAT based on a 0.0125M boric acid flowsheet with 70,000 liters of SE being added to the SRAT. The impact on CPC processing of a 0.01M boric acid solution for elution of cesium during Modular Caustic Side Solvent Extraction Unit (MCU) processing has previously been evaluated by the Savannah River National Laboratory (SRNL). Increasing the acid strength to 0.0125M boric acid to account for variations in the boric acid strength has been reviewed versus the previous evaluation. The amount of acid from the boric acid represented approximately 5% of the total acid during the previous evaluation. An increase from 0.01 to 0.0125M boric acid represents a change of approximately 1.3% which is well within the error of the acid calculation. Therefore, no significant changes to CPC processing (hydrogen generation, metal solubilities, rheological properties, REDOX control, etc.) are expected from an increase in allowable boric acid concentration from 0.01M to 0.0125M.« less

  2. HOUSEHOLD HAZARDOUS WASTE CHARACTERIZATION STUDY FOR PALM BEACH COUNTY, FLORIDA - A MITE PROGRAM EVALUATION

    EPA Science Inventory

    The objectives of the Household Hazardous Waste Characterization Study (the HHW Study) were to: 1) Quantity the annual household hazardous waste (HHW) tonnages disposed in Palm Beach County Florida’s (the County) residential solid waste (characterized in this study as municipal s...

  3. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC ormore » state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.« less

  4. Baseline for food waste generation - A case study in Universiti Tun Hussein Onn Malaysia cafeterias

    NASA Astrophysics Data System (ADS)

    Alias, A. R.; Mokhlis, N. A. Mohd; Zainun, N. Y.

    2017-11-01

    Increasing population and economy status have contributed to the increasing volume of solid wastes produced in Malaysia and it creates problems on the existing solid waste management system. Ineffective waste management system was one of the issues that often discussed. The purpose of this study was to suggest the best method for managing food waste in Universiti Tun Hussein Onn Malaysia (UTHM) cafeterias. The scope of the study was to identify the type and quantity of waste generated in each cafeteria. The study area was carried out at six cafeteria in UTHM including residential college cafeteria which are Tun Dr. Ismail (TDI), Tun Fatimah (TF) and Tun Syed Nasir (TSN), G3’s cafeteria, Arked, and Dr. Munie’s cafeteria located at the Faculty of Civil and Environmental Engineering (FKAAS). In this study, food waste was quantified in unit of kilogram (kg). Results of the study showed that total food waste in selected UTHM’s cafeterias was 6197.5 kg for two months. Food waste generated in G3’s cafeteria was the highest value with 1823.5 kg among another cafeteria. This is due to strategic location for students and staff to take meals, the variety of food sold and reasonable price were major factors of generating food waste. Meanwhile, the Dr. Munie's Cafeteria located in FKAAS recorded the least total production of food waste as staffs and students take their meals at others cafeterias. Through literature review, there are list of methods on waste management were identified and composting method was suggested for food waste management in UTHM since the waste was produce in very large quantity.

  5. Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste

    PubMed Central

    Hossain, Md. Sohrab; Rahman, Nik Norulaini Nik Ab; Balakrishnan, Venugopal; Puvanesuaran, Vignesh R.; Sarker, Md. Zaidul Islam; Kadir, Mohd Omar Ab

    2013-01-01

    The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes. PMID:23435587

  6. Using a contingent valuation approach for improved solid waste management facility: Evidence from Kuala Lumpur, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afroz, Rafia, E-mail: rafia_afroz@yahoo.com; Masud, Muhammad Mehedi

    2011-04-15

    This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation ismore » not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.« less

  7. Induction heating apparatus and methods of operation thereof

    DOEpatents

    Richardson, John G.

    2006-08-01

    Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.

  8. Development of sustainable waste management toward zero landfill waste for the petrochemical industry in Thailand using a comprehensive 3R methodology: A case study.

    PubMed

    Usapein, Parnuwat; Chavalparit, Orathai

    2014-06-01

    Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. © The Author(s) 2014.

  9. Food waste minimization from a life-cycle perspective.

    PubMed

    Bernstad Saraiva Schott, A; Andersson, T

    2015-01-01

    This article investigates potentials and environmental impacts related to household food waste minimization, based on a case study in Southern Sweden. In the study, the amount of avoidable and unavoidable food waste currently being disposed of by households was assessed through waste composition analyses and the different types of avoidable food waste were classified. Currently, both avoidable and unavoidable food waste is either incinerated or treated through anaerobic digestion. A hypothetical scenario with no generation of avoidable food waste and either anaerobic digestion or incineration of unavoidable food waste was compared to the current situation using the life-cycle assessment method, limited to analysis of global warming potential (GWP). The results from the waste composition analyses indicate that an average of 35% of household food waste is avoidable. Minimization of this waste could result in reduction of greenhouse gas emissions of 800-1400 kg/tonne of avoidable food waste. Thus, a minimization strategy would result in increased avoidance of GWP compared to the current situation. The study clearly shows that although modern alternatives for food waste treatment can result in avoidance of GWP through nutrient and energy recovery, food waste prevention yields far greater benefits for GWP compared to both incineration and anaerobic digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are stillmore » too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.« less

  11. Successful approaches to recycling urban wood waste

    Treesearch

    Solid Waste Association of North America

    2002-01-01

    This report presents eight case studies of successful urban wood waste recycling projects and businesses. These studies document the success of recovered products such as lumber and lumber products, mulch, boiler fuel, and alternative cover for landfills. Overall, wood waste accounts for about 17% of the total waste received at municipal solid waste landfills in the...

  12. Tea waste: an effective and economic substrate for oyster mushroom cultivation.

    PubMed

    Yang, Doudou; Liang, Jin; Wang, Yunsheng; Sun, Feng; Tao, Hong; Xu, Qiang; Zhang, Liang; Zhang, Zhengzhu; Ho, Chi-Tang; Wan, Xiaochun

    2016-01-30

    Tea waste is the residue that remains after tea leaves have been extracted by hot water to obtain water-soluble components. The waste contains a re-usable energy substrate and nutrients which may pollute the environment if they are not dealt with appropriately. Other agricultural wastes have been widely studied as substrates for cultivating mushrooms. In the present study, we cultivated oyster mushroom using tea waste as substrate. To study the feasibility of re-using it, tea waste was added to the substrate at different ratios in different experimental groups. Three mushroom strains (39, 71 and YOU) were compared and evaluated. Mycelia growth rate, yield, biological efficiency and growth duration were measured. Substrates with different tea waste ratios showed different growth and yield performance. The substrate containing 40-60% of tea waste resulted in the highest yield. Tea waste could be used as an effective and economic substrate for oyster mushroom cultivation. This study also provided a useful way of dealing with massive amounts of tea waste. © 2015 Society of Chemical Industry.

  13. Are municipal solid waste collectors at increased risk of Hepatitis A Virus infection? A Greek cross-sectional study.

    PubMed

    Rachiotis, George; Tsovili, Eva; Papagiannis, Dimitrios; Markaki, Adelais; Hadjichristodoulou, Christos

    2016-12-01

    Municipal solid waste collectors are reportedly at risk for Hepatitis A virus infection (HAV) as an occupational hazard. We aimed to investigate the prevalence and possible risk factors of HAV infection among solid waste collectors in a municipality of the broader region of Attica, Greece. A cross-sectional sero-prevalence study was conducted. Fifty (n=50) waste collectors participated in the study (response rate: 95%). The group of municipal waste collectors was compared to a convenient sample of workers not exposed to solid waste (n=83). Municipal solid waste collectors recorded a higher, but not statistically significant, prevalence of anti-HAV(+) in comparison to subjects without occupational exposure to waste (40% vs 34% respectively p=0,4). No significant associations were found between inappropriate work practices and anti- HAV (+). Education was the only factor independently associated with the risk of HAV infection. This study did not corroborate previous reports of an increased prevalence of Hepatitis A Virus infection among municipal solid waste collectors.

  14. Solid waste prevention and management at green festivals: A case study of the Andanças Festival, Portugal.

    PubMed

    Martinho, Graça; Gomes, Ana; Ramos, Mário; Santos, Pedro; Gonçalves, Graça; Fonseca, Miguel; Pires, Ana

    2018-01-01

    Research on waste prevention and management at green festivals is scarce. The present study helps to fill this gap by analyzing waste prevention/reduction and management measures implemented at the Andanças festival, Portugal. Waste characterization campaigns and a questionnaire survey were conducted during the festival. The results show that the largest amount of waste generated was residual waste, followed by food and kitchen waste and packaging waste. The amount of waste generated per person per day at the festival was lower than that of other festivals for both the entire venue and the canteen. Concerning food and kitchen waste generated at the canteen, the amounts are in accordance with the findings of previous studies, but the amount of the edible fraction is comparatively low. Source separation rates are high, in line with other festivals that engage in food-waste source separation. Factors affecting the participation of attendees in waste prevention measures at the festival are the type of participant, their region of origin, the frequency of visits, and whether they are attending as a family. Efforts must be made to increase the awareness of attendees about waste prevention measures, to develop guidelines and methods to quantify the waste prevention measures, and to formulate policies aimed at increasing the application of the zero-waste principle at festivals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra

    PubMed Central

    2014-01-01

    Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728

  16. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra.

    PubMed

    Yoada, Ramatta Massa; Chirawurah, Dennis; Adongo, Philip Baba

    2014-07-08

    Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases.

  17. Attitudes of Preservice Social Studies Teachers towards Solid Wastes and Recycle

    ERIC Educational Resources Information Center

    Karatekin, Kadir; Merey, Zihni

    2015-01-01

    The objective of this study is to determine the attitudes of preservice social studies-teachers towards solid wastes and recycle. This study used the screening model, In order to determine the attitudes of preservice teachers towards solid wastes and recycle, we used the "Scale for the Attitudes of Preservice Teachers towards Solid Wastes and…

  18. High-level waste program progress report, April 1, 1980-June 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-08-01

    The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.

  19. Areas on which to focus when seeking to reduce the greenhouse gas emissions of commercial waste management. A case study of a hypermarket, Finland.

    PubMed

    Hupponen, M; Grönman, K; Horttanainen, M

    2018-03-22

    This study focuses on commercial waste, which has received less attention than household waste in regards to greenhouse gas emission research. First, the global warming potential (GWP) of commercial waste management was calculated. Second, the impacts of different waste fractions and the processes of waste management were recognised. Third, the key areas on which to focus when aiming to reduce the greenhouse gas emissions of commercial waste management were determined. This study was conducted on the waste generated by a real hypermarket in South-East Finland and included eight different waste fractions. The waste treatment plants were selected based on the actual situation. Three different scenarios were employed to evaluate the environmental impact of managing mixed waste: landfilling, combustion and more accurate source separation. The GaBi software and impact assessment methodology CML 2001 were used to perform a life cycle assessment of the environmental impacts associated with the waste management. The results indicated that the total GWP of commercial waste management could be reduced by 93% by directing the mixed waste to combustion instead of landfill. A further 5% GWP reduction could be achieved by more accurate source separation of the mixed waste. Utilisation of energy waste had the most significant influence (41-52%) on the total GWP (-880 to -860 kgCO 2 -eq./t), followed by landfilling of mixed waste (influence 15-23% on the total GWP, 430 kgCO 2 -eq./t), recycling polyethylene (PE) plastic (influence 18-21% on the total GWP, -1800 kgCO 2 -eq./t) and recycling cardboard (influence 11-13% on the total GWP, 51 kgCO 2 -eq./t). A key focus should be placed on treatment processes and substitutions, especially in terms of substitutions of energy waste and PE plastic. This study also clarified the importance of sorting PE plastic, even though the share of this waste fraction was not substantial. The results of this paper were compared to those of previous studies. The output of this analysis indicated that the total GWP can be significantly reduced by identifying an alternative recycling or incineration location for cardboard where it is used to substitute virgin material or replace fossil fuels respectively. In conclusion, it is essential to note that waste management companies have a notable influence on the emissions of commercial waste management because they choose the places at which the waste fractions are treated and utilised. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Global capacity, potentials and trends of solid waste research and management.

    PubMed

    Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan

    2017-09-01

    In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.

  1. Development of demand forecasting tool for natural resources recouping from municipal solid waste.

    PubMed

    Zaman, Atiq Uz; Lehmann, Steffen

    2013-10-01

    Sustainable waste management requires an integrated planning and design strategy for reliable forecasting of waste generation, collection, recycling, treatment and disposal for the successful development of future residential precincts. The success of the future development and management of waste relies to a high extent on the accuracy of the prediction and on a comprehensive understanding of the overall waste management systems. This study defies the traditional concepts of waste, in which waste was considered as the last phase of production and services, by putting forward the new concept of waste as an intermediate phase of production and services. The study aims to develop a demand forecasting tool called 'zero waste index' (ZWI) for measuring the natural resources recouped from municipal solid waste. The ZWI (ZWI demand forecasting tool) quantifies the amount of virgin materials recovered from solid waste and subsequently reduces extraction of natural resources. In addition, the tool estimates the potential amount of energy, water and emissions avoided or saved by the improved waste management system. The ZWI is tested in a case study of waste management systems in two developed cities: Adelaide (Australia) and Stockholm (Sweden). The ZWI of waste management systems in Adelaide and Stockholm is 0.33 and 0.17 respectively. The study also enumerates per capita energy savings of 2.9 GJ and 2.83 GJ, greenhouse gas emissions reductions of 0.39 tonnes (CO2e) and 0.33 tonnes (CO2e), as well as water savings of 2.8 kL and 0.92 kL in Adelaide and Stockholm respectively.

  2. Construction and demolition waste generation rates for high-rise buildings in Malaysia.

    PubMed

    Mah, Chooi Mei; Fujiwara, Takeshi; Ho, Chin Siong

    2016-12-01

    Construction and demolition waste continues to sharply increase in step with the economic growth of less developed countries. Though the construction industry is large, it is composed of small firms with individual waste management practices, often leading to the deleterious environmental outcomes. Quantifying construction and demolition waste generation allows policy makers and stakeholders to understand the true internal and external costs of construction, providing a necessary foundation for waste management planning that may overcome deleterious environmental outcomes and may be both economically and environmentally optimal. This study offers a theoretical method for estimating the construction and demolition project waste generation rate by utilising available data, including waste disposal truck size and number, and waste volume and composition. This method is proposed as a less burdensome and more broadly applicable alternative, in contrast to waste estimation by on-site hand sorting and weighing. The developed method is applied to 11 projects across Malaysia as the case study. This study quantifies waste generation rate and illustrates the construction method in influencing the waste generation rate, estimating that the conventional construction method has a waste generation rate of 9.88 t 100 m -2 , the mixed-construction method has a waste generation rate of 3.29 t 100 m -2 , and demolition projects have a waste generation rate of 104.28 t 100 m -2 . © The Author(s) 2016.

  3. Quantifying household waste of fresh fruit and vegetables in the EU.

    PubMed

    De Laurentiis, Valeria; Corrado, Sara; Sala, Serenella

    2018-04-11

    According to national studies conducted in EU countries, fresh fruit and vegetables contribute to almost 50% of the food waste generated by households. This study presents an estimation of this waste flow, differentiating between unavoidable and avoidable waste. The calculation of these two flows serves different purposes. The first (21.1 kg per person per year) provides a measure of the amount of household waste intrinsically linked to the consumption of fresh fruit and vegetables, and which would still be generated even in a zero-avoidable waste future scenario. The second (14.2 kg per person per year) is a quantity that could be reduced/minimised by applying targeted prevention strategies. The unavoidable waste was assessed at product level, by considering the inedible fraction and the purchased amounts of the fifty-one most consumed fruits and vegetables in Europe. The avoidable waste was estimated at commodity group level, based on the results of national studies conducted in six EU member states. Significant differences in the amounts of avoidable and unavoidable waste generated were found across countries, due to different levels of wasteful behaviours (linked to cultural and economic factors) and different consumption patterns (influencing the amount of unavoidable waste generated). The results of this study have implications for policies both on the prevention and the management of household food waste. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Allocation of solid waste collection bins and route optimisation using geographical information system: A case study of Dhanbad City, India.

    PubMed

    Khan, D; Samadder, S R

    2016-07-01

    Collection of municipal solid waste is one of the most important elements of municipal waste management and requires maximum fund allocated for waste management. The cost of collection and transportation can be reduced in comparison with the present scenario if the solid waste collection bins are located at suitable places so that the collection routes become minimum. This study presents a suitable solid waste collection bin allocation method at appropriate places with uniform distance and easily accessible location so that the collection vehicle routes become minimum for the city Dhanbad, India. The network analyst tool set available in ArcGIS was used to find the optimised route for solid waste collection considering all the required parameters for solid waste collection efficiently. These parameters include the positions of solid waste collection bins, the road network, the population density, waste collection schedules, truck capacities and their characteristics. The present study also demonstrates the significant cost reductions that can be obtained compared with the current practices in the study area. The vehicle routing problem solver tool of ArcGIS was used to identify the cost-effective scenario for waste collection, to estimate its running costs and to simulate its application considering both travel time and travel distance simultaneously. © The Author(s) 2016.

  5. West Valley demonstration project: Alternative processes for solidifying the high-level wastes

    NASA Astrophysics Data System (ADS)

    Holton, L. K.; Larson, D. E.; Partain, W. L.; Treat, R. L.

    1981-10-01

    Two pretreatment approaches and several waste form processes for radioactive wastes were selected for evaluation. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  6. Hospital workers' perceptions of waste: a qualitative study involving photo-elicitation

    PubMed Central

    Goff, Sarah L.; Kleppel, Reva; Lindenauer, Peter K.; Rothberg, Michael B.

    2015-01-01

    Objectives To elicit sources of waste as viewed by hospital workers Design Qualitative study using photo-elicitation, an ethnographic technique for prompting in-depth discussion Setting U.S. academic tertiary care hospital Participants Physicians, nurses, pharmacists, administrative support personnel, administrators and respiratory therapists Methods A purposive sample of personnel at an academic tertiary care hospital was invited to take up to 10 photos of waste. Participants discussed their selections using photos as prompts during in-depth interviews. Transcripts were analyzed in an iterative process using grounded theory; open and axial coding was performed, followed by selective and thematic coding to develop major themes and sub-themes. Results Twenty-one participants (9 women, average number of years in field=19.3) took 159 photos. Major themes included types of waste and recommendations to reduce waste. Types of waste comprised four major categories: Time, Materials, Energy and Talent. Participants emphasized time wastage (50% of photos) over other types of waste such as excess utilization (2.5%). Energy and Talent were novel categories of waste. Recommendations to reduce waste included interventions at the micro-level (e.g. individual/ward), meso-level (e.g. institution) and macro-level (e.g., payor/public policy). Conclusions The waste hospital workers identified differed from previously described waste both in the types of waste described and the emphasis placed on wasted time. The findings of this study represent a possible need for education of hospital workers about known types of waste, an opportunity to assess the impact of novel types of waste described and an opportunity to intervene to reduce the waste identified. PMID:23748192

  7. Hospital workers' perceptions of waste: a qualitative study involving photo-elicitation.

    PubMed

    Goff, Sarah L; Kleppel, Reva; Lindenauer, Peter K; Rothberg, Michael B

    2013-10-01

    To elicit sources of waste as viewed by hospital workers. Qualitative study using photo-elicitation, an ethnographic technique for prompting in-depth discussion. U.S. academic tertiary care hospital. Physicians, nurses, pharmacists, administrative support personnel, administrators and respiratory therapists. A purposive sample of personnel at an academic tertiary care hospital was invited to take up to 10 photos of waste. Participants discussed their selections using photos as prompts during in-depth interviews. Transcripts were analysed in an iterative process using grounded theory; open and axial coding was performed, followed by selective and thematic coding to develop major themes and subthemes. Twenty-one participants (nine women, average number of years in field=19.3) took 159 photos. Major themes included types of waste and recommendations to reduce waste. Types of waste comprised four major categories: Time, Materials, Energy and Talent. Participants emphasised time wastage (50% of photos) over other types of waste such as excess utilisation (2.5%). Energy and Talent were novel categories of waste. Recommendations to reduce waste included interventions at the micro-level (eg, individual/ward), meso-level (eg, institution) and macro-level (eg, payor/public policy). The waste hospital workers identified differed from previously described waste both in the types of waste described and the emphasis placed on wasted time. The findings of this study represent a possible need for education of hospital workers about known types of waste, an opportunity to assess the impact of novel types of waste described and an opportunity to intervene to reduce the waste identified.

  8. Healthcare waste generation and management practice in government health centers of Addis Ababa, Ethiopia.

    PubMed

    Tadesse, Menelik Legesse; Kumie, Abera

    2014-11-25

    Healthcare wastes are hazardous organic and inorganic wastes. The waste disposal management in Addis Ababa city is seen unscientific manner. The waste management practice in the health facilities are poor and need improvement. This study will help different organizations, stakeholders and policy makers to correct and improve the existing situation of healthcare waste legislation and enforcement and training of staff in the healthcare facilities in Addis Ababa. The study aimed to assess the existing generation and management practice of healthcare waste in selected government health centers of Addis Ababa. The cross-sectional study was conducted to quantify waste generation rate and evaluate its management system. The study area was Addis Ababa. The sample size was determined by simple random sampling technique, the sampling procedure involved 10 sub-cities of Addis Ababa. Data were collected using both waste collecting and measuring equipment and check list. The Data was entered by EPI INFO version 6.04d and analyzed by and SPSS for WINDOW version15. The mean (±SD) healthcare waste generation rate was 9.61 ± 3.28 kg/day of which (38%) 3.64 ± 1.45 kg/day was general or non-hazardous waste and (62%) 5.97 ± 2.31 kg/day was hazardous. The mean healthcare waste generation rate between health centers was a significant different with Kurskal-Wallis test (χ2 = 21.83, p-value = 0.009). All health centers used safety boxes for collection of sharp wastes and all health centers used plastic buckets without lid for collection and transportation of healthcare waste. Pre treatment of infectious wastes was not practiced by any of the health centers. All health centers used incinerators and had placenta pit for disposal of pathological waste however only seven out of ten pits had proper covering material. Segregation of wastes at point of generation with appropriate collection materials and pre- treatment of infectious waste before disposal should be practiced. Training should be given to healthcare workers and waste handlers. Incinerators must be constructed in a manner that facilitates complete combustion and the lining of placenta pit should be constructed in water tight material.

  9. Life cycle assessment on food waste and its application in China

    NASA Astrophysics Data System (ADS)

    Gao, Si; Bao, Jingling; Liu, Xiaojie; Stenmarck, Asa

    2018-01-01

    Food waste causes tremendous problems in terms of environment and economy, twined with big social influence, thus studies on food waste are essential and meanwhile very complicated According to Food and Agriculture Organization of the United Nations (FAO), 1.3 billion ton/year of food are wasted globally, which has a total carbon footprint of 4.4 GtCO2 eq per year with a cost of USD 411 billion. According to statistics, China has roughly 195 million tons food waste per year, which is huge. Life Cycle Assessment (LCA), which is an internationally standardized method by ISO for assessment of product and process, has been applied in food sectors to evaluate the different environmental influence, energy use etc. This paper analyzed some of the LCA application on the different parts of the food supply chain (production, post-harvest handling, the storage and transportation, processing, the retail, and consumption) where food waste is generated and on the food waste disposal stage, looked into what has been studied in the context of China, and gave recommendations for LCA application for Chinese food waste problems: 1) More application of LCA on food waste should be made on the early stage of the food cycle rather than just the kitchen waste; 2) Besides global warming potentials, other environmental influences should be studied more at the same time; 3) Food waste treatment can be studied using LCA broadly considering mixture with other substrates and using different recycling methods; 4) LCA based on a local context with local data/inventory are strongly needed; 5) further more detailed studies to support an elevated food waste management, such as food waste profile can be developed.

  10. Influence of recycling programmes on waste separation behaviour.

    PubMed

    Stoeva, Katya; Alriksson, Stina

    2017-10-01

    To achieve high rates of waste reuse and recycling, waste separation in households is essential. This study aimed to reveal how recycling programmes in Sweden and Bulgaria influenced inhabitants' participation in separation of household waste. The waste separation behaviour of 111 university students from Kalmar, Sweden and 112 students from Plovdiv, Bulgaria was studied using the Theory of Planned Behaviour framework. The results showed that a lack of proper conditions for waste separation can prevent individuals from participating in this process, regardless of their positive attitudes. When respondents were satisfied with the local conditions for waste separation their behaviour instead depended on their personal attitudes towards waste separation and recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario.

    PubMed

    Parizeau, Kate; von Massow, Mike; Martin, Ralph

    2015-01-01

    It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less

  13. Application of Life Cycle Assessment on Electronic Waste Management: A Review.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  14. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    NASA Astrophysics Data System (ADS)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  15. Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: a food service provider case study.

    PubMed

    Franchetti, Matthew

    2013-07-15

    The US disposes of more than 34 million tons of food waste in landfills per year. As this food waste decomposes it generates methane gas and negatively contributes to global warming. Diverting theses organic food wastes from landfills and to emerging technologies will prevent these wastes and greenhouse gas emissions while at the same time generating a source renewable energy by collecting the emitted gases. From a waste prevention standpoint, instead of the food waste decomposing at local landfills, it is being converted into an energy source and the by-product may be used as a fertilizer (Fine and Hadas, 2012). The purpose of this study was to compare four different configurations of anaerobic digestion of organic waste to energy technologies from an economic, energy, and emissions standpoint using LCA via a case study at a large food services provider in Northwest Ohio, USA. The technologies studied included two-stage anaerobic digestion system using ultrasound pre-treating, two stage continuous combined thermophilic acidogenic hydrogenesis and mesophilic with recirculation of the digested sludge, long-term anaerobic digestion of food waste stabilized by trace elements, and single stage anaerobic digestion. Using LCA, these scenarios were compared to landfill disposal of the food waste. The findings from the case study indicated that implementing on-site waste to energy systems will result in lower operation costs and lower environmental impacts. In addition, a standardized environmental and economic comparison of competing food waste to energy technologies is provided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parizeau, Kate, E-mail: kate.parizeau@uoguelph.ca; Massow, Mike von; Martin, Ralph

    Highlights: • We combined household waste stream weights with survey data. • We examine relationships between waste and food-related practices and beliefs. • Families and large households produced more total waste, but less waste per capita. • Food awareness and waste awareness were related to reduced food waste. • Convenience lifestyles were differentially associated with food waste. - Abstract: It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, andmore » source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste.« less

  17. Force Provider Solid Waste Characterization Study

    DTIC Science & Technology

    2004-08-01

    energy converter (WEC) and/or composter . For a five-day period in June 2000, the solid waste generated by soldiers at the Force Provider Training Module...MATERIALS REDUCTION WASTE DISPOSAL MILITARY FACILITIES SANITARY ENGINEERING DISPOSAL FORCE PROVIDER FIELD FEEDING COMPOSTS WASTES GARBAGE WASTE RECYCLING...waste reduction through onsite waste-to-energy conversion and/or composting . The work was performed by Hughes Associates, Inc., 3610 Commerce

  18. Towards Zero Waste in emerging countries - A South African experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matete, Ntlibi; Trois, Cristina

    2008-07-01

    The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management , which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selectedmore » as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa.« less

  19. Calculating the pre-consumer waste footprint: A screening study of 10 selected products.

    PubMed

    Laurenti, Rafael; Moberg, Åsa; Stenmarck, Åsa

    2017-01-01

    Knowledge about the total waste generated by the production of consumer goods can help raise awareness among policy-makers, producers and consumers of the benefits of closing loops in a future circular economy, avoiding unnecessary production and production steps and associated generation of large amounts of waste. In strict life cycle assessment practice, information on waste outputs from intermediate industrial processes of material and energy transformation is translated into and declared as potential environmental impacts, which are often not reported in the final results. In this study, a procedure to extract available intermediate data and perform a systematic pre-consumer waste footprint analysis was developed. The pre-consumer waste footprint concept was tested to analyse 10 generic products, which provided some novel and interesting results for the different product categories and identified a number of challenges that need to be resolved in development of the waste footprint concept. These challenges include standardised data declaration on waste in life cycle assessment, with a separation into waste categories illustrating the implicit environmental and scale of significance of waste types and quantities (e.g. hazardous waste, inert waste, waste for recycling/incineration) and establishment of a common definition of waste throughout sectors and nations.

  20. Practices and challenges of infectious waste management: A qualitative descriptive study from tertiary care hospitals in Pakistan

    PubMed Central

    Kumar, Ramesh; Shaikh, Babar Tasneem; Somrongthong, Ratana; Chapman, Robert S

    2015-01-01

    Background and Objective: Infectious waste management practices among health care workers in the tertiary care hospitals have been questionable. The study intended to identify issues that impede a proper infectious waste management. Methods: Besides direct observation, in-depths interviews were conducted with the hospital administrators and senior management involved in healthcare waste management during March 2014. We looked at the processes related to segregation, collection, storage and disposal of hospital waste, and identified variety of issues in all the steps. Results: Serious gaps and deficiencies were observed related to segregation, collection, storage and disposal of the hospital wastes, hence proving to be hazardous to the patients as well as the visitors. Poor safety, insufficient budget, lack of trainings, weak monitoring and supervision, and poor coordination has eventually resulted in improper waste management in the tertiary hospitals of Rawalpindi. Conclusion: Study has concluded that the poor resources and lack of healthcare worker’s training in infectious waste results in poor waste management at hospitals. PMID:26430405

  1. From waste to sustainable materials management: Three case studies of the transition journey.

    PubMed

    Silva, Angie; Rosano, Michele; Stocker, Laura; Gorissen, Leen

    2017-03-01

    Waste policy is increasingly moving on from the 'prevention of waste' to a 'sustainable materials policy' focused agenda recognising individual wastes as a resource. In order to comparatively analyse policy developments in enhanced waste management, three case studies were selected; San Francisco's Zero Waste Program, Flanders's Sustainable Materials Management Initiative and Japan's Sound Material-Cycle Society Plan. These case studies were chosen as an opportunity to investigate the variety of leading approaches, governance structures, and enhanced waste policy outcomes, emerging globally. This paper concludes that the current transitional state of waste management across the world, is only in the first leg of the journey towards Circular Economy closed loop production models of waste as a resource material. It is suggested that further development in government policy, planning and behaviour change is required. A focus on material policy and incorporating multiple front runners across industry and knowledge institutions are offered as potential directions in the movement away from end-pipe land-fill solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites.

    PubMed

    González Pericot, N; Villoria Sáez, P; Del Río Merino, M; Liébana Carrasco, O

    2014-11-01

    The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Conceptual framework for the study of food waste generation and prevention in the hospitality sector.

    PubMed

    Papargyropoulou, Effie; Wright, Nigel; Lozano, Rodrigo; Steinberger, Julia; Padfield, Rory; Ujang, Zaini

    2016-03-01

    Food waste has significant detrimental economic, environmental and social impacts. The magnitude and complexity of the global food waste problem has brought it to the forefront of the environmental agenda; however, there has been little research on the patterns and drivers of food waste generation, especially outside the household. This is partially due to weaknesses in the methodological approaches used to understand such a complex problem. This paper proposes a novel conceptual framework to identify and explain the patterns and drivers of food waste generation in the hospitality sector, with the aim of identifying food waste prevention measures. This conceptual framework integrates data collection and analysis methods from ethnography and grounded theory, complemented with concepts and tools from industrial ecology for the analysis of quantitative data. A case study of food waste generation at a hotel restaurant in Malaysia is used as an example to illustrate how this conceptual framework can be applied. The conceptual framework links the biophysical and economic flows of food provisioning and waste generation, with the social and cultural practices associated with food preparation and consumption. The case study demonstrates that food waste is intrinsically linked to the way we provision and consume food, the material and socio-cultural context of food consumption and food waste generation. Food provisioning, food consumption and food waste generation should be studied together in order to fully understand how, where and most importantly why food waste is generated. This understanding will then enable to draw detailed, case specific food waste prevention plans addressing the material and socio-economic aspects of food waste generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Key parameters for behaviour related to source separation of household organic waste: A case study in Hanoi, Vietnam.

    PubMed

    Kawai, Kosuke; Huong, Luong Thi Mai

    2017-03-01

    Proper management of food waste, a major component of municipal solid waste (MSW), is needed, especially in developing Asian countries where most MSW is disposed of in landfill sites without any pretreatment. Source separation can contribute to solving problems derived from the disposal of food waste. An organic waste source separation and collection programme has been operated in model areas in Hanoi, Vietnam, since 2007. This study proposed three key parameters (participation rate, proper separation rate and proper discharge rate) for behaviour related to source separation of household organic waste, and monitored the progress of the programme based on the physical composition of household waste sampled from 558 households in model programme areas of Hanoi. The results showed that 13.8% of 558 households separated organic waste, and 33.0% discharged mixed (unseparated) waste improperly. About 41.5% (by weight) of the waste collected as organic waste was contaminated by inorganic waste, and one-third of the waste disposed of as organic waste by separators was inorganic waste. We proposed six hypothetical future household behaviour scenarios to help local officials identify a final or midterm goal for the programme. We also suggested that the city government take further actions to increase the number of people participating in separating organic waste, improve the accuracy of separation and prevent non-separators from discharging mixed waste improperly.

  5. Validity and Interrater Reliability of the Visual Quarter-Waste Method for Assessing Food Waste in Middle School and High School Cafeteria Settings.

    PubMed

    Getts, Katherine M; Quinn, Emilee L; Johnson, Donna B; Otten, Jennifer J

    2017-11-01

    Measuring food waste (ie, plate waste) in school cafeterias is an important tool to evaluate the effectiveness of school nutrition policies and interventions aimed at increasing consumption of healthier meals. Visual assessment methods are frequently applied in plate waste studies because they are more convenient than weighing. The visual quarter-waste method has become a common tool in studies of school meal waste and consumption, but previous studies of its validity and reliability have used correlation coefficients, which measure association but not necessarily agreement. The aims of this study were to determine, using a statistic measuring interrater agreement, whether the visual quarter-waste method is valid and reliable for assessing food waste in a school cafeteria setting when compared with the gold standard of weighed plate waste. To evaluate validity, researchers used the visual quarter-waste method and weighed food waste from 748 trays at four middle schools and five high schools in one school district in Washington State during May 2014. To assess interrater reliability, researcher pairs independently assessed 59 of the same trays using the visual quarter-waste method. Both validity and reliability were assessed using a weighted κ coefficient. For validity, as compared with the measured weight, 45% of foods assessed using the visual quarter-waste method were in almost perfect agreement, 42% of foods were in substantial agreement, 10% were in moderate agreement, and 3% were in slight agreement. For interrater reliability between pairs of visual assessors, 46% of foods were in perfect agreement, 31% were in almost perfect agreement, 15% were in substantial agreement, and 8% were in moderate agreement. These results suggest that the visual quarter-waste method is a valid and reliable tool for measuring plate waste in school cafeteria settings. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  6. Quantitative study of controlled substance bedside wasting, disposal and evaluation of potential ecologic effects.

    PubMed

    Mankes, Russell F; Silver, Charles D

    2013-02-01

    Drugs in wastewater arise from many sources. For health care, these include excretion and direct disposal (bedside wasting). The present study reports on the dispensing and wasting of 15 controlled substances (CS) at two health care facilities in Albany, NY over a nearly two year period. The study considered measures of ecotoxicity, drug metabolism, excretion and disposal of these CS. Potential alternatives to flushing of CS into wastewaters from healthcare facilities are discussed. Drug medication and waste collection records (12,345) included: numbers of drugs dispensed, returned and wasted. Overall, 8528 g of 15 CS were wasted. Three (midazolam, acetaminophen-codeine and fentanyl) accounted for 87.5% of the total wasted. Wasting varied by hospital, 14 CS at the academic medical center hospital and 8 at the surgical care center were wasted. Liquids were more frequently wasted than tablets or pills. Some combination drugs (acetaminophen (APAP)-codeine) were frequently (50% of drug dispensed) wasted while others were less wasted (APAP-hydrocodone-6.3%; APAP-oxycodone-1.3%). The 8 CS judged more hazardous to aquatic life were: APAP-codeine, APAP-hydrocodone, APAP-oxycodone, alprazolam, diazepam, fentanyl, midazolam, and testosterone. Ketamine, morphine, oxycodone and zolpidem were of lesser acute toxicity based on available LC50 values. These CS might provide a therapeutically equivalent alternative to the more environmentally harmful drugs. In health care facilities, professionals dispose of CS by bedside wasting into water or other receptacles. This can be avoided by returning CS to the hospital's pharmacy department, thence to a licensed distributor. Study of this process of drug wasting can identify opportunities for process improvements. We found 3 CS (APAP-codeine, midazolam and testosterone) where ½ to 1/3 of the drug was wasted and 5 others with 30 to 13% wasted. Knowledge of the adverse impacts from the release of highly toxic drugs into the environment might influence CS selection and disposal alternatives. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A waste walk through clinical pharmacy: how do the 'seven wastes' of Lean techniques apply to the practice of clinical pharmacists.

    PubMed

    Green, Christopher F; Crawford, Victoria; Bresnen, Gaynor; Rowe, Philip H

    2015-02-01

    This study used a 'Lean' technique, the 'waste walk' to evaluate the activities of clinical pharmacists with reference to the seven wastes described in 'Lean' including 'defects', 'unnecessary motion', 'overproduction', 'transport of products or material', 'unnecessary waiting', 'unnecessary inventory' and 'inappropriate processing'. The objectives of the study were to categorise the activities of ward-based clinical pharmacists into waste and non-waste, provide detail around what constitutes waste activity and quantify the proportion of time attributed to each category. This study was carried out in a district general hospital in the North West of England. Staff were observed using work-sampling techniques, to categorise activity into waste and non-waste, with waste activities being allocated to each of the seven wastes described earlier and subdivided into recurrent themes. Twenty different pharmacists were observed for 1 h on two separate occasions. Of 1440 observations, 342 (23.8%) were categorised as waste with 'defects' and 'unnecessary motion' accounting for the largest proportions of waste activity. Observation of clinical pharmacists' activities has identified that a significant proportion of their time could be categorised as 'waste'. There are practical steps that could be implemented in order to ensure their time is used as productively as possible. Given the challenges facing the UK National Health Service, the adoption of 'Lean' techniques provides an opportunity to improve quality and productivity while reducing costs. © 2014 Royal Pharmaceutical Society.

  8. Exploring the Awareness Regarding E-waste and its Health Hazards among the Informal Handlers in Musheerabad Area of Hyderabad.

    PubMed

    Mishra, Sapna; Shamanna, B R; Kannan, Srinivasan

    2017-01-01

    Occupational Health hazards of handling and management of electronic waste is a nascent subject. Improper and unscientific handling of e-waste can invite significant human and environmental health risks. To study the level of awareness about electronic waste and its health hazards amongst informal handlers in Musheerabad, Hyderabad. Ethical approval and informed consents were obtained from Institutional Ethical Committee, University of Hyderabad and from the participants respectively before the commencement of study. This was a descriptive cross-sectional study conducted in randomly selected twenty-six waste handling centers from sixty of them in the locality. From each of the centers four handlers agedbetween 18 and 45 were randomly selected. Total of 104 handlers were interviewed using semi-structured schedule. Interviews were also conducted among 10 owners of such centres on the waste management practices. About 72% of the handlers did not know the meaning of electronic waste and 71% were not aware of associated health risks, 85% did not use any protective gears, while 16% acknowledged health issues attributed to improper handling of e-waste, 77% felt their handling of e-waste was appropriate. Majority of center owners felt that informal e-waste handling does not pose any health risks, and reported that there was no awareness campaign by any agency as of then. This study highlights the need for awareness campaigns on proper e-waste management practices to ensure occupational safety among the waste handlers who belong to lower socio-economic strata.

  9. Assessing the management of healthcare waste in Hawassa city, Ethiopia.

    PubMed

    Israel Deneke Haylamicheal; Mohamed Aqiel Dalvie; Biruck Desalegn Yirsaw; Hanibale Atsbeha Zegeye

    2011-08-01

    Inadequate management of healthcare waste is a serious concern in many developing countries due to the risks posed to human health and the environment. This study aimed to evaluate healthcare waste management in Hawassa city, Ethiopia. The study was conducted in nine healthcare facilities (HCFs) including hospitals (four), health centres (two) and higher clinics (three) in two phases, first to assess the waste management aspect and second to determine daily waste generation rate. The result showed that the median quantity of waste generated at the facilities was 3.46 kg bed(-1) day(-1) (range: 1.48-8.19 kg bed(-1) day(-1)). The quantity of waste per day generated at a HCF increased as occupancy increased (p < 0.001). The percentage hazardous waste generated at government HCFs was more than at private HCFs (p < 0.05). The proportion of hazardous waste (20-63.1%) generated at the different HCFs was much higher than the WHO recommendation (10-25%). There was no waste segregation in most HCFs and only one used a complete color coding system. Solid waste and wastewater were stored, transported, treated and disposed inappropriately at all HCFs. Needle-stick injuries were prevalent in 25-100% of waste handlers employed at these HCFs. Additionally, low levels of training and awareness of waste legislation was prevalent amongst staff. The study showed that management of healthcare waste at HCFs to be poor. Waste management practices need to be improved through improved legislation and enforcement, and training of staff in the healthcare facilities in Hawassa.

  10. Designing and examining e-waste recycling process: methodology and case studies.

    PubMed

    Li, Jinhui; He, Xin; Zeng, Xianlai

    2017-03-01

    Increasing concerns on resource depletion and environmental pollution have largely obliged electrical and electronic waste (e-waste) should be tackled in an environmentally sound manner. Recycling process development is regarded as the most effective and fundamental to solve the e-waste problem. Based on global achievements related to e-waste recycling in the past 15 years, we first propose a theory to design an e-waste recycling process, including measuring e-waste recyclability and selection of recycling process. And we summarize the indicators and tools in terms of resource dimension, environmental dimension, and economic dimension, to examine the e-waste recycling process. Using the sophisticated experience and adequate information of e-waste management, spent lithium-ion batteries and waste printed circuit boards are chosen as case studies to implement and verify the proposed method. All the potential theory and obtained results in this work can contribute to future e-waste management toward best available techniques and best environmental practices.

  11. Solid state anaerobic co-digestion of yard waste and food waste for biogas production.

    PubMed

    Brown, Dan; Li, Yebo

    2013-01-01

    Food and yard wastes are available year round at low cost and have the potential to complement each other for SS-AD. The goal of this study was to determine optimal feedstock/effluent (F/E) and food waste/yard waste mixing ratios for optimal biogas production. Co-digestion of yard and food waste was carried out at F/E ratios of 1, 2, and 3. For each F/E ratio, food waste percentages of 0%, 10%, and 20%, based on dry volatile solids, were evaluated. Results showed increased methane yields and volumetric productivities as the percentage of food waste was increased to 10% and 20% of the substrate at F/E ratios of 2 and 1, respectively. This study showed that co-digestion of food waste with yard waste at specific ratios can improve digester operating characteristics and end performance metrics over SS-AD of yard waste alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Healthcare waste management status in Lagos State, Nigeria: a case study from selected healthcare facilities in Ikorodu and Lagos metropolis.

    PubMed

    Longe, Ezechiel O

    2012-06-01

    A survey of healthcare waste management practices and their implications for health and the environment was carried out. The study assessed waste management practices in 20 healthcare facilities ranging in capacity from 40 to 600 beds in Ikorodu and metropolitan Lagos, Lagos State, Nigeria. The prevailing healthcare waste management status was analysed. Management issues on quantities and proportion of different constituents of waste, segregation, collection, handling, transportation, treatment and disposal methods were assessed. The waste generation averaged 0.631 kg bed(-1) day(-1) over the survey area. The waste stream from the healthcare facilities consisted of general waste (59.0%), infectious waste (29.7%), sharps and pathological (8.9%), chemical (1.45%) and others (0.95%). Sharps/pathological waste includes disposable syringes. In general, the waste materials were collected in a mixed form, transported and disposed of along with municipal solid waste with attendant risks to health and safety. Most facilities lacked appropriate treatment systems for a variety of reasons that included inadequate funding and little or no priority for healthcare waste management as well as a lack of professionally competent waste managers among healthcare providers. Hazards associated with healthcare waste management and shortcomings in the existing system were identified.

  13. Meat, Fish, and Poultry Processing Wastes.

    ERIC Educational Resources Information Center

    Litchfield, J. H.

    1978-01-01

    Presents a literature review of industrial wastes, covering publications of 1976-77. This review includes studies on: (1) meat industry wastes; (2) fish-processing waste treatment; and (3) poultry-processing waste treatment. A list of 76 references is also presented. (HM)

  14. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form evenmore » though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.« less

  15. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González Pericot, N., E-mail: natalia.gpericot@upm.es; Villoria Sáez, P., E-mail: paola.villoria@upm.es; Del Río Merino, M., E-mail: mercedes.delrio@upm.es

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste hasmore » been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.« less

  16. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985

    USGS Publications Warehouse

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  17. Hospital waste management in Brazil: a case study.

    PubMed

    Mattoso, V D; Schalch, V

    2001-12-01

    The evaluation of the current definition, classification and quantification of hospital waste being carried out by hospitals in different countries is extremely important to avoid improper waste management practices. In this work, the waste management from a 400-bed Brazilian hospital which generates about 386 kg per day of hospital waste was studied. The generation rate of just over one kg per bed per day was considered small, although more than 50% of the waste from non-isolation wards consisted of food waste. It was also interesting to note that the highest generation rate per patient per day was found in private rooms and the lowest rate in the public ones. The waste practices used in this hospital are discussed in terms of current Brazilian legislation.

  18. Converting lignocellulosic solid waste into ethanol for the State of Washington: an investigation of treatment technologies and environmental impacts.

    PubMed

    Schmitt, Elliott; Bura, Renata; Gustafson, Rick; Cooper, Joyce; Vajzovic, Azra

    2012-01-01

    There is little research literature on the conversion of lignocellulosic rich waste streams to ethanol, and even fewer have investigated both the technical aspects and environmental impacts together. This study assessed technical and environmental challenges of converting three lignocellulosic waste streams to ethanol: municipal solid waste (MSW), low grade mixed waste paper (MWP), and organic yard waste (YW). Experimental results showed high conversion yields for all three streams using suitable conversion methods. Environmental impacts are highly dependent on conversion technology, and process conditions used. Life cycle assessment results showed that both chemicals production and waste collection are important factors to be included within a waste-to-ethanol study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in themore » predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)« less

  20. Simulating settlement during waste placement at a landfill with waste lifts placed under frozen conditions.

    PubMed

    Van Geel, Paul J; Murray, Kathleen E

    2015-12-01

    Twelve instrument bundles were placed within two waste profiles as waste was placed in an operating landfill in Ste. Sophie, Quebec, Canada. The settlement data were simulated using a three-component model to account for primary or instantaneous compression, secondary compression or mechanical creep and biodegradation induced settlement. The regressed model parameters from the first waste layer were able to predict the settlement of the remaining four waste layers with good agreement. The model parameters were compared to values published in the literature. A MSW landfill scenario referenced in the literature was used to illustrate how the parameter values from the different studies predicted settlement. The parameters determined in this study and other studies with total waste heights between 15 and 60 m provided similar estimates of total settlement in the long term while the settlement rates and relative magnitudes of the three components varied. The parameters determined based on studies with total waste heights less than 15m resulted in larger secondary compression indices and lower biodegradation induced settlements. When these were applied to a MSW landfill scenario with a total waste height of 30 m, the settlement was overestimated and provided unrealistic values. This study concludes that more field studies are needed to measure waste settlement during the filling stage of landfill operations and more field data are needed to assess different settlement models and their respective parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Application of life cycle assessment for hospital solid waste management: A case study.

    PubMed

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz

    2016-10-01

    This study was meant to determine environmental aspects of hospital waste management scenarios using a life cycle analysis approach. The survey for this study was conducted at the largest hospital in a major city of Pakistan. The hospital was thoroughly analyzed from November 2014 to January 2015 to quantify its wastes by category. The functional unit of the study was selected as 1 tonne of disposable solid hospital waste. System boundaries included transportation of hospital solid waste and its treatment and disposal by landfilling, incineration, composting, and material recycling methods. These methods were evaluated based on their greenhouse gas emissions. Landfilling and incineration turned out to be the worst final disposal alternatives, whereas composting and material recovery displayed savings in emissions. An integrated system (composting, incineration, and material recycling) was found as the best solution among the evaluated scenarios. This study can be used by policymakers for the formulation of an integrated hospital waste management plan. This study deals with environmental aspects of hospital waste management scenarios. It is an increasing area of concern in many developing and resource-constrained countries of the world. The life cycle analysis (LCA) approach is a useful tool for estimation of greenhouse gas emissions from different waste management activities. There is a shortage of information in existing literature regarding LCA of hospital wastes. To the best knowledge of the authors this work is the first attempt at quantifying the environmental footprint of hospital waste in Pakistan.

  2. Food waste prevention in Athens, Greece: The effect of family characteristics.

    PubMed

    Abeliotis, Konstadinos; Lasaridi, Katia; Chroni, Christina

    2016-12-01

    Food waste is a stream that becomes increasingly important in terms of its prevention potential. There is a large number of behaviours that can be associated with food waste generation and the efforts towards food waste prevention. A questionnaire study was carried in order to study consumer behaviour related to food provision and wastage in Greece. Proper practices of the respondents that can prevent the generation of food waste were investigated using nine behavioural scales, which were defined on the basis of similar studies in other countries. A structured questionnaire was utilised in order to test those behaviours against the socio-demographic characteristics of respondents. The results of the study indicate that in terms of inferential statistical analysis, among the numerous variables examined, those that enhance food waste prevention are the involvement of the respondent in cooking, the annoyance towards food waste generation and the education level. © The Author(s) 2016.

  3. A total quality management approach to healthcare waste management in Namazi Hospital, Iran.

    PubMed

    Askarian, Mehrdad; Heidarpoor, Peigham; Assadian, Ojan

    2010-11-01

    Healthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75-90% of these wastes are classified as household waste posing no potential risk, 10-25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran. Namazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period. Before the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste. A structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Study of agricultural waste treatment in China and Russia-based on the agriculture environment sustainable development

    NASA Astrophysics Data System (ADS)

    Chernyaeva, Victoria A.; Teng, Xiuyi; Sergio

    2017-06-01

    China and Russia are both agriculture countries, agricultural environment sustainable development is very important for them. The paper studies three main agricultural wastes: straw, organic waste and plastic waste, and analyzes their treatments with the view of agricultural sustainable development.

  5. Status of waste tyres and management practice in Botswana.

    PubMed

    Mmereki, Daniel; Machola, Bontle; Mokokwe, Kentlafetse

    2017-02-22

    Waste tyres (WTs) are becoming a significant environmental, economical and technological challenge due to their high contents of combustible composition and potential for valuable materials and energy resources. Fewer studies in developing and even developed countries have been carried out to assess the challenges regarding waste tyres management, and suggested the best alternative solutions for managing this waste stream. While developed countries made progress in waste tyres management needs by implementing more efficient innovative recovery and recycling methods, and restrictive regulations regarding the management of used tyres, in many developing countries the management of waste tyres has not received adequate interest, and the processing, treatment and disposal of waste tyre is still nascent. In recent years, worldwide, several methods for managing used tyres, including other principal alternatives for managing end-of-life tyres defined in the 4Rs, reduction, re-use, recovery and recycling have been adopted and applied to minimize serious threats to both the natural environment environment and human. The paper attempted to establish stakeholders' action that has the responsibility in waste tyre management in Botswana. This study also analyzed important aspects on waste tyres management in Botswana. A synthesis of approaches was employed in the present investigation to determine the factors influencing effective performance of waste tyres management practice in Botswana. Data for the present study was obtained using relevant published literature, scientific journals, other third sector sources, academic sources, and research derived from governments and other agencies and field observations. Group discussions with the participants and semi-structured interviews with professionals were carried out. The outcomes of this investigation are a wide-range outline concerning the participants that are important in waste tyres management, and a set of aspects affecting the management of waste tyres. The information provided by this study is very critical for reviewing and updating the methods and tools to update waste tyres data and trends to improve waste tyres management efficiency, suggesting innovative methods of recovering and recycling this waste stream in Botswana.

  6. Municipal solid waste management in the Southern Province of Sri Lanka: Problems, issues and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidanaarachchi, Chandana K.; Yuen, Samuel T.S.; Pilapitiya, Sumith

    2006-07-01

    This paper describes the problems, issues and challenges faced by Sri Lanka based on the outcome of a recent study conducted in the country's Southern Province. The study consists of a public survey, discussions with local authority staff involved in waste management, discussions with Provincial Council and Government officials, dialogue with local politicians, review of documents and field observations. The study revealed that only 24% of the households have access to waste collection and that in rural areas it was less than 2%. A substantial number of households in areas without waste collection expect local authorities to collect their waste.more » The study also showed that most sites in the province are under capacity to handle any increased demand. Urgent and immediate improvement of the waste disposal sites is necessary to meet the current demand for improved waste collection. The study also revealed that there is a high willingness of people for home composting.« less

  7. Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, Alexis, E-mail: alau@dtu.dk; Bakas, Ioannis; Clavreul, Julie

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • Studies mainly concentrated in Europe with little application in developing countries. • Assessments of relevant waste types apart from household waste have been overlooked. • Local specificities of systems prevent a meaningful generalisation of the LCA results. • LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute tomore » answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.« less

  8. Impact of socioeconomic status on municipal solid waste generation rate.

    PubMed

    Khan, D; Kumar, A; Samadder, S R

    2016-03-01

    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Report: Potential environmental impact of exempt site materials - a case study of bituminous road planings and waste soils.

    PubMed

    Bark, Marjorie; Bland, Michael; Grimes, Sue

    2009-09-01

    The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.

  10. Between hype and veracity; privatization of municipal solid waste management and its impacts on the informal waste sector.

    PubMed

    Sandhu, Kiran; Burton, Paul; Dedekorkut-Howes, Aysin

    2017-01-01

    The informal waste recycling sector has been an indispensable but ironically invisible part of the waste management systems in developing countries as India, often completely disregarded and overlooked by decision makers and policy frameworks. The turn towards liberalization of economy since 1991 in India opened the doors for privatization of urban services and the waste sector found favor with private companies facilitated by the local governments. In joining the privatization bandwagon, the local governments aim to create an image of a progressive city demonstrated most visibly through apt management of municipal solid waste. Resultantly, the long important stakeholder, the informal sector has been sidelined and left to face the adverse impacts of privatization. There is hardly any recognition of its contributions or any attempt to integrate it within the formal waste management systems. The study investigates the impacts of privatization on the waste pickers in waste recycling operations. Highlighting the other dimension of waste collection and management in urban India the study focuses on the waste pickers and small time informal scrap dealers and this is done by taking the case study of Amritsar city, which is an important historic centre and a metropolitan city in the state of Punjab, India. The paper develops an analytical framework, drawing from literature review to analyze the impacts. In conclusion, it supports the case for involving informal waste sector towards achieving sustainable waste management in the city. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households.

    PubMed

    Lau, Winifred Ka-Yan; Chung, Shan-Shan; Zhang, Chan

    2013-03-01

    A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  13. A model for quantifying construction waste in projects according to the European waste list.

    PubMed

    Llatas, C

    2011-06-01

    The new EU challenge is to recover 70% by weight of C&D waste in 2020. Literature reveals that one major barrier is the lack of data. Therefore, this paper presents a model which allows technicians to estimate C&D waste during the design stage in order to promote prevention and recovery. The types and quantities of CW are estimated and managed according to EU guidelines, by building elements and specifically for each project. The model would allow detection of the source of the waste and to adopt other alternative procedures which delete hazardous waste and reduce CW. Likewise, it develops a systematic structure of the construction process, a waste classification system and some analytical expressions which are based on factors. These factors depend on technology and represent a standard on site. It would allow to develop a database of waste anywhere. A Spanish case study is covered. Factors were obtained by studying over 20 dwellings. The source and types of packaging waste, remains, soil and hazardous waste were estimated in detail and were compared with other studies. Results reveal that the model can be implemented in projects and the chances of reducing and recovery C&D waste could be increased, well above the EU challenge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The UK waste input-output table: Linking waste generation to the UK economy.

    PubMed

    Salemdeeb, Ramy; Al-Tabbaa, Abir; Reynolds, Christian

    2016-10-01

    In order to achieve a circular economy, there must be a greater understanding of the links between economic activity and waste generation. This study introduces the first version of the UK waste input-output table that could be used to quantify both direct and indirect waste arisings across the supply chain. The proposed waste input-output table features 21 industrial sectors and 34 waste types and is for the 2010 time-period. Using the waste input-output table, the study results quantitatively confirm that sectors with a long supply chain (i.e. manufacturing and services sectors) have higher indirect waste generation rates compared with industrial primary sectors (e.g. mining and quarrying) and sectors with a shorter supply chain (e.g. construction). Results also reveal that the construction, mining and quarrying sectors have the highest waste generation rates, 742 and 694 tonne per £1m of final demand, respectively. Owing to the aggregated format of the first version of the waste input-output, the model does not address the relationship between waste generation and recycling activities. Therefore, an updated version of the waste input-output table is expected be developed considering this issue. Consequently, the expanded model would lead to a better understanding of waste and resource flows in the supply chain. © The Author(s) 2016.

  15. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less

  16. Estimation of construction and demolition waste using waste generation rates in Chennai, India.

    PubMed

    Ram, V G; Kalidindi, Satyanarayana N

    2017-06-01

    A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.

  17. Dental solid waste characterization and management in Iran: a case study of Sistan and Baluchestan Province.

    PubMed

    Bazrafshan, Edris; Mohammadi, Leili; Mostafapour, Ferdos Kord; Moghaddam, Alireza Ansari

    2014-02-01

    The management of dental solid waste continues to be a major challenge, particularly in most healthcare facilities of the developing world. In Iran, few studies on management of dental solid waste and its composition are available. An effort has been made through this study to evaluate the hazardous and infectious status of dental solid waste, keeping in mind its possible role in cross-infection chain. For this study, 123 private dental centres and 36 public dental centres were selected and the composition and generation rate of dental solid waste produced were measured. Dental solid waste was classified to four main categories: (i) domestic-type; (ii) potentially infectious; (iii) chemical and pharmaceutical; and (iv) toxic, which constituted 11.7, 80.3, 6.3, and 1.7%, respectively, of the total. Also, the results indicated that the dental solid waste per patient per day generation rate for total, domestic-type, potentially infectious, chemical and pharmaceutical, and toxic wastes were 169.9, 8.6, 153.3, 11.2, and 3.3 g/patient/d, respectively. Furthermore, the per day generation rates for total, domestic-type, potentially infectious, chemical and pharmaceutical, and toxic wastes were 194.5, 22.6, 156.1, 12.3, and 3.4 kg/d, respectively. According to findings of this study, for best management of dental waste it is suggested that source reduction, separation, reuse, and recycling programmes be implemented and each section of dental waste be collected and disposed of separately and in accordance with related criteria.

  18. E-Waste and the Sustainable Organisation: Griffith University's Approach to E-Waste

    ERIC Educational Resources Information Center

    Davis, Georgina; Wolski, Malcolm

    2009-01-01

    Purpose: This paper seeks to provide details of Griffith University's (GU) approach for sustainably dealing with electronic waste (e-waste) and the benefits of using the e-waste programme as a valuable educational case study for ESD. Design/methodology/approach: The e-waste programme is explained with reference to key resources and literature, so…

  19. EPA office of solid waste (OSW) report to Congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derkics, D.

    1996-12-31

    An EPA Office of Solid Waste Report to Congress is presented in outline form. The following topics are discussed: special waste chronology; statutory hazardous waste exemption; 1988 report to Congress findings; 1993 regulatory determination; current (1996), regulatory status of fossil fuel combustion wastes; co-management study; Electric Power Research Institute (EPRI) activities; EPRI coal ash field study sites; oil ash total combustion; fossil fuel combustion; current EPA activities; and Federal Register Notice.

  20. Potentials for food waste minimization and effects on potential biogas production through anaerobic digestion.

    PubMed

    Schott, Anna Bernstad Saraiva; Vukicevic, Sanita; Bohn, Irene; Andersson, Tova

    2013-08-01

    Several treatment alternatives for food waste can result in both energy and nutrient recovery, and thereby potential environmental benefits. However, according to the European Union waste management hierarchy, waste prevention should be the prioritized strategy to decrease the environmental burdens from all solid waste management. The aim of the present study was therefore to investigate the potential for food waste minimization among Swedish households through an investigation of the amount of avoidable food waste currently disposed of. A further aim was to investigate the effect on the national biogas production potential through anaerobic digestion of food waste, considering minimization potentials. A method for waste composition analyses of household food waste, where a differentiation between avoidable and unavoidable food waste is made, was used in a total of 24 waste composition analyses of household waste from Swedish residential areas. The total household food waste generation reached 3.4 kg (household and week)(-1), on average, of which 34% is avoidable. The theoretical methane (CH4) potential in unavoidable food waste reached 442 Ndm(3) (kg VS)(-1) or 128 Nm(3) tonne(-1) wet waste, while the measured (mesophilic CH4 batch tests) CH4 production reached 399 Ndm(3) (kg VS)(-1), which is lower than several previous assessments of CH4 production from household food waste. According to this study the combination of a decrease in food waste generation-in case of successful minimization-and decreased CH4 production from unavoidable food waste will thus result in lower total potential energy recovery from household food waste through anaerobic digestion CH4 potential than previously stated.

  1. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Winifred Ka-Yan; Chung, Shan-Shan, E-mail: sschung@hkbu.edu.hk; Zhang, Chan

    2013-03-15

    Highlights: ► Most household TWARC waste is sold directly to private e-waste collectors in HK. ► The current e-waste recycling network is popular with HK households. ► About 80% of household generated TWARC is exported overseas each year. ► Over 7000 tonnes/yr of household generated TWARC reach landfills. ► It is necessary to upgrade safety and awareness in HK’s e-waste recycling industry. - Abstract: A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish anmore » e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.« less

  2. A systematic critical review of epidemiological studies on public health concerns of municipal solid waste handling.

    PubMed

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-03-01

    The ultimate aim of this review was to summarise the epidemiological evidence on the association between municipal solid waste management operations and health risks to populations residing near landfills and incinerators, waste workers and recyclers. To accomplish this, the sub-aims of this review article were to (1) examine the health risks posed by municipal solid waste management activities, (2) determine the strengths and gaps of available literature on health risks from municipal waste management operations and (3) suggest possible research needs for future studies. The article reviewed epidemiological literature on public health concerns of municipal solid waste handling published in the period 1995-2014. The PubMed and MEDLINE computerised literature searches were employed to identify the relevant papers using the keywords solid waste, waste management, health risks, recycling, landfills and incinerators. Additionally, all references of potential papers were examined to determine more articles that met the inclusion criteria. A total of 379 papers were identified, but after intensive screening only 72 met the inclusion criteria and were reviewed. Of these studies, 33 were on adverse health effects in communities living near waste dumpsites or incinerators, 24 on municipal solid waste workers and 15 on informal waste recyclers. Reviewed studies were unable to demonstrate a causal or non-causal relationship due to various limitations. In light of the above findings, our review concludes that overall epidemiological evidence in reviewed articles is inadequate mainly due to methodological limitations and future research needs to develop tools capable of demonstrating causal or non-causal relationships between specific waste management operations and adverse health endpoints.

  3. Exploring the Awareness Regarding E-waste and its Health Hazards among the Informal Handlers in Musheerabad Area of Hyderabad

    PubMed Central

    Mishra, Sapna; Shamanna, B. R.; Kannan, Srinivasan

    2017-01-01

    Introduction: Occupational Health hazards of handling and management of electronic waste is a nascent subject. Improper and unscientific handling of e-waste can invite significant human and environmental health risks. Objective: To study the level of awareness about electronic waste and its health hazards amongst informal handlers in Musheerabad, Hyderabad. Methodology: Ethical approval and informed consents were obtained from Institutional Ethical Committee, University of Hyderabad and from the participants respectively before the commencement of study. This was a descriptive cross-sectional study conducted in randomly selected twenty-six waste handling centers from sixty of them in the locality. From each of the centers four handlers agedbetween 18 and 45 were randomly selected. Total of 104 handlers were interviewed using semi-structured schedule. Interviews were also conducted among 10 owners of such centres on the waste management practices. Results: About 72% of the handlers did not know the meaning of electronic waste and 71% were not aware of associated health risks, 85% did not use any protective gears, while 16% acknowledged health issues attributed to improper handling of e-waste, 77% felt their handling of e-waste was appropriate. Majority of center owners felt that informal e-waste handling does not pose any health risks, and reported that there was no awareness campaign by any agency as of then. Conclusion: This study highlights the need for awareness campaigns on proper e-waste management practices to ensure occupational safety among the waste handlers who belong to lower socio-economic strata. PMID:29618915

  4. Leptospira Exposure and Waste Pickers: A Case-Control Seroprevalence Study in Durango, Mexico.

    PubMed

    Alvarado-Esquivel, Cosme; Hernandez-Tinoco, Jesus; Sanchez-Anguiano, Luis Francisco; Ramos-Nevarez, Agar; Cerrillo-Soto, Sandra Margarita; Guido-Arreola, Carlos Alberto

    2015-08-01

    Infection with Leptospira may occur by contact with Leptospira-infected animals. Waste pickers are in contact with rodents and dogs while picking in the garbage. Whether waste pickers are at risk for Leptospira infection is largely unknown. This study was aimed to determine the association of Leptospira IgG seroprevalence with the occupation of waste picking, and to determine the epidemiological characteristics of the waste pickers with Leptospira exposure. Through a case-control study, we determined the seroprevalence of anti-Leptospira IgG antibodies in 90 waste pickers and 90 age- and gender-matched control subjects in Durango City, Mexico using an enzyme immunoassay. Data were analyzed by bivariate and multivariate analyses. The prevalence of anti-Leptospira IgG antibodies was similar in waste pickers (4/90: 4.4%) to that in control subjects (5/90: 5.6%) (P = 1.00). Bivariate analysis showed that Leptospira exposure in waste pickers was associated with increasing age (P = 0.009), no education (P = 0.008), and consumption of rat meat (P = 0.04). However, these associations were no longer found by multivariate analysis. Leptospira exposure in waste pickers was not associated with health status, duration in the activity, wearing hand gloves and facemasks, history of injuries with sharp material of the garbage, or contact with animals or soil. This is the first study about Leptospira exposure in waste pickers. Results suggest that waste pickers are not at increasing risk for Leptospira exposure in Durango City, Mexico. Further research with a larger sample size to elucidate the association of Leptospira exposure with waste picking activity is needed.

  5. Waste management barriers in developing country hospitals: Case study and AHP analysis.

    PubMed

    Delmonico, Diego V de Godoy; Santos, Hugo H Dos; Pinheiro, Marco Ap; de Castro, Rosani; de Souza, Regiane M

    2018-01-01

    Healthcare waste management is an essential field for both researchers and practitioners. Although there have been few studies using statistical methods for its evaluation, it has been the subject of several studies in different contexts. Furthermore, the known precarious practices for waste management in developing countries raise questions about its potential barriers. This study aims to investigate the barriers in healthcare waste management and their relevance. For this purpose, this paper analyses waste management practices in two Brazilian hospitals by using case study and the Analytic Hierarchy Process method. The barriers were organized into three categories - human factors, management, and infrastructure, and the main findings suggest that cost and employee awareness were the most significant barriers. These results highlight the main barriers to more sustainable waste management, and provide an empirical basis for multi-criteria evaluation of the literature.

  6. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  7. The use of waste ceramic tile in cement production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ay, N.; Uenal, M.

    In ceramic tile production, because of various reasons, unsold fired products come out. These are waste tiles and only a little part of them are used. Remainings create environmental problems. If these waste tiles are used in cement production, this pollution decreases. In this study, usage of waste tile as pozzolan was studied. Waste tile was added into Portland cement in 25%, 30%, 35%, and 40% weight ratios. Pozzolanic properties of waste tile and setting time, volume stability, particle size, density, specific surface area, and strength of cement including waste tile were investigated. The test results indicated that the wastemore » tiles show pozzolanic properties, and chemical and physical properties of the cement including tile conforms to cement standard up to the addition of 35% waste tile.« less

  8. Fine granular of shredded waste tyre for road kerb application as improvised road furniture

    NASA Astrophysics Data System (ADS)

    Munikanan, Vikneswaran; Yahya, Muhamad Azani; Yusof, Mohammed Alias; Radzi, Muhammad Haris Fauzan

    2018-02-01

    Solid waste management in Malaysia was still in a backward stage. Population growth, urbanization and rapid industrialization led to an increase in the solid waste generated by society. Solid waste management is one of the main problems faced by the community, especially in the city. Solid waste management costs of the collection, collecting, transporting waste to the landfill, is very high. The quantity of solid waste should be reduced in order to reduce government spending. Moreover, improper solid waste management caused a negative impact on people and the environment. Method of recycling is one of the best alternatives to reduce the number of solid waste. Therefore, this study was to identify methods of recycling used tires to be used in civil engineering. This study was conducted to determine the effectiveness and properties of rubber from used tires to be add in the road kerb design.

  9. Risk management for outsourcing biomedical waste disposal - using the failure mode and effects analysis.

    PubMed

    Liao, Ching-Jong; Ho, Chao Chung

    2014-07-01

    Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included "availability of freezing devices", "availability of containers for sharp items", "disposal frequency", "disposal volume", "disposal method", "vehicles meeting the regulations", and "declaration of three lists". This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Towards zero waste in emerging countries - a South African experience.

    PubMed

    Matete, Ntlibi; Trois, Cristina

    2008-01-01

    The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management [DEAT, 2001. Department of Environmental Affairs and Tourism, Government of South Africa. Polokwane Declaration. Drafted by Government, Civil Society and the Business Community. National Waste Summit, Polokwane, 26-28 September 2001], which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selected as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa.

  11. WASTE MINIMIZATION AUDIT REPORT: CASE STUDIES OF MINIMIZATION OF CYANIDE WASTE FROM ELECTROPLATING OPERATIONS

    EPA Science Inventory

    To promote waste minimization activities in accordance with the national policy objectives established under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act of 1976 (RCRA), the Hazardous Waste Engineering Research Laboratory (HWERL) of ...

  12. Glass Waste Forms for Oak Ridge Tank Wastes: Fiscal Year 1998 Report for Task Plan SR-16WT-31, Task B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.K.

    1999-05-10

    Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.

  13. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  14. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua.

    PubMed

    Aulinas Masó, Montserrat; Bonmatí Blasi, August

    2008-07-01

    A pilot-scale study was undertaken to evaluate alternatives to the solid waste management of a Central American municipal market located in Estelí, Nicaragua. The municipal solid waste from the local market is the second largest contributor to the municipal solid waste (MSW) stream. Waste from the market without any previous sorting or treatment is open dumped. The options evaluated in this study were windrow composting, windrow composting with yard waste, bokashi and vermicompost. Significant differences between the properties of composts produced were found; however, all of them reduce the initial waste volume and are potential useful agronomic products for a survival agrarian milieu.

  15. Waste minimization/pollution prevention study of high-priority waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogle, R.B.

    1994-03-01

    Although waste minimization has been practiced by the Metals and Ceramics (M&C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division`s pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broadmore » categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M&C staff members empowered by the Division Director to study specific waste streams.« less

  16. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.

  17. Characterization of urban solid waste in Chihuahua, Mexico.

    PubMed

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2008-12-01

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.

  18. Municipal solid waste generation and disposal in Robe town, Ethiopia.

    PubMed

    Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel

    2018-04-20

    The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.

  19. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco

    2013-11-15

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less

  20. Food waste quantification in primary production - The Nordic countries as a case study.

    PubMed

    Hartikainen, Hanna; Mogensen, Lisbeth; Svanes, Erik; Franke, Ulrika

    2018-01-01

    Our understanding of food waste in the food supply chain has increased, but very few studies have been published on food waste in primary production. The overall aims of this study were to quantify the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark, and to create a framework for how to define and quantify food waste in primary production. The quantification of food waste was based on case studies conducted in the present study and estimates published in scientific literature. The chosen scope of the study was to quantify the amount of edible food (excluding inedible parts like peels and bones) produced for human consumption that did not end up as food. As a result, the quantification was different from the existing guidelines. One of the main differences is that food that ends up as animal feed is included in the present study, whereas this is not the case for the recently launched food waste definition of the FUSIONS project. To distinguish the 'food waste' definition of the present study from the existing definitions and to avoid confusion with established usage of the term, a new term 'side flow' (SF) was introduced as a synonym for food waste in primary production. A rough estimate of the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark was made using SF and 'FUSIONS Food Waste' (FFW) definitions. The SFs in primary production in the four Nordic countries were an estimated 800,000 tonnes per year with an additional 100,000 tonnes per year from the rearing phase of animals. The 900,000 tonnes per year of SF corresponds to 3.7% of the total production of 24,000,000 tonnes per year of edible primary products. When using the FFW definition proposed by the FUSIONS project, the FFW amount was estimated at 330,000 tonnes per year, or 1% of the total production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization.

    PubMed

    Farinha, Catarina Brazão; de Brito, Jorge; Veiga, Rosário; Fernández, J M; Jiménez, J R; Esquinas, A R

    2018-03-20

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation.

  2. Toward a More Sustainable Trajectory for E-Waste Policy: A Review of a Decade of E-Waste Research in Accra, Ghana.

    PubMed

    Daum, Kurt; Stoler, Justin; Grant, Richard J

    2017-01-29

    Global flows of e-waste from the Global North to the Global South continue to damage local environments and harm human health. Weak e-waste regulations and limited use of safety measures for e-waste workers in Accra, Ghana, foster an exploitative environment within the industry, and pose health risks for those working and living near e-waste processing sites. This paper presents an integrated review of over 40 e-waste studies specific to Accra, with particular emphasis on the well-studied e-waste processing site in Agbogbloshie, and synthesizes the existing research base across interdisciplinary themes of human health, environmental health, globalization, trade and informalization, and public policy. Despite significant international attention to Accra's e-waste problem, loopholes within international environmental regulations and treaties provide few incentives and resources for Ghana to strengthen protections for human and environmental health. After a decade of e-waste research in Accra, the crisis continues to intensify; we present a renewed vision for sustainable e-waste policy reform in Ghana and beyond.

  3. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization

    PubMed Central

    de Brito, Jorge; Veiga, Rosário

    2018-01-01

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation. PMID:29558418

  4. Toward a More Sustainable Trajectory for E-Waste Policy: A Review of a Decade of E-Waste Research in Accra, Ghana

    PubMed Central

    Daum, Kurt; Stoler, Justin; Grant, Richard J.

    2017-01-01

    Global flows of e-waste from the Global North to the Global South continue to damage local environments and harm human health. Weak e-waste regulations and limited use of safety measures for e-waste workers in Accra, Ghana, foster an exploitative environment within the industry, and pose health risks for those working and living near e-waste processing sites. This paper presents an integrated review of over 40 e-waste studies specific to Accra, with particular emphasis on the well-studied e-waste processing site in Agbogbloshie, and synthesizes the existing research base across interdisciplinary themes of human health, environmental health, globalization, trade and informalization, and public policy. Despite significant international attention to Accra’s e-waste problem, loopholes within international environmental regulations and treaties provide few incentives and resources for Ghana to strengthen protections for human and environmental health. After a decade of e-waste research in Accra, the crisis continues to intensify; we present a renewed vision for sustainable e-waste policy reform in Ghana and beyond. PMID:28146075

  5. Waste electrical and electronic equipment (WEEE) estimation: A case study of Ahvaz City, Iran.

    PubMed

    Alavi, Nadali; Shirmardi, Mohammad; Babaei, Aliakbar; Takdastan, Afshin; Bagheri, Nastaran

    2015-03-01

    The development of new technologies and the increasing consumption of electronic and electrical equipment have led to increased generation of e-waste in the municipal waste streams. This waste due to the presence of hazardous substances in its composition needs specific attention and management. The present study was carried out in Ahvaz metropolis using a survey method in 2011. For estimating the amount of waste electrical and electronic equipment (WEEE) generated, the "use and consumption" method was used. In order to determine the amounts of the electrical and electronic equipment that were used and their lifetime, and for investigating the current status of e-waste management in Ahvaz, an appropriate questionnaire was devised. In 2011, the total number of discarded electronic items was 2,157,742 units. According to the average weight of the equipment, the total generation of e-waste was 9952.25 metric tons per year and was 9.95 kg per capita per year. The highest e-waste generated was related to air conditioners, with 3125.36 metric tons per year, followed by the wastes from refrigerators and freezers, washing machines, and televisions. The wastes from desktop computers and laptops were 418 and 63 metric tons/year, respectively, and the corresponding values per capita were 0.42 and 0.063 kg, respectively. These results also showed that 10 tons fixed phones, 25 tons mobile phones, and by considering an average lifetime of 3 years for each lamp about 320 tons lamps were generated as e-waste in Ahvaz in the year 2011. Based on this study, currently there is not an integrated system for proper management of WEEE in Ahvaz, and this waste stream is collected and disposed of with other municipal waste. Some measures, including a specific collection system, recycling of valuable substances, and proper treatment and disposal, should be done about such waste. Ahvaz is one of the most important economic centers of Iran, and to the best of our knowledge, no study has been carried out to estimate the generation of waste electrical and electronic equipment (WEEE) in this city. Therefore, the authors estimated the generation of the WEEE by the "use and consumption" method. The results of this study can be useful not only for decision-making organizations of Ahvaz to manage and recycle this type of waste but also can be used as a method to estimate the generation of e-waste in different locations of the world, especially in places where the generation of such waste could be a risk to human health and the environment.

  6. Food Waste Composting Study from Makanan Ringan Mas

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk; Jensen, Morten Bang; Götze, Ramona

    Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In thismore » study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.« less

  8. Characteristics and management of infectious industrial waste in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, M.-C.; Lin, Jim Juimin

    Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwanmore » increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator.« less

  9. Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum.

    PubMed

    Manu, M K; Kumar, Rakesh; Garg, Anurag

    2017-06-01

    Wet waste recycling at generation point will alleviate burden on the overflowing waste dumpsites in developing nations. Drum composting is a potential treatment option for such waste at individual or community level. The present study was aimed to produce compost from wet waste (primarily comprising food waste) in composting drums modified for improved natural air circulation. Effect of microbial inoculum and waste turning on composting process was also studied. The final results showed the production of matured and stable compost in the modified drums. Addition of the microbial inoculum resulted in thermophilic phase within a week time. The self-heating test and germination index (>80%) showed the production of non-phytotoxic and mature compost in the modified drums after 60days. The change in microbial population, humic substances and biological parameters (lignin, cellulose and hemicellulose) during the study is discussed. Moreover, the reduction in waste mass and volume is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optimal siting of solid waste-to-value-added facilities through a GIS-based assessment.

    PubMed

    Khan, Md Mohib-Ul-Haque; Vaezi, Mahdi; Kumar, Amit

    2018-01-01

    Siting a solid waste conversion facility requires an assessment of solid waste availability as well as ensuring compliance with environmental, social, and economic factors. The main idea behind this study was to develop a methodology to locate suitable locations for waste conversion facilities considering waste availability as well as environmental and social constraints. A geographic information system (GIS) spatial analysis was used to identify the most suitable areas and to screen out unsuitable lands. The analytic hierarchy process (AHP) was used for a multi-criteria evaluation of relative preferences of different environmental and social factors. A case study was conducted for Alberta, a western province in Canada, by performing a province-wide waste availability assessment. The total available waste considered in this study was 4,077,514tonnes/year for 19 census divisions collected from 79 landfills. Finally, a location-allocation analysis was performed to determine suitable locations for 10 waste conversion facilities across the province. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.

  12. Performance evaluation of thermophotovoltaic GaSb cell technology in high temperature waste heat

    NASA Astrophysics Data System (ADS)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at high temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The high temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  13. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposalmore » units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.« less

  14. [Health care waste management of potentially infectious medical waste by healthcare professionals in a private medical practice: a study of practices].

    PubMed

    Brunot, Alain; Thompson, Céline

    2010-01-01

    A cross-sectional study was conducted with a sample of 278 health professionals (GPs and specialists, dentists, physical therapists and nurses) in a private medical practice in Paris to study the medical waste management practices related to the production and disposal of potentially hazardous health care waste. With the exception of physical therapists, most professionals produced medical waste (72% to 96,2% according to occupation), with a monthly median of 3 liters (inter-quartile range 1-15 liters). All sharp objects and needles were separated and 91% of them eliminated via a specific process for that sector. These percentages were respectively 84% and 69% concerning contaminated waste that was neither needles or used for cutting. 48% of the professionals reported the existence of documents that could track the disposal of their medical waste. To improve practice, professionals cited collection on-site at the office (74%) and reliability of the contracted service provider to collect the waste (59%). The study showed that health professionals need information on the regulations regarding potentially infectious medical waste, in particular on the traceability of its elimination. They also noted the lack of clarity and precision with regard to the definition of risk of infection: 31,7% of professionals only declare the production of sharp or cutting waste without having specified criteria for risk of infection.

  15. Saponification of fatty slaughterhouse wastes for enhancing anaerobic biodegradability.

    PubMed

    Battimelli, Audrey; Carrère, Hélène; Delgenès, Jean-Philippe

    2009-08-01

    The thermochemical pretreatment by saponification of two kinds of fatty slaughterhouse waste--aeroflotation fats and flesh fats from animal carcasses--was studied in order to improve the waste's anaerobic degradation. The effect of an easily biodegradable compound, ethanol, on raw waste biodegradation was also examined. The aims of the study were to enhance the methanisation of fatty waste and also to show a link between biodegradability and bio-availability. The anaerobic digestion of raw waste, saponified waste and waste with a co-substrate was carried out in batch mode under mesophilic and thermophilic conditions. The results showed little increase in the total volume of biogas, indicating a good biodegradability of the raw wastes. Mean biogas volume reached 1200 mL/g VS which represented more than 90% of the maximal theoretical biogas potential. Raw fatty wastes were slowly biodegraded whereas pretreated wastes showed improved initial reaction kinetics, indicating a better initial bio-availability, particularly for mesophilic runs. The effects observed for raw wastes with ethanol as co-substrate depended on the process temperature: in mesophilic conditions, an initial improvement was observed whereas in thermophilic conditions a significant decrease in biodegradability was observed.

  16. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...

  17. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with Mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction ...

  18. Property-close source separation of hazardous waste and waste electrical and electronic equipment--a Swedish case study.

    PubMed

    Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik

    2011-03-01

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    PubMed Central

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria’s waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria’s waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap-1. In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap-1 a-1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita. PMID:27474393

  20. Municipal solid waste generation in Kathmandu, Nepal.

    PubMed

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    PubMed

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap -1 . In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap -1  a -1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  2. The Management of Chemical Waste in a University Setting.

    ERIC Educational Resources Information Center

    Coons, David Michael

    This thesis describes a study of the management of chemical waste at the State University of New York at Binghamton. The study revealed that the majority of chemical waste at the university is in the form of hazardous waste. It was hypothesized that the volume, related costs, and potential long-term liability associated with the disposal of…

  3. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste.

    PubMed

    Ji, Chao; Kong, Chui-Xue; Mei, Zi-Li; Li, Jiang

    2017-11-01

    Fruit and vegetable waste is an ever-growing global question. Anaerobic digestion techniques have been developed that facilitate turning such waste into possible sources for energy and fertilizer, simultaneously helping to reduce environmental pollution. However, various problems are encountered in applying these techniques. The purpose of this study is to review local and overseas studies, which focus on the use of anaerobic digestion to dispose fruit and vegetable wastes, discuss the acidification problems and solutions in applying anaerobic digestion for fruit and vegetable wastes and investigate the reactor design (comparing single phase with two phase) and the thermal pre-treatment for processing raw wastes. Furthermore, it analyses the dominant microorganisms involved at different stages of digestion and suggests a focus for future studies.

  4. Utilizing a 'systems' approach to improve the management of waste from healthcare facilities: best practice case studies from England and Wales.

    PubMed

    Tudor, Terry L; Woolridge, Anne C; Bates, Margaret P; Phillips, Paul S; Butler, Sharon; Jones, Keith

    2008-06-01

    Changes in environmental legislation and standards governing healthcare waste, such as the Hazardous Waste Regulations are expected to have a significant impact on healthcare waste quantities and costs in England and Wales. This paper presents findings from two award winning case study organizations, the Cardiff and Vale NHS Trust and the Cornwall NHS Trust on 'systems' they have employed for minimizing waste. The results suggest the need for the development and implementation of a holistic range of systems in order to develop best practice, including waste minimization strategies, key performance indicators, and staff training and awareness. The implications for the sharing of best practice from the two case studies are also discussed.

  5. Health care waste management practice in a hospital.

    PubMed

    Paudel, R; Pradhan, B

    2010-10-01

    Health-care waste is a by-product of health care. Its poor management exposes health-care workers, waste handlers and the community to infections, toxic effects and injuries including damage of the environment. It also creates opportunities for the collection of disposable medical equipment, its re-sale and potential re-use without sterilization, which causes an important burden of disease worldwide. The purpose of this study was to find out health care waste management practice in hospital. A cross-sectional study was conducted in Narayani Sub-Regional Hospital, Birgunj from May to October 2006 using both qualitative and quantitative methods. Study population was four different departments of the hospital (Medical/Paediatric, Surgical/Ortho, Gynae/Obstetric and Emergency), Medical Superintendent, In-charges of four different departments and all sweepers. Data was collected using interview, group discussion, observation and measurement by weight and volume. Total health-care waste generated was 128.4 kg per day while 0.8 kg per patient per day. The composition of health care waste was found to be 96.8 kg (75.4%) general waste, 24.1 kg (8.8%) hazardous waste and 7.5 kg (5.8%) sharps per day by weight. Health staffs and sweepers were not practicing the waste segregation. Occupational health and safety was not given due attention. Majority of the sweepers were unaware of waste management and need of safety measures to protect their own health. Health care waste management practice in the hospital was unsatisfactory because of the lack of waste management plan and carelessness of patients, visitors and staffs. Therefore the hospital should develop the waste management plan and strictly follow the National Health Care Waste Management Guideline.

  6. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China.

    PubMed

    Cong, Xiaowei

    2018-05-01

    Outdoor air pollution may be associated with cancer risk at different sites. This study sought to investigate outdoor air pollution from waste gas emission effects on multiple cancer incidences in a retrospective population-based study in Shanghai, China. Trends in cancer incidence for males and females and trends in waste gas emissions for the total waste gas, industrial waste gas, other waste gas, SO 2 , and soot were investigated between 1983 and 2010 in Shanghai, China. Regression models after adjusting for confounding variables were constructed to estimate associations between waste gas emissions and multiple cancer incidences in the whole group and stratified by sex, Engel coefficient, life expectancy, and number of doctors per 10,000 populations to further explore whether changes of waste gas emissions were associated with multiple cancer incidences. More than 550,000 new cancer patients were enrolled and reviewed. Upward trends in multiple cancer incidences for males and females and in waste gas emissions were observed from 1983 to 2010 in Shanghai, China. Waste gas emissions came mainly from industrial waste gas. Waste gas emissions was significantly positively associated with cancer incidence of salivary gland, small intestine, colorectal, anus, gallbladder, thoracic organs, connective and soft tissue, prostate, kidney, bladder, thyroid, non-Hodgkin's lymphoma, lymphatic leukemia, myeloid leukemia, and other unspecified sites (all p < 0.05). Negative association between waste gas emissions and the esophagus cancer incidence was observed (p < 0.05). The results of the whole group were basically consistent with the results of the stratified analysis. The results from this retrospective population-based study suggest ambient air pollution from waste gas emissions was associated with multiple cancer incidences.

  7. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong.

    PubMed

    Yu, Ann T W; Poon, C S; Wong, Agnes; Yip, Robin; Jaillon, Lara

    2013-01-01

    Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C&D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C&D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C&D waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. An environmental friendly animal waste disposal process with ammonia recovery and energy production: Experimental study and economic analysis.

    PubMed

    Shen, Ye; Tan, Michelle Ting Ting; Chong, Clive; Xiao, Wende; Wang, Chi-Hwa

    2017-10-01

    Animal manure waste is considered as an environmental challenge especially in farming areas mainly because of gaseous emission and water pollution. Among all the pollutants emitted from manure waste, ammonia is of greatest concern as it could contribute to formation of aerosols in the air and could hardly be controlled by traditional disposal methods like landfill or composting. On the other hand, manure waste is also a renewable source for energy production. In this work, an environmental friendly animal waste disposal process with combined ammonia recovery and energy production was proposed and investigated both experimentally and economically. Lab-scale feasibility study results showed that 70% of ammonia in the manure waste could be converted to struvite as fertilizer, while solid manure waste was successfully gasified in a 10kW downdraft fixed-bed gasifier producing syngas with the higher heating value of 4.9MJ/(Nm 3 ). Based on experimental results, economic study for the system was carried out using a cost-benefit analysis to investigate the financial feasibility based on a Singapore case study. In addition, for comparison, schemes of gasification without ammonia removal and incineration were also studied for manure waste disposal. The results showed that the proposed gasification-based manure waste treatment process integrated with ammonia recovery was most financially viable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  10. WASTE MINIMIZATION AUDIT REPORT: CASE STUDIES OF MINIMIZATION OF SOLVENT WASTE FROM PARTS CLEANING AND FROM ELECTRONIC CAPACITOR MANUFACTURING OPERATIONS

    EPA Science Inventory

    To promote waste minimization activities in accordance with the national policy objectives established under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act of 1976 (RCRA), the Hazardous Waste Engineering Research Laboratory (HWERL) of ...

  11. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorpas, Antonis A., E-mail: antonis.zorpas@ouc.ac.cy; Lasaridi, Katia, E-mail: klasaridi@hua.gr; Voukkali, Irene

    Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impactmore » on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes.« less

  12. Hazardous waste and health impact: a systematic review of the scientific literature.

    PubMed

    Fazzo, L; Minichilli, F; Santoro, M; Ceccarini, A; Della Seta, M; Bianchi, F; Comba, P; Martuzzi, M

    2017-10-11

    Waste is part of the agenda of the European Environment and Health Process and included among the topics of the Sixth Ministerial Conference on Environment and Health. Disposal and management of hazardous waste are worldwide challenges. We performed a systematic review to evaluate the evidence of the health impact of hazardous waste exposure, applying transparent and a priori defined methods. The following five steps, based on pre-defined systematic criteria, were applied. 1. Specify the research question, in terms of "Population-Exposure-Comparators-Outcomes" (PECO). people living near hazardous waste sites; Exposure: exposure to hazardous waste; Comparators: all comparators; Outcomes: all diseases/health disorders. 2. Carry out the literature search, in Medline and EMBASE. 3. Select studies for inclusion: original epidemiological studies, published between 1999 and 2015, on populations residentially exposed to hazardous waste. 4. Assess the quality of selected studies, taking into account study design, exposure and outcome assessment, confounding control. 5. Rate the confidence in the body of evidence for each outcome taking into account the reliability of each study, the strength of the association and concordance of results.Fifty-seven papers of epidemiological investigations on the health status of populations living near hazardous waste sites were selected for the evidence evaluation. The association between 95 health outcomes (diseases and disorders) and residential exposure to hazardous waste sites was evaluated. Health effects of residential hazardous waste exposure, previously partially unrecognized, were highlighted. Sufficient evidence was found of association between exposure to oil industry waste that releases high concentrations of hydrogen sulphide and acute symptoms. The evidence of causal relationship with hazardous waste was defined as limited for: liver, bladder, breast and testis cancers, non-Hodgkin lymphoma, asthma, congenital anomalies overall and anomalies of the neural tube, urogenital, connective and musculoskeletal systems, low birth weight and pre-term birth; evidence was defined as inadequate for the other health outcomes. The results, although not conclusive, provide indications that more effective public health policies on hazardous waste management are urgently needed. International, national and local authorities should oppose and eliminate poor, outdated and illegal practices of waste disposal, including illegal transboundary trade, and increase support regulation and its enforcement.

  13. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  14. Health Care Waste Management Practice in Health Care Institutions of Nepal.

    PubMed

    Joshi, H D; Acharya, T; Ayer, R; Dhakal, P; Karki, K B; Dhimal, M

    2017-01-01

    Medical waste is considered as a major public health hazard. In a developing country like Nepal, there is much concern about the management practice of medical waste. This study aimed to assess Health Care Waste Management practice among Health Care Institutions in Nepal. A cross sectional study was carried out between July 2012 to June 2013 in 62 different Health Care Institutions, selected from stratified proportionate random sampling technique from all administrative regions of Nepal. A structured questionnaire and observation checklist were used for data collection. The waste generation rate is found significantly correlated with bed capacity, patient flow rate and annual budget spent in the hospital. It is found significantly higher in Teaching hospital than other Health Care Institutions of Nepal. An average of 3.3 kg/day/patient of medical waste (2.0 kg/day/patient non-hazardous and 1.0 kg/day/patient hazardous waste) was generated during the study period. Further, it was found that most of the Health care wastes were not disinfected before transportation to waste disposal sites. Very limited number of Health Care Institutions had conducted Environmental Assessment. Similarly, some of the Health Care Institutions had not followed Health care waste management guideline 2009 of Nepal Government. We found poor compliance of medical waste management practice as per existing legislation of Government of Nepal. Hence, additional effort is needed for improvement of Health care waste management practice at Health Care Institutions of Nepal.

  15. Analyzing Human Behaviour Toward Food Waste in Qatar

    NASA Astrophysics Data System (ADS)

    A Hussain, Shaema Mohd Hassan

    Food waste is a major issue in many countries due to the impact of waste on the environment and the cost of producing food and water. Food waste not only constitutes a hazard to the environment through the emission of greenhouse gases, but billions of dollars are also lost as a result of production, distribution and waste management costs. In view of this, this study examined factors that have potential to influence intent to waste food and food waste behavior among consumers in Qatar. The main objective of the study was to find a suitable model that explains food waste behavior in Qatar and compare it to an international model in order to understand region specific factors and try to replicate a hypothesized model of the causal effects of some factors (i.e., subjective norm, perceived behavioral control, and personal attitude) on intent to waste food and food waste behavior. Three research questions were developed and answers were provided by random selection of 139 respondents from the Qatar Foundation and Georgetown University Qatar databases gathered through a survey with 139 complete questionnaires in order to test the hypothesized model, which was created based on literature. The Structural Equation Modelling (SEM) approach was the main statistical tool of the investigation and was used to carry out the path analysis. The findings of the study revealed that factors, including, planning routine, Ramadan, gender task, and personal norm were strong predictors of intention to waste food and food waste behavior.

  16. Study of waste management towards sustainable green campus in Universitas Gadjah Mada

    NASA Astrophysics Data System (ADS)

    Setyowati, Mega; Kusumawanto, Arif; Prasetya, Agus

    2018-05-01

    Waste management is a part of the green campus achievement program. Universitas Gadjah Mada has a Standard Operating Procedure for managing produced waste. Waste produced by each building or work unit is temporarily accommodated in the waste depot before dumped into the landfill. This research aims to study the waste management system in UGM, in accordance with the concept of a green campus. The concept of green campus to improve the efficiency of waste management needs to be supported by various parties. The success of the green campus program relies on an integrated approach, a sustainable implementation that involves stakeholders of the university. In actualizing the concept of a green campus, the university has its own waste processing system. The organic produced waste is processed into compost, while plastic waste is converted into alternative fuel. Overall, the waste management system that UGM owns is ineffective and inefficient, it was proved by the fact that there is still much waste dumped into the landfill. UGM provides a laboratory that is specialized to process waste that is produced by UGM. It is planned to be able to reduce the amount of waste that is dumped into the landfill. According to the results, vermicomposting technology, the manufacture of liquid fertilizer from leachate, and the manufacture of the composite from a mixture of leaves and paper were offered as solutions.

  17. Enhanced biogas yield by thermo-alkali solubilization followed by co-digestion of intestine waste from slaughterhouse with food waste.

    PubMed

    Porselvam, S; Soundara Vishal, N; Srinivasan, S V

    2017-10-01

    Intestine waste generated from slaughterhouse (IWS) is difficult to degrade in anaerobic process due to the presence of high protein and lipid contents. However, anaerobic co-digestion helps to increase the degradation of IWS by the addition of carbon-rich food waste (FW). To increase the biogas yield, thermo-alkali pretreatment may be more viable method for the anaerobic digestion of protein and lipid rich wastes. In the present study, Thermo-alkali pretreatment of intestine waste from slaughterhouse and food waste alone and mixing of IWS and FW with different ratios (1:1-1:3) on VS basis have been studied. To study the effect of Thermo-alkali pretreatment on solubilization of substrate, the substrate was mixed with alkali solutions (NaOH and KOH) at different concentrations of 1, 2, 3, 4 and 5% solutions. The results revealed that the maximum solubilization was observed to be 94.7% and 90.1% at KOH (1:3 and 5%) and NaOH (1:3 and 5%), respectively. Based on the study, enhancement in biogas yield by 16% (IWS), 11.5% (FW), 12.2% (1:1), 18.11% (1:2) and 22.5% (1:3) in KOH pretreated waste when compared with NaOH pretreated waste.

  18. Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana

    PubMed Central

    Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi

    2016-01-01

    The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas. PMID:27807453

  19. Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana.

    PubMed

    Boateng, Simon; Amoako, Prince; Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi

    2016-01-01

    The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas.

  20. A system dynamics approach for healthcare waste management: a case study in Istanbul Metropolitan City, Turkey.

    PubMed

    Ciplak, Nesli; Barton, John R

    2012-06-01

    Healthcare waste consists of various types of waste materials generated at hospitals, medical research centres, clinics and laboratories. Although 75-90% of this waste is classified as 'domestic' in nature, 20-25% is deemed to be hazardous, which if not disposed of appropriately, poses a risk to healthcare workers, patients, the environment and even the whole community. As long as healthcare waste is mixed with municipal waste and not segregated prior to disposal, costs will increase substantially. In this study, healthcare waste increases along with the potential to decrease the amounts by implementing effective segregation at healthcare facilities are projected to 2040. Our long-term aim is to develop a system to support selection and planning of the future treatment capacity. Istanbul in Turkey was used as the case study area. In order to identify the factors affecting healthcare waste generation in Istanbul, observations were made and interviews conducted in Istanbul over a 3 month period. A system dynamics approach was adopted to build a healthcare waste management model using a software package, Vensim Ple Plus. Based on reported analysis, the non-hazardous municipal fraction co-disposed with healthcare waste is around 65%. Using the projected waste generation flows, reducing a municipal fraction to 30% has the potential to avoid some 8000 t year(-1) of healthcare waste by 2025 and almost 10 000 t year(-1) by 2035. Furthermore, if segregation practices ensured healthcare waste requiring incineration was also selectively managed, 77% of healthcare waste could be diverted to alternative treatment technologies. As the throughput capacity of the only existing healthcare waste treatment facility in Istanbul, Kemerburgaz Incinerator, has already been exceeded, it is evident that improved management could not only reduce overall flows and costs but also permit alternative and cheaper treatment systems (e.g. autoclaving) to be adopted for the healthcare waste.

  1. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed.more » The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.« less

  2. Waste-efficient materials procurement for construction projects: A structural equation modelling of critical success factors.

    PubMed

    Ajayi, Saheed O; Oyedele, Lukumon O

    2018-05-01

    Albeit the understanding that construction waste is caused by activities ranging from all stages of project delivery process, research efforts have been concentrated on design and construction stages, while the possibility of reducing waste through materials procurement process is widely neglected. This study aims at exploring and confirming strategies for achieving waste-efficient materials procurement in construction activities. The study employs sequential exploratory mixed method approach as its methodological framework, using focus group discussion, statistical analysis and structural equation modelling. The study suggests that for materials procurement to enhance waste minimisation in construction projects, the procurement process would be characterised by four features. These include suppliers' commitment to low waste measures, low waste purchase management, effective materials delivery management and waste-efficient Bill of Quantity, all of which have significant impacts on waste minimisation. This implies that commitment of materials suppliers to such measures as take back scheme and flexibility in supplying small materials quantity, among others, are expected of materials procurement. While low waste purchase management stipulates the need for such measures as reduced packaging and consideration of pre-assembled/pre-cut materials, efficient delivery management entails effective delivery and storage system as well as adequate protection of materials during the delivery process, among others. Waste-efficient specification and bill of quantity, on the other hand, requires accurate materials take-off and ordering of materials based on accurately prepared design documents and bill of quantity. Findings of this study could assist in understanding a set of measures that should be taken during materials procurement process, thereby corroborating waste management practices at other stages of project delivery process. Copyright © 2018. Published by Elsevier Ltd.

  3. Leptospira Exposure and Waste Pickers: A Case-Control Seroprevalence Study in Durango, Mexico

    PubMed Central

    Alvarado-Esquivel, Cosme; Hernandez-Tinoco, Jesus; Sanchez-Anguiano, Luis Francisco; Ramos-Nevarez, Agar; Cerrillo-Soto, Sandra Margarita; Guido-Arreola, Carlos Alberto

    2015-01-01

    Background Infection with Leptospira may occur by contact with Leptospira-infected animals. Waste pickers are in contact with rodents and dogs while picking in the garbage. Whether waste pickers are at risk for Leptospira infection is largely unknown. This study was aimed to determine the association of Leptospira IgG seroprevalence with the occupation of waste picking, and to determine the epidemiological characteristics of the waste pickers with Leptospira exposure. Methods Through a case-control study, we determined the seroprevalence of anti-Leptospira IgG antibodies in 90 waste pickers and 90 age- and gender-matched control subjects in Durango City, Mexico using an enzyme immunoassay. Data were analyzed by bivariate and multivariate analyses. Results The prevalence of anti-Leptospira IgG antibodies was similar in waste pickers (4/90: 4.4%) to that in control subjects (5/90: 5.6%) (P = 1.00). Bivariate analysis showed that Leptospira exposure in waste pickers was associated with increasing age (P = 0.009), no education (P = 0.008), and consumption of rat meat (P = 0.04). However, these associations were no longer found by multivariate analysis. Leptospira exposure in waste pickers was not associated with health status, duration in the activity, wearing hand gloves and facemasks, history of injuries with sharp material of the garbage, or contact with animals or soil. Conclusions This is the first study about Leptospira exposure in waste pickers. Results suggest that waste pickers are not at increasing risk for Leptospira exposure in Durango City, Mexico. Further research with a larger sample size to elucidate the association of Leptospira exposure with waste picking activity is needed. PMID:26124911

  4. Biopolymers production with carbon source from the wastes of a beer brewery industry

    NASA Astrophysics Data System (ADS)

    Wong, Phoeby Ai Ling

    The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)

  5. Domestic food practices: A study of food management behaviors and the role of food preparation planning in reducing waste.

    PubMed

    Romani, Simona; Grappi, Silvia; Bagozzi, Richard P; Barone, Ada Maria

    2018-02-01

    Recent research has started to show the key role of daily food provision practices in affecting household food waste. Building on and extending these previous contributions, the objective of this paper is to investigate how individuals' everyday practices regarding food (e.g., shopping, cooking, eating, etc.) lead to food waste, and how policy makers and the food industry can implement effective strategies to influence such practices and ultimately help consumers reduce food waste. The research performs three Studies; a critical incident qualitative study (Study 1; N = 514) and a quantitative, survey-based study (Study 2; N = 456) to identify and examine relevant food management behaviors associated with domestic waste. Lastly, findings from a field experiment (Study 3; N = 210) suggest that a specific educational intervention, directed at increasing consumers' perceived skills related to food preparation planning behaviors, reduces domestic food waste. Implications of the research for policy makers and the food industry are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Design and implementation of integrated solid wastes management pattern in industrial zones, case study of Shahroud, Iran.

    PubMed

    Saeid, Nazemi; Roudbari, Aliakbar; Yaghmaeian, Kamyar

    2014-01-14

    The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems.

  7. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  8. Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe

    PubMed Central

    Jerie, Steven

    2016-01-01

    This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders. PMID:27418935

  9. Cultivation of oyster mushroom Pleurotus ostreatus on date-palm leaves mixed with other agro-wastes in Saudi Arabia.

    PubMed

    Alananbeh, Kholoud M; Bouqellah, Nahla A; Al Kaff, Nadia S

    2014-12-01

    Promoting the use of agricultural waste is one of the newly prepared water and environment friendly agriculture strategies in the Kingdom of Saudi Arabia (KSA). The objective of this research was to study the efficiency of cultivating oyster mushroom (Pleurotus ostreatus) on date palm wastes mixed with other agricultural wastes available in KSA. Four agricultural wastes were mixed with date palm leaves at different ratios, with two supplements and three spawn rates were used. Wheat straw mixed with date palm at ratio of 25 (date palm): 75 (agro-waste) showed the best results in most of the parameters measured. Corn meal was superior over wheat bran as a supplement in all treatments. Parameter values increased with the increase of the spawn rate of P. ostreatus. Treatments with date palm leave wastes contained higher carbohydrates and fibers. No significant differences were found among the fruiting bodies produced on the different agro-wastes studied for the different proximates analyzed. Analyses of metal concentration showed that potassium was the highest in all the treatments tested followed by Na, Mg, Ca, and Zn. This is the first study that reported the success of growing oyster mushroom on date palm leaf wastes mixed with other agro-wastes obtainable in KSA.

  10. Cultivation of oyster mushroom Pleurotus ostreatus on date-palm leaves mixed with other agro-wastes in Saudi Arabia

    PubMed Central

    Alananbeh, Kholoud M.; Bouqellah, Nahla A.; Al Kaff, Nadia S.

    2014-01-01

    Promoting the use of agricultural waste is one of the newly prepared water and environment friendly agriculture strategies in the Kingdom of Saudi Arabia (KSA). The objective of this research was to study the efficiency of cultivating oyster mushroom (Pleurotus ostreatus) on date palm wastes mixed with other agricultural wastes available in KSA. Four agricultural wastes were mixed with date palm leaves at different ratios, with two supplements and three spawn rates were used. Wheat straw mixed with date palm at ratio of 25 (date palm): 75 (agro-waste) showed the best results in most of the parameters measured. Corn meal was superior over wheat bran as a supplement in all treatments. Parameter values increased with the increase of the spawn rate of P. ostreatus. Treatments with date palm leave wastes contained higher carbohydrates and fibers. No significant differences were found among the fruiting bodies produced on the different agro-wastes studied for the different proximates analyzed. Analyses of metal concentration showed that potassium was the highest in all the treatments tested followed by Na, Mg, Ca, and Zn. This is the first study that reported the success of growing oyster mushroom on date palm leaf wastes mixed with other agro-wastes obtainable in KSA. PMID:25473372

  11. Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe.

    PubMed

    Jerie, Steven

    2016-01-01

    This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders.

  12. WASTE OPPORTUNITY ASSESSMENT: A PHOTOFINISHING FACILITY

    EPA Science Inventory

    A waste minimization opportunity assessment was performed which identified areas for waste reduction at a photofinishing facility. The study followed procedures in the EPA Waste Minimization Opportunity Assessment Manual. The report identifies potential options to achieve further...

  13. Hazardous-waste analysis plan for LLNL operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R.S.

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less

  14. Factors affecting waste generation: a study in a waste management program in Dhaka City, Bangladesh.

    PubMed

    Afroz, Rafia; Hanaki, Keisuke; Tudin, Rabaah

    2011-08-01

    Information on waste generation, socioeconomic characteristics, and willingness of the households to separate waste was obtained from interviews with 402 respondents in Dhaka city. Ordinary least square regression was used to determine the dominant factors that might influence the waste generation of the households. The results showed that the waste generation of the households in Dhaka city was significantly affected by household size, income, concern about the environment, and willingness to separate the waste. These factors are necessary to effectively improve waste management, growth and performance, as well as to reduce the environmental degradation of the household waste.

  15. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    NASA Astrophysics Data System (ADS)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  16. Estimation of future outflows of e-waste in India.

    PubMed

    Dwivedy, Maheshwar; Mittal, R K

    2010-03-01

    The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planning for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Estimation of future outflows of e-waste in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedy, Maheshwar, E-mail: dwivedy_m@bits-pilani.ac.i; Mittal, R.K.

    2010-03-15

    The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planningmore » for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated.« less

  18. Solid waste management problems in secondary schools in Ibadan, Nigeria.

    PubMed

    Ana, G R E E; Oloruntoba, E O; Shendell, D; Elemile, O O; Benjamin, O R; Sridhar, M K C

    2011-09-01

    Inappropriate solid waste management practices in schools in less-developed countries, particularly in major urban communities, constitute one of the major factors leading to declining environmental health conditions. The objective of the authors' descriptive, cross-sectional study was to assess solid waste management problems in selected urban schools in Ibadan, Nigeria. Eight secondary schools with average pupil populations not less than 500 per school were selected randomly. Four hundred questionnaires (50 per school) were administered. In addition, an observational checklist was used to assess the physical environment. Paper and plastics were the most frequently generated wastes. Common methods of solid waste disposal reported were use of dustbins for collection and open burning. Major problems perceived with current refuse disposal methods by the study students were odors, pest infestation, and spillages. Littering and spillages of solid waste were also common features reported. Data suggested inadequate waste management facilities and practices in study schools. The lack of refuse bins may have contributed to waste spillages and the burning practices. Odors may have arisen from both the decay of overstored organic waste rich in moisture and emissions from refuse burning. This scenario poses a community environmental health nuisance and may compromise school environmental quality.

  19. Quantification of construction waste prevented by BIM-based design validation: Case studies in South Korea.

    PubMed

    Won, Jongsung; Cheng, Jack C P; Lee, Ghang

    2016-03-01

    Waste generated in construction and demolition processes comprised around 50% of the solid waste in South Korea in 2013. Many cases show that design validation based on building information modeling (BIM) is an effective means to reduce the amount of construction waste since construction waste is mainly generated due to improper design and unexpected changes in the design and construction phases. However, the amount of construction waste that could be avoided by adopting BIM-based design validation has been unknown. This paper aims to estimate the amount of construction waste prevented by a BIM-based design validation process based on the amount of construction waste that might be generated due to design errors. Two project cases in South Korea were studied in this paper, with 381 and 136 design errors detected, respectively during the BIM-based design validation. Each design error was categorized according to its cause and the likelihood of detection before construction. The case studies show that BIM-based design validation could prevent 4.3-15.2% of construction waste that might have been generated without using BIM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat

    NASA Astrophysics Data System (ADS)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  1. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  2. Mapping of information and identification of construction waste at project life cycle

    NASA Astrophysics Data System (ADS)

    Wibowo, Mochamad Agung; Handayani, Naniek Utami; Nurdiana, Asri; Sholeh, Moh Nur; Pamungkas, Gita Silvia

    2018-03-01

    The development of construction project towards green construction is needed in order to improve the efficiency of construction projects. One that needs to be minimized is construction waste. Construction waste is waste generated from construction project activities, both solid waste and non solid waste. More specifically, the waste happens at every phase of the project life cycle. Project life cycle are the stage of idea, design, construction, and operation/maintenance. Each phase is managed by different stakeholders. Therefore it requires special handling from the involved stakeholders. The objective of the study is to map the information and identify the waste at each phase of the project life cycle. The purpose of mapping is to figure out the process of information and product flow and with its timeline. This mapping used Value Stream Mapping (VSM). Identification of waste was done by distributing questionnaire to respondents to know the waste according to owner, consultant planner, contractor, and supervisory consultant. The result of the study is the mapping of information flow and product flow at the phases of idea, design, construction, and operation/ maintenance.

  3. Organic Waste Diversion in Columbia, South Carolina, Feasibility Study

    EPA Science Inventory

    The study found that a variety of methods are technically and economically feasible for diverting food wastes and providing a positive return on investment for the source. Potential barriers and considerations for food waste diversion are identified in the study. Given the E...

  4. A multi-objective model for sustainable recycling of municipal solid waste.

    PubMed

    Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz

    2017-04-01

    The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.

  5. Alternative approaches for better municipal solid waste management in Mumbai, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, Sarika

    2006-07-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less

  6. Costs associated with the management of waste from healthcare facilities: An analysis at national and site level.

    PubMed

    Vaccari, Mentore; Tudor, Terry; Perteghella, Andrea

    2018-01-01

    Given rising spend on the provision of healthcare services, the sustainable management of waste from healthcare facilities is increasingly becoming a focus as a means of reducing public health risks and financial costs. Using data on per capita healthcare spend at the national level, as well as a case study of a hospital in Italy, this study examined the relationship between trends in waste generation and the associated costs of managing the waste. At the national level, healthcare spend as a percentage of gross domestic product positively correlated with waste arisings. At the site level, waste generation and type were linked to department type and clinical performance, with the top three highest generating departments of hazardous healthcare waste being anaesthetics (5.96 kg day -1 bed -1 ), paediatric and intensive care (3.37 kg day -1 bed -1 ) and gastroenterology-digestive endoscopy (3.09 kg day -1 bed -1 ). Annual overall waste management costs were $US5,079,191, or approximately $US2.36 kg -1 , with the management of the hazardous fraction of the waste being highest at $US3,707,939. In Italy, reduction in both waste arisings and the associated costs could be realised through various means, including improved waste segregation, and linking the TARI tax to waste generation.

  7. Indicators of waste management efficiency related to different territorial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it; Vassura, Ivano, E-mail: ivano.vassura@unibo.it; Monti, Francesco, E-mail: fmonti84@gmail.com

    2011-04-15

    The amount of waste produced and the control of separate collection are crucial issues for the planning of a territorial Integrated Waste Management System, enabling the allocation of each sorted waste fraction to the proper treatment and recycling processes. The present study focuses on assessing indicators of different waste management systems in areas characterized by different territorial conditions. The investigated case study concerns the municipalities of Emilia Romagna (northern Italy), which present a rather uniform socioeconomic situation, but a variety of geographic, urban and waste management characteristics. A survey of waste generation and collection rates was carried out, and correlatedmore » with the different territorial conditions, classifying the municipalities according to altitude and population density. The best environmental performances, in terms of high separate collection rate, were found on average in rural areas in the plain, while the lowest waste generation was associated with rural hill towns.« less

  8. Evaluating the toxicity of food processing wastes as co-digestion substrates with dairy manure.

    PubMed

    Lisboa, Maria Sol; Lansing, Stephanie

    2014-07-01

    Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Vermicomposting of winery wastes: a laboratory study.

    PubMed

    Nogales, Rogelio; Cifuentes, Celia; Benítez, Emilio

    2005-01-01

    In Mediterranean countries, millions of tons of wastes from viticulture and winery industries are produced every year. This study describes the ability of the earthworm Eisenia andrei to compost different winery wastes (spent grape marc, vinasse biosolids, lees cakes, and vine shoots) into valuable agricultural products. The evolution of earthworm biomass and enzyme activities was tracked for 16 weeks of vermicomposting, on a laboratory scale. Increases in earthworm biomass for all winery wastes proved lower than in manure. Changes in hydrolytic enzymes and overall microbial activities during the vermicomposting process indicated the biodegradation of the winery wastes. Vermicomposting improved the agronomic value of the winery wastes by reducing the C:N ratio, conductivity and phytotoxicity, while increasing the humic materials, nutrient contents, and pH in all cases. Thus, winery wastes show potential as raw substrates in vermicomposting, although further research is needed to evaluate the feasibility of such wastes in large-scale vermicomposting systems.

  10. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae.

    PubMed

    Gervasi, Teresa; Pellizzeri, Vito; Calabrese, Giorgio; Di Bella, Giuseppa; Cicero, Nicola; Dugo, Giacomo

    2018-03-01

    Food waste is the single-largest component of the waste stream, in order to protect and safeguard the public health, useful and innovative recycling methods are investigated. The conversion of food wastes in value-added products is becoming a more economically viable and interesting practice. Food waste, collected in the distribution sector and citrus industries, was characterised for its potential as a raw material to use in fermentation processes. In this study, the production of single-cell protein (SCP) using food waste as a substrate was investigated. The purpose of this study has been to produce SCP from mixtures of food waste using Saccharomyces cerevisiae. The main fermentation test was carried out using a 25 l bioreactor. The utilisation of food waste can allow us to not only to reduce environmental pollution, but also to obtain value-added products such as protein supply for animal feed.

  11. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    NASA Astrophysics Data System (ADS)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  12. A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste.

    PubMed

    Yuan, Hongping; Chini, Abdol R; Lu, Yujie; Shen, Liyin

    2012-03-01

    During the past few decades, construction and demolition (C&D) waste has received increasing attention from construction practitioners and researchers worldwide. A plethora of research regarding C&D waste management has been published in various academic journals. However, it has been determined that existing studies with respect to C&D waste reduction are mainly carried out from a static perspective, without considering the dynamic and interdependent nature of the whole waste reduction system. This might lead to misunderstanding about the actual effect of implementing any waste reduction strategies. Therefore, this research proposes a model that can serve as a decision support tool for projecting C&D waste reduction in line with the waste management situation of a given construction project, and more importantly, as a platform for simulating effects of various management strategies on C&D waste reduction. The research is conducted using system dynamics methodology, which is a systematic approach that deals with the complexity - interrelationships and dynamics - of any social, economic and managerial system. The dynamic model integrates major variables that affect C&D waste reduction. In this paper, seven causal loop diagrams that can deepen understanding about the feedback relationships underlying C&D waste reduction system are firstly presented. Then a stock-flow diagram is formulated by using software for system dynamics modeling. Finally, a case study is used to illustrate the validation and application of the proposed model. Results of the case study not only built confidence in the model so that it can be used for quantitative analysis, but also assessed and compared the effect of three designed policy scenarios on C&D waste reduction. One major contribution of this study is the development of a dynamic model for evaluating C&D waste reduction strategies under various scenarios, so that best management strategies could be identified before being implemented in practice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk; Poon, C.S.; Wong, Agnes

    Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS)more » to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.« less

  14. Determinants of consumer food waste behaviour: Two routes to food waste.

    PubMed

    Stancu, Violeta; Haugaard, Pernille; Lähteenmäki, Liisa

    2016-01-01

    Approximately one quarter of the food supplied for human consumption is wasted across the food supply chain. In the high income countries, the food waste generated at the household level represents about half of the total food waste, making this level one of the biggest contributors to food waste. Yet, there is still little evidence regarding the determinants of consumers' food waste behaviour. The present study examines the effect of psycho-social factors, food-related routines, household perceived capabilities and socio-demographic characteristics on self-reported food waste. Survey data gathered among 1062 Danish respondents measured consumers' intentions not to waste food, planning, shopping and reuse of leftovers routines, perceived capability to deal with household food-related activities, injunctive and moral norms, attitudes towards food waste, and perceived behavioural control. Results show that perceived behavioural control and routines related to shopping and reuse of leftovers are the main drivers of food waste, while planning routines contribute indirectly. In turn, the routines are related to consumers' perceived capabilities to deal with household related activities. With regard to intentional processes, injunctive norms and attitudes towards food waste have an impact while moral norms and perceived behavioural control make no significant contribution. Implications of the study for initiatives aimed at changing consumers' food waste behaviour are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Screening tests for hazard classification of complex waste materials - Selection of methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.« less

  16. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.

  17. Urban solid waste generation and disposal in Mexico: a case study.

    PubMed

    Buenrostro, O; Bocco, G; Bernache, G

    2001-04-01

    The adequate management of municipal solid waste in developing countries is difficult because of the scarcity of studies about their composition. This paper analyses the composition of urban solid waste (USW) in the city of Morelia, Michoacán, Mexico. Residential and non-residential waste sources were sampled, and a structured interview was made to evaluate the socioeconomic characteristics of the studied area. Also, to determine the seasonal patterns of solid waste generation and the efficiency level of the collection service, quantification of solid waste deposited in the dumping ground was measured. Our results show that the recorded amount of SW deposited in the municipal dumping-ground is less than the estimated amount of SW generated; for this reason, the former amount is not recommended as an unbiased indicator for planning public waste collection services. It is essential that dumping-grounds are permanently monitored and that the incoming waste be weighed in order to have a more efficient record of USW deposited in the dumping-ground per day; these data are fundamental for developing adequate managing strategies.

  18. Assessment of environmental policy implementation in solid waste management in Kathmandu, Nepal.

    PubMed

    Dangi, Mohan B; Schoenberger, Erica; Boland, John J

    2017-06-01

    In Nepal, full-fledged environmental legislation was rare before the democratic constitution of 1990. The first law covering the environment and sustainability was the Environment Protection Act 1997. While the Solid Waste Act was introduced in 1987, the problem of solid waste management still surfaces in Kathmandu. In order to understand the bedrock of this unrelenting failure in solid waste management, the manuscript digs deeper into policy implementation by dissecting solid waste rules, environmental legislations, relevant local laws, and solid waste management practices in Kathmandu, Nepal. A very rich field study that included surveys, interviews, site visits, and literature review provided the basis for the article. The study shows that volumes of new Nepalese rules are crafted without effective enforcement of their predecessors and there is a frequent power struggle between local government bodies and central authority in implementing the codes and allocating resources in solid waste management. The study concludes that Kathmandu does not require any new instrument to address solid waste problems; instead, it needs creation of local resources, execution of local codes, and commitment from central government to allow free exercise of these policies.

  19. Study of extraterrestrial disposal of radioactive wastes. Part 3: Preliminary feasibility screening study of space disposal of the actinide radioactive wastes with 1 percent and 0.1 percent fission product contamination

    NASA Technical Reports Server (NTRS)

    Hyland, R. E.; Wohl, M. L.; Finnegan, P. M.

    1973-01-01

    A preliminary study was conducted of the feasibility of space disposal of the actinide class of radioactive waste material. This waste was assumed to contain 1 and 0.1 percent residual fission products, since it may not be feasible to completely separate the actinides. The actinides are a small fraction of the total waste but they remain radioactive much longer than the other wastes and must be isolated from human encounter for tens of thousands of years. Results indicate that space disposal is promising but more study is required, particularly in the area of safety. The minimum cost of space transportation would increase the consumer electric utility bill by the order of 1 percent for earth escape and 3 percent for solar escape. The waste package in this phase of the study was designed for normal operating conditions only; the design of next phase of the study will include provisions for accident safety. The number of shuttle launches per year required to dispose of all U.S. generated actinide waste with 0.1 percent residual fission products varies between 3 and 15 in 1985 and between 25 and 110 by 2000. The lower values assume earth escape (solar orbit) and the higher values are for escape from the solar system.

  20. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  1. Quantifying and analysing food waste generated by Indonesian undergraduate students

    NASA Astrophysics Data System (ADS)

    Mandasari, P.

    2018-03-01

    Despite the fact that environmental consequences derived from food waste have been widely known, studies on the amount of food waste and its influencing factors have relatively been paid little attention. Addressing this shortage, this paper aimed to quantify monthly avoidable food waste generated by Indonesian undergraduate students and analyse factors influencing the occurrence of avoidable food waste. Based on data from 106 undergraduate students, descriptive statistics and logistic regression were applied in this study. The results indicated that 4,987.5 g of food waste was generated in a month (equal to 59,850 g yearly); or 47.05 g per person monthly (equal to 564.62 g per person per a year). Meanwhile, eating out frequency and gender were found to be significant predictors of food waste occurrence.

  2. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  3. Thermal Pretreatment For TRU Waste Sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, T.; Aoyama, Y.; Miyamoto, Y.

    2008-07-01

    Japan Atomic Energy Agency conducted a study on thermal treatment of TRU waste to develop a removal technology for materials that are forbidden for disposal. The thermal pretreatment in which hot nitrogen and/or air is introduced to the waste is a process of removing combustibles, liquids, and low melting point metals from PVC wrapped TRU waste. In this study, thermal pretreatment of simulated waste was conducted using a desktop thermal treatment vessel and a laboratory scale thermal pretreatment system. Combustibles and low melting point metals are effectively separated from wastes by choosing appropriate temperature of flowing gases. Combustibles such asmore » papers, PVC, oil, etc. were removed and low melting point metals such as zinc, lead, and aluminum were separated from the simulated waste by the thermal pretreatment. (authors)« less

  4. A solid waste audit and directions for waste reduction at the University of British Columbia, Canada.

    PubMed

    Felder, M A; Petrell, R J; Duff, S J

    2001-08-01

    A novel design for a solid waste audit was developed and applied to the University of British Columbia, Canada, in 1998. This audit was designed to determine the characteristics of the residual solid waste generated by the campus and provide directions for waste reduction. The methodology was constructed to address complications in solid waste sampling, including spatial and temporal variation in waste, extrapolation from the study area, and study validation. Accounting for spatial effects decreased the variation in calculating total waste loads. Additionally, collecting information on user flow provided a means to decrease daily variation in solid waste and allow extrapolation over time and space. The total annual waste estimated from the experimental design was compared to documented values and was found to differ by -18%. The majority of this discrepancy was likely attributable to the unauthorised disposal of construction and demolition waste. Several options were proposed to address waste minimisation goals. These included: enhancing the current recycling program, source reduction of plastic materials, and/or diverting organic material to composting (maximum diversion: approximately 320, approximately 270, and approximately 1510 t yr(-1), respectively). The greatest diversion by weight would be accomplished through the diversion of organic material, as it was estimated to comprise 70% of the projected waste stream. The audit methodology designed is most appropriate for facilities/regions that have a separate collection system for seasonal wastes and have a means for tracking user flow.

  5. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. Thismore » report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.« less

  6. Static Thermochemical Model of COREX Melter Gasifier

    NASA Astrophysics Data System (ADS)

    Srishilan, C.; Shukla, Ajay Kumar

    2018-02-01

    COREX is one of the commercial smelting reduction processes. It uses the finer size ore and semi-soft coal instead of metallurgical coke to produce hot metal from iron ore. The use of top gas with high calorific value as a by-product export gas makes the process economical and green. The predictive thermochemical model of the COREX process presented here enables rapid computation of process parameters such as (1) required amount of ore, coal, and flux; (2) amount of slag and gas generated; and (3) gas compositions (based on the raw material and desired hot metal quality). The model helps in predicting the variations in process parameters with respect to the (1) degree of metallization and (2) post-combustion ratio for given raw material conditions. In general reduction in coal, flux, and oxygen, the requirement is concomitant with an increase in the degree of metallization and post-combustion ratio. The model reported here has been benchmarked using industrial data obtained from the JSW Steel Plant, India.

  7. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.

    PubMed

    Yalcinkaya, Sedat; Malina, Joseph F

    2015-06-01

    The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this relationship and allowed estimation of key performance parameters that provide additional insight into the factors affecting biochemical methane potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  9. Healthcare waste management practice in the West Black Sea Region, Turkey: A comparative analysis with the developed and developing countries.

    PubMed

    Ciplak, Nesli; Kaskun, Songul

    2015-12-01

    The need for proper healthcare waste management has been a crucial issue in many developing countries as it is in Turkey. The regulation regarding healthcare wastes in Turkey was updated in 2005 in accordance with the European Union (EU) waste directives, but it still falls behind meeting the requirements of current waste treatment technologies. Therefore, this study aims to reveal deficiencies, inconsistencies, and improper applications of healthcare waste management in the western part of the Turkish Black Sea Region. In this study, it was revealed that nearly 1 million people live in the region, resulting in 5 million hospital admissions annually. All the healthcare waste produced (1000 tons yr(-1)) is treated in an autoclave plant. However, treating some categories of healthcare wastes in autoclave units mismatches with the EU waste regulations, as alternative treatment technologies are not technically able to treat all types of healthcare wastes. A proper waste management system, therefore, requires an internal segregation scheme to divert these wastes from the main healthcare waste stream. The existing malpractice in the region could cause serious health problems if no measure is taken urgently. It is expected that healthcare waste management in the region and then all across Turkey will be improved with the significant deficiencies and inconsistencies pointed out in this research. In developed countries, specific rules and regulations have already been implemented along with the recommendations for handling of healthcare waste. However, in Turkey, these wastes are treated in autoclave units, which mismatches with the European Union waste regulations, as alternative treatment technologies are not technically capable to treat all types of healthcare wastes. The existing malpractice could cause serious health problems if no measure is taken urgently. The authors demonstrated the existing status of Turkish waste management and revealed deficiencies, inconsistencies, and improper applications in comparison with developed and developing nations to align Turkish practice to European Union requirements.

  10. Design and implementation of integrated solid wastes management pattern in industrial zones, case study of Shahroud, Iran

    PubMed Central

    2014-01-01

    Background The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Results Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Conclusion Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems. PMID:24423020

  11. Certain Hospital Waste Management Practices in Isfahan, Iran

    PubMed Central

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Zeinab; Narenjkar, Parisa

    2012-01-01

    Objectives: Infected hospital wastes are among hazardous wastes, and special treatment methods are needed for their disposal. Having information about present status of medical waste management systems is of great importance in finding weak, and for future planning. Such studies have not been done for most of the hospitals in Iran. Methods: This paper reports the results of a study on the present status of medical waste management in Isfahan hospitals. A ten page researcher made questionnaire was used to collect data in terms of collection, transportation, segregation, treatment and disposal. For assessment of autoclaves, standard tests including TST (Time, Steam, and Temperature) strip test and spore tests were used. Samples were made of stack gases of incinerators. Quantity and composition of hospital wastes in Isfahan were also measured manually. Results: Of all wastes in selected hospitals, 40% were infected wastes (1.59 kg/day/bed), which is 15 to 20% higher than World Health Organization (WHO) standards. TST and Spore test results were negative in all samples. Stack gases analysis showed high concentration of CO in some samples. Besides, the combustion efficiency in some samples is less than 99.5%, which is the standard criterion in Iran. Conclusions: This study may create awareness regarding the magnitude of the problem of waste management in hospitals of Isfahan and may stimulate interests for systematic control efforts for hospital waste disposal. Hospital waste management cannot succeed without documented plans, certain equipment, defined staff trainings, and periodic evaluations. PMID:22826762

  12. Environmental impacts and benefits of state-of-the-art technologies for E-waste management.

    PubMed

    Ikhlayel, Mahdi

    2017-10-01

    This study aims to evaluate the environmental impacts and benefits of state-of-the-art technologies for proper e-waste handling using Jordan as a case study. Life Cycle Assessment (LCA) was employed to evaluate five advanced management systems represent state-of-the-art treatment technologies, including sanitary landfilling; proper recycling of metals, materials, and precious metals (PMs); and incineration of plastic and the hazardous portion of printed circuit boards (PCBs). Six e-waste products that contribute the most to the e-waste in Jordan were included in the assessment of each scenario, which resulted in 30 total cases of e-waste management. The findings indicated that landfills for the entire components of the e-waste stream are the worst option and should be avoided. The most promising e-waste management scenario features integrated e-waste processes based on the concept of Integrated Waste Management (IWM), including recycling materials such as non-PMs and PMs, incinerating plastic and the hazardous content of PCBs using the energy recovered from incineration, and using sanitary landfills of residues. For this scenario, the best environmental performance was obtained for the treatment of mobile phones. Incineration of the portion of hazardous waste using energy recovery is an option that deserves attention. Because scenario implementation depends on more than just the environmental benefits (e.g., economic cost and technical aspects), the study proposes a systematic approach founded on the IWM concept for e-waste management scenario selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Marshall Space Flight Center solid waste characterization and recycling improvement study

    NASA Technical Reports Server (NTRS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-01-01

    The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.

  14. Patient and public involvement in reducing health and care research waste.

    PubMed

    Minogue, Virginia; Cooke, Mary; Donskoy, Anne-Laure; Vicary, Penny; Wells, Bill

    2018-01-01

    As much as 85 % of health research is believed to be wasted because it is not published or reported, the design is poor or does not consider what is already known in the topic area. Although a great deal of work has been done in the UK to reduce research waste, the role of patients and the public has not been discussed.This paper describes a survey, on the role of patients in reducing research waste, which was carried out as part of a larger piece of work on reducing waste in healthcare. The study found that patients were interested in reducing research waste. The key roles they play in research, for example being co-applicants for funding, members of project teams, co-researchers, means they have some shared responsibility for making sure the quality of research is high. This includes finding out what is already known about a topic and getting the study design right before seeking funding, publishing and reporting the results when the study is finished. Recognising where waste happens is part of good management of a research study. Background Eighty five per cent of health research expenditure is potentially wasted due to failure to publish research, unclear reporting of research that is published, and the failure of new research studies to systematically review previous research in the same topic area, poor study design and conduct. A great deal of progress has been made to address this issue but the role of patients and the public has not been considered. Main A small survey was undertaken, as part of a larger programme of work on reducing health and care waste, to understand the role of patients in reducing research waste. The study showed that patients are interested in this issue particularly in relation to the prioritisation of research and patient and public involvement. Conclusions Patients undertake key roles in the research process including co-applicancy, project management, or as co-researchers. This brings responsibility for ensuring high quality research and value for money. Responsibility for recognition of the potential for wasteful practices is part of the conduct and operation of research studies.

  15. Adherence to Healthcare Waste Management Guidelines among Nurses and Waste Handlers in Thika Sub-county- Kenya.

    PubMed

    Njue, P Mwaniki; Cheboi, K Solomon; Shadrak, Oiye

    2015-10-01

    Despite the set guidelines on Healthcare Waste Management in Kenya, mixing of different categories of waste, crude dumping and poor incineration are still a common phenomenon in public health facilities in Thika Subcounty, Kenya. Thika Subcounty generates 560 Kilograms of healthcare waste daily, which is risk to the many patients (admission rate of 26%). This may pose a potential environmental risk and be a source of disease diffusion. This research explored the adherence to healthcare waste management waste guidelines in health care facilities among the nurses and waste handlers. This was a cross sectional survey in which mixed methods were applied. A census and proportionate random sampling method were used. Quantitative data was analyzed using Statistical Package for Social Science (SPSS) version 20.0, while qualitative data was analyzed manually into themes. Full adherence to the seven waste disposal guidelines was low (16.3%). Knowledge on waste segregation, waste separation then disposal and means of transports were statistically significant in relation to adherence. The type of incinerator and burning status, protection maintenance and supply of adequate waste bins were also important to adherence level. Adherence level was low (16.3%,) and insignificantly different among nurses and waste handlers. From this finding, compliance remains a key challenge. Strategies targeted at contextualizing waste regulations and guidelines into local settings are necessary and important. Policy makers may design and implement standard incinerators across all the health facilities. This study is not exhaustive; therefore, it is necessary to carry out a study linking poor treatment and disposal of clinical waste to purported health outcomes in Kenya.

  16. Critical management practices influencing on-site waste minimization in construction projects.

    PubMed

    Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A

    2017-01-01

    As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of addition of sewage sludge and coal sludge on bioavailability of selected metals in the waste from the zinc and lead industry.

    PubMed

    Sobik-Szołtysek, Jolanta; Wystalska, Katarzyna; Grobelak, Anna

    2017-07-01

    This study evaluated the content of bioavailable forms of selected heavy metals present in the waste from Zn and Pb processing that can potentially have an effect on the observed difficulties in reclamation of landfills with this waste. The particular focus of the study was on iron because its potential excess or deficiency may be one of the causes of the failure in biological reclamation. The study confirmed that despite high content of total iron in waste (mean value of 200.975gkg -1 ), this metal is present in the forms not available to plants (mean: 0.00009gkg -1 ). The study attempted to increase its potential bioavailability through preparation of the mixtures of this waste with additions in the form of sewage sludge and coal sludge in different proportions. Combination of waste with 10% of coal sludge and sewage sludge using the contents of 10%, 20% and 30% increased the amounts of bioavailable iron forms to the level defined as sufficient for adequate plant growth. The Lepidum sativum test was used to evaluate phytotoxicity of waste and the mixtures prepared based on this waste. The results did not show unambiguously that the presence of heavy metals in the waste had a negative effect on the growth of test plant roots. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Problems of solid waste management on Mount Kilimanjaro: a challenge to tourism.

    PubMed

    Kaseva, Mengiseny E; Moirana, Josia L

    2010-08-01

    We report on the findings of a study on the problems of solid waste management (SWM) on Mountain Kilimanjaro (MK) which is located within Kilimanjaro National Park (KINAPA) in Northern Tanzania. The study was prompted by the fact that flourishing tourism on the mountain over the years has resulted in an increase in the tonnage of solid waste (SW) generated, posing serious challenges in its collection and disposal. The methodology employed in this study included physical observations and questionnaire surveys, as well as waste sorting and weighing to quantify and characterize waste loads collected from each tourist route station covered in this study. On the basis of the established SW generation rate (0.6 kg ca(-1) day(-1)) a total amount of SW generated was estimated to range from about 87 tones (in 2003) to 125 tones (in 2006). An improvement in SW collection from 64% in 2003 to 94% in 2006 was also noted. This improvement can be attributed to the trash-in-trash-out (TITO) system of SW collection which is currently practiced by the management of KINAPA for SWM on MK. The study also highlights potential environmental pollution including air pollution from open burning and pit disposal of SW. Based on average percentage values of waste components and the estimated quantity of waste generated, it was established that the total waste quantum contains about 34% of recyclables. The study recommends that resource recovery and conservation measures through waste recycling and re-use be instituted as one of the options for sustainable SWM on MK.

  19. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Wojnar, F.; Lunberg, W. L.

    1980-03-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  20. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

Top