Sample records for waste msw compost

  1. Characterization and open windrow composting of MSW in Jodhpur City, Rajasthan, India.

    PubMed

    Ambade, Bhushan; Sharma, Sunil; Sharma, Yukti; Sharma, Yagya

    2013-07-01

    Solid waste is sometimes not suitable for direct land application. Processing solid waste through composting converts it to a humus-containing organic material advantageous for agriculture/horticulture use. Major advantages of composting are stabilization of the wastes; substantially reduced C/N ratio and gas formation, and virtually elimination of odors and pathogens. Composting is accomplished under aerobic conditions developing temperatures of 55 degrees C or above. The windrow technique is simple and accomplished easily with standard equipments. The open windrow composting of municipal solid waste (MSW) in windrows was analyzed in this study for six weeks. The raw MSW was introduced to active composting without any source segregations. The moisture content of the MSW dropped from 58.88% to 48.06% and windrow attained a thermophillic temperature for about two weeks. It was observed that the pH, C/N ratio and temperature variations were comparable to that of traditional windrow composting. The peak temperature recorded was 68 degrees C and temperature remained above 60 degrees C for more than three weeks. The volume reduction was obtained by using one-cu.m. cage. The results indicate that the bulk composting could reduce by about 29% the total mass of the waste.

  2. Design of experiment (DOE) based screening of factors affecting municipal solid waste (MSW) composting.

    PubMed

    Kazemi, Khoshrooz; Zhang, Baiyu; Lye, Leonard M; Cai, Qinghong; Cao, Tong

    2016-12-01

    A design of experiment (DOE) based methodology was adopted in this study to investigate the effects of multiple factors and their interactions on the performance of a municipal solid waste (MSW) composting process. The impact of four factors, carbon/nitrogen ratio (C/N), moisture content (MC), type of bulking agent (BA) and aeration rate (AR) on the maturity, stability and toxicity of compost product was investigated. The statistically significant factors were identified using final C/N, germination index (GI) and especially the enzyme activities as responses. Experimental results validated the use of enzyme activities as proper indices during the course of composting. Maximum enzyme activities occurred during the active phase of decomposition. MC has a significant effect on dehydrogenase activity (DGH), β-glucosidase activity (BGH), phosphodiesterase activity (PDE) and the final moisture content of the compost. C/N is statistically significant for final C/N, DGH, BGH, and GI. The results provided guidance to optimize a MSW composting system that will lead to increased decomposition rate and the production of more stable and mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongyu; College of Resources and Environment Sciences, China Agricultural University, Beijing 100094; Schuchardt, Frank

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solidmore » waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.« less

  4. Phytoavailability and extractability of copper and zinc in calcareous soil amended with composted urban wastes.

    PubMed

    Gallardo-Lara, F; Azcón, M; Quesada, J L; Polo, A

    1999-11-01

    A greenhouse experiment was conducted under simulated field conditions using large-capacity plastic pots, filled each one with 25 kg of air-dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost, and co-composted municipal solid waste and sewage sludge (MSW-SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW-SS co-compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA-extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc-EDTA-extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA-extractable and AAAc-EDTA-extractable Zn contents in soil versus the control, except for the lower rate of MSW-SS co-compost. The values of DTPA-extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc-EDTA-extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc-EDTA-extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW-SS co-compost.

  5. Critical evaluation of municipal solid waste composting and potential compost markets.

    PubMed

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  6. Influence of input material and operational performance on the physical and chemical properties of MSW compost.

    PubMed

    Montejo, C; Costa, C; Márquez, M C

    2015-10-01

    Certain controversy exists about the use of compost from MSW (municipal solid waste) and, specifically, from the organic fraction of MSW that has not been separated at the source. In this case, the final composition of MSW compost is related to the performance of the separation process in MBT (Mechanical and Biological Treatment) plants as well as the composition of raw materials and the particular features of composting systems. In an effort to investigate the quality of MSW compost, 30 samples of this product obtained from 10 different MBT plants were studied. The main physical and chemical properties were analyzed and were compared with the requirements of current legislation. The composting systems used to produce these compost samples were studied and the input materials were characterized. The results reveal that the heavy metal content in MSW compost was below the legal restrictions in all samples but one; however, in most of them the percentage of Pb was high. The fertilizing potential of MSW compost has been demonstrated by its high nutrient concentrations, particularly N, K, P, Ca and Mg. Nevertheless, here the percentage of inert impurities with a size larger than 2 mm, such as plastic or glass, was seen to be excessively high exceeding in some cases the legal limit. The source of such pollution lies in the composting inputs, OFMSW (organic fraction of MSW), which showed high percentages of improper materials such as plastic (9%) or glass (11%). Accordingly, the performance of the sorting stage for the collection of the raw material must be improved, as must the refining process, since this does not remove the necessary amounts of these impurities from the final compost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Phytoavailability and fractions of iron and manganese in calcareous soil amended with composted urban wastes.

    PubMed

    Gallardo-Lara, Francisco; Azcón, Mariano; Polo, Alfredo

    2006-01-01

    Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.

  8. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    PubMed

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Co-composting as an oxygen stabilization of an organic fraction of municipal solid waste and industrial sewage sludge.

    PubMed

    Milczarek, M; Neczaj, E; Parkitna, K

    2013-01-01

    The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW), sewage sludge, grass and sawdust. Differing proportions of biodegradable waste were investigated through changes of temperature, oxygen consumption, organic matters, moisture content, carbon, nitrogen, C/N ratio as well as heavy metals and pathogen microorganisms content. The present study has shown that addition of MSW above 10% had a negative impact on the composting process. The initial C/N of the mixtures with a higher MSW content was below 18. Lower losses of organic matter occurred during composting for the mixture with the highest addition of MSW. Although studies have shown that composting is a good method for the disposal of organic waste additional research is required in order to optimize the organic and nitrogen compounds degradation during the co-composting process. In conclusion, a 1:4:4:1 mixture of MSW:sewage sludge:grass:sawdust is recommended because it can achieve high temperature as well as the highest organic matter degradation and highest N content in the final composting product. The concentration of heavy and light metals in all composts was within the limits of regulation of the Polish Minister of Agriculture and Rural Development.

  10. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting.

    PubMed

    Sim, Edwin Yih Shyang; Wu, Ta Yeong

    2010-10-01

    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW. Copyright © 2010 Society of Chemical Industry.

  11. Towards low carbon society in Iskandar Malaysia: Implementation and feasibility of community organic waste composting.

    PubMed

    Bong, Cassendra Phun-Chien; Goh, Rebecca Kar Yee; Lim, Jeng-Shiun; Ho, Wai Shin; Lee, Chew-Tin; Hashim, Haslenda; Abu Mansor, Nur Naha; Ho, Chin Siong; Ramli, Abdul Rahim; Takeshi, Fujiwara

    2017-12-01

    Rapid population growth and urbanisation have generated large amount of municipal solid waste (MSW) in many cities. Up to 40-60% of Malaysia's MSW is reported to be food waste where such waste is highly putrescible and can cause bad odour and public health issue if its disposal is delayed. In this study, the implementation of community composting in a village within Iskandar Malaysia is presented as a case study to showcase effective MSW management and mitigation of GHG emission. The selected village, Felda Taib Andak (FTA), is located within a palm oil plantation and a crude palm oil processing mill. This project showcases a community-composting prototype to compost food and oil palm wastes into high quality compost. The objective of this article is to highlight the economic and environment impacts of a community-based composting project to the key stakeholders in the community, including residents, oil palm plantation owners and palm oil mill operators by comparing three different scenarios, through a life cycle approach, in terms of the greenhouse gas emission and cost benefit analysis. First scenario is the baseline case, where all the domestic waste is sent to landfill site. In the second scenario, a small-scale centralised composting project was implemented. In the third scenario, the data obtained from Scenario 2 was used to do a projection on the GHG emission and costing analysis for a pilot-scale centralised composting plant. The study showed a reduction potential of 71.64% on GHG emission through the diversion of food waste from landfill, compost utilisation and significant revenue from the compost sale in Scenario 3. This thus provided better insight into the feasibility and desirability in implementing a pilot-scale centralised composting plant for a sub-urban community in Malaysia to achieve a low carbon and self-sustainable society, in terms of environment and economic aspects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A LABORATORY STUDY TO INVESTIGATE GASEOUS EMISSIONS AND SOLIDS DECOMPOSITION DURING COMPOSTING OF MUNICIPAL SOLID WASTE

    EPA Science Inventory

    The report gives results of a materials flow analysis performed for composting municipal solid waste (MSW) and specific biodegradable organic components of MSW. (NOTE: This work is part of an overall U.S. EPA project providing cost, energy, and materials flow information on diffe...

  13. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    PubMed

    Smith, Stephen R

    2009-01-01

    The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge

  14. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua.

    PubMed

    Aulinas Masó, Montserrat; Bonmatí Blasi, August

    2008-07-01

    A pilot-scale study was undertaken to evaluate alternatives to the solid waste management of a Central American municipal market located in Estelí, Nicaragua. The municipal solid waste from the local market is the second largest contributor to the municipal solid waste (MSW) stream. Waste from the market without any previous sorting or treatment is open dumped. The options evaluated in this study were windrow composting, windrow composting with yard waste, bokashi and vermicompost. Significant differences between the properties of composts produced were found; however, all of them reduce the initial waste volume and are potential useful agronomic products for a survival agrarian milieu.

  15. Maximising municipal solid waste--legume trimming residue mixture degradation in composting by control parameters optimization.

    PubMed

    Cabeza, I O; López, R; Ruiz-Montoya, M; Díaz, M J

    2013-10-15

    Composting is one of the most successful biological processes for the treatment of the residues enriched in putrescible materials. The optimization of parameters which have an influence on the stability of the products is necessary in order to maximize recycling and recovery of waste components. The influence of the composting process parameters (aeration, moisture, C/N ratio, and time) on the stability parameters (organic matter, N-losses, chemical oxygen demand, nitrate, biodegradability coefficient) of the compost was studied. The composting experiment was carried out using Municipal Solid Waste (MSW) and Legume Trimming Residues (LTR) in 200 L isolated acrylic barrels following a Box-Behnken central composite experimental design. Second-order polynomial models were found for each of the studied compost stability parameter, which accurately described the relationship between the parameters. The differences among the experimental values and those estimated by using the equations never exceeded 10% of the former. Results of the modelling showed that excluding the time, the C/N ratio is the strongest variable influencing almost all the stability parameters studied in this case, with the exception of N-losses which is strongly dependent on moisture. Moreover, an optimized ratio MSW/LTR of 1/1 (w/w), moisture content in the range of 40-55% and moderate to low aeration rate (0.05-0.175 Lair kg(-)(1) min(-1)) is recommended to maximise degradation and to obtain a stable product during co-composting of MSW and LTR. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore.

    PubMed

    Sivakumar Babu, G L; Lakshmikanthan, P; Santhosh, L G

    2015-05-01

    Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3kN/m(3) to 10.3kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The use of a biodegradable chelator for enhanced phytoextraction of heavy metals by Festuca arundinacea from municipal solid waste compost and associated heavy metal leaching.

    PubMed

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2013-02-01

    In a column experiment with horizontal permeable barriers, the effects of a biodegradable chelator-nitrilotriacetic acid (NTA) on the uptake of heavy metals from municipal solid waste (MSW) compost by Festuca arundinacea and metal leaching were investigated. The use of NTA was effective in increasing Cu, Pb, and Zn uptakes in shoots of two crops of F. arundinacea. In columns with barriers and treated with 20 mmol NTA per kg MSW compost, metal uptakes by the first and second crop of F. arundinacea were, respectively, 3.8 and 4.0 times for Pb, and 1.8 and 1.7 times for Zn greater with the added NTA than without it. Though NTA application mobilized metals, it caused only slight leaching of metals from MSW compost. Permeable barriers positioned between compost and soil effectively reduced metal leaching. NTA-assisted phytoextraction by turfgrass with permeable barriers to cleanup heavy metal contaminated MSW compost should be environmentally safe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil*

    PubMed Central

    Zhang, Shu-ying; Wang, Qing-feng; Wan, Rui; Xie, Shu-guang

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in a municipal solid waste (MSW) composting site. Knowledge of changes in microbial structure is useful to identify particular PAH degraders. However, the microbial community in the MSW composting soil and its change associated with prolonged exposure to PAHs and subsequent biodegradation remain largely unknown. In this study, anthracene was selected as a model compound. The bacterial community structure was investigated using terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene clone library analysis. The two bimolecular tools revealed a large shift of bacterial community structure after anthracene amendment and subsequent biodegradation. Genera Methylophilus, Mesorhizobium, and Terrimonas had potential links to anthracene biodegradation, suggesting a consortium playing an active role. PMID:21887852

  19. Conjunctive and mineralization impact of municipal solid waste compost and inorganic fertilizer on lysimeter and pot studies.

    PubMed

    Khalid, Iqbal; Nadeem, Amana; Ahmed, Rauf; Husnain, Anwer

    2014-01-01

    Objectives of the present study were to investigate the physico-chemical properties of municipal solid waste (MSW)-enriched compost and its effect on nutrient mineralization and subsequent plant growth. The enrichment of MSW compost by inorganic salts enhanced the humification rate and reduced the carbon nitrogen (C/N) ratio in less time than control compost. The chemical properties of compost, C/N ratio, humic acid, fulvic acid, degree of polymerization and humification index revealed the significant correlation amid properties. A laboratory-scale experiment evaluated the conjunctive effect of MSW compost and inorganic fertilizer on tomato plants in a pot experiment. In the pot experiment five treatments, Inorganic fertilizer (T1), enriched compost (T2), enriched compost 80% + 20% inorganic fertilizer (T3), enriched compost 60% + 40% inorganic fertilizer (T4) were defined including control (Ts), applied at the rate of 110 kg-N/ha and results revealed that all treatments significantly enhanced horticultural production of tomato plant; however T4 was most effectual as compared with control, T1, T2 and T3. Augmentation in organic matter and available phosphorus (P) potassium (K) and nitrogen (N) were also observed in compost treatments. The leachability and phytoavailability of phosphorus (P), potassium (K) and nitrogen (N) from sandy soil, amended with enriched, control compost and inorganic fertilizer at rates of 200, 400 and 600 kg-N/ha were evaluated in a lysimeter study. Results illustrated that concentration of mineral nitrogen was elevated in the leachate of inorganic fertilizer than enriched and control composts; therefore compost fortifies soil with utmost nutrients for plants' growth.

  20. Chemical and biological characterization of organic matter during composting of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefetz, B.; Yona Chen; Hadar, Y.

    Composting of municipal solid waste (MSW) was studied in an attempt to elaborate transformations of organic matter (OM) during the process and define parameters for the degree of maturity of the product. Composting was performed in 1-m{sup 3} plastic boxes and the following parameters were measured in 13 samples during 132 d of composting: temperature, C/N ratio, ash content, humic substance contents, and fractions (humic acid, fulvic acid, and nonbumic fraction-HA, FA and NHF, respectively). Spectroscopic methods (CPMAS {sup 13}C-NMR, DRIFT) were used to study the chemical composition of the OM. A bioassay based on growth of cucumber (Cucumis satifusmore » L. cv. Dlila) plants was correlated to other parameters. The C/N ratio and ash content showed a typical high rate of change during the first 60 d and reached a plateau thereafter. The HA content increased to a maximum at 112 d, corresponding to the highest plant dry weight and highest 1650/1560 (cm{sup {minus}1}/cm{sup {minus}1}) peak ratios calculated from DRIFT spectra. {sup 13}C-NMR and DRIFT spectra of samples taken from the composting MSW during the process showed that the residual OM contained an increasing level of aromatic structures. Plant-growth bioassay, HA content, and the DRIFT spectra indicated that MSW compost described in this study, stabilized and achieved maturity after about 110 d. 31 refs., 8 figs., 2 tabs.« less

  1. Municipal solid waste compost as a novel sorbent for antimony(V): adsorption and release trials at acidic pH.

    PubMed

    Diquattro, Stefania; Garau, Giovanni; Lauro, Gian Paolo; Silvetti, Margherita; Deiana, Salvatore; Castaldi, Paola

    2018-02-01

    The ability of two municipal solid waste composts (MSW-Cs) to sorb antimony(V) in acidic conditions (pH 4.5) was investigated. Sorption isotherms and kinetics showed that both MSW-Cs could sorb antimony(V), even if in different amounts (~ 0.18 and 0.24 mmol g -1 of Sb(V) by MSW-C1 and MSW-C2, respectively). These differences were ascribed to the chemical composition of composts, as well as to the total acidity of their humic substances. The Sb(V) sorption by both MSW-Cs followed a pseudo-second-order kinetic model, while the sorption isotherms data fitted the Freundlich model better than the Langmuir one. The humic acids extracted from composts contributed to 4.26 and 8.24% of Sb(V) sorption by MSW-C1 and MSW-C2 respectively. SEM-EDX spectra of the MSW-C+Sb(V) systems showed a certain association of Ca(II) with Sb(V), while sequential extraction procedures indicated that more than 80% of the Sb(V) sorbed was strongly retained by MSW-Cs. On the other hand, treatment with oxalic acid at pH 4.5 favored the release of more than 98 and 65% of the Sb(V) sorbed by MSW-C1 and MSW-C2 respectively, supporting a possible role of calcium in Sb(V) retention. The results from this study suggest that MSW-Cs could be used as amendments for the in-situ immobilization of Sb(V) in acidic-polluted soils.

  2. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    PubMed

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  3. Study on the quality and stability of compost through a Demo Compost Plant.

    PubMed

    Hasan, K M M; Sarkar, G; Alamgir, M; Bari, Q H; Haedrich, G

    2012-11-01

    This study is concerned with the performance of a Demo Compost Plant for the development of acceptable composting technology in Bangladesh. The Demo Compost Plant was setup at the adjacent area of an existing compost plant located at Khulna city in Bangladesh. Four different composting technologies were considered, where Municipal Solid Waste (MSW) were used as a raw material for composting, collected from the adjacent areas of the plant. Initially the whole composting system was conducted through two experimental setups. In the 1st setup three different types of aerators (horizontal and vertical passively aerator and forced aerator) were selected. For a necessary observation four piles, using only MSW as the input materials in the first three compost pile, the fourth one was the existing Samadhan's compost pile. Based on the analysis of the experimental findings, the horizontal passively aerated composting technique is suitable for Bangladesh as it had better performance for reducing composting period than that of the others. It was being observed from the quality parameters of compost in the both 1st and 2nd setup that as the waste directly come from kitchen, degradation rate of waste shows a positive result for reducing this waste and there is no possibility of toxic contamination, when it would be used as a soil conditioner. Though there is no significant improvement in the quality of the final product in the 2nd setup as comparing with the 1st setup but it fulfills one of the main objectives of this study is to reduce the whole composting period as well as immediate management of the increasing amount of waste and reducing load on landfill. Selfheating tests reveal that degree of stability of compost with respect to maturation period was remained in the acceptable level, which was further accelerated due to the use of organic additives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Long-term simulations of water and isoproturon dynamics in a heterogeneous soil receiving different urban waste composts

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Romić, Davor; Benoit, Pierre; Houot, Sabine

    2016-04-01

    Implementing various compost amendments and tillage practices has a large influence on soil structure and can create heterogeneities at the plot/field scale. While tillage affects soil physical properties, compost application influences also chemical properties like pesticide sorption and degradation. A long-term field experiment called "QualiAgro" (https://www6.inra.fr/qualiagro_eng/), conducted since 1998 aims at characterizing the agronomic value of urban waste composts and their environmental impacts. A modeling study was carried out using HYDRUS-2D for the 2004-2010 period to confront the effects of two different compost types combined with the presence of heterogeneities due to tillage in terms of water and isoproturon dynamics in soil. A municipal solid waste compost (MSW) and a co-compost of sewage sludge and green wastes (SGW) have been applied to experimental plots and compared to a control plot without any compost addition (CONT). Two wick lysimeters, 5 TDR probes, and 7 tensiometers were installed per plot to monitor water and isoproturon dynamics. In the ploughed layer, four zones with differing soil structure were identified: compacted clods (Δ), non-compacted soil (Γ), interfurrows (IF), and the plough pan (PP). These different soil structural zones were implemented into HYDRUS-2D according to field observation and using measured soil hydraulic properties. Lysimeter data showed (2004 -2010 period) that the CONT plot had the largest cumulative water outflow (1388 mm) compared to the MSW plot (962 mm) and SGW plot (979 mm). HYDRUS-2D was able to describe cumulative water outflow after calibration of soil hydraulic properties, for the whole 2004-2010 period with a model efficiency value of 0.99 for all three plots. Isoproturon leaching showed had the largest cumulative value in the CONT plot (21.31 μg) while similar cumulated isoproturon leachings were measured in the SGW (0.663 μg) and MSW (0.245 μg) plots. The model was able to simulate

  5. Resource recovery of food waste through continuous thermophilic in-vessel composting.

    PubMed

    Waqas, Mohammad; Almeelbi, Talal; Nizami, Abdul-Sattar

    2018-02-01

    In the Kingdom of Saudi Arabia (KSA) and Gulf region, a very small amount of municipal solid waste (MSW) is treated for compost production. The produced compost through traditional methods of compost piles and trenches does not coincide with the international standards of compost quality. Therefore, in this study, a continuous thermophilic composting (CTC) method is introduced as a novel and efficient technique for treating food waste into a quality compost in a short period of time. The quality of the compost was examined by degradation rates of organic matter (OM), changes in total carbon (TC), ash contents, pH, dynamics in ammonium nitrogen (NH 4 -N) and nitrate nitrogen (NO 3 -N), and nitrification index (NI). The results showed that thermophilic treatment at 60 °C increased the pH of the substrate and promoted degradation and mineralization process. After 30 days of composting, the degree of OM degradation was increased by 43.26 and 19.66%, NH 4 -N by 65.22 and 25.23%, and NO 3 -N by 44.76 and 40.05% as compared to runs treated at 25 and 40 °C, respectively. The stability of the compost was attained after 30 to 45 days with quality better than the compost that was stabilized after 60 days of the experiment under mesophilic treatment (25 °C). The final compost also showed stability at room temperature, confirming the rapid degradation and maturation of food waste after thermophilic treatment. Moreover, the quality of produced compost is in line with the compost quality standard of United States (US), California, Germany, and Austria. Hence, CTC can be implemented as a novel method for rapid decomposition of food waste into a stable organic fertilizer in the given hot climatic conditions of KSA and other Gulf countries with a total net saving of around US $70.72 million per year.

  6. Ambient air monitoring of Beijing MSW logistics facilities in 2006.

    PubMed

    Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu

    2008-11-01

    In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.

  7. Leachability of heavy metals from growth media containing source-separated municipal solid waste compost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawhney, B.L.; Bugbee, G.J.; Stilwell, D.E.

    1994-07-01

    The leaching of heavy metals in source-separated municipal solid waste (MSW) compost was determined by irrigation leaching of growth medium, admixed with varying amounts of compost, used for container grown plants. Perennial flowers (black-eyed Susan, Rudbeckia hirta L.) were grown in 2-L containers filled with the growth medium for a 10-wk period. Rainfall was supplemented with overhead irrigation to supply 2 cm of water per day. Leachates collected over each 2-wk period were analyzed for Cd, Cr, Cu, Ni, Pb, and Zn using atomic spectrometry. Concentrations of the heavy metals in the leachates increased with increasing proportions of MSW compostmore » in the growth medium, but decreased with time of leaching. Leaching of the metals occurred at relatively high concentrations initially, followed by continued leaching at low concentrations. The initial leaching of heavy metals is attributed to their soluble or exchangeable forms and the subsequent slow leaching to the solid compounds. The concentrations of the heavy metals remained below the current drinking water standards in all treatments throughout the leaching period. The results thus suggest that contamination of groundwater with heavy metals from source-separated MSW compost applied as a soil amendment should be negligible, as the low concentrations in the leachates leaving the surface soil would be further attenuated by the subsoil. 29 refs., 6 figs., 1 tab.« less

  8. The impact of silver and titanium dioxide nanoparticles on the in-vessel composting of municipal solid waste.

    PubMed

    Stamou, Ioannis; Antizar-Ladislao, Blanca

    2016-10-01

    The study evaluated the impact of commercial silver doped titanium dioxide nanoparticles (Ag-TiO2NPs) and silver nanoparticles (AgNPs) on the in-vessel composting of municipal solid waste (MSW), using fluorescence excitation-emission matrix (EEM) spectroscopy as a tool to evaluate the microbial degradation of MSW and subsequent soil application of compost. The fate of NPs present in mature compost used as a top-layer soil conditioner was investigated using a column approach at laboratory scale. The results suggested that the presence of either Ag-TiO2NPs or AgNPs did not inhibit the microbial degradation process within the range of metal concentrations used (5/225, 10/450, 20/900, 50/2250mg Ag/Ti per kg of organic matter for Ag-TiO2NP and 5, 10, 20, 50mg Ag per kg of organic matter for AgNPs). Higher concentrations of Ag-TiO2NP and AgNPs resulted in a higher inorganic carbon removal, and lower formation of humins. Formation of humins was higher for non-contaminated MSW and compost. EEM peaks shifted towards the humic substances (HS) region during in-vessel composting, indicating that microbial degradation occurred and that NPs did not have any effect on humification and therefore on compost stability. The leaching results suggested that only a low percentage of the total NPs (in weight) in compost, up to ca. 5% for Ag and up to ca. 15% for Ti, leached out from the columns, which was assumed the amount that potentially could leach to the environment. These results suggested that NPs will mainly accumulate in soils' top layers following application of compost contaminated with NP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between

  10. Oxygen respirometry to assess stability and maturity of composted municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iannotti, D.A.; Grebus, M.E.; Toth, B.L.

    1994-11-01

    The stability and maturity of compost prepared from municipal solid waste (MSW) at a full-scale composting plant was assessed through chemical, physical, and biological assays. Respiration bioassays used to determine stability (O{sub 2} and CO{sub 2} respirometry) were sensitive to process control problems at the composting plant and indicated increasing stability with time. Radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) growth bioassays revealed that immature compost samples inhibited growth. Growth of ryegrass in potting mix prepared with cured compost not amended with fertilizer was enhanced as compared to a pest control. Garden cress (Lepidium sativum L.) seed germination,more » used as an indicator of phytotoxicity, revealed inhibition of germination at all compost maturity levels. The phytotoxicity was though to be salt-related. Spearman rank-order correlations demonstrated that O{sub 2} respirometry, water-soluble organic C, and the water extract organic C to organic N ratio, significantly correlated with compost age and best indicated an acceptable level of stability. Oxygen respirometry also best predicted the potential for ryegrass growth, and an acceptable level of compost maturity. 31 refs., 4 figs., 5 tabs.« less

  11. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    PubMed

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO 2 -C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C 0 and k 1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Co-composting of municipal solid waste mixed with matured sewage sludge: The relationship between N2O emissions and denitrifying gene abundance.

    PubMed

    Bian, Rongxing; Sun, Yingjie; Li, Weihua; Ma, Qiang; Chai, Xiaoli

    2017-12-01

    Aerobic composting is an alternative measure to the disposal of municipal solid waste (MSW). However, it produces nitrous oxide (N 2 O), a highly potent greenhouse via microbial nitrification and denitrification. In this study, the effects of matured sewage sludge (MSS) amendment on N 2 O emissions and the inter-relationships between N 2 O emissions and the abundance of denitrifying bacteria were investigated during aerobic composting of MSW. The results demonstrated that MSW composting with MSS amendments (C1, and C2, with a MSW to MSS ratio of 2:1 and 4:1, (v/v), respectively) significantly increased N 2 O emissions during the initial stage, yet contributed to the mitigation of N 2 O emissions during the cooling and maturation stage. MSS amended composting emitted a total of 18.4%-25.7% less N 2 O than the control treatment without MSS amendment (CK). Matured sewage sludge amendment also significantly altered the abundance of denitrifying bacteria. The quantification of denitrifying functional genes revealed that the N 2 O emission rate had a significant positive correlation with the abundance of the nirS, nirK genes in both treatments with MSS amendment. The nosZ/(nirS + nirK) ratio could be a good indicator for predicting N 2 O emissions. The higher N 2 O emission rate during the initial stage of composting mixed with MSS was characterized by lower nosZ/(nirS + nirK) ratios, compared to CK treatment. Higher ratios of nosZ/(nirS + nirK) were measured during the cooling and maturation stage in treatments with MSS which resulted in a reduction of the N 2 O emissions. These results demonstrated that MSS amendment could be a valid strategy for mitigating N 2 O emissions during MSW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Management of MSW in Spain and recovery of packaging steel scrap.

    PubMed

    Tayibi, Hanan; Peña, Carmen; López, Félix A; López-Delgado, Aurora

    2007-01-01

    Packaging steel is more advantageously recovered and recycled than other packaging material due to its magnetic properties. The steel used for packaging is of high quality, and post-consumer waste therefore produces high-grade ferrous scrap. Recycling is thus an important issue for reducing raw material consumption, including iron ore, coal and energy. Household refuse management consists of collection/disposal, transport, and processing and treatment - incineration and composting being the most widely used methods in Spain. Total Spanish MSW production exceeds 21 million tons per year, of which 28.1% and 6.2% are treated in compost and incineration plants, respectively. This paper presents a comprehensive study of incineration and compost plants in Spain, including a review of the different processes and technologies employed and the characteristics and quality of the recovered ferrous scrap. Of the total amount of packaging steel scrap recovered from MSW, 38% comes from compost plants and 14% from incineration plants. Ferrous scrap from incineration plants presents a high degree of chemical alteration as a consequence of the thermal process to which the MSW is subjected, particularly the conditions in which the slag is cooled, and accordingly its quality diminishes. Fragmentation and magnetic separation processes produce an enhancement of the scrap quality. Ferrous scrap from compost plants has a high tin content, which negatively affects its recycling. Cleaning and detinning processes are required prior to recycling.

  14. Comparative assessment of heavy metals content during the composting and vermicomposting of Municipal Solid Waste employing Eudrilus eugeniae.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2015-05-01

    This study was undertaken to have comparative assessment of heavy metals content during composting and vermicomposting processing of Municipal Solid Waste (MSW). Six scenarios were set up in which three experiments were for composting (controls) denoted as S1 for food waste, S2 for paper waste and S3 for yard waste and the corresponding replicates for vermicomposting processes were S4, S5 and S6. Vermicomposting caused significant reduction in Cd (43.3-73.5%), Cr (11.3-52.8%), Cu (18.9-62.5%), Co (21.4-47.6%), Zn (34.6%) and Ni (19.9-49.6%) compared to composting which showed a progressive increase. Addition of worms did not show any effect on Fe and Mn, most probably from the genesis of organic-bound complexes. The efficacy of utilizing Eudrilus eugeniae was indicated by the high values of bioconcentration factors (BCFs) which were in the order of Cd>Ni>Cu>Co>Cr>Zn and the increase amount of these metals in the earthworms' tissue after the vermicomposting processes. Different values of BCFs were obtained for different heavy metals and this accounted that earthworms exert different metabolic mechanisms. Regression analysis of the reduction percentages (R) in relation to BCF showed that RCdtot.S6, RCrtot.S5 and RCutot.S6 were significantly correlated with BCFCd.S6, BCFCr.S5 and BCFCu.S6 respectively. Thus, in comparison to simple composting processes, data analysis suggested the feasibility of inoculating E. eugeniae to MSW in order to mitigate the content of toxic heavy metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The nitrogen efficiency of MSW composts as measured by triticale uptake in a 3-year field experiment

    NASA Astrophysics Data System (ADS)

    Weber, Jerzy; Licznar, Michal; Bekier, Jakub; Drozd, Jerzy; Jamroz, Elzbieta; Kocowicz, Andrzej; Parylak, Danuta; Kordas, Leszek; Licznar, Stanislawa

    2010-05-01

    years, all compost amended plots indicated distinctly lower yield than that on NPK control. Decrease of yield was accompanied by decreased level of nitrogen in triticale straw and grain, although soil of compost amended and NPK fertilized plots indicated the same level of total nitrogen. In the third year dramatic decrease of soil total nitrogen was observed in (0) control, as result of exhausting available nitrogen, while soil amended with composts still contained nitrogen present in non-mineralized organic matter. The yield of triticale grown on soil amended with compost produced from municipal solid wastes was limited by not sufficient amount of plant available nitrogen. Nitrogen efficiency measured as amount of N taken up by triticale grain and straw - after depriving N uptake by triticale grown on control (0) - was very low, around 3 % in the first year and around 1% in the third year. Application of MSW composts is a good alternative for mineral fertilization, however supplementary fertilization with mineral nitrogen is necessary, depending on compost dose and quality.

  16. Technology selection for MSW treatment in Altiplano areas using FMDM.

    PubMed

    Jiang, Jianguo; Lou, Zhiying; Hg, Siio; Duo, Ji; Li, Zhong

    2009-10-01

    There are special requirements for municipal solid waste (MSW) treatment caused by lower oxygen content and atmospheric pressure on the Altiplano. The intention of this paper was to analyse the applicability of various technologies to MSW treatment in the Altiplano and select the best one based on the current MSW collection modes and technical levels, using the Fuzzy Mathematical Decision Method (FMDM). Technologies including landfill, incineration, composting, and anaerobic digestion (AD) were compared. The results of the studies showed that AD technology is a new technology which is attractive in economic terms and helpful for environmental harmony. AD can solve the difficulties caused by a high content of organic matter in the MSW, lower atmospheric pressure and oxygen content on the Altiplano. Moreover, it can achieve reduction and recycling of the waste, thereby saving space for treatment and disposal. Using this technology, renewable energy can be recovered to save conventional fuel consumption and the emission of greenhouse gases can be reduced to improve the conservation of the local ecosystem. Putting AD into practice in the Altiplano may be the preferred method of MSW treatment.

  17. U.S. Trends in Solid Waste Management and GHG Emissions

    EPA Science Inventory

    In 2009, 243 million tons of municipal solid waste (MSW) was produced in the United States. Currently, 34% of the 243 million tons of MSW is recovered and recycled or composted which conserves energy and natural resources as well as avoid waste disposal. Of the remaining MSW th...

  18. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  19. Composting of food wastes: Status and challenges.

    PubMed

    Cerda, Alejandra; Artola, Adriana; Font, Xavier; Barrena, Raquel; Gea, Teresa; Sánchez, Antoni

    2018-01-01

    This review analyses the main challenges of the process of food waste composting and examines the crucial aspects related to the quality of the produced compost. Although recent advances have been made in crucial aspects of the process, such composting microbiology, improvements are needed in process monitoring. Therefore, specific problems related to food waste composting, such as the presence of impurities, are thoroughly analysed in this study. In addition, environmental impacts related to food waste composting, such as emissions of greenhouse gases and odours, are discussed. Finally, the use of food waste compost in soil bioremediation is discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. MSW management for waste minimization in Taiwan: The last two decades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.-T.; Hsiao, T.-Y.; Shang, N.-C.

    2006-07-01

    Taiwan is the second most densely populated country in the world; its 22.604 million residents (2002) live in an area of 35,967 km{sup 2} (628 people/km{sup 2}). Taiwan's economy has grown rapidly during the last 20 years, resulting in a corresponding increase in the amount of municipal solid waste (MSW). This study describes and evaluates the municipal solid waste management system in Taiwan. The study's results indicate that the amount of MSW began to decline after 1997, when the government enforced aggressive MSW management policies. By 2002, total MSW production had dropped by 27%, and the average daily per capitamore » weight of MSW had fallen from 1.14 kg in 1997 to 0.81 kg in 2002. Summarizing the successful experience of MSW reduction in Taiwan, the most important factor was the government's combining of the MSW collection system with reduction/recycling programs. The second most important factor was the policy of extended producer responsibility, which laid a foundation of recycling by producers and retailers and promoted public recycling.« less

  1. Food waste composting: its use as a peat replacement.

    PubMed

    Farrell, M; Jones, D L

    2010-01-01

    We successfully co-composted catering waste with green waste and shredded paper to yield two high-nitrogen composts for use in horticulture. Sunflowers (Helianthus annuus L.) were grown in various mixtures of the compost and a commercially available peat-based compost to assess the efficacy of catering waste-based composts for peat replacement. Height, head diameter, seed mass and above-ground biomass were measured, with all mixtures giving a significant increase in yield or size over the commercially available peat-free control compost. We conclude that differences in physical structure governed sunflower growth over substrate chemistry, and none of the compost mixtures were nutrient deficient. We recommend that catering waste co-compost can be substituted to at least 75% within Sphagnum-based traditional growing media, providing a viable replacement for a large proportion of peat used as a growth medium in the horticulture industry. Our catering waste compost yielded similar seed head, seed mass and above-ground biomass values to 100% peat-based compost in all food waste compost blends tested in this study. 2010 Elsevier Ltd. All rights reserved.

  2. Role of NGOs and CBOs in Waste Management.

    PubMed

    Ahsan, A; Alamgir, M; Imteaz, M; Nik Daud, Nn; Islam, R

    2012-01-01

    Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs) and community-based organizations (CBOs) in municipal solid waste (MSW) management. A survey was conducted to observe the present scenarios of secondary disposal site (SDS), ultimate disposal site (UDS), composting plants, medical wastes management and NGOs and CBOs MSW management activities. A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs. The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises.

  3. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    PubMed

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  4. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  6. Analysis of physical composition and heavy metals pollution of municipal solid waste (MSW) in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, H. B.; Zhang, H. Y.; Wang, G. Q.; Bai, X. J.

    2018-03-01

    By using on-site sampling and physical-chemical analysis, the physical composition and the contents of heavy metals in Beijing MSW were researched. The result showed that the main components of MSW in Beijing are mainly kitchen waste, the average content of kitchen waste are more than 60% and 50% in summer and in winter, respectively. The pollution of Cu, Hg and Cr are all more serious for MSW in Haidian and Dongcheng district. The heavy metal pollution of MSW in summer is higher than that in winter in Beijing. Seasonal impacts should be taken into consideration when dealing with MSW. The content of heavy metals in MSW exceeded the background value of soil in Haidian and Dongcheng districts. In order to reduce heavy metal pollution, the MSW should be separated collection and treated.

  7. Accelerated In-vessel Composting for Household Waste

    NASA Astrophysics Data System (ADS)

    Bhave, Prashant P.; Joshi, Yadnyeshwar S.

    2017-12-01

    Composting at household level will serve as a viable solution in managing and treating the waste efficiently. The aim of study was to design and study household composting reactors which would treat the waste at source itself. Keeping this aim in mind, two complete mix type aerobic reactors were fabricated. A comparative study between manually operated and mechanically operated reactor was conducted which is the value addition aspect of present study as it gives an effective option of treatment saving the time and manpower. Reactors were loaded with raw vegetable waste and cooked food waste i.e. kitchen waste for a period of 30 days after which mulch was allowed to mature for 10 days. Mulch was analyzed for its C/N ratio, nitrate, phosphorous, potassium and other parameters to determine compost quality, every week during its period of operation. The results showed that compost obtained from both the reactors satisfied almost all compost quality criteria as per CPHEEO manual on municipal solid waste management and thus can be used as soil amendment to increase the fertility of soil.In terms of knowledge contribution, this study puts forth an effective way of decentralized treatment.

  8. A systematic review on the composting of green waste: Feedstock quality and optimization strategies.

    PubMed

    Reyes-Torres, M; Oviedo-Ocaña, E R; Dominguez, I; Komilis, D; Sánchez, A

    2018-04-27

    Green waste (GW) is an important fraction of municipal solid waste (MSW). The composting of lignocellulosic GW is challenging due to its low decomposition rate. Recently, an increasing number of studies that include strategies to optimize GW composting appeared in the literature. This literature review focuses on the physicochemical quality of GW and on the effect of strategies used to improve the process and product quality. A systematic search was carried out, using keywords, and 447 papers published between 2002 and 2018 were identified. After a screening process, 41 papers addressing feedstock quality and 32 papers on optimization strategies were selected to be reviewed and analyzed in detail. The GW composition is highly variable due to the diversity of the source materials, the type of vegetation, and climatic conditions. This variability limits a strict categorization of the GW physicochemical characteristics. However, this research established that the predominant features of GW are a C/N ratio higher than 25, a deficit in important nutrients, namely nitrogen (0.5-1.5% db), phosphorous (0.1-0.2% db) and potassium (0.4-0.8% db) and a high content of recalcitrant organic compounds (e.g. lignin). The promising strategies to improve composting of GW were: i) GW particle size reduction (e.g. shredding and separation of GW fractions); ii) addition of energy amendments (e.g. non-refined sugar, phosphate rock, food waste, volatile ashes), bulking materials (e.g. biocarbon, wood chips), or microbial inoculum (e.g. fungal consortia); and iii) variations in operating parameters (aeration, temperature, and two-phase composting). These alternatives have successfully led to the reduction of process length and have managed to transform recalcitrant substances to a high-quality end-product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Vermi composting--organic waste management and disposal.

    PubMed

    Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada

    2012-01-01

    Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public.

  10. Role of NGOs and CBOs in Waste Management

    PubMed Central

    Ahsan, A; Alamgir, M; Imteaz, M; Nik Daud, NN; Islam, R

    2012-01-01

    Background Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs) and community-based organizations (CBOs) in municipal solid waste (MSW) management. Methods: A survey was conducted to observe the present scenarios of secondary disposal site (SDS), ultimate disposal site (UDS), composting plants, medical wastes management and NGOs and CBOs MSW management activities. Results: A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs. Conclusion: The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises. PMID:23113191

  11. [Co-composting of high-moisture vegetable waste and flower waste in a batch operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-09-01

    Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  12. In-vessel composting of household wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyengar, Srinath R.; Bhave, Prashant P.

    The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for amore » period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.« less

  13. Quality assessment of compost prepared with municipal solid waste

    NASA Astrophysics Data System (ADS)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  14. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  15. [Co-composting of high moisture vegetable waste, flower waste and chicken litter in pilot scale].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng; Qiu, Xiangyang

    2003-03-01

    Co-composting of different mixture made of vegetable waste, flower waste and chicken litter were studied. The first stage of composting was aerobic static bed based temperature feedback and control via aeration rate regulation. The second stage was window composting. At first stage, the pile was insulated and temperatures of at least 55 degrees C were maintained for a minimum of 3 days. The highest temperature was up to 73.3 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 75% to 56% and organic matter was degraded from 65% to 50% during composting. The value of pH was stable at 8. Analysis of maturity and nutrition of compost showed that end-products of composting ware bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste, flower waste and chicken litter can get high quality compost by optimizing composting process during 45 days. Composting can decrease nonpoint resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  16. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    PubMed

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-08-01

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Meat waste as feedstock for home composting: Effects on the process and quality of compost.

    PubMed

    Storino, Francesco; Arizmendiarrieta, Joseba S; Irigoyen, Ignacio; Muro, Julio; Aparicio-Tejo, Pedro M

    2016-10-01

    Home composting is a powerful tool, which is spreading in different parts of the world, to reduce the generation of municipal waste. However, there is debate concerning the appropriateness, in terms of domestic hygiene and safety, of keeping a composter bin in the household deputed to kitchen waste of animal origin, such as meat or fish scraps and pet droppings. The purpose of our work was to study how the addition of meat scraps to household waste influences the composting process and the quality of the final compost obtained. We compared four raw material mixtures, characterized by a different combination of vegetable and meat waste and different ratios of woody bulking agent. Changes in temperature, mass and volume, phenotypic microbial diversity (by Biolog™) and organic matter humification were determined during the process. At the end of the experiment, the four composts were weighed and characterized by physicochemical analysis. In addition, the presence of viable weed seeds was investigated and a germination bioassay was carried out to determine the level of phytotoxicity. Finally, the levels of pathogens (Escherichia coli and Salmonella spp.) were also determined in the final compost. Here we show that the presence of meat waste as raw feedstock for composting in bins can improve the activity of the process, the physicochemical characteristics and maturity of the compost obtained, without significantly affecting its salinity, pH and phytotoxicity. Pathogen levels were low, showing that they can be controlled by an intensive management and proper handling of the composter bins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Monitoring the performances of a real scale municipal solid waste composting and a biodrying facility using respiration activity indices.

    PubMed

    Evangelou, Alexandros; Gerassimidou, Spyridoula; Mavrakis, Nikitas; Komilis, Dimitrios

    2016-05-01

    Objective of the work was to monitor two full-scale commingled municipal solid waste (MSW) mechanical and biological pretreatment (MBT) facilities in Greece, namely a biodrying and a composting facility. Monitoring data from a 1.5-year sampling period is presented, whilst microbial respiration indices were used to monitor the decomposition process and the stability status of the wastes in both facilities during the process. Results showed that in the composting facility, the organic matter reduced by 35 % after 8 weeks of combined composting/curing. Material exiting the biocells had a moisture content of less than 30 % (wb) indicating a moisture limitation during the active composting process. The static respiration indexes indicated that some stabilization occurred during the process, but the final material could not be characterized as stable compost. In the biodrying facility, the initial and final moisture contents were 50 % and less than 20 % wb, respectively, and the biodrying index was equal to 4.1 indicating effective biodrying. Lower heating values at the inlet and outlet were approximately 5.5 and 10 MJ/wet kg, respectively. The organic matter was reduced by 20 % during the process and specifically from a range of 63-77 % dw (inlet) to a range of 61-70 % dw. A significant respiration activity reduction was observed for some of the biodrying samples. A statistically significant correlation among all three respiration activity indices was recorded, with the two oxygen related activity indices (CRI7 and SRI24) observing the highest correlation.

  19. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... stakeholder input regarding the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...

  20. Aerobic Food Waste Composting: Measurement of Green House Gases

    NASA Astrophysics Data System (ADS)

    Chung, J.

    2016-12-01

    Greenhouse gases (GHGs) are a major cause of global warming. While food waste composting can reduce the amount of waste being sent to traditional landfills, it also produces GHGs during the process. The objective of this research is to evaluate the GHGs emitted from an aerobic food composting machine, which is used in ISF. The Independent Schools Foundation Academy is a private independent school in Hong Kong with approximately 1500 students. Each academic year, the school produces 27 metric tons of food waste. In November 2013, the school installed a food waste composting system. Over the past 3 years, various improvements, such as installing a bio-filter to reduce the smell of the compost, have been made to the composting process. Meanwhile the compost is used by the primary students, as part of their experiential learning curriculum and organic farming projects. The composting process employs two machines: the Dehydra and A900 Rocket. The Dehydra reduces the mass of the food waste by separating the ground food waste and excessive water. The A900 Rocket, a composter made by Tidy Planet, processes food waste into compost in 14 days. This machine runs in an aerobic process, in which oxygen is used as an input gas and gases, such as carbon dioxide, are released. Carbon Dioxide is one of the greenhouse gases (GHGs). This research focuses on GHGs that are emitted from the A900 Rocket. The data is collected by the Gasmet DX 4015, a Fourier transform infrared spectroscopy (FTIR) multi gas analyser. This equipment measures the concentration (ppm) of different GHGs, including N2O, CO2, CH4, NH3 and CO.

  1. High rate composting of herbal pharmaceutical industry solid waste.

    PubMed

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3.

  2. Benefits of improved municipal solid waste management on greenhouse gas reduction in Luangprabang, Laos.

    PubMed

    Vilaysouk, Xaysackda; Babel, Sandhya

    2017-07-01

    Climate change is a consequence of greenhouse gas emissions. Greenhouse gas (GHG) emissions from the waste sector contribute to 3% of total anthropogenic emissions. In this study, applicable solutions for municipal solid waste (MSW) management in Luangprabang (LPB) and Laos were examined. Material flow analysis of MSW was performed to estimate the amount of MSW generated in 2015. Approximately 29,419 tonnes of MSW is estimated for 2015. Unmanaged landfilling was the main disposal method, while MSW open burning was also practiced to some extent. The International Panel on Climate Change 2006 model and the Atmospheric Brown Clouds Emission Inventory Manual were used to estimate GHG emissions from existing MSW management, and total emissions are 33,889 tonnes/year carbon dioxide-equivalents (CO 2 -eq). Three scenarios were developed in order to reduce GHG emissions and environmental problems. Improvement of the MSW management by expanding MSW collection services, introducing composting and recycling, and avoiding open burning, can be considered as solutions to overcome the problems for LPB. The lowest GHG emissions are achieved in the scenario where composting and recycling are proposed, with the total GHG emissions reduction by 18,264 tonnes/year CO 2 -eq.

  3. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R

    2012-06-01

    The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Evaluation of the potentialities to reduce greenhouse gases (GHG) emissions resulting from various treatments of municipal solid wastes (MSW) in moist tropical climates: application to Yaounde.

    PubMed

    Ngnikam, Emmanuel; Tanawa, Emile; Rousseaux, Patrick; Riedacker, Arthur; Gourdon, Rémy

    2002-12-01

    The authors here analyse the emission of greenhouse gases (GHG) resulting from the various treatment of municipal solid waste found in the town of Yaounde. Four management systems have been taken as the basis for analyses. System 1 is the traditional collection and landfill disposal, while in system 2 the hiogas produced in the landfill is recuperated to produce electricity. In systems 3 and 4, in addition to the collection, we have introduced a centralised composting or biogas plant before the landfilling disposal of refuse. A Life Cycle Inventory (LCI) of the four systems was made; this enable us to quantify the flux of matter and of energy, consumed or produced by the systems. Following this, only the greenhouse effect was taken into account to evaluate the ecological consequences of the MSW management systems. The method used to evaluate this impact takes into consideration on the one hand, GHG emissions or avoided emission following the substitution of fuel with methane recovered from landfills or produced in the digesters, and on the other hand, sequestrated carbon in the soil following the regular deposit of compost. Landfilling without recuperation of methane is the most emitting solution for greenhouse gas: it leads to the emission of 1.7 ton of carbon dioxide equivalent (tCO2E) per ton of household waste. Composting and methanisation allow one to have a comparable level of emission reduction, either respectively 1.8 and 2 tCO2E/t of MSW. In order to reduce the emission of GHG in the waste management systems, it is advisable to avoid first of all the emissions of methane coming from the landfills. System 2 seems to be a solution that would reduce the emissions of GHG at low cost (2.2 to 4 $/tCO2E). System 2 is calculated as the most effective at the environmental and economic level in the context of Yaounde. Therefore traditional collection, landfill disposal and biogas recuperation to produce electricity is preferable in moist tropical climates.

  5. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebersorger, S.; Beigl, P., E-mail: peter.beigl@boku.ac.at

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions aremore » met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).« less

  6. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    PubMed

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Food Waste Composting Study from Makanan Ringan Mas

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  8. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality.

    PubMed

    Unmar, G; Mohee, R

    2008-10-01

    An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.

  9. State of municipal solid waste management in Delhi, the capital of India.

    PubMed

    Talyan, Vikash; Dahiya, R P; Sreekrishnan, T R

    2008-01-01

    Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000tonnes/day of MSW, which is projected to rise to 17,000-25,000tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW is collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system.

  10. State of municipal solid waste management in Delhi, the capital of India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talyan, Vikash; Dahiya, R.P.; Sreekrishnan, T.R.

    2008-07-01

    Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000 tonnes/day of MSW, which is projected to rise to 17,000-25,000 tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW ismore » collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system.« less

  11. Cost effective waste management through composting in Africa.

    PubMed

    Couth, R; Trois, C

    2012-12-01

    Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    PubMed

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Changes of parameters during composting of bio-waste collected over four seasons.

    PubMed

    Hanc, Ales; Ochecova, Pavla; Vasak, Filip

    2017-07-01

    This study investigated the evolution of several main parameters during the composting of separately collected household bio-waste originating from urban settlements (U-bio-waste) and family houses (F-bio-waste) from four climate seasons. When comparing both types of composts, U-bio-waste compost contained a higher amount of nutrients, however F-bio-waste compost was characterized by greater yield, greater availability of phosphorus and magnesium, and faster stability. In terms of seasons, compost from bio-waste collected in spring contained the highest amount of nutrients, reflecting the high content of nutrients in plant feedstock. Dissolved organic carbon and pH in U- and F-bio-waste compost, respectively, frequently showed close relationships with other parameters. The seasonal variations of most of the parameters in the composts were found to be lower compared to the variations observed in the feedstocks. The greatest seasonal variation was found in nitrate nitrogen, which is the reason for the more frequent analysis of this parameter.

  14. Characterisation of source-separated household waste intended for composting

    PubMed Central

    Sundberg, Cecilia; Franke-Whittle, Ingrid H.; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-01-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg−1. The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. PMID:21075618

  15. Characterisation of source-separated household waste intended for composting.

    PubMed

    Sundberg, Cecilia; Franke-Whittle, Ingrid H; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-02-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg(-1). The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Microbiological degradation of pesticides in yard waste composting.

    PubMed

    Fogarty, A M; Tuovinen, O H

    1991-06-01

    Changes in public opinion and legislation have led to the general recognition that solid waste treatment practices must be changed. Solid-waste disposal by landfill is becoming increasingly expensive and regulated and no longer represents a long-term option in view of limited land space and environmental problems. Yard waste, a significant component of municipal solid waste, has previously not been separated from the municipal solid-waste stream. The treatment of municipal solid waste including yard waste must urgently be addressed because disposal via landfill will be prohibited by legislation. Separation of yard waste from municipal solid waste will be mandated in many localities, thus stressing the importance of scrutinizing current composting practices in treating grass clippings, leaves, and other yard residues. Yard waste poses a potential environmental health problem as a result of the widespread use of pesticides in lawn and tree care and the persistence of the residues of these chemicals in plant tissue. Yard waste containing pesticides may present a problem due to the recalcitrant and toxic nature of the pesticide molecules. Current composting processes are based on various modifications of either window systems or in-vessel systems. Both types of processes are ultimately dependent on microbial bioconversions of organic material to innocuous end products. The critical stage of the composting process is the thermophilic phase. The fate and mechanism of removal of pesticides in composting processes is largely unknown and in need of comprehensive analysis.

  17. Fractions and biodegradability of dissolved organic matter derived from different composts.

    PubMed

    Wei, Zimin; Zhang, Xu; Wei, Yuquan; Wen, Xin; Shi, Jianhong; Wu, Junqiu; Zhao, Yue; Xi, Beidou

    2014-06-01

    An experiment was conducted to determine the fractions of molecular weights (MW) and the biodegradability of dissolved organic matter (DOM) in mature composts derived from dairy cattle manure (DCM), kitchen waste (KW), cabbage waste (CW), tomato stem waste (TSW), municipal solid waste (MSW), green waste (GW), chicken manure (CM), sludge (S), and mushroom culture waste (MCW). There were distinct differences in the concentration and MW fractions of DOM, and the two measures were correlated. Fraction MW>5kDa was the major component of DOM in all mature composts. Determined 5day biochemical oxygen demand (BOD5) of DOM was correlated to the concentration of DOM and all MW fractions except MW>5kDa, indicating that the biodegradability of DOM was a function of the content and proportion of fraction MW<5kDa. This study suggests that the amount and distribution of low MW fractions affect DOM biodegradability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. ANIMAL WASTE COMPOSTING WITH CARBONACEOUS MATERIAL

    EPA Science Inventory

    High rate thermophilic composting of animal wastes with added carbonaceous waste materials followed by land application has considerable potential as a means of treatment and useful final disposal of these wastes. The process described in this report utilizes a mechanically mixed...

  19. Trained Home Composters Reduce Solid Waste by 18%.

    ERIC Educational Resources Information Center

    Vossen, Paul; Rilla, Ellen

    1996-01-01

    In the University of California Cooperative Extension's Master Gardener Program, a partnership with the Sonoma County Waste Management Agency, volunteers teach approximately 1000 people annually how to compost in their backyards to help reduce landfill waste. Surveys conducted in 1995 and 1996 showed that home composters reduced their input into…

  20. Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution.

    PubMed

    Agar, David A; Kwapinska, Marzena; Leahy, James J

    2018-02-26

    Sludge from municipal wastewater treatment plants and organic fines from mechanical sorting of municipal solid waste (MSW) are two common widespread waste streams that are becoming increasingly difficult to utilise. Changing perceptions of risk in food production has limited the appeal of sludge use on agricultural land, and outlets via landfilling are diminishing rapidly. These factors have led to interest in thermal conversion technologies whose aim is to recover energy and nutrients from waste while reducing health and environmental risks associated with material re-use. Pyrolysis yields three output products: solid char, liquid oils and gas. Their relative distribution depends on process parameters which can be somewhat optimised depending on the end use of product. The potential of pyrolysis for the conversion of wastewater sludge (SS) and organic fines of MSW (OF) to a combustion gas and a carbon-rich char has been investigated. Pyrolysis of SS and OF was done using a laboratory fixed-bed reactor. Herein, the physical characterisation of the reactor is described, and results on pyrolysis yields are presented. Feedstock and chars have been characterised using standard laboratory methods, and the composition of pyrolysis gases was analysed using micro gas chromatography. Product distribution (char/liquid/gas) from the pyrolysis of sewage sludge and composted MSW fines at 700°C for 10 min were 45/26/29 and 53/14/33%, respectively. The combustible fractions of pyrolysis gases range from 36 to 54% for SS feedstock and 62 to 72% from OF. The corresponding lower heating value range of sampled gases were 11.8-19.1 and 18.2-21.0 MJ m -3 , respectively.

  1. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2014-07-01

    Composting is a potential alternative to green waste incineration or deposition in landfills. The effects of the biosurfactant rhamnolipid (RL) (at 0.0%, 0.15%, and 0.30%) and initial compost particle size (IPS) (10, 15, and 25 mm) on a new, two-stage method for composting green waste was investigated. A combination of RL addition and IPS adjustment improved the quality of the finished compost in terms of its physical characteristics, pH, C/N ratio, nutrient content, cellulose and hemicellulose contents, water-soluble carbon (WSC) content, xylanase and CMCase activities, numbers of culturable microorganisms (bacteria, actinomycetes, and fungi), and toxicity to germinating seeds. The production of a stable and mature compost required only 24 days with the optimized two-stage composting method described here rather than the 90-270 days required with traditional composting. The best quality compost was obtained with 0.15% RL and an IPS of 15 mm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    PubMed

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  4. Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  5. ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANGEMENT OPTIONS

    EPA Science Inventory

    Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. These management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. In choosing the best possible manageme...

  6. ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANAGEMENT OPTIONS

    EPA Science Inventory

    Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. hese management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. n choosing the best possible management...

  7. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting.

    PubMed

    Xi, Beidou; He, Xiaosong; Dang, Qiuling; Yang, Tianxue; Li, Mingxiao; Wang, Xiaowei; Li, Dan; Tang, Jun

    2015-11-01

    In this study, PCR-DGGE method was applied to investigate the impact of multi-stage inoculation treatment on the community composition of bacterial and fungal during municipal solid wastes (MSW) composting process. The results showed that the high temperature period was extended by the multi-stage inoculation treatment, 1day longer than initial-stage inoculation treatment, and 5days longer than non-inoculation treatment. The temperature of the secondary fermentation increased to 51°C with multi-stage inoculation treatment. The multi-stage inoculation method improved the community diversity of bacteria and fungi that the diversity indexes reached the maximum on the 17days and 20days respectively, avoided the competition between inoculations and indigenous microbes, and enhanced the growth of dominant microorganisms. The DNA sequence indicated that various kinds of uncultured microorganisms with determined ratios were detected, which were dominant microbes during the whole fermentation process. These findings call for further researches of compost microbial cultivation technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Process Improvements: Aerobic Food Waste Composting at ISF Academy

    NASA Astrophysics Data System (ADS)

    Lau, Y. K.

    2015-12-01

    ISF Academy, a school with 1500 students in Hong Kong, installed an aerobic food waste composting system in November of 2013. The system has been operational for over seven months; we will be making improvements to the system to ensure the continued operational viability and quality of the compost. As a school we are committed to reducing our carbon footprint and the amount of waste we send to the local landfill. Over an academic year we produce approximately 27 metric tons of food waste. Our system processes the food waste to compost in 14 days and the compost is used by our primary school students in a organic farming project.There are two areas of improvement: a) if the composting system becomes anaerobic, there is an odor problem that is noticed by the school community; we will be testing the use of a bio-filter to eliminate the odor problem and, b) we will be working with an equipment vendor from Australia to install an improved grease trap system. The grease and oil that is collected will be sold to a local company here in Hong Kong that processes used cooking oil for making biofuels. This system will include a two stage filtration system and a heated vessel for separating the oil from the waste water.The third project will be to evaluate biodegradable cutlery for the compositing in the system. Currently, we use a significant quantity of non-biodegradable cutlery that is then thrown away after one use. Several local HK companies are selling biodegradable cutlery, but we need to evaluate the different products to determine which ones will work with our composting system. The food waste composting project at ISF Academy demonstrates the commitment of the school community to a greener environment for HK, the above listed projects will improve the operation of the system.

  9. Co-composting of green waste and food waste at low C/N ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mathava; Ou, Y.-L.; Lin, J.-G., E-mail: jglin@mail.nctu.edu.t

    2010-04-15

    In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45-75%) and C/N ratios (13.9-19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12 days. The TVSmore » reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.« less

  10. Life cycle and economic assessment of source-separated MSW collection with regard to greenhouse gas emissions: a case study in China.

    PubMed

    Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao

    2013-08-01

    In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.

  11. Optimization of food waste compost with the use of biochar.

    PubMed

    Waqas, M; Nizami, A S; Aburiazaiza, A S; Barakat, M A; Ismail, I M I; Rashid, M I

    2018-06-15

    This paper aims to examine the influence of biochar produced from lawn waste in accelerating the degradation and mineralization rates of food waste compost. Biochar produced at two different temperatures (350 and 450 °C) was applied at the rates 10 and 15% (w/w) of the total waste to an in-vessel compost bioreactor for evaluating its effects on food waste compost. The quality of compost was assessed against stabilization indices such as moisture contents (MC), electrical conductivity (EC), organic matters (OM) degradation, change in total carbon (TC) and mineral nitrogen contents such as ammonium (NH 4 + ) and nitrate (NO 3 - ). The use of biochar significantly improved the composting process and physiochemical properties of the final compost. Results showed that in comparison to control trial, biochar amended compost mixtures rapidly achieved the thermophilic temperature, increased the OM degradation by 14.4-15.3%, concentration of NH 4 + by 37.8-45.6% and NO 3 - by 50-62%. The most prominent effects in term of achieving rapid thermophilic temperature and a higher concentration of NH 4 + and NO 3 - were observed at 15% (w/w) biochar. According to compost quality standard of United States (US), California, Germany, and Austria, the compost stability as a result of biochar addition was achieved in 50-60 days. Nonetheless, the biochar produced at 450 °C had similar effects as to biochar produced at 350 °C for most of the compost parameters. Therefore, it is recommended to produce biochar at 350 °C to reduce the energy requirements for resource recovery of biomass and should be added at a concentration of 15% (w/w) to the compost bioreactor for achieving a stable compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Rotary drum composting of vegetable waste and tree leaves.

    PubMed

    Kalamdhad, Ajay S; Singh, Yatish K; Ali, Muntjeer; Khwairakpam, Meena; Kazmi, A A

    2009-12-01

    High rate composting studies on institutional waste, i.e. vegetable wastes, tree leaves, etc., were conducted on a demonstration-scale (3.5 m(3)) rotary drum composter by evaluating changes in some physico-chemical and biological parameters. During composting, higher temperature (60-70 degrees C) at inlet zone and (50-60 degrees C) at middle zone were achieved which resulted in high degradation in the drum. As a result, all parameters including TOC, C/N ratio, CO(2) evolution and coliforms were decreased significantly within few days of composting. Within a week period, quality compost with total nitrogen (2.6%) and final total phosphorus (6 g/kg) was achieved; but relatively higher final values of fecal coliforms and CO(2) evolution, suggested further maturation. Thus, two conventional composting methods namely windrow (M1) and vermicomposting (M2) tried for maturation of primary stabilized compost. By examining these methods, it was suggested that M2 was found suitable in delivering fine grained, better quality matured compost within 20 days of maturation period.

  13. Composting of Municipal Solid Wastes in the United States.

    ERIC Educational Resources Information Center

    Breidenbach, Andrew W.

    To gain more comprehensive knowledge about composting as a solid waste management tool and to better assess the limited information available, the Federal solid waste management program, within the U. S. Public Health Service, entered into a joint experimental windrow composting project in 1966 with the Tennessee Valley Authority and the City of…

  14. LIFE-CYCLE EVALUATION OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL SOLID WASTE MANAGEMENT IN THE UNITED STATES

    EPA Science Inventory

    The paper discusses a life-cycle evaluation of greenhouse gas (GHG) emissions from municipal soild waste (MSW) management in the U.S. (NOTE: Using integrated waste management, recycling/composting, waste-to-energy, and better control of landfill gas, communities across the U.S. a...

  15. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.

    PubMed

    Cheng, Hefa; Hu, Yuanan

    2010-06-01

    With rapid economic growth and massive urbanization, China faces the problem of municipal solid waste (MSW) disposal and the pressing need for development of alternative energy. Waste-to-energy (WTE) incineration, which recovers energy from discarded MSW and produces electricity and/or steam for heating, is recognized as a renewable source of energy and is playing an increasingly important role in MSW management in China. This article provides an overview of the WTE industry, discusses the major challenges in expanding WTE incineration in China, namely, high capital and operational costs, equipment corrosion, air pollutant emissions, and fly ash disposal. A perspective on MSW as a renewable energy source in China is also presented. Currently, only approximately 13% of MSW generated in China is disposed in WTE facilities. With the significant benefits of environmental quality, the reduction of greenhouse gas (GHG) emissions, and government policies and financial incentives as a renewable energy source, WTE incineration industry is expected to experience significant growth in the coming decade and make greater contribution to supplying renewable energy in China. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins.

    PubMed

    Arrigoni, Juan Pablo; Paladino, Gabriela; Garibaldi, Lucas Alejandro; Laos, Francisca

    2018-06-01

    Decentralized composting has been proposed as a best available practice, with a highly positive impact on municipal solid wastes management plans. However, in cold climates, decentralized small-scale composting performance to reach thermophilic temperatures (required for the product sanitization) could be poor, due to a lack of critical mass to retain heat. In addition, in these systems the composting process is usually disturbed when new portions of fresh organic waste are combined with previous batches. This causes modifications in the well-known composting evolution pattern. The objective of this work was to improve the understanding of these technical aspects through a real-scale decentralized composting experience carried out under cold climate conditions, in order to assess sanitization performance and to study the effects of fresh feedstock additions in the process evolution. Kitchen and garden organic wastes were composted in 500 L-static compost bins (without turning) for 244 days under cold climate conditions (Bariloche, NW Patagonia, Argentina), using pine wood shavings in a ratio of 1.5:1 v: v (waste: bulking agent). Temperature profile, stability indicators (microbial activity, carbon and nitrogen contents and ratio) and other variables (pH and electrical conductivity), were monitored throughout the experience. Our results indicate that small-scale composting (average generation rate of 7 kg d -1 ) is viable under cold weather conditions, since thermophilic sanitization temperatures (> 55 °C) were maintained for 3 consecutive days in most of the composting mass, according to available USEPA regulations commonly used as a reference for pathogens control in sewage sludge. On the other hand, stability indicators showed a differentiated organic matter degradation process along the compost bins height. Particularly, in the bottommost composting mix layer the process took a longer period to achieve compost stability than the upper layers, suggesting

  17. P losses in soil columns amended with compost and digestate from municipal solid wastes

    NASA Astrophysics Data System (ADS)

    García-Albacete, Marta; Cartagena, M. Carmen

    2013-04-01

    Sludge's, manures and compost applied to agricultural soils in high quantities and long-term application to increase crop productivity, result in accumulation of soil phosphorous (P). Soluble P is directly available to algae (Sonzogni et al., 1982) and thus particularly relevant to water quality degradation. Transport of P from agricultural soils to surface waters has been linked to eutrophication in fresh water and estuaries (Sharpley and Lemunyon, 1998). Almost 50% of stored water in Spain is degraded by eutrophication processes that cause the proliferation of algae and other organisms and a decrease in oxygen content (Environmental Profile of Spain 2005). Fertilizers and biodegradable wastes application rates in agriculture are based on nitrogen requirements. This results in a P supply that is in excess of crops needs since the ratio of P to N in waste use to be greater than required by plants (Smith, 1995). While surface runoff is an important pathway of phosphorus losses from agricultural lands, significant losses can also occur via leaching thought soils. Leaching tests are important for assessing the risk of release of potential pollutants from biodegradable wastes into groundwater or surface water. Percolation tests also get information about the interaction of organic waste with soils. The study was conducted according to the percolation leaching test CEN/TS 14405 "Characterization of waste-Leaching behavior test- Up-flow percolation test" with three different soils mixed with organic wastes from msw (compost and digestato) and an inorganic fertilizer (NaH2PO4). Each soil was amended with the P sources at rates of 100 kg P ha-1. Leachates were collected and analyzed for each column for dissolved reactive P by inductively coupled plasma atomic emission spectroscopy (ICP) following USEPA Method 3050A digestion (USEPA, 1995). The fact that P sorption capacity (Xmax, PSI) of the soils was determined using Langmuiŕs isotherms and the P forms from organic

  18. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality.

    PubMed

    Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana

    2011-03-01

    Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.

  19. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  20. [Application of microbial fuel cell (MFC) in solid waste composting].

    PubMed

    Cui, Jinxin; Wang, Xin; Tang, Jingchun

    2012-03-01

    Microbial fuel cell (MFC) is a new technology that can recover energy from biomass with simultaneous waste treatment. This technique has been developed fast in recent years in combining with environmental techniques such as wastewater treatment, degradation of toxic pollutants and desalination. With the increase of solid waste, applying MFC in composting is promising due to its property of waste disposal with simultaneous energy generation. In this paper, the microbial community of MFCs during composting was summarized. Four major influencing factors including electrodes, separators, oxygen supplement and configurations on the performance of composting MFCs were discussed. The characteristics of composting MFC as a new technique for reducing solid waste were as follows: high microbial biomass resulted in the high current density; adaptable to different environmental conditions; self-adjustable temperature with high energy efficiency; the transportation of proton from anode to cathode were limited by different solid substrates.

  1. Home composting using different ratios of bulking agent to food waste.

    PubMed

    Guidoni, Lucas Lourenço Castiglioni; Marques, Roger Vasques; Moncks, Rodrigo Bilhalva; Botelho, Fabiana Torma; da Paz, Matheus Francisco; Corrêa, Luciara Bilhalva; Corrêa, Érico Kunde

    2018-02-01

    The negative environmental impacts associated with home composting may be due to the absence of a defined operation criteria for the degradation process. In addition to the potentially low environmental impact in terms of energy and water usage, which is minimal to the manufacture of the composting unit and avoiding the processing and transportation of waste or byproduct, composting at home can also promote a reduction in the emission of unpleasant gases. The proportion of the food waste and bulking agents in the composting mixture may be decisive to fulfill good practices of waste stabilization. The aim of this study was to investigate how different ratios of bulking agent and organic household waste can affect the progress and outcome of the composting process. Three treatments, varying in the ratio of rice husk: raw fruit and vegetable leftovers (70:30, 50:50, 30:70; v:v) were used in a home composting system on a pilot scale. Results show that the proportion of starting materials used in the composting mixture influenced the degradation of organic matter, nitrogen dynamics of the process and its toxicity on germinating plants. The proportions with greater amounts of food waste had higher concentrations of mineral matter, higher peak temperature, and a better initial carbon-to-nitrogen ratio, while the proportion containing 70% of bulking agent lacked odors and leachate generation and showed a low nitrogen loss. A higher proportion of food waste presented better conditions for microbiological development and less time to obtain characteristics of matured composts. A higher proportion of bulking agents resulted in favorable conditions for household handling and less potential for environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biodegradability of degradable plastic waste.

    PubMed

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  3. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands.

    PubMed

    Rao, Juluri R; Watabe, Miyuki; Stewart, T Andrew; Millar, B Cherie; Moore, John E

    2007-01-01

    In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens.

  4. In-Vessel Co-Composting of Food Waste Employing Enriched Bacterial Consortium

    PubMed Central

    2018-01-01

    Summary The aim of the present study is to develop a good initial composting mix using a bacterial consortium and 2% lime for effective co-composting of food waste in a 60-litre in-vessel composter. In the experiment that lasted for 42 days, the food waste was first mixed with sawdust and 2% lime (by dry mass), then one of the reactors was inoculated with an enriched bacterial consortium, while the other served as control. The results show that inoculation of the enriched natural bacterial consortium effectively overcame the oil-laden co-composting mass in the composter and increased the rate of mineralization. In addition, CO2 evolution rate of (0.81±0.2) g/(kg·day), seed germination index of (105±3) %, extractable ammonium mass fraction of 305.78 mg/kg, C/N ratio of 16.18, pH=7.6 and electrical conductivity of 3.12 mS/cm clearly indicate that the compost was well matured and met the composting standard requirements. In contrast, control treatment exhibited a delayed thermophilic phase and did not mature after 42 days, as evidenced by the maturity parameters. Therefore, a good composting mix and potential bacterial inoculum to degrade the oil are essential for food waste co-composting systems. PMID:29796000

  5. In-Vessel Co-Composting of Food Waste Employing Enriched Bacterial Consortium.

    PubMed

    Awasthi, Mukesh Kumar; Wang, Quan; Wang, Meijing; Chen, Hongyu; Ren, Xiuna; Zhao, Junchao; Zhang, Zengqiang

    2018-03-01

    The aim of the present study is to develop a good initial composting mix using a bacterial consortium and 2% lime for effective co-composting of food waste in a 60-litre in-vessel composter. In the experiment that lasted for 42 days, the food waste was first mixed with sawdust and 2% lime (by dry mass), then one of the reactors was inoculated with an enriched bacterial consortium, while the other served as control. The results show that inoculation of the enriched natural bacterial consortium effectively overcame the oil-laden co-composting mass in the composter and increased the rate of mineralization. In addition, CO 2 evolution rate of (0.81±0.2) g/(kg·day), seed germination index of (105±3) %, extractable ammonium mass fraction of 305.78 mg/kg, C/N ratio of 16.18, pH=7.6 and electrical conductivity of 3.12 mS/cm clearly indicate that the compost was well matured and met the composting standard requirements. In contrast, control treatment exhibited a delayed thermophilic phase and did not mature after 42 days, as evidenced by the maturity parameters. Therefore, a good composting mix and potential bacterial inoculum to degrade the oil are essential for food waste co-composting systems.

  6. Variation in microbial population during composting of agro-industrial waste.

    PubMed

    Coelho, Luísa; Reis, Mário; Dionísio, Lídia

    2013-05-01

    Two compost piles were prepared, using two ventilation systems: forced ventilation and ventilation through mechanical turning. The material to compost was a mixture of orange waste, olive pomace, and grass clippings (2:1:1 v/v). During the composting period (375 days), samples were periodically taken from both piles, and the enumeration of fungi, actinomycetes, and heterotrophic bacteria was carried out. All studied microorganisms were incubated at 25 and 55 °C after inoculation in appropriate growth media. Fungi were dominant in the early stages of both composting processes; heterotrophic bacteria proliferated mainly during the thermophilic stage, and actinomycetes were more abundant in the final stage of the composting process. Our results showed that the physical and chemical parameters: temperature, pH, moisture, and aeration influenced the variation of the microbial population along the composting process. This study demonstrated that composting of these types of wastes, despite the prolonged mesophilic stage, provided an expected microbial variation.

  7. Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor.

    PubMed

    Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José

    2010-10-01

    Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Compost made of organic wastes suppresses fusariosis

    NASA Astrophysics Data System (ADS)

    Kuryntseva, Polina; Galitskaya, Polina; Biktasheva, Liliya; Selivanovkaya, Svetlana

    2017-04-01

    Fungal plant diseases cause dramatic yield losses worldwide. Usually, pesticides are used for soil sanitation, and it results in practically pest-free soils, although pesticides cause a biological vacuum, which present many horticultural disadvantages. Suppressive composts, which possess both fertilizing properties for plants and inhibiting properties for plant pathogens, represent an effective and environmentally friendly alternative to conventional pesticides. In this study, composts obtained from agricultural organic wastes were applied to suppress Fusarium oxysporum of tomato plants in model experiments. Composts were made of mixtures of the widespread organic wastes sampled in Tatarstan (Russia): straw (SW), corn wastes (CW), chicken manure (ChM), cattle manure (CM) and swine manure (SM). 11 two- and three-component mixtures were prepared to obtain the optimal carbon-nitrogen, moisture and pH balances, and composted for 210 days. It was found that the thermophilic phase of composting in all the mixtures lasted from 2 to 35 days, and was characterized by significant fluctuations in temperature, i.e. from 27°C to 59°C. In the initial mixtures, the dissolved organic carbon (DOC) content was between 10 and 62 mg kg-1; it fell significantly on day 13, and then continuously decreased up to day 102, and subsequently remained low. For all the mixtures, maximal respiration activity was observed in the beginning of composting (231.9 mg CO2-C g-1 day-1). After 23 days, this parameter decreased significantly, and fluctuations subsided. The phytotoxicity of the initial compost mixtures varied from 18% (SW+SM) to 100% (CW+ChM+SM, CW+ChM); however, the trends in the dynamics were similar. After 120 days of composting, 5 of 11 samples were not phytotoxic. After 120 days of composting, each mixture was divided into two parts; one was inoculated with a biopreparation consisting of four microbial strains (Trichoderma asperellum, Pseudomonas putida, Pseudomonas fluorescens and

  9. Nitrogen conservation and acidity control during food wastes composting through struvite formation.

    PubMed

    Wang, Xuan; Selvam, Ammaiyappan; Chan, Manting; Wong, Jonathan W C

    2013-11-01

    One of the main problems of food waste composting is the intensive acidification due to initial rapid fermentation that retards decomposition efficiency. Lime addition overcame this problem, but resulted in significant loss of nitrogen as ammonia that reduces the nutrient contents of composts. Therefore, this study investigated the feasibility of struvite formation as a strategy to control pH and reduce nitrogen loss during food waste composting. MgO and K2HPO4 were added to food waste in different molar ratios (P1, 1:1; P2, 1:2), and composted in 20-L composters. Results indicate that K2HPO4 buffered the pH in treatment P2 besides supplementing phosphate into the compost. In P2, organic decomposition reached 64% while the formation of struvite effectively reduced the nitrogen loss from 40.8% to 23.3% during composting. However, electrical conductivity of the compost increased due to the addition of Mg and P salts that requires further investigation to improve this technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Evaluation of maifanite and silage as amendments for green waste composting.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2018-04-23

    Composting is a popular method for recycling organic solid wastes including agricultural and forestry residues. However, traditional composting method is time consuming, generates foul smells, and produces an immature product. The effects of maifanite (MF; at 0%, 8.5%, and 13.5%) and/or silage (SG; at 0%, 25%, and 45%) as amendments on an innovative, two-stage method for composting green waste (GW) were investigated. The combined addition of MF and SG greatly improved composting conditions, reduced composting time, and enhanced compost quality in terms of composting temperature, bulk density, water-holding capacity, void ratio, pH, cation exchange capacity, ammonia nitrogen content, dissolved organic carbon content, crude fibre degradation, microbial numbers, enzyme activities, nutrient contents, and phytotoxicity. The two-stage composting of GW with 8.5% MF and 45% SG generated the highest quality and the most mature compost product and did so in only 21 days. With the optimized composting, the degradation rate of cellulose and hemicellulose reached 46.3 and 82.3%, respectively, and the germination index of Chinese cabbage and lucerne was 153 and 172%, respectively, which were all far higher than values obtained with the control. The combined effects of MF and SG on GW composting have not been previously explored, and this study therefore provided new and practical information. The comprehensive analyses of compost properties during and at the end of the process provided insight into underlying mechanisms. The optimized two-stage composting method may be a viable and sustainable alternative for GW management in that it converts the waste into a useful product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Effectiveness of three bulking agents for food waste composting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Bijaya K.; Barrington, Suzelle; Martinez, Jose

    2009-01-15

    Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends.more » Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment.« less

  12. Co-composting of Beef Cattle Feedlot Manure with Construction and Demolition Waste.

    PubMed

    Hao, Xiying; Hill, Brett; Caffyn, Pam; Travis, Greg; Olson, Andrew F; Larney, Francis J; McAllister, Tim; Alexander, Trevor

    2014-09-01

    With increased availability of dried distillers' grains with solubles (DDGS) as cattle feed and the need to recycle organic wastes, this research investigated the feasibility of co-composting DDGS cattle feedlot manure with construction and demolition (C&D) waste. Manure was collected from cattle fed a typical western Canadian finishing diet (CK) of 860 g rolled barley ( L.) grain, 100 g barley silage, and 40 g vitamin and mineral supplement kg dry matter (DM) and from cattle fed the same diet but (DG manure) with 300 g kg DM barley grain being replaced by DDGS. The CK and DG manures were co-composted with and without C&D waste in 13 m bins. Compost materials were turned on Days 14, 37, and 64, and terminated on Day 99. Adding C&D waste led to higher compost temperatures (0.4 to 16.3°C, average 7.2°C) than manure alone. Final composts had similar total C, total N, C/N ratios, and water-extractable K, Mg, and NO content across all treatments. However, adding C&D waste increased δC, δN, water-extractable SO, and Ca contents and decreased pH, total P (TP), water-extractable C, N, and P and most volatile fatty acids (VFA). The higher C&D compost temperatures should reduce pathogens while reduced VFA content should reduce odors. When using the final compost product, the increased SO and reduced TP and available N and P content in C&D waste compost should be taken into consideration. Increased S content in C&D compost may be beneficial for some crops grown on S-deficient soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Greenhouse gas emissions from green waste composting windrow.

    PubMed

    Zhu-Barker, Xia; Bailey, Shannon K; Paw U, Kyaw Tha; Burger, Martin; Horwath, William R

    2017-01-01

    The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH 4 emission of 254±76gCday -1 dry weight (DW) Mg -1 and lowest average N 2 O emission of 152±21mgNday -1 DW Mg -1 compared to the other seasonal piles. The highest N 2 O emissions (342±41mgNday -1 DW Mg -1 ) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O 2 ) concentration and moisture content were the most consistent factors predicting N 2 O and CH 4 emissions from all seasonal compost piles. Compared to N 2 O, CH 4 was a higher contributor to the overall global warming potential (GWP) expressed as CO 2 equivalents (CO 2 eq.). Therefore, CH 4 mitigation practices, such as increasing O 2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000Mg of CO 2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Exploring social and infrastructural factors affecting open burning of municipal solid waste (MSW) in Indian cities: A comparative case study of three neighborhoods of Delhi.

    PubMed

    Ramaswami, Anu; Baidwan, Navneet Kaur; Nagpure, Ajay Singh

    2016-11-01

    Open municipal solid waste (MSW)-burning is a major source of particulate matter emissions in developing world cities. Despite a legal ban, MSW-burning is observed ubiquitously in Indian cities with little being known about the factors shaping it. This study seeks to uncover social and infrastructural factors that affect MSW-burning at the neighborhood level. We couple physical assessments of the infrastructure provision and the MSW-burning incidences in three different neighborhoods of varying socio-economic status in Delhi, with an accompanying study of the social actors (interviews of waste handlers and households) to explore the extent to which, and potential reasons why, MSW-burning occurs. The observed differences in MSW-burning incidences range from 130 km -2  day -1 in low-income to 30 km -2  day -1 in the high-income areas. However, two high-income areas neighborhoods with functional infrastructure service also showed statistical differences in MSW-burning incidences. Our interviews revealed that, while the waste handlers were aware of the health risks associated with MSW-burning, it was not a high priority in the context of the other difficulties they faced. The awareness of the legal ban on MSW-burning was low among both waste handlers and households. In addition to providing infrastructure for waste pickup, informal restrictions from residents and neighborhood associations can play a significant role in restricting MSW-burning at the neighborhood scale. A more efficient management of MSW requires a combined effort that involves interplay of both social and infrastructural systems. © The Author(s) 2016.

  15. Composting

    ERIC Educational Resources Information Center

    Stanley, Andrew; Turner, Geraldine

    2010-01-01

    Composting can provide both a means of managing organic waste, and a vehicle to teach Science at all levels of schooling. In response to a local organic waste issue a process has been developed to compost waste from an olive oil press and analyse the resultant compost. In this article, the composting process is described in a manner that can be…

  16. Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes.

    PubMed

    Haight, M

    2005-01-01

    Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid.

  17. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    NASA Technical Reports Server (NTRS)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space

  18. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Y.; Kawase, Y.

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less

  19. Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW)

    NASA Astrophysics Data System (ADS)

    Dianda, P.; Mahidin; Munawar, E.

    2018-03-01

    Many cities in developing countries is facing a serious problems to dealing with huge municipal solid waste (MSW) generated. The main approach to manage MSW is causes environmental impact associated with the leachate and landfill gas emissions. On the other hand, the energy available also limited by rapid growth of population and economic development due to shortage of the natural resource. In this study, the potential utilized of MSW to produce refuse derived fuel (RDF) was investigate. The RDF was produced with various organic waste content. Then, the RDF was subjected to laboratory analysis to determine its characteristic including the calorific value. The results shows the moisture content was increased by increasing organic waste content, while the calorific value was found 17-36 MJ/kg. The highest calorific value was about 36 MJ/kg obtained at RDF with 40% organic waste content. This results indicated that the RDF can be use to substitute coal in main burning process and calcinations of cement industry.

  20. Two-phase olive mill waste composting: enhancement of the composting rate and compost quality by grape stalks addition.

    PubMed

    Cayuela, Maria Luz; Sánchez-Monedero, Miguel A; Roig, Asunción

    2010-06-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4+, NO3(-), cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added.

  1. Change in MSW characteristics under recent management strategies in Taiwan.

    PubMed

    Chang, Yu-Min; Liu, Chien-Chung; Hung, Chao-Yang; Hu, Allen; Chen, Shiao-Shing

    2008-12-01

    Reduction and recycling initiatives such as producer responsibility and pay-as-you-throw are being implemented in Taiwan. This paper presents a study assessing the impact of recently implemented municipal solid waste (MSW) reduction and recycling management strategies on the characteristics of waste feedstock for incineration in Taiwan. Through the periodic sampling of two typical MSW incineration plants, proximate and ultimate analyses were conducted according to standard methods to explore the influence of MSW reduction and recycling management strategies on incineration feed waste characteristics. It was observed that the annual amount of MSW generated in 2005 decreased by about 10% compared to 2003 and that the characteristics of MSW have changed significantly due to recent management strategies. The heating value of the MSW generated in Taiwan increased yearly by about 5% after program implementation. A comparison of the monthly variations in chemical concentrations indicated that the chlorine content in MSW has changed. This change results from usage reduction of PVC plastic due to the recycling fund management (RFM) program, and the food waste as well as salt content reduction due to the total recycling for kitchen garbage program. This achievement will improve the reduction of dioxin emissions from MSW incineration. In summary, management strategies must be conducted in tandem with the global trend to achieve a zero-waste-discharge country. When implementing these strategies and planning for future MSW management systems, it is important to consider the changes that may occur in the composition and characteristics of MSW over time.

  2. The composting option for human waste disposal in the backcountry

    Treesearch

    S. C. Fay; R. H. Walke

    1977-01-01

    The disposal of human waste by composting at backcountry recreation areas is a possible alternative to methods that are considered unsafe. The literature indicates that aerobic, thermophilic composting is a reliable disposal method that can be low in cost and in maintenance. A bark-sewage mixture can be composted to produce a pathogen-free substance that might be used...

  3. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makan, Abdelhadi, E-mail: abdelhadi.makan@gmail.com

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of naturalmore » casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations.« less

  4. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia.

    PubMed

    Nigussie, Abebe; Kuyper, Thomas W; de Neergaard, Andreas

    2015-10-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that

  5. Toward zero waste: Composting and recycling for sustainable venue based events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hottle, Troy A., E-mail: troy.hottle@asu.edu; Bilec, Melissa M., E-mail: mbilec@pitt.edu; Brown, Nicholas R., E-mail: nick.brown@asu.edu

    Highlights: • Venues have billions of customers per year contributing to waste generation. • Waste audits of four university baseball games were conducted to assess venue waste. • Seven scenarios including composting were modeled using EPA’s WARM. • Findings demonstrate tradeoffs between emissions, energy, and landfill avoidance. • Sustainability of handling depends on efficacy of collection and treatment impacts. - Abstract: This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g.more » recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO{sub 2} equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO{sub 2} eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO{sub 2} eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second

  6. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.

    PubMed

    Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua

    2017-11-01

    In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6  t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3  t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.

  7. SUSTAINABLE MSW MANAGEMENT STRATEGIES IN THE UNITED STATES

    EPA Science Inventory

    Under increasing pressure to minimize potential environmental burdens and costs for municipal solid waste (MSW) management, state and local governments often must modify programs and adopt more efficient integrated MSW management strategies that reflect dynamic shifts in MSW mana...

  8. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lu, E-mail: zhanglu1211@gmail.com; Sun, Xiangyang, E-mail: xysunbjfu@gmail.com

    2015-05-15

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthwormmore » casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.« less

  9. Composting technology in waste stabilization: On the methods, challenges and future prospects.

    PubMed

    Onwosi, Chukwudi O; Igbokwe, Victor C; Odimba, Joyce N; Eke, Ifeanyichukwu E; Nwankwoala, Mary O; Iroh, Ikemdinachi N; Ezeogu, Lewis I

    2017-04-01

    Composting technology has become invaluable in stabilization of municipal waste due to its environmental compatibility. In this review, different types of composting methods reportedly applied in waste management were explored. Further to that, the major factors such as temperature, pH, C/N ratio, moisture, particle size that have been considered relevant in the monitoring of the composting process were elucidated. Relevant strategies to improve and optimize process effectiveness were also addressed. However, during composting, some challenges such as leachate generation, gas emission and lack of uniformity in assessing maturity indices are imminent. Here in, these challenges were properly addressed and some strategies towards ameliorating them were proffered. Finally, we highlighted some recent technologies that could improve composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Repeated applications of compost and manure mainly affect the size and chemical nature of particulate organic matter in a loamy soil after 8 years

    NASA Astrophysics Data System (ADS)

    Peltre, Clement; Dignac, Marie-France; Doublet, Jeremy; Plante, Alain; Houot, Sabine

    2013-04-01

    Land application of exogenous organic matter (EOM) of residual origin can help to maintain or increase soil organic carbon (SOC) stocks. However, it remains necessary to quantify and predict the soil C accumulation and to determine under which form the C accumulates. Changes to the chemical composition of soil organic matter (SOM) after repeated applications of composts and farmyard manure were investigated in a field experiment (Qualiagro experiment, Ile-de-France) after 8 years of applications of green waste and sludge compost (GWS), municipal solid waste compost (MSW), biowaste compost (BIOW) or farmyard manure (FYM). The soil was fractionated into particulate organic matter >50 µm (POM), a heavy fraction >50 µm and a 0-50 µm fraction demineralized with hydrofluoric acid (HF). Repeated EOM applications significantly increased total SOC stocks, the C amount in the POM fraction and to a less extent in the 0-50 µm fraction compared to the reference treatment. Compost applications accumulated C preferentially under the form of coarse organic matter of size >50 µm, whereas the FYM accumulated similar C proportions of size >50 µm and 0-50 µm, which was attributed to the presence in the FYM of a fraction of labile C stimulating microbial activity and producing humified by-products together with a fraction of stabilized C directly alimenting the humified fraction of SOC. Pyrolysis-GC/MS and DRIFT spectroscopy revealed enrichment in lignin in the POM fractions of amended soils with GWS, BIOW and FYM. In the soil receiving MSW compost, the pyrolysate of the POM fraction revealed the presence of plastics originating from the MSW compost. A lower C mineralization during laboratory incubation was found for the POM fractions of amended soils compared with the POM from reference soil. This feature was related to a lower ratio of (furfural+acetic acid) / pyrole pyrolysis products in POM of amended vs. reference plots, indicating a higher degree of recalcitrance.. The POM

  11. Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.

    PubMed

    Babel, Sandhya; Vilaysouk, Xaysackda

    2016-01-01

    Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. © The Author(s) 2015.

  12. Chinese medicinal herbal residues as a bulking agent for food waste composting.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2018-02-01

    This study aimed to co-compost Chinese medicinal herbal residues (CMHRs) as the bulking agent with food waste (FW) to develop a high value antipathogenic compost. The FW, sawdust (SD) and CMHRs were mixed at three different mixing ratios, 5:5:1, 2:2:1 and 1:1:1 on dry weight basis. Lime at 2.25% was added to the composting mix to buffer the pH during the composting. A control without lime addition was also included. The mixtures were composted in 20-L in-vessel composters for 56 days. A maximum of 67.2% organic decomposition was achieved with 1:1:1 mixing ratio within 8 weeks. The seed germination index was 157.2% in 1:1:1 mixing ratio, while other ratios showed <130.0% and the treatment without lime showed 40.3%. Therefore use of CMHRs as the bulking agent to compost food waste at the dry weight ratio of 1:1:1 (FW: SD: CMHRs) was recommended for FW-CMHRs composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Toward zero waste: composting and recycling for sustainable venue based events.

    PubMed

    Hottle, Troy A; Bilec, Melissa M; Brown, Nicholas R; Landis, Amy E

    2015-04-01

    This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO2 equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO2 eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO2 eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Influence assessment of a lab-scale ripening process on the quality of mechanically-biologically treated MSW for possible recovery.

    PubMed

    Di Lonardo, Maria Chiara; Binner, Erwin; Lombardi, Francesco

    2015-09-01

    In this study, the influence of an additional ripening process on the quality of mechanically-biologically treated MSW was evaluated in the prospective of recovering the end material, rather than landfilling. The biostabilised waste (BSW) coming from one of the MBT plants of Rome was therefore subjected to a ripening process in slightly aerated lab test cells. An in-depth investigation on the biological reactivity was performed by means of different types of tests (aerobic and anaerobic biological tests, as well as FT-IR spectroscopy method). A physical-chemical characterisation of waste samples progressively taken during the ripening phase was carried out, as well. In addition, the ripened BSW quality was assessed by comparing the characteristics of a compost sampled at the composting plant of Rome which treat source segregated organic wastes. Results showed that the additional ripening process allowed to obtain a better quality of the biostabilised waste, by achieving a much higher biological stability compared to BSW as-received and similar to that of the tested compost. An important finding was the lower heavy metals (Co, Cr, Cu, Ni, Pb and Zn) release in water phase at the end of the ripening compared to the as-received BSW, showing that metals were mainly bound to solid organic matter. As a result, the ripened waste, though not usable in agriculture as found for the compost sample, proved anyhow to be potentially suitable for land reclamation purposes, such as in landfills as cover material or mixed with degraded and contaminated soil for organic matter and nutrients supply and for metals recovery, respectively. In conclusion the study highlights the need to extend and optimise the biological treatment in the MBT facilities and opens the possibility to recover the output waste instead of landfilling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Municipal solid waste management in Beijing City.

    PubMed

    Li, Zhen-shan; Yang, Lei; Qu, Xiao-Yan; Sui, Yu-mei

    2009-09-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km(2) with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  16. Anaerobic digestion of municipal solid waste: Technical developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  17. Evaluation of Effective Microorganisms on home scale organic waste composting.

    PubMed

    Fan, Yee Van; Lee, Chew Tin; Klemeš, Jiří Jaromír; Chua, Lee Suan; Sarmidi, Mohamad Roji; Leow, Chee Woh

    2018-06-15

    Home composting can be an effective way to reduce the volume of municipal solid waste. The aim of this study is to evaluate the effect of Effective Microorganism™ (EM) for the home scale co-composting of food waste, rice bran and dried leaves. A general consensus is lacking regarding the efficiency of inoculation composting. Home scale composting was carried out with and without EM (control) to identify the roles of EM. The composting parameters for both trials showed a similar trend of changes during the decomposition. As assayed by Fourier Transform Infrared Spectroscopy (FTIR), the functional group of humic acid was initially dominated by aliphatic structure but was dominated by the aromatic in the final compost. The EM compost has a sharper peak of aromatic CC bond presenting a better degree of humification. Compost with EM achieved a slightly higher temperature at the early stage, with foul odour suppressed, enhanced humification process and a greater fat reduction (73%). No significant difference was found for the final composts inoculated with and without EM. The properties included pH (∼7), electric conductivity (∼2), carbon-to-nitrogen ratio (C: N < 14), colour (dark brown), odour (earthy smell), germination index (>100%), humic acid content (4.5-4.8%) and pathogen content (no Salmonella, <1000 Most Probable Number/g E. coli). All samples were well matured within 2 months. The potassium and phosphate contents in both cases were similar however the EM compost has a higher nitrogen content (+1.5%). The overall results suggested the positive effect provided by EM notably in odour control and humification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes.

    PubMed

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2013-02-15

    Winery wastes were composted in the laboratory during five months in order to study the composting process of lignocellulosic wastes. In a first experiment, spent grape marc was composted alone, and in a second one, hydrolyzed grape marc, which is the residue generated after the acid hydrolysis of spent grape marc for biotechnological purposes, was composted together with vinification lees. During the composting of spent grape marc, total organic matter did not change, and as total N increased only slightly (from 1.7% to 1.9%), the reduction in the C/N ratio was very low (from 31 to 28). The mixture of hydrolyzed grape marc and lees showed bigger changes, reaching a C/N ratio around 20 from the third month on. Water-soluble organic matter followed the usual trend during composting, showing a progressive decrease in both experiments. Although the mixture of hydrolyzed grape marc and lees presented the highest initial water-soluble carbon concentrations, the final values for both experiments were similar (8.1 g kg(-1) for the spent grape marc, and 9.1 g kg(-1) for the mixture). The analysis of the humification parameters did not allow an adequate description of the composting process, maybe as a consequence of the inherent problems existing with alkaline extractions. The total humic substances, which usually increase during composting as a consequence of the humification process, followed no trend, and they were even reduced with respect to the initial values. Notwithstanding, the fractionation of organic matter into cellulose, hemicellulose and lignin enabled a better monitoring of the waste decomposition. Cellulose and hemicellulose were degraded mainly during the first three months of composting, and the progressive reduction of the cellulose/lignin ratio proved that the main evolution of these wastes took place during the first three months of composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. REDUCING THE WASTE STREAM: BRINGING ENVIRONMENTAL, ECONOMICAL, AND EDUCATIONAL COMPOSTING TO A LIBERAL ARTS COLLEGE

    EPA Science Inventory

    The Northfield, Minnesota area contains three institutions that produce a large amount of compostable food waste. St. Olaf College uses a large-scale on-site composting machine that effectively transforms the food waste to compost, but the system requires an immense start-up c...

  20. Material and energy recovery in integrated waste management system - An Italian case study on the quality of MSW data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchini, A.; Pellegrini, M.; Saccani, C., E-mail: cesare.saccani@unibo.it

    2011-09-15

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation wasmore » then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it.« less

  1. Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum.

    PubMed

    Manu, M K; Kumar, Rakesh; Garg, Anurag

    2017-06-01

    Wet waste recycling at generation point will alleviate burden on the overflowing waste dumpsites in developing nations. Drum composting is a potential treatment option for such waste at individual or community level. The present study was aimed to produce compost from wet waste (primarily comprising food waste) in composting drums modified for improved natural air circulation. Effect of microbial inoculum and waste turning on composting process was also studied. The final results showed the production of matured and stable compost in the modified drums. Addition of the microbial inoculum resulted in thermophilic phase within a week time. The self-heating test and germination index (>80%) showed the production of non-phytotoxic and mature compost in the modified drums after 60days. The change in microbial population, humic substances and biological parameters (lignin, cellulose and hemicellulose) during the study is discussed. Moreover, the reduction in waste mass and volume is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A compost bin for handling privy wastes: its fabrication and use

    Treesearch

    R.E. Leonard; S.C. Fay

    1978-01-01

    A 24-ft3 (6.8-m3) fiberglass bin was constructed and tested for its effectiveness in composting privy wastes. A mixture of ground hardwood bark and raw sewage was used for composting. Temperatures in excess of 60°C for 36 hours were produced in the bin by aerobic, thermophilic composting. This temperature is...

  3. Effects of earthworm casts and zeolite on the two-stage composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2015-05-01

    Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21days with the optimized two-stage composting method rather than in the 90-270days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Risks to farm animals from pathogens in composted catering waste containing meat.

    PubMed

    Gale, P

    2004-07-17

    Uncooked meat may contain animal pathogens, including bovine spongiform encephalopathy, foot-and-mouth disease virus, African swine fever virus and classical swine fever virus, and to prevent outbreaks of these diseases in farm animals, the disposal of meat from catering waste is controlled under the Animal By-Products Regulations. This paper estimates the risks to farm animals of grazing land on to which compost, produced by the composting of catering waste containing meat, has been applied. The factors controlling the level of risk are the separation of the meat at source, the efficiency of the composting process, and the decay and dilution of the pathogens in soil. The net pathogen destruction by the composting process is determined largely by the degree of bypass, and to accommodate the possibility of large joints or even whole carcases being discarded uncooked to catering waste, a time/temperature condition of 60 degrees C for two days is recommended. Where data are lacking, worst-case assumptions have been applied. According to the model, classical swine fever virus constitutes the highest risk, but the assessment shows that a two-barrier composting approach, together with a two-month grazing ban, reduces the risk to one infection in pigs every 190 years in England and Wales. This work defined the operational conditions for the composting of catering waste as set out in the Animal By-Products Regulations 2003 (SI 1482).

  5. Material and energy recovery in integrated waste management system--an Italian case study on the quality of MSW data.

    PubMed

    Bianchini, A; Pellegrini, M; Saccani, C

    2011-01-01

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation was then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Analyzing effective municipal solid waste recycling programs: the case of county-level MSW recycling performance in Florida, USA.

    PubMed

    Park, Seejeen; Berry, Frances S

    2013-09-01

    Municipal solid waste (MSW) recycling performance, both nationally and in Florida, USA, has shown little improvement during the past decade. This research examines variations in the MSW recycling program performance in Florida counties in an attempt to identify effective recycling programs. After reviewing trends in the MSW management literature, we conducted an empirical analysis using cross-sectional multiple regression analysis. The findings suggest that the convenience-based hypothesis was supported by showing that curbside recycling had a positive effect on MSW recycling performance. Financial (cost-saving) incentive-based hypotheses were partially supported meaning that individual level incentives can influence recycling performance. Citizen environmental concern was found to positively affect the amount of county recycling, while education and political affiliation yielded no significant results. In conclusion, this article discusses the implications of the findings for both academic research and practice of MSW recycling programs.

  7. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    PubMed

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gori, Manuela, E-mail: manuela.gori@dicea.unifi.it; Bergfeldt, Britta; Reichelt, Jürgen

    2013-04-15

    Highlights: ► Natural weathering on BA from MSW and wood waste incineration was evaluated. ► Type of mineral phases, pH and volume stability were considered. ► Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of themore » mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.« less

  9. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste.

    PubMed

    Kopčić, Nina; Vuković Domanovac, Marija; Kučić, Dajana; Briški, Felicita

    2014-02-01

    Efficient composting process requires set of adequate parameters among which physical-chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min(-1). During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a "mirror image" of the oxygen concentration curve while the peak values of the temperature were occurred 9.5h after the peak oxygen consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    PubMed

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Windrow co-composting of natural casings waste with sheep manure and dead leaves.

    PubMed

    Makan, Abdelhadi

    2015-08-01

    After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6-0.9-0.7. Reported units are consistent with those found on fertilizer formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Greenhouse gas emissions from home composting of organic household waste.

    PubMed

    Andersen, J K; Boldrin, A; Christensen, T H; Scheutz, C

    2010-12-01

    The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week(-1) and the temperature inside the composting units was in all cases only a few degrees (2-10 °C) higher than the ambient temperature. The emissions of methane (CH(4)) and nitrous oxide (N(2)O) were quantified as 0.4-4.2 kg CH(4)Mg(-1) input wet waste (ww) and 0.30-0.55 kg N(2)OMg(-1)ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH(4) and N(2)O emissions) of 100-239 kg CO(2)-eq.Mg(-1)ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH(4) during mixing which was estimated to 8-12% of the total CH(4) emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg(-1)ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO(2)-eq.Mg(-1)ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Raster-based outranking method: a new approach for municipal solid waste landfill (MSW) siting.

    PubMed

    Hamzeh, Mohamad; Abbaspour, Rahim Ali; Davalou, Romina

    2015-08-01

    MSW landfill siting is a complicated process because it requires integration of several factors. In this paper, geographic information system (GIS) and multiple criteria decision analysis (MCDA) were combined to handle the municipal solid waste (MSW) landfill siting. For this purpose, first, 16 input data layers were prepared in GIS environment. Then, the exclusionary lands were eliminated and potentially suitable areas for the MSW disposal were identified. These potentially suitable areas, in an innovative approach, were further examined by deploying Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic network process (ANP), which are two of the most recent MCDA methods, in order to determine land suitability for landfilling. PROMETHEE II was used to determine a complete ranking of the alternatives, while ANP was employed to quantify the subjective judgments of evaluators as criteria weights. The resulting land suitability was reported on a grading scale of 1-5 from 1 to 5, which is the least to the most suitable area, respectively. Finally, three optimal sites were selected by taking into consideration the local conditions of 15 sites, which were candidates for MSW landfilling. Research findings show that the raster-based method yields effective results.

  15. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion.

    PubMed

    Peng, Nana; Li, Yi; Liu, Zhengang; Liu, Tingting; Gai, Chao

    2016-09-15

    Emission and distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) were investigated during municipal solid waste (MSW) and coal combustion alone and MSW/coal blend (MSW weight fraction of 25%) co-combustion within a temperature range of 500°C-900°C. The results showed that for all combustion experiments, flue gas occupied the highest proportion of total PAHs and fly ash contained more high-ring PAHs. Moreover, the 3- and 4-ring PAHs accounted for the majority of total PAHs and Ant or Phe had the highest concentrations. Compared to coal, MSW combustion generated high levels of total PAHs with the range of 111.28μg/g-10,047.22μg/g and had high toxicity equivalent value (TEQ). MSW/coal co-combustion generated the smallest amounts of total PAHs and had the lowest TEQ than MSW and coal combustion alone. Significant synergistic interactions occurred between MSW and coal during co-combustion and the interactions suppressed the formation of PAHs, especially hazardous high-ring PAHs and decreased the TEQ. The present study indicated that the reduction of the yield and toxicity of PAHs can be achieved by co-combustion of MSW and coal. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Flow analysis of metals in a municipal solid waste management system.

    PubMed

    Jung, C H; Matsuto, T; Tanaka, N

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.

  17. Flow analysis of metals in a municipal solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-07-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria formore » landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.« less

  18. Municipal solid waste management in Beijing City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhenshan; Key Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, Peking University, Shenzhen 518055; Yang Lei

    2009-09-15

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km{sup 2} with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted formore » less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.« less

  19. Greenhouse gas emission from covered windrow composting with controlled ventilation.

    PubMed

    Ermolaev, Evgheni; Pell, Mikael; Smårs, Sven; Sundberg, Cecilia; Jönsson, Håkan

    2012-02-01

    Data on greenhouse gas (GHG) emissions from full-scale composting of municipal solid waste, investigating the effects of process temperature and aeration combinations, is scarce. Oxygen availability affects the composition of gases emitted during composting. In the present study, two experiments with three covered windrows were set up, treating a mixture of source separated biodegradable municipal solid waste (MSW) fractions from Uppsala, Sweden, and structural amendment (woodchips, garden waste and re-used compost) in the volume proportion 1:2. The effects of different aeration and temperature settings on the emission of methane (CH(4)), nitrous oxide (N(2)O) and carbon dioxide (CO(2)) during windrow composting with forced aeration following three different control schemes were studied. For one windrow, the controller was set to keep the temperature below 40 °C until the pH increased, another windrow had minimal aeration at the beginning of the process and the third one had constant aeration. In the first experiment, CH(4) concentrations (CH(4):CO(2) ratio) increased, from around 0.1% initially to between 1 and 2% in all windrows. In the second experiment, the initial concentrations of CH(4) displayed similar patterns of increase between windrows until day 12, when concentration peaked at 3 and 6%, respectively, in two of the windrows. In general, the N(2)O fluxes remained low (0.46 ± 0.02 ppm) in the experiments and were two to three times the ambient concentrations. In conclusion, the emissions of CH(4) and N(2)O were low regardless of the amount of ventilation. The data indicates a need to perform longer experiments in order to observe further emission dynamics.

  20. Mathematical model of organic substrate degradation in solid waste windrow composting.

    PubMed

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  1. Scenario analysis of the benefit of municipal organic-waste composting over landfill, Cambodia.

    PubMed

    Seng, Bunrith; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Ochiai, Satoru; Kaneko, Hidehiro

    2013-01-15

    This paper presents insight into the benefits of organic waste recycling through composting over landfill, in terms of landfill life extension, compost product, and mitigation of greenhouse gases (GHGs). Future waste generation from 2003 to 2020 was forecast, and five scenarios of organic waste recycling in the municipality of Phnom Penh (MPP), Cambodia, were carried out. Organic waste-specifically food and garden waste-was used for composting, and the remaining waste was landfilled. The recycling scenarios were set based on organic waste generated from difference sources: households, restaurants, shops, markets, schools, hotels, offices, and street sweeping. Through the five scenarios, the minimum volume reductions of waste disposal were about 56, 123, and 219 m(3) d(-1) in 2003, 2012, and 2020, respectively, whereas the maximum volume reductions in these years were about 325, 643, and 1025 m(3) d(-1). These volume reductions reflect a landfill life extension of a minimum of half a year and a maximum of about four years. Compost product could be produced at a minimum of 14, 30, and 54 tons d(-1) in 2003, 2012, and 2020, respectively, and at a maximum in those years of about 80, 158, and 252 tons d(-1). At the same time benefit is gained in compost product, GHG emissions could be reduced by a minimum of 12.8% and a maximum of 65.0% from 2003 to 2020. This means about 3.23 (minimum) and 5.79 million tons CO(2)eq (maximum) contributed to GHG mitigation. In this regard, it is strongly recommended that MPP should try to initiate an organic-waste recycling strategy in a best fit scenario. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: characterization of physicochemical parameters and microbial enzymatic dynamic.

    PubMed

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Bundela, Pushpendra Singh; Khan, Jamaluddin

    2015-04-01

    The effect of various bulking waste such as wood shaving, agricultural and yard trimming waste combined with organic fraction of municipal solid waste (OFMSW) composting was investigated through assessing their influence on microbial enzymatic activities and quality of finished compost. All three piles of OFMSW with different bulking waste were inoculated with microbial consortium. The results revealed that OFMSW combined with wood shaving and microbial consortium (Phanerochaete chrysosporium, Trichoderma viride and Pseudomonas aeruginosa) were helpful tool to facilitate the enzymatic activity and shortened composting period within 4 weeks. Maximum enzymatic activity were observed in pile 1 and 3 during the first 3 weeks, while in pile 2 relatively very low. But phosphatase activity was relatively higher in all piles until the end of the process. Maturity parameters of compost quality also favored the pile 1 as the best formulation for OFMSW composting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Wood processing wastes recovery and composted product field test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.T.; Lin, K.L.

    1997-12-31

    Lumber mill waste, more than 3,000 tons per month, is one of the main waste sources in I-Lan area. Most of the lumber mill waste is sawdust which takes a large parts of organic-containing wastes in I-Lan county. Wastes from seafood plants around the Sueou Harbor causes a treatment problem because of their high nitrogen and phosphorous concentrations. Furthermore, the distiller-by products in I-Lan Winery are easy to become spoiled and result in odor. In this study, the compost method is suggested to deal with these waste problems and make energy recovery. Microorganisms incubating in the laboratory provide the stablemore » seed needed for composting. Flowers and vegetable raising are scheduled to be used in field to verify the efficiency of the products. The optimal combination ration of wastes and operation criteria then will be concluded in this study after economic analyzing. The results show that the Zinnia elegans leaves growth is relative with organic fertilizer. It can also be illustrated from the statistical value that the F value is 19.4 and above the critical value 9.4.« less

  4. Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of Sub-Saharan Africa.

    PubMed

    Kaboré, Théodore Wind-Tinbnoma; Houot, Sabine; Hien, Edmond; Zombré, Prosper; Hien, Victor; Masse, Dominique

    2010-02-01

    The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.

  5. Study and assessment of segregated biowaste composting: The case study of Attica municipalities.

    PubMed

    Malamis, D; Bourka, A; Stamatopoulou, Ε; Moustakas, K; Skiadi, O; Loizidou, M

    2017-12-01

    This work aims to assess the operation of the first large scale segregated biowaste composting scheme in Greece to divert Household Food Waste (HFW) from landfill and produce a material which can be recovered and used as compost. The source separation and collection of HFW was deployed in selected areas in Attica Region serving about 3700 households. Sorted HFW is collected & transported to the Mechanical and Biological Treatment (MBT) plant in Attica Region that has been designed to produce Compost Like Output (CLO) from mixed MSW. The MBT facility has been adjusted in order to receive and treat aerobically HFW mixed with shredded green waste in a dedicated composting tunnel. The composting process was monitored against temperature, moisture and oxygen content indicating that the biological conditions are sufficiently developed. The product quality was examined and assessed against the quality specifications of EU End of Waste Criteria for biowaste subjected to composting aiming to specify whether the HFW that has undergone recovery ceases to be waste and can be classified as compost. More specifically, the heavy metals concentrations (Cr, Cu, Ni, Cd, Pb, Zn and Hg) are within the set limits and much lower compared to the CLO material that currently is being produced at the MBT plant. In regard to the hygienic requirements of the product it has been found that the process conditions result in a pathogen free material (i.e. E. Coli and Salmonella) which does not favor the growth of viable weeds and plant propagules, while it acquires sufficient organic matter content for soil fertilization. Noticeable physical impurities (mainly fractions of glass) have been detected exceeding the quality control threshold limit of 0.5% w/w (plastics, metals and glass). The latter is related to the missorted materials and to the limited pre-treatment configurations prior to composting. The above findings indicate that effective source separation of biowaste is prerequisite for

  6. Characterization of Explosives Processing Waste Decomposition Due to Composting

    DTIC Science & Technology

    1991-11-01

    volume % of soil in the compost. The amendment mixture was 30% sawdust, 15% apple pomace, 20% chicken manure, and 35% chopped potato waste. The negative...experiments. 3.3 Dkictiion Naturally occurring soil- and sediment-dwelling microbes produce a diverse array of exo- and endoenzymes that can degrade...consortia of microbes . Additionally, the loss of TNT by microbial processes was accompanied by commensurate reductions in compost leachate toxicity and

  7. Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.

    PubMed

    Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S

    2005-03-01

    Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.

  8. Composting of bio-waste, aerobic and anaerobic sludges--effect of feedstock on the process and quality of compost.

    PubMed

    Himanen, Marina; Hänninen, Kari

    2011-02-01

    In-vessel composting of three stocks with originally different degree of organic matter degradation was conducted for: (1) kitchen source-separated bio-waste (BW), (2) aerobic (AS) as well as (3) anaerobic sludges (AnS) from municipal wastewater treatment plant. Composting experiment lasted over a year. The highest activity of the process was in the BW compost. It was implied by the highest temperature, CO(2) release, ammonification and nitrification, intensive accumulation and removal of low-weight carboxylic acids (water- and NaOH-extractable). Between the sludges higher mineralization and CO2 release was in AnS, while ammonification and nitrification were higher in AS compost; no significant difference between sludge composts was noticed for dynamics of pH, conductivity, concentrations of LWCA, and some nutrient compounds and heavy metals. Nitrogen content of the final compost increased in BW, but decreased in AS and AnS. Phytotoxicity of Lepidium sativum was eliminated faster in sludge composts compared to BW compost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Influence of lime on struvite formation and nitrogen conservation during food waste composting.

    PubMed

    Wang, Xuan; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    This study aimed at investigating the feasibility of supplementing lime with struvite salts to reduce ammonia emission and salinity consequently to accelerate the compost maturity. Composting was performed in 20-L bench-scale reactors for 35days using artificial food waste mixed with sawdust at 1.2:1 (w/w dry basis), and Mg and P salts (MgO and K2HPO4, respectively). Nitrogen loss was significantly reduced from 44.3% to 27.4% during composting through struvite formation even with the addition of lime. Lime addition significantly reduced the salinity to less than 4mS/cm with a positive effect on improving compost maturity. Thus addition of both lime and struvite salts synergistically provide advantages to buffer the pH, reduce ammonia emission and salinity, and accelerate food waste composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ammonia emission mitigation in food waste composting: A review.

    PubMed

    Wang, Shuguang; Zeng, Yang

    2018-01-01

    Composting is a reliable technology to treat food waste (FW) and produce high quality compost. The ammonia (NH 3 ) emission accounts for the largest nitrogen loss and leads to various environmental impacts. This review introduced the recent progresses on NH 3 mitigation in FW composting. The basic characteristics of FW from various sources were given. Seven NH 3 emission strategies proven effective in the literature were presented. The links between these strategies and the mechanisms of NH 3 production were addressed. Application of hydrothermally treated C rich substrates, biochar or struvite salts had a broad prospect in FW composting if these strategies were proven cost-effective enough. Regulation of nitrogen assimilation and nitrification using biological additive had the potential to achieve NH 3 mitigation but the existing evidence was not enough. In the end, the future prospects highlighted four research topics that needed further investigation to improve NH 3 mitigation and nitrogen conservation in FW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality.

    PubMed

    Soares, Micaela A R; Quina, Margarida M J; Quinta-Ferreira, Rosa M

    2013-11-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporation of 30% (w/w) ES in a composting mixture did not affect mixture biodegradability, nor its capacity to reach sanitizing temperatures. After 25 days of composting, ES addition caused a nitrogen loss of about 10 g N kg(-1) of initial volatile solids, thus reducing nitrogen nutritional potential of the finished compost. This study showed that a composting mixture with a significant proportion of ES (30% w/w) may be converted into calcium-rich marketable compost to neutralize soil acidity and/or calcium deficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Bacterial community structure transformed after thermophilically composting human waste in Haiti

    PubMed Central

    Kramer, Sasha; Roy, Monika; Reid, Francine C.; Dubinsky, Eric A.

    2017-01-01

    Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98–99%), Lachnospiraceae (83–94%, primarily unclassified taxa remained), Escherichia and Shigella (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited. PMID:28570610

  13. Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios

    PubMed Central

    Ali Rajaeifar, Mohammad; Tabatabaei, Meisam; Ghanavati, Hossein

    2015-01-01

    Environmental assessment of municipal solid waste (MSW) management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0), landfilling combined with composting (Sc-1), incineration (Sc-2), incineration combined with composting (Sc-3), and AD combined with incineration (Sc-4). The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6). The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4). PMID:26217743

  14. Simplex-centroid mixture formulation for optimised composting of kitchen waste.

    PubMed

    Abdullah, N; Chin, N L

    2010-11-01

    Composting is a good recycling method to fully utilise all the organic wastes present in kitchen waste due to its high nutritious matter within the waste. In this present study, the optimised mixture proportions of kitchen waste containing vegetable scraps (V), fish processing waste (F) and newspaper (N) or onion peels (O) were determined by applying the simplex-centroid mixture design method to achieve the desired initial moisture content and carbon-to-nitrogen (CN) ratio for effective composting process. The best mixture was at 48.5% V, 17.7% F and 33.7% N for blends with newspaper while for blends with onion peels, the mixture proportion was 44.0% V, 19.7% F and 36.2% O. The predicted responses from these mixture proportions fall in the acceptable limits of moisture content of 50% to 65% and CN ratio of 20-40 and were also validated experimentally. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Municipal solid waste management in Rasht City, Iran.

    PubMed

    Alavi Moghadam, M R; Mokhtarani, N; Mokhtarani, B

    2009-01-01

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years.

  16. Municipal solid waste management in Rasht City, Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alavi Moghadam, M.R.; Mokhtarani, N.; Mokhtarani, B.

    2009-01-15

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data ofmore » different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years.« less

  17. Implications of variable waste placement conditions for MSW landfills.

    PubMed

    Cox, Jason T; Yesiller, Nazli; Hanson, James L

    2015-12-01

    This investigation was conducted to evaluate the influence of waste placement practices on the engineering response of municipal solid waste (MSW) landfills. Waste placement conditions were varied by moisture addition to the wastes at the time of disposal. Tests were conducted at a California landfill in test plots (residential component of incoming wastes) and full-scale active face (all incoming wastes including residential, commercial, and self-delivered components). The short-term effects of moisture addition were assessed by investigating compaction characteristics and moisture distribution and the long-term effects by estimating settlement characteristics of the variably placed wastes. In addition, effects on engineering properties including hydraulic conductivity and shear strength, as well as economic aspects were investigated. The unit weight of the wastes increased with moisture addition to a maximum value and then decreased with further moisture addition. At the optimum moisture conditions, 68% more waste could be placed in the same landfill volume compared to the baseline conditions. Moisture addition raised the volumetric moisture content of the wastes to the range 33-42%, consistent with values at and above field capacity. Moisture transfer occurred between consecutive layers of compacted wastes and a moisture addition schedule of 2 days of as-received conditions and 1 day of moisture addition was recommended. Settlement of wastes was estimated to increase with moisture addition, with a 34% increase at optimum moisture compared to as-received conditions. Overall, moisture addition during compaction increased unit weight, the amount of incoming wastes disposed in a given landfill volume, biological activity potential, and predicted settlement. The combined effects have significant environmental and economic implications for landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    PubMed

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  19. Effects of bean dregs and crab shell powder additives on the composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2018-07-01

    Composting is an effective and economic technology for the recycling of organic waste. In this study, bean dregs (BD) (at 0, 35, and 45%) and crab shell powder (CSP) (at 0, 15, and 25%) were evaluated as additives during the two-stage composting of green waste (GW). The GW used in this experiment mainly consisted of branch cuttings collected during the maintenance of the urban green landscape. Combined additions of BD and CSP improved composting conditions and compost quality in terms of composting temperature, specific surface area, average pore diameter, pH and EC values, carbon dioxide release, ammonia and nitrous oxide emissions, E 4 /E 6 ratio, elemental composition and atomic ratios, organic matter degradation, microbial numbers, enzyme activities, compost phytotoxicity, and environmental and economic benefits. The combined addition of 35% BD and 25% CSP to the two-stage composting of GW resulted in the highest quality compost product in only 22 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effect of matured compost as an inoculating agent on odour removal and maturation of vegetable and fruit waste compost.

    PubMed

    Chen, Chih-Yu; Kuo, Jong-Tar; Chung, Ying-Chien

    2013-01-01

    The use of matured compost as an inoculation agent to improve the composting of vegetable and fruit wastes in a laboratory-scale composter was evaluated, and the commercial feasibility of this approach in a pilot-scale (1.8 x 10(4) L) composter was subsequently confirmed. The effect of aeration rate on the physico-chemical and biological properties of compost was also studied. Aeration rate affected the fermentation temperature, moisture content, pH, O2 consumption rate, CO2 production rate and the formation of odour. The optimal aeration rate was 2.5 L air/kg dry solid/min. The CO2 production rate approached the theoretical value during composting and was linearly dependent on temperature, indicating that the compost system had good operating characteristics. The inoculation of cellulolytic bacteria and deodorizing bacteria to compost in the pilot-scale composter led to an 18.2% volatile solids loss and a 64.3% volume reduction ratio in 52 h; only 1.5 ppm(v) odour was detected. This is the first study to focus on both operating performance and odour removal in a pilot-scale composter.

  1. Greenhouse gas emissions from home composting of organic household waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.K., E-mail: jka@env.dtu.d; Boldrin, A.; Christensen, T.H.

    2010-12-15

    The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature.more » The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.« less

  2. Inactivation of Salmonella Senftenberg strain W 775 during composting of biowastes and garden wastes.

    PubMed

    Ceustermans, A; De Clercq, D; Aertsen, A; Michiels, C; Geeraerd, A; Van Impe, J; Coosemans, J; Ryckeboer, J

    2007-07-01

    Determination of the minimum requirements (time-temperature relationship and moisture content) that are needed for a sufficient eradication of an indicator organism. To determine the hygienic safety of composting processes, the indicator organism Salmonella enterica ssp. enterica serotype Senftenberg strain W 775 (further abbreviated as W 775) was artificially inoculated on a meat carrier and monitored subsequently. Different types of composting processes, e.g. composting in enclosed facilities, in open-air and in-vessel composting, were investigated. The waste feedstocks used in this work were either biowastes (i.e. vegetable, fruit and garden wastes; also called source-separated household wastes) or pure garden wastes. Beside these large-scale trials, we also conducted some lab experiments in order to determine the impact of temperature, moisture content and the presence of an indigenous microflora on the eradication of W 775. We found the temperature to be the most important parameter to eradicate W 775 from compost. When the temperature of the compost heap is 60 degrees C and the moisture content varies between 60-65%, W 775 (10(8) CFU g(-1)) will be inactivated within 10 h of composting. The moisture content is, beside temperature, a second parameter that influences the survival of W 775. When the water content of the composting materials or meat carriers is reduced, a higher survival rate of W 775 was observed (survival rate increases 0.5 log(10) unit when there is a reduction of 5% in moisture content). In addition, other parameters (such as microbial antagonism, toxic compounds, etc.) have an influence on the survival of W 775 as well. Our study demonstrates that all types of composting processes tested in this work were sufficient to eradicate W 775 providing that they are well managed in terms of temperature and moisture content. To give a better view on the parameters of importance for the eradication of W 775 during composting.

  3. Effects of pH and microbial composition on odour in food waste composting

    PubMed Central

    Sundberg, Cecilia; Yu, Dan; Franke-Whittle, Ingrid; Kauppi, Sari; Smårs, Sven; Insam, Heribert; Romantschuk, Martin; Jönsson, Håkan

    2013-01-01

    A major problem for composting plants is odour emission. Slow decomposition during prolonged low-pH conditions is a frequent process problem in food waste composting. The aim was to investigate correlations between low pH, odour and microbial composition during food waste composting. Samples from laboratory composting experiments and two large scale composting plants were analysed for odour by olfactometry, as well as physico-chemical and microbial composition. There was large variation in odour, and samples clustered in two groups, one with low odour and high pH (above 6.5), the other with high odour and low pH (below 6.0). The low-odour samples were significantly drier, had lower nitrate and TVOC concentrations and no detectable organic acids. Samples of both groups were dominated by Bacillales or Actinobacteria, organisms which are often indicative of well-functioning composting processes, but the high-odour group DNA sequences were similar to those of anaerobic or facultatively anaerobic species, not to typical thermophilic composting species. High-odour samples also contained Lactobacteria and Clostridia, known to produce odorous substances. A proposed odour reduction strategy is to rapidly overcome the low pH phase, through high initial aeration rates and the use of additives such as recycled compost. PMID:23122203

  4. Atmospheric pollution problems and control proposals associated with solid waste management in China: a review.

    PubMed

    Tian, Hezhong; Gao, Jiajia; Hao, Jiming; Lu, Long; Zhu, Chuanyong; Qiu, Peipei

    2013-05-15

    Along with population growth, rapid urbanization and industrialization process, the volume of municipal solid waste (MSW) generation in China has been increasing sharply in the past 30 years and the total amount of MSW yields will continue to increase. Nowadays, due to global warming warrants particular attention throughout the world, a series of air pollutants (including greenhouse gases, odorous gases, PCDD/Fs, heavy metals, PM, etc.) discharged from waste disposal and treatment processes have become one of the new significant emerging air pollution sources, which arousing great concerns about their adverse effects on surrounding ambient air quality and public health. At present, the overall safely disposed ratio of the collected MSW in China is reported at approximately 78% in 2010, and there are mainly three types of MSW disposal methods practiced in China, including landfill, composting and incineration. The characteristics of air pollutants and greenhouse gases discharge vary substantially among different MSW disposal methods. By presenting a thorough review of MSW generation in China and providing a summarization of the current status of MSW disposal methods practices, this review article makes an integrated overview analysis of existing air pollution problems associated with MSW collection, separation, and disposal processes. Furthermore, some comprehensive control proposals to prevent air pollution for improving MSW management of China in the future are put forward. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.

  6. The efficiency of home composting programmes and compost quality.

    PubMed

    Vázquez, M A; Soto, M

    2017-06-01

    The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Micrometeorological Mass Balance Measurements of Greenhouse Gas Emissions from Composting Green-waste

    NASA Astrophysics Data System (ADS)

    Kent, E. R.; Bailey, S.; Stephens, J.; Horwath, W. R.; Paw U, K.

    2013-12-01

    Managed decomposition of organic materials is increasingly being used as an alternative waste management option and the resulting compost can be used as a fertilizer and soil amendment in home gardens and agriculture. An additional benefit is the avoidance of methane emissions associated with anaerobic decomposition in landfills. Greenhouse gases are still emitted during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This study uses a micrometeorological mass balance technique (upwind and downwind vertical profile measurements of trace gas concentrations and wind velocity) to calculate emissions of carbon dioxide, methane, and nitrous oxide from a pile of composting green-waste during the dry season in Northern California. The expected source pattern was observed in measured upwind-downwind concentration differences of all three gases averaged over the study period despite substantial noise seen in the half-hourly emission calculations. Sources of uncertainty are investigated and temporal patterns analyzed. An in-situ zero-source test was conducted to examine the mass balance technique when the source of emissions was removed. Results from the micrometeorological mass balance measurements are compared with measurements taken using the more common open chamber technique.

  8. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  9. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    PubMed

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to

  10. 76 FR 46290 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management. This information will be... assessments; however questions are being raised about its scope, the data sources used, the assumptions made...

  11. A Study of Rapid Biodegradation of Oily Wastes through Composting.

    DTIC Science & Technology

    1979-10-01

    effective method for large-scale composting of organic wastes. This research project was based on the principles of the forced aeration technique. The...carbon results in heat loss and subsequent reduction in effectiveness of pathogen destruction. It is therefore desirable to maintain the C/N ratio at a...investigated the effect of composting on the degradation of hydrocarbons in sewage sludge. Sludge extracts were fractionated into classes of compounds and a

  12. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting.

    PubMed

    Yuan, Jing; Yang, Qingyuan; Zhang, Zhiye; Li, Guoxue; Luo, Wenhai; Zhang, Difang

    2015-11-01

    The effects of adding a bulking agent and chemically pretreating municipal kitchen waste before aerobic composting were studied using a laboratory-scale system. The system used 20-L reactors and each test lasted 28days. The objective was to decrease NH3 and H2S emissions during composting. The bulking agent, dry cornstalks, was mixed with the kitchen waste to give a mixture containing 15% (wet weight) bulking agent. A combined treatment was also conducted, in which kitchen waste mixed with the bulking agent was pretreated with ferric chloride (FeCl3). Less leachate was produced by the composted kitchen waste mixed with bulking agent than by the kitchen waste alone, when the materials had reached the required maturity. The presence of cornstalks also caused less H2S to be emitted, but had little impact on the amount of NH3 emitted. The FeCl3 was found to act as an effective chemical flocculant, and its presence significantly decreased the amounts of NH3 and H2S emitted. Kitchen waste mixed with cornstalks and treated with FeCl3 emitted 42% less NH3 and 76% less H2S during composting than did pure kitchen waste. Copyright © 2015. Published by Elsevier B.V.

  13. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2014-11-01

    This research determined whether the two-stage co-composting can be used to convert green waste (GW) into a useful compost. The GW was co-composted with spent mushroom compost (SMC) (at 0%, 35%, and 55%) and biochar (BC) (at 0%, 20%, and 30%). The combined addition of SMC and BC greatly increased the nutrient contents of the compost product and also improved the compost quality in terms of composting temperature, particle-size distribution, free air space, cation exchange capacity, nitrogen transformation, organic matter degradation, humification, element contents, abundance of aerobic heterotrophs, dehydrogenase activity, and toxicity to germinating seeds. The addition of 35% SMC and 20% BC to GW (dry weight % of initial GW) and the two-stage co-composting technology resulted in the production of the highest quality compost product in only 24 days rather than the 90-270 days required with traditional composting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties.

    PubMed

    Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S

    2018-04-01

    Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Experimental and modeling approaches for food waste composting: a review.

    PubMed

    Li, Zhentong; Lu, Hongwei; Ren, Lixia; He, Li

    2013-10-01

    Composting has been used as a method to dispose food waste (FW) and recycle organic matter to improve soil structure and fertility. Considering the significance of composting in FW treatment, many researchers have paid their attention on how to improve FW composting efficiency, reduce operating cost, and mitigate the associated environmental damage. This review focuses on the overall studies of FW composting, not only various parameters significantly affecting the processes and final results, but also a number of simulation approaches that are greatly instrumental in well understanding the process mechanism and/or results prediction. Implications of many key ingredients on FW composting performance are also discussed. Perspects of effective laboratory experiments and computer-based simulation are finally investigated, demonstrating many demanding areas for enhanced research efforts, which include the screening of multi-functional additives, volatile organiccompound emission control, necessity of modeling and post-modeling analysis, and usefulness of developing more conjunctive AI-based process control techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting.

    PubMed

    Yang, Fan; Li, Guoxue; Shi, Hong; Wang, Yiming

    2015-02-01

    This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH4, N2O, and NH3 were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH4 emissions (by 85.8% and 80.5%, respectively) and decreased NH3 emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N2O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices.

    PubMed

    Schiavon, Marco; Martini, Luca Matteo; Corrà, Cesare; Scapinello, Marco; Coller, Graziano; Tosi, Paolo; Ragazzi, Marco

    2017-12-01

    The complaints arising from the problem of odorants released by composting plants may impede the construction of new composting facilities, preclude the proper activity of existing facilities or even lead to their closure, with negative implications for waste management and local economy. Improving the knowledge on VOC emissions from composting processes is of particular importance since different VOCs imply different odour impacts. To this purpose, three different organic matrices were studied in this work: dewatered sewage sludge (M1), digested organic fraction of municipal solid waste (M2) and untreated food waste (M3). The three matrices were aerobically biodegraded in a bench-scale bioreactor simulating composting conditions. A homemade device sampled the process air from each treatment at defined time intervals. The samples were analysed for VOC detection. The information on the concentrations of the detected VOCs was combined with the VOC-specific odour thresholds to estimate the relative weight of each biodegraded matrix in terms of odour impact. When the odour formation was at its maximum, the waste gas from the composting of M3 showed a total odour concentration about 60 and 15,000 times higher than those resulting from the composting of M1 and M2, respectively. Ethyl isovalerate showed the highest contribution to the total odour concentration (>99%). Terpenes (α-pinene, β-pinene, p-cymene and limonene) were abundantly present in M2 and M3, while sulphides (dimethyl sulphide and dimethyl disulphide) were the dominant components of M1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. ASSESSMENT OF THE BACTERIOLOGICAL QUALITY OF COMPOST FROM A YARD WASTE PROCESSING FACILITY

    EPA Science Inventory

    Citizen concern over possible pathogenic microorganism contamination in compost and in a runoff collection pond prompted a U.S. Environmental Protection Agency (EPA) investigation. One out of eight samples collected from the distribution pile at a yard waste compost processing f...

  19. Struvite for composting of agricultural wastes with termite mound: Utilizing the unutilized.

    PubMed

    Karak, Tanmoy; Sonar, Indira; Nath, Jyoti Rani; Paul, Ranjit Kumar; Das, Sampa; Boruah, Romesh Kumar; Dutta, Amrit Kumar; Das, Kuntal

    2015-01-01

    Although, compost is the store house of different plant nutrients, there is a concern for low amount of major nutrients especially nitrogen content in prepared compost. The present study deals with preparation of compost by using agricultural wastes with struvite (MgNH4PO4·6H2O) along with termite mound. Among four composting mixtures, 50kg termite mound and 2.5kg struvite with crop residues (stover of ground nut: 361.65kg; soybean: 354.59kg; potato: 357.67kg and mustard: 373.19kg) and cow dung (84.90kg) formed a good quality compost within 70days of composting having nitrogen, phosphorus and potassium as 21.59, 3.98 and 34.6gkg(-1), respectively. Multivariate analysis of variance revealed significant differences among the composts. The four composts formed two (pit 1, pit 2 and pit 3, pit 4) different groups. Two principal components expressed more than 97% of the total variability. Hierarchical cluster analysis resulted two homogeneous groups of composts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Compost: Brown gold or toxic trouble?

    USGS Publications Warehouse

    Kovacic, D.A.; Cahill, R.A.; Bicki, T.J.

    1992-01-01

    Limited data are available regarding the occurrence of potentially hazardous constituents in raw, uncomposted yard wastes, partially composted yard wastes, and finished compost (15, 16). Environmental monitoring at composting operations or facilities is lacking, and currently published research on the environmental fate of composted yard waste constituents is extremely limited. The cost of thoroughly investigating the fate of toxicants in yard waste may seem needlessly expensive, but it is much less than the cost of cleaning up contaminated sites and groundwater. Could yard waste compost sites become Superfund sites? The cost of a thorough testing program throughout the United States may be several million dollars, but that is only a fraction of the funds spent initiating and developing yard waste composting facilities, let alone the potentially much greater cost of environmental remediation. There is still time to address these problems and to develop sound state and federal guidelines for siting and operating yard waste compost facilities. The rush to implement landfill alternatives such as composting should not be the major driving force in determining legislation governing solid waste management. ?? 1991 American Chemical Society.

  1. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Beijing Municipal Research Institute of Environmental Protection, Beijing 100037; Li, Guoxue, E-mail: yangfan19870117@126.com

    2015-02-15

    Highlights: • Effect of phosphogypsum and superphosphate on composting gas emissions was studied. • The reduction mechanisms of composting gas were clarified in this study. • No negative effect was caused on maturity with phosphogypsum and superphosphate. • CH{sub 4} and NH{sub 3} emission was decreased with phosphogypsum and superphosphate addition. • GHG decreased by 17.4% and 7.3% with phosphogypsum and superphosphate addition. - Abstract: This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition ofmore » 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH{sub 4}, N{sub 2}O, and NH{sub 3} were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH{sub 4} emissions (by 85.8% and 80.5%, respectively) and decreased NH{sub 3} emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N{sub 2}O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively.« less

  2. Mathematical modeling of olive mill waste composting process.

    PubMed

    Vasiliadou, Ioanna A; Muktadirul Bari Chowdhury, Abu Khayer Md; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Pavlou, Stavros; Vayenas, Dimitrios V

    2015-09-01

    The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Role of biochar as an additive in organic waste composting.

    PubMed

    Sanchez-Monedero, M A; Cayuela, M L; Roig, A; Jindo, K; Mondini, C; Bolan, N

    2018-01-01

    The use of biochar in organic waste composting has attracted interest in the last decade due to the environmental and agronomical benefits obtained during the process. Biochar presents favourable physicochemical properties, such as large porosity, surface area and high cation exchange capacity, enabling interaction with major nutrient cycles and favouring microbial growth in the composting pile. The enhanced environmental conditions can promote a change in the microbial communities that can affect important microbially mediated biogeochemical cycles: organic matter degradation and humification, nitrification, denitrification and methanogenesis. The main benefits of the use of biochar in composting are reviewed in this article, with special attention to those related to the process performance, compost microbiology, organic matter degradation and humification, reduction of N losses and greenhouse gas emissions and fate of heavy metals. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Environmental modelling of use of treated organic waste on agricultural land: a comparison of existing models for life cycle assessment of waste systems.

    PubMed

    Hansen, Trine Lund; Christensen, Thomas Højlund; Schmidt, Sonia

    2006-04-01

    Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact assessment of environmental effects from land application of treated organic MSW: DST (Decision Support Tool, USA), IWM (Integrated Waste Management, U.K.), THE IFEU PROJECT (Germany), ORWARE (ORganic WAste REsearch, Sweden) and EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers. THE IFEU PROJECT, ORWARE and EASEWASTE are life cycle assessment (LCA) models containing more detailed land application modules. A case study estimating the environmental impacts from land application of 1 ton of composted source sorted organic household waste was performed to compare the results from the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts of the system. However, due to slightly different assumptions, quantification methods and environmental impact assessment, the obtained results varied clearly between the models. Furthermore, local conditions (e.g. soil type, farm type, climate and legal regulation) and waste composition strongly influenced the results of the environmental assessment.

  5. Solid-state fermentation and composting as alternatives to treat hair waste: A life-cycle assessment comparative approach.

    PubMed

    Catalán, Eva; Komilis, Dimitrios; Sánchez, Antoni

    2017-07-01

    One of the wastes associated with leather production in tannery industries is the hair residue generated during the dehairing process. Hair wastes are mainly dumped or managed through composting but recent studies propose the treatment of hair wastes through solid-state fermentation (SSF) to obtain proteases and compost. These enzymes are suitable for its use in an enzymatic dehairing process, as an alternative to the current chemical dehairing process. In the present work, two different scenarios for the valorization of the hair waste are proposed and assessed by means of life-cycle assessment: composting and SSF for protease production. Detailed data on hair waste composting and on SSF protease production are gathered from previous studies performed by our research group and from a literature survey. Background inventory data are mainly based on Ecoinvent version 3 from software SimaPro® 8. The main aim of this study was to identify which process results in the highest environmental impact. The SSF process was found to have lower environmental impacts than composting, due to the fact that the enzyme use in the dehairing process prevents the use of chemicals traditionally used in the dehairing process. This permits to reformulate an industrial process from the classical approach of waste management to a novel alternative based on circular economy.

  6. Modelling of composting process of different organic waste at pilot scale: Biodegradability and odor emissions.

    PubMed

    Gutiérrez, M C; Siles, J A; Diz, J; Chica, A F; Martín, M A

    2017-01-01

    The composting process of six different compostable substrates and one of these with the addition of bacterial inoculums carried out in a dynamic respirometer was evaluated. Despite the heterogeneity of the compostable substrates, cumulative oxygen demand (OD, mgO 2 kgVS) was fitted adequately to an exponential regression growing until reaching a maximum in all cases. According to the kinetic constant of the reaction (K) values obtained, the wastes that degraded more slowly were those containing lignocellulosic material (green wastes) or less biodegradable wastes (sewage sludge). The odor emissions generated during the composting processes were also fitted in all cases to a Gaussian regression with R 2 values within the range 0.8-0.9. The model was validated representing real odor concentration near the maximum value against predicted odor concentration of each substrate, (R 2 =0.9314; 95% prediction interval). The variables of maximum odor concentration (ou E /m 3 ) and the time (h) at which the maximum was reached were also evaluated statistically using ANOVA and a post-hoc Tukey test taking the substrate as a factor, which allowed homogeneous groups to be obtained according to one or both of these variables. The maximum oxygen consumption rate or organic matter degradation during composting was directly related to the maximum odor emission generation rate (R 2 =0.9024, 95% confidence interval) when only the organic wastes with a low content in lignocellulosic materials and no inoculated waste (HRIO) were considered. Finally, the composting of OFMSW would produce a higher odor impact than the other substrates if this process was carried out without odor control or open systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Comparative Analysis of the Possibility to Use Urban Organic Waste for Compost or Biogas Productions. Application to Rosario City, Argentina

    NASA Astrophysics Data System (ADS)

    Piacentini, Rubén D.; Vega, Marcelo

    2017-10-01

    The city waste is one of the main urban problems to be solved, since they generate large impacts on the environment, like use of land, contamination of the soil, water and air, and human diseases, among others. In Rosario city, placed in the Argentina Humid Pampa and having about 1 million inhabitants, the Municipality is developing different strategies in order to reduce the waste impact (295 000 Tons in 2016). One of the most important actions was the construction of the Bella Vista compost plant in 2012 (within the largest in South America). In the present work we analysed the possibility to use urban organic waste (that for Rosario city represents about 58% of the total waste in the last years) for: a) compost production and b) biogas production, with compost as a by-product. We determined the produced compost and biogas and the corresponding greenhouse gases (GHG) emissions, considering three possible scenarios: A reference scenario (Sr ) where 24 100 Tons of urban solid waste per year is transported from the city houses and buildings to a transfer landfill and then to the a final disposal landfill; a scenario number one (S1 ) in which the same fraction of waste is transported to the Compost plant and transformed to compost and a scenario number two (S2 ) where the same quantity of waste is used for the production of biogas (and compost). Applying the IPCC 2006 Model, we compare the results of the annual GHG emissions, in order to select the best alternative: to expand the Compost plant or to build a Biogas (plus compost) plant. We also discussed the extension of the present analysis to the situation in which all the capability of the Compost plant (25% of the 2016 waste production of the city) is used and the impact these plants are having for a better quality of life of persons involved in the informal waste activity.

  8. Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability.

    PubMed

    Barrena, Raquel; Font, Xavier; Gabarrell, Xavier; Sánchez, Antoni

    2014-07-01

    Stability is one of the most important properties of compost obtained from the organic fraction of municipal solid wastes. This property is essential for the application of compost to land to avoid further field degradation and emissions of odors, among others. In this study, a massive characterization of compost samples from both home producers and industrial facilities is presented. Results are analyzed in terms of chemical and respiration characterizations, the latter representing the stability of the compost. Results are also analyzed in terms of statistical validation. The main conclusion from this work is that home composting, when properly conducted, can achieve excellent levels of stability, whereas industrial compost produced in the studied facilities can also present a high stability, although an important dispersion is found in these composts. The study also highlights the importance of respiration techniques to have a reliable characterization of compost quality, while the chemical characterization does not provide enough information to have a complete picture of a compost sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    PubMed

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Feasibility of Using Phytoextraction to Remediate a Compost-Based Soil Contaminated with Cadmium.

    PubMed

    Parisien, Michele A; Rutter, Allison; Zeeb, Barbara A

    2015-01-01

    Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (<1.0 μg·g(-1)), and soil from the site containing low (5.0 ± 0.3 μg·g(-1) Cd), and high (16.5 ± 1.2 μg⋅g(-1) Cd) Cd concentrations. Plant uptake was low (root BAFs ≤0.5) for all species except P. compressa in the low Cd treatment (BAF 1.0). Only B. juncea accumulated Cd in its shoots, though uptake was low (BAF ≤0.3). For the field experiment, B. juncea was planted in-situ in areas of low and high Cd concentrations. Brassica juncea Cd uptake was low (root and shoot BAFs <0.2) in both treatments. Sequential extraction analysis indicated that Cd is retained primarily by low bioavailability soil fractions, and phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site.

  11. Analysis and forecasting of municipal solid waste in Nankana City using geo-spatial techniques.

    PubMed

    Mahmood, Shakeel; Sharif, Faiza; Rahman, Atta-Ur; Khan, Amin U

    2018-04-11

    The objective of this study was to analyze and forecast municipal solid waste (MSW) in Nankana City (NC), District Nankana, Province of Punjab, Pakistan. The study is based on primary data acquired through a questionnaire, Global Positioning System (GPS), and direct waste sampling and analysis. Inverse distance weighting (IDW) technique was applied to geo-visualize the spatial trend of MSW generation. Analysis revealed that the total MSW generated was 12,419,636 kg/annum (12,419.64 t) or 34,026.4 kg/day (34.03 t), or 0.46 kg/capita/day (kg/cap/day). The average wastes generated per day by studied households, clinics, hospitals, and hotels were 3, 7.5, 20, and 15 kg, respectively. The residential sector was the top producer with 95.5% (32,511 kg/day) followed by commercial sector 1.9% (665 kg/day). On average, high-income and low-income households were generating waste of 4.2 kg/household/day (kg/hh/day) and 1.7 kg/hh/day, respectively. Similarly, large-size families were generating more (4.4 kg/hh/day) waste than small-size families (1.8 kg/hh/day). The physical constituents of MSW generated in the study area with a population of about 70,000 included paper (7%); compostable matter (61%); plastics (9%); fine earth, ashes, ceramics, and stones (20.4%); and others (2.6%).The spatial trend of MSW generation varies; city center has a high rate of generation and towards periphery generation lowers. Based on the current population growth and MSW generation rate, NC is expected to generate 2.8 times more waste by the year 2050.This is imperative to develop a proper solid waste management plan to reduce the risk of environmental degradation and protect human health. This study provides insights into MSW generation rate, physical composition, and forecasting which are vital in its management strategies.

  12. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador

    PubMed Central

    Jara-Samaniego, J.; Pérez-Murcia, M. D.; Bustamante, M. A.; Paredes, C.; Pérez-Espinosa, A.; Gavilanes-Terán, I.; López, M.; Marhuenda-Egea, F. C.; Brito, H.; Moral, R.

    2017-01-01

    Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador), more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17) with a C/N ratio 25; pile 2: (60:30:10) with C/N ratio 24 and pile 3 (75:0:25) with C/N ratio 33), prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter decomposition

  13. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador.

    PubMed

    Jara-Samaniego, J; Pérez-Murcia, M D; Bustamante, M A; Paredes, C; Pérez-Espinosa, A; Gavilanes-Terán, I; López, M; Marhuenda-Egea, F C; Brito, H; Moral, R

    2017-01-01

    Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador), more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17) with a C/N ratio 25; pile 2: (60:30:10) with C/N ratio 24 and pile 3 (75:0:25) with C/N ratio 33), prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter decomposition

  14. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well asmore » for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.« less

  15. Microbial, chemical and physical aspects of citrus waste composting.

    PubMed

    van Heerden, I; Cronjé, C; Swart, S H; Kotzé, J M

    2002-01-01

    Citrus waste supplemented with calcium hydroxide and with a C/N ratio of 24:1, pH of 6.3 and moisture content of 60% was composted by piling under shelter. With regular turning over of the pile and replenishment of moisture, the thermic phase lasted for 65-70 days and composting was completed after 3 months. Compost thus prepared had an air-filled porosity of 14%, water-holding capacity of 590 ml l(-1), bulk density of 1.05 g cm(-3) and conductivity of 480 mS m(-1). Phosphorus content (in mg l(-1)) was 15, potassium 1,170, calcium 362, magnesium 121, sodium 32, chloride 143, boron 0.31, and water-soluble nitrogen and organic matter 126 and 4788, respectively. Total carbon amounted to 8.85% and total nitrogen to 1.26% of the dry weight, giving a C/N ratio of 7. Mature compost showed some, but acceptable, levels of phytotoxicity. Raw citrus waste was predominantly colonised by mesophilic yeasts. Thermophilous microorganisms present during the thermic phase mainly comprised the bacterial species Bacillus licheniformis, B. macerans and B. stearothermophilus and, to a lesser extent, fungi such as Absidia corymbifera, Aspergillus fumigatus, Emericella nidulans, Penicillium diversum, Paecilomyces variotii, Rhizomucor pusillus, Talaromyces thermophilus and Thermomyces lanuginosus. Bacteria prevalent in the final product included B. licheniformis, B. macerans, Proteus vulgaris, Pseudomonas aeruginosa, P. fluorescens, P. luteola and Serratia marcescens, whereas fungi isolated most frequently comprised Aspergillus puniceus, A. ustus, E. nidulans. Paecilomyces lilacinus, T lanuginosus, yeasts and a basidiomycetous species, probably Coprinus lagopus.

  16. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2016-02-01

    A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons.

    PubMed

    Hanc, Ales; Szakova, Jirina; Ochecova, Pavla

    2014-09-01

    The objective of this study was to evaluate the mobility of Cd, Cu, Pb and Zn during 3 different compost aeration rates of household bio-waste, originating in urban settlement (U-bio-waste) and family house buildings (F-bio-waste). The first two weeks, when the thermophilic composting phase became, the highest decline of exchangeable content was recorded. After 12 weeks of composting, lower exchangeable content was found in the case of U-bio-waste composts than F-bio-waste composts, despite higher loss of fresh mass. The order of fractions in both final composts was as follows: residual>oxidizable>reducible>exchangeable. The exchangeable portion of total content in final composts decreased in this order: Zn (17%), Cd (11%), Pb (4%) and Cu (3%). Regarding the low exchangeable content of heavy metals and high-quality organic matter, these types of composts could be used not only as fertilizer, but for remediation of metals contaminated land. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste.

    PubMed

    Voběrková, Stanislava; Vaverková, Magdalena D; Burešová, Alena; Adamcová, Dana; Vršanská, Martina; Kynický, Jindřich; Brtnický, Martin; Adam, Vojtěch

    2017-03-01

    An investigation was carried out on the effect of inoculation methods on the compost of an organic fraction of municipal solid waste. Three types of white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor and Fomes fomentarius), and a consortium of these fungi, were used. The study assessed their influence on microbial enzymatic activities and the quality of the finished compost. It was found that the addition of white-rot fungi to municipal solid waste (after 37days of composting) could be a useful strategy for enhancing the properties of the final compost product. In comparison with the control sample (compost without inoculation), it accelerates degradation of solid waste as indicated by changes in C/N, electrical conductivity and pH. However, the effectiveness of waste degradation and compost maturation depends on the type of microorganism used for inoculation. The presence of inoculants, such as Trametes versicolor and Fomes fomentarius, led to a higher degrading ratio and a better degree of maturity. This resulted in an increase of enzymatic activities (especially dehydrogenase and protease) and a germination index in comparison with inoculation using Phanerochaete chrysosporium or a consortium of fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    PubMed

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  20. Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S.

    PubMed

    Mu, Dongyan; Horowitz, Naomi; Casey, Maeve; Jones, Kimmera

    2017-01-01

    A composting system provides many benefits towards achieving sustainability such as, replacing fertilizer use, increasing the quantity of produce sold, and diverting organic wastes from landfills. This study delves into the many benefits a composting system provided by utilizing an established composting system at Kean University (KU) in New Jersey, as a scale project to examine the composters' environmental and economic impacts. The results from the study showed that composting food wastes in an in-vessel composter when compared to typical disposal means by landfilling, had lower impacts in the categories of fossil fuel, GHG emissions, eutrophication, smog formation and respiratory effects; whereas, its had higher impacts in ozone depletion, acidification human health impacts, and ecotoxicity. The environmental impacts were mainly raised from the manufacturing of the composter and the electricity use for operation. Applying compost to the garden can replace fertilizers and also lock carbon and nutrients in soil, which reduced all of the environmental impact categories examined. In particular, the plant growth and use stage reduced up to 80% of respiratory effects in the life cycle of food waste composting. A cost-benefit analysis showed that the composting system could generate a profit of $13,200 a year by selling vegetables grown with compost to the student cafeteria at Kean and to local communities. When educational and environmental benefits were included in the analysis, the revenue increased to $23,550. The results suggest that in-vessel composting and the subsequent usage of a vegetable garden should be utilized by Universities or food markets that generate intensive food wastes across the U.S. Published by Elsevier Ltd.

  1. Characterisation of the physico-mechanical parameters of MSW.

    PubMed

    Stoltz, Guillaume; Gourc, Jean-Pierre; Oxarango, Laurent

    2010-01-01

    Following the basics of soil mechanics, the physico-mechanical behaviour of municipal solid waste (MSW) can be defined through constitutive relationships which are expressed with respect to three physical parameters: the dry density, the porosity and the gravimetric liquid content. In order to take into account the complexity of MSW (grain size distribution and heterogeneity larger than for conventional soils), a special oedometer was designed to carry out laboratory experiments. This apparatus allowed a coupled measurement of physical parameters for MSW settlement under stress. The studied material was a typical sample of fresh MSW from a French landfill. The relevant physical parameters were measured using a gas pycnometer. Moreover, the compressibility of MSW was studied with respect to the initial gravimetric liquid content. Proposed methods to assess the set of three physical parameters allow a relevant understanding of the physico-mechanical behaviour of MSW under compression, specifically, the evolution of the limit liquid content. The present method can be extended to any type of MSW. 2010 Elsevier Ltd. All rights reserved.

  2. Statistical analysis in MSW collection performance assessment.

    PubMed

    Teixeira, Carlos Afonso; Avelino, Catarina; Ferreira, Fátima; Bentes, Isabel

    2014-09-01

    The increase of Municipal Solid Waste (MSW) generated over the last years forces waste managers pursuing more effective collection schemes, technically viable, environmentally effective and economically sustainable. The assessment of MSW services using performance indicators plays a crucial role for improving service quality. In this work, we focus on the relevance of regular system monitoring as a service assessment tool. In particular, we select and test a core-set of MSW collection performance indicators (effective collection distance, effective collection time and effective fuel consumption) that highlights collection system strengths and weaknesses and supports pro-active management decision-making and strategic planning. A statistical analysis was conducted with data collected in mixed collection system of Oporto Municipality, Portugal, during one year, a week per month. This analysis provides collection circuits' operational assessment and supports effective short-term municipality collection strategies at the level of, e.g., collection frequency and timetables, and type of containers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Determination of lead and cadmium concentration limits in agricultural soil and municipal solid waste compost through an approach of zero tolerance to food contamination.

    PubMed

    Saha, Jayanta Kumar; Panwar, N R; Singh, M V

    2010-09-01

    Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4-150 mg/kg and Cd at 0.02-20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C(ul)) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers' fields. Lead and Cd concentration limits in soil were calculated by dividing C(ul) with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.

  4. Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.

  5. Recent developments in biochar utilization as an additive in organic solid waste composting: A review.

    PubMed

    Xiao, Ran; Awasthi, Mukesh Kumar; Li, Ronghua; Park, Jonghwan; Pensky, Scott M; Wang, Quan; Wang, Jim J; Zhang, Zengqiang

    2017-12-01

    In recent years, considerable studies have been devoted to investigating the effect of biochar application on organic solid waste composting. This review provides an up-to-date overview of biochar amendment on composting processes and compost quality. Biochar production, characteristics, and its application coupled with the basic concepts of composting are briefly introduced before detailing the effects of biochar addition on composting. According to recent studies, biochar has exhibited great potential for enhancing composting. It is evident that biochar addition in composting can: (1) improve compost mixture physicochemical properties, (2) enhance microbial activities and promote organic matter decomposition, (3) reduce ammonia (NH 3 ) and greenhouse gas (GHG) emissions, and (4) upgrade compost quality by increasing the total/available nutrient content, enhancing maturity, and decreasing phytotoxicity. Despite that, further research is needed to explore the mechanism of biochar addition on composting and to evaluate the agricultural and environmental performances of co-composted biochar compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants

    PubMed Central

    Holman, Devin B.; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W.

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers’ grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills. PMID:27300323

  7. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    PubMed

    Holman, Devin B; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.

  8. Water state changes during the composting of kitchen waste.

    PubMed

    Shen, Dong-Sheng; Yang, Yu-Qiang; Huang, Huan-Lin; Hu, Li-Fang; Long, Yu-Yang

    2015-04-01

    Changes in water states during the composting of kitchen waste were determined. Three experiments, R(55), R(60), and R(65), with different initial moisture contents, 55%, 60%, and 65%, respectively, were performed. Three water states, entrapped water (EW), capillary water (CW), and multiple-molecular-layer water (MMLW), were monitored during the experiments. Changes only occurred with the EW and CW during the composting process. The percentage of EW increased, and the percentage of CW decreased as the composting process progressed. The R(60) experiment performed better than the other experiments according to changes in the temperature and carbon-to-nitrogen ratio (C/N). The percentage of EW correlated well (P<0.05) with the dissolved organic carbon content (DOC), electrical conductivity (EC), pH, and C/N, and was affected by the hemicellulose and cellulose contents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Use of Fenton reaction for the treatment of leachate from composting of different wastes.

    PubMed

    Trujillo, Daniel; Font, Xavier; Sánchez, Antoni

    2006-11-02

    The oxidation of leachate coming from the composting of two organic wastes (wastewater sludge and organic fraction of municipal solid wastes) using the Fenton's reagent was studied using different ratios [Fe(2+)]/[COD](0) and maintaining a ratio [H(2)O(2)]/[COD](0) equal to 1. The optimal conditions for Fenton reaction were found at a ratio [Fe(2+)]/[COD](0) equal to 0.1. Both leachates were significantly oxidized under these conditions in terms of COD removal (77 and 75% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively) and BOD(5) removal (90 and 98% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively). Fenton's reagent was found to oxidize preferably biodegradable organic matter of leachate. In consequence, a decrease in the biodegradability of leachates was observed after Fenton treatment for both leachates. Nevertheless, Fenton reaction proved to be a feasible technique for the oxidation of the leachate under study, and it can be considered a suitable treatment for this type of wastewaters.

  10. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    PubMed

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  11. Suppressive composts from organic wastes as agents of biological control of fusariosis in Tatartan Republic (Russia)

    NASA Astrophysics Data System (ADS)

    Gumerova, Raushaniya; Galitskaya, Polina; Beru, Franchesca; Selivanovskaya, Svetlana

    2015-04-01

    Plant diseases are one of the seriously limiting factors of agriculture efficiency around the world. Diseases caused by fungi are the major threat to plants. Crop protection in modern agriculture heavily depends on chemical fungicides. Disadvantages of chemical pesticides soon became apparent as damage to the environment and a hazard to human health. In this regard use of biopesticides becomes an attractive alternative method of plant protection. For biological control of fungal plant diseases, separate bacterial or fungal strains as well as their communities can be used. Biopreparations must consist of microbes that are typical for local climate and soil conditions and therefore are able to survive in environments for a long time. Another option of plant pests' biological control is implementation of suppressive composts made of agricultural or other organic wastes. These composts can not only prevent the development of plant diseases, but also improve the soil fertility. The objective of this work was estimation of potential of composts and strains isolated from these composts as means for biological control of fusariosis that is one of the most widespread plant soil born disease. The composts were made up of the commonly produced agricultural wastes produced in Tatarstan Republic (Russia). Fusarium oxysporum f. sp. radicis-lycopersici was used as a model phytopathogen. Ten types of organic waste (Goat manure (GM), Chicken dung (CD), Chicken dung with straw addition (CS), Rabbit dung (RD), Cow manure (CM), Rerotting pork manure (RPM), Fresh pork manure (FPM), Pork manure with sawdust and straw (PMS), the remains of plants and leaves (PL), the vegetable waste (VW) were sampled in the big farms situated in Tatarstan Republic which is one of the main agricultural regions of Russia. The initial wastes were composted for 150 days. Further, the following characteristics of the composts were assessed: pH, electro conductivity, TOC, DOC, Ntot. On petri dishes with meat

  12. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components.

    PubMed

    Yuan, Ying; Tan, Wen-Bing; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhang, Hui; Dang, Qiu-Ling; Li, Dan

    2016-11-01

    Composting is widely used for recycling of kitchen waste to improve soil properties, which is mainly attributed to the nutrient and structural functions of compost-derived humic acids (HAs). However, the redox properties of compost-derived HAs are not fully explored. Here, a unique framework is employed to investigate the electron exchange capacity (EEC) of HAs during kitchen waste composting. Most components of compost-derived HAs hold EEC, but nearly two-thirds of them are found to be easily destroyed by Shewanella oneidensis MR-1 and thus result in an EEC lower than the electron - donating capacity in compost-derived HAs. Fortunately, a refractory component also existed within compost-derived HAs and could serve as a stable and effective electron shuttle to promote the MR-1 involved in Fe(III) reduction, and its EEC was significantly correlated with the aromaticity and the amount of quinones. Nevertheless, with the increase of composting time, the EEC of the refractory component did not show an increasing trend. These results implied that there was an optimal composting time to maximize the production of HAs with more refractory and redox molecules. Recognition of the heterogeneity of EEC of the compost-derived HAs enables an efficient utilization of the composts for a variety of environmental applications. Graphical abstract Microbial reduction of compost-derived HAs.

  13. The impact of municipal solid waste management on greenhouse gas emissions in the United States.

    PubMed

    Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria

    2002-09-01

    Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.

  14. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation.

    PubMed

    Quecholac-Piña, Xochitl; García-Rivera, Mariel Anel; Espinosa-Valdemar, Rosa María; Vázquez-Morillas, Alethia; Beltrán-Villavicencio, Margarita; Cisneros-Ramos, Adriana de la Luz

    2017-11-01

    Plastics are widely used in the production of short-life products, which are discarded producing an accumulation of these materials and problems due to their persistence in the environment and waste management systems. Degradable plastics (compostable, oxodegradable) have been presented as an alternative to decrease the negative effect of plastic waste. In this research, the feasibility of degrading a commercially available compostable film and oxodegradable polyethylene, with and without previous abiotic oxidation, is assessed in a home composting system. Reactors (200 L) were used to degrade the plastic films along with a mixture of organic food waste (50 %), mulch (25 %), and dry leaves (25 %), amended with yeast and a solution of brown sugar to increase the speed of the process. The presence of the plastic film did not affect the composting process, which showed an initial increase in temperature and typical profiles for moisture content, pH, with a final C/N of 17.4. After 57 days, the compostable plastic has decreased its mechanical properties in more than 90 %, while the oxodegradable film did not show significant degradation if it was not previously degraded by UV radiation. The use of these plastics should be assessed against the prevailing waste management system in each city or country. In the case of Mexico, which lacks the infrastructure for industrial composting, home composting could be an option to degrade compostable plastics along organic waste. However, more testing is needed in order to set the optimal parameters of the process.

  15. Penicillium pedernalense sp. nov., isolated from whiteleg shrimp heads waste compost.

    PubMed

    Laich, Federico; Andrade, Jacinto

    2016-11-01

    Novel Penicillium-like strains were isolated during the characterization of the mycobiota community dynamics associated with shrimp waste composting. Phylogenetic analysis of the partial β-tubulin (BenA) gene and the ribosomal DNA internal transcribed spacer region (ITS1-5.8S-ITS2) sequences revealed that the novel strains were members of section Lanata-Divaricata and were closely related to Penicillium infrabuccalum DAOMC 250537T. On the basis of morphological and physiological characterization, and phylogenetic analysis, a novel Penicillium species, Penicillium pedernalense sp. nov., is proposed. The type strain is F01-11T (=CBS 140770T=CECT 20949T), which was isolated from whiteleg shrimp (Litopenaeus vannamei) heads waste compost in the Pedernales region (Manabí province, Ecuador).

  16. Composting of pig manure and forest green waste amended with industrial sludge.

    PubMed

    Arias, O; Viña, S; Uzal, M; Soto, M

    2017-05-15

    The aim of this research was to study the composting of chestnut forest green waste (FGW) from short rotation chestnut stands amended with sludge resulting from the manufacture of Medium Density Fibreboard (MDFS) and pig manure (PM). Both FGW and MDFS presented low biodegradation potential but different characteristics in granulometry and bulk density that make its mixture of interest to achieve high composting temperatures. PM decreased the C/N ratio of the mixture and increased its moisture content (MC). Three mixtures of MDFS:FGW at volume ratios of 1:1.3 (M2), 1:2.4 (M3) and 0:1 (M4) were composted after increasing its MC to about 70% with PM. A control with food waste (OFW) and FGW (1:2.4 in volume) (M1) was run in parallel. Watering ratios reached 0.25 (M1), 1.08 (M2) 1.56 (M3) and 4.35 (M4) L PM/kg TS of added solids wastes. Treatments M2 and M3 reached a thermophilic phase shorter than M1, whilst M4 remained in the mesophilic range. After 48days of composting, temperature gradients in respect to ambient temperature were reduced, but the mineralization process continued for around 8months. Final reduction in total organic carbon reached 35-56%, depending mainly on the content in MDFS. MDFS addition to composting matrices largely reduced nitrogen losses, which range from 22% (M2) to 37% (M3) and 53% (M4). Final products had high nutrient content, low electrical conductivity and low heavy metal content which make it a valuable product for soil fertilization, right to amend in the chestnut forests and as a pillar of their sustainable management. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Volatile organic compound emissions from green waste composting: Characterization and ozone formation

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Alaimo, Christopher P.; Horowitz, Robert; Mitloehner, Frank M.; Kleeman, Michael J.; Green, Peter G.

    2011-04-01

    Composting of green waste separated from the disposed solid waste stream reduces biodegradable inputs into landfills, and contributes valuable soil amendments to agriculture. Agencies in regions with severe air quality challenges, such as California's San Joaquin Valley (SJV), have raised concerns about gases emitted during the composting process, which are suspected to contribute to persistent high levels of ground-level ozone formation. The goal of the current study is to thoroughly characterize volatile organic compound (VOC) emissions from green waste compost piles of different ages (fresh tipped piles, 3-6 day old windrows, and 2-3 week old windrows). Multiple sampling and analytical approaches were applied to ensure the detection of most gaseous organic components emitted. More than 100 VOCs were detected and quantified in this study, including aliphatic alkanes, alkenes, aromatic hydrocarbons, biogenic organics, aldehydes, ketones, alcohols, furans, acids, esters, ether, halogenated hydrocarbons and dimethyl disulfide (DMDS). Alcohols were found to be the dominating VOC in the emissions from a compost pile regardless of age, with fluxes ranging from 2.6 to 13.0 mg m -2 min -1 with the highest emissions coming from the younger composting windrows (3-6 days). Average VOC emissions other than alcohols were determined to be 2.3 mg m -2 min -1 from younger windows, which was roughly two times higher than either the fresh tipping pile (1.2 mg m -2 min -1) or the older windrows (1.4 mg m -2 min -1). It was also observed that the older windrows emit a slightly larger proportion of more reactive compounds. Approximately 90% of the total VOCs were found to have maximum incremental reactivity of less than 2. Net ozone formation potential of the emissions was also assessed.

  18. Effect of organic waste compost on the crop productivity and soil quality

    NASA Astrophysics Data System (ADS)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (<2%). Compost was produced from source separated food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; p<0.001). All compost norms resulted significant yield increase

  19. Role of psychrotrophic bacteria in organic domestic waste composting in cold regions of China.

    PubMed

    Hou, Ning; Wen, Luming; Cao, Huiming; Liu, Keran; An, Xuejiao; Li, Dapeng; Wang, Hailan; Du, Xiaopeng; Li, Chunyan

    2017-07-01

    To study the influence of psychrotrophic bacteria on organic domestic waste (ODW) composting in cold regions, twelve new efficient psychrotrophic composting strains were isolated. Together with the published representative composting strains, a phylogenetic tree was constructed showing that although the strains belong to the same phylum, the genera were markedly different. The twelve strains were inoculated into the ODW in the composting reactor at 13°C. After treatment, the indices of temperature, moisture content, pH, electrical conductivity, C/N, ammonium nitrogen, and nitrate nitrogen indicated that the compost had reached maturity. The thermophilic phase was reached at 17d, and composting was completed at 42d, a markedly shorter composting time than that in previous studies. High-throughput sequencing indicated that the inoculative strains became the dominant community during the mesophilic phase and that they enhanced the stability of the microbial community structure. Thus, psychrotrophic bacteria played a key role in low-temperature composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China.

    PubMed

    Wang, Yanqing; Zhang, Xiaohong; Liao, Wenjie; Wu, Jun; Yang, Xiangdong; Shui, Wei; Deng, Shihuai; Zhang, Yanzong; Lin, Lili; Xiao, Yinlong; Yu, Xiaoyu; Peng, Hong

    2018-04-25

    China has become the largest generator of municipal solid waste (MSW) in the world with its rapid urbanization, population growth and raising living standard. Among diverse solid waste disposal technologies, MSW incineration has been becoming an attractive choice. In terms of systematic point, an integrated MSW incineration system should include an incineration subsystem and a bottom ash (BA) disposal subsystem. This paper employed an extend emergy assessment method with several improved indicators, which considers the emissions' impact, to evaluate the comprehensive performances of an integrated MSW incineration system. One existing incineration plant in Yibin City, Sichuan Province, China, as a case study, is evaluated using the proposed method. Three alternative scenarios (scenario A: the incineration subsystem + the BA landfill subsystem; scenario B: the incineration subsystem + the concrete paving brick production subsystem using BA as raw material; scenario C: the incineration subsystem + the non-burnt wall brick production subsystem using BA as raw material) were compared. The study results reveal that the ratio of positive output is 1.225, 2.861 and 1.230, the improved environmental loading ratio is 2.715, 2.742 and 1.533, and the improved environmental sustainability index is 0.451, 1.043 and 0.803 for scenario A, B and C respectively. Therefore, reuse of BA can enhance the sustainability level of this integrated system greatly. Comparatively, scenario B has the best comprehensive performance among the three scenarios. Finally, some targeted recommendations are put forward for decision-making. Copyright © 2018. Published by Elsevier Ltd.

  1. Physico-chemical and biological characteristics of compost from decentralised composting programmes.

    PubMed

    Vázquez, M A; Sen, R; Soto, M

    2015-12-01

    Composts that originated from small-scale composting programmes including home, community and canteen waste composters were studied. Heavy metals concentration indicated compliance with current regulations for conventional and organic agriculture. Compost from canteen waste showed high organic matter content (74% VS), while community (44 ± 20% VS) and home composts (31 ± 16% VS) had moderate levels. N content increased from home compost (1.3 ± 0.9% dm) to community (2.0 ± 0.9%) and canteen compost (2.5-3.0%) while P content ranged from 0.4% to 0.6% dm. C/N, absorbance E4/E6 and N-NH4(+)/N-NO3(-) ratios as well as respiration index indicated well-stabilized final products. Culturable bacterial and fungal cfu linkage to composting dynamics were identified and higher diversity of invertebrates was found in the smaller scale static systems. With similar process evolution indicators to industrial systems, overall results support the sustainability of these small-scale, self-managed composting systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Reclamation of river dredged sediments polluted by PAHs by co-composting with green waste.

    PubMed

    Mattei, P; Cincinelli, A; Martellini, T; Natalini, R; Pascale, E; Renella, G

    2016-10-01

    Polluted dredged sediments are classified as waste and cannot be re-used in civil and environmental engineering nor in agriculture, posing serious logistical, economic and environmental problems for their management. We tested co-composting of sediments (S) slightly polluted by PAHs with urban green waste (GW), as a sustainable technique to both degrade the organic pollutants and lend to sediments suitable properties to be reused as technosol. Four treatments were tested: sediments only (S), GW only (GW), 1:1 w:w S:GW (SGW1:1), and 3:1 w:w S:GW (SGW3:1) for a co-composting period of one year. The co-composting materials underwent to an initial short and moderate thermophilic phase. However, at the end of the co-composting process, SGW3:1 and SGW1:1 achieved suitable physical and chemical properties as plant substrate in terms of organic C, N and humic substances contents, electrical conductivity and bulk density. In the first six months of treatment, the PAHs concentration in SGW3:1 and SGW1:1 was reduced by 26% and 57%, respectively, reaching values below under 1mgg(-1), whereas such a reduction in S alone was observed only after nine months. We concluded that co-composting with green waste can be a suitable approach for reclamation of dredged sediments opening opportunities for their use as technosol or as plant growing substrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Can we build better compost? Use of waste drywall to enhance plant growth on reclamation sites.

    PubMed

    Naeth, M Anne; Wilkinson, Sarah R

    2013-11-15

    Compost is a readily available source of organic matter and nutrients and is produced large scale in many jurisdictions. Novel advancements in composting include addition of construction waste, such as drywall, to address its disposal while potentially improving compost quality for use in land reclamation. Varying compositions (15-30% by weight) of coarse and ground waste drywall were added to manure and biosolids during composting. Six composts were applied at four rates (0, 50, 100, 200 Mg ha(-1)) to three reclamation soils (agricultural, urban clean fill, oil sands tailings). Response to composts was assessed in the greenhouse with three plant species (Hordeum vulgare L. (barley), Agropyron trachycaulum (Link) Malte (slender wheat grass) and Festuca saximontana Rydb. (rocky mountain fescue). Drywall added to biosolids or manure during composting had no detrimental effects on vegetation; any negative effects of compost occurred with and without drywall. In agricultural soil and clean fill, biosolids composts with 15% coarse and 18% ground drywall improved native grass response, particularly biomass, relative to biosolids compost without drywall. Drywall manure composts reduced native grass response relative to manure compost without drywall. Only low quality tailings sand was improved by 30% coarse drywall. Compost rate significantly affected above and below ground biomass in agricultural soil and reduced performance of native species at highest rates, suggesting a threshold beyond which conditions will not be suitable for reclamation. Grinding drywall did not significantly improve plant performance and use of coarse drywall would eliminate the need for specialized equipment and resources. This initial research demonstrates that drywall composts are appropriate soil amendments for establishment of native and non native plant species on reclamation sites with consideration of substrate properties and plant species tolerances to dictate which additional feed

  4. The relative isotopic abundance (δ13C, δ15N) during composting of agricultural wastes in relation to compost quality and feedstock.

    PubMed

    Inácio, Caio T; Magalhães, Alberto M T; Souza, Paulo O; Chalk, Phillip M; Urquiaga, Segundo

    2018-05-01

    Variations in the relative isotopic abundance of C and N (δ 13 C and δ 15 N) were measured during the composting of different agricultural wastes using bench-scale bioreactors. Different mixtures of agricultural wastes (horse bedding manure + legume residues; dairy manure + jatropha mill cake; dairy manure + sugarcane residues; dairy manure alone) were used for aerobic-thermophilic composting. No significant differences were found between the δ 13 C values of the feedstock and the final compost, except for dairy manure + sugarcane residues (from initial ratio of -13.6 ± 0.2 ‰ to final ratio of -14.4 ± 0.2 ‰). δ 15 N values increased significantly in composts of horse bedding manure + legumes residues (from initial ratio of +5.9 ± 0.1 ‰ to final ratio of +8.2 ± 0.5 ‰) and dairy manure + jatropha mill cake (from initial ratio of +9.5 ± 0.2 ‰ to final ratio of +12.8 ± 0.7 ‰) and was related to the total N loss (mass balance). δ 13 C can be used to differentiate composts from different feedstock (e.g. C 3 or C 4 sources). The quantitative relationship between N loss and δ 15 N variation should be determined.

  5. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    PubMed Central

    Tarquis, Ana M.; Cartagena, M. Carmen

    2014-01-01

    New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste's wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems. PMID:25003139

  6. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting.

    PubMed

    Huang, Dan-Lian; Zeng, Guang-Ming; Feng, Chong-Ling; Hu, Shuang; Lai, Cui; Zhao, Mei-Hua; Su, Feng-Feng; Tang, Lin; Liu, Hong-Liang

    2010-06-01

    Microbial populations and their relationship to bioconversion during lignocellulosic waste composting were studied by quinone profiling. Nine quinones were observed in the initial composting materials, and 15 quinones were found in compost after 50days of composting. The quinone species Q-9(H2), Q-10 and Q-10(H2) which are indicative of certain fungi appeared at the thermophilic stage but disappeared at the cooling stage. Q-10, indicative of certain fungi, and MK-7, characteristic of certain bacteria, were the predominant quinones during the thermophilic stage and were correlated with lignin degradation at the thermophilic stage. The highest lignin degradation ratio (26%) and good cellulose degradation were found at the cooling stage and were correlated with quinones Q-9, MK-7 and long-chain menaquinones attributed to mesophilic fungi, bacteria and actinomycetes, respectively. The present findings will improve the understandings of microbial dynamics and roles in composting, which could provide useful references for development of composting technology. Copyright 2010. Published by Elsevier Ltd.

  7. Composting in advanced life support systems

    NASA Technical Reports Server (NTRS)

    Atkinson, C. F.; Sager, J. C.; Alazraki, M.; Loader, C.

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.

  8. Composting in advanced life support systems.

    PubMed

    Atkinson, C F; Sager, J C; Alazraki, M; Loader, C

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.

  9. Synergistic effect of fly ash in in-vessel composting of biomass and kitchen waste.

    PubMed

    Manyapu, Vivek; Mandpe, Ashootosh; Kumar, Sunil

    2018-03-01

    The present study aims to utilize coal fly ash for its property to adsorb heavy metals and thus reducing the bioavailability of the metals for plant uptake. Fly ash was incorporated into the in-vessel composting system along with organic waste. The in-vessel composting experiments were conducted in ten plastic vessels of 15 L capacity comprising varying proportions of biomass waste, kitchen waste and fly ash. In this study, maximum degradation of organic matter was observed in Vessel 3 having k value of 0.550 d -1 . In vessel 10, 20% fly ash with a combination of 50% biomass waste and 30% kitchen waste along with the addition of 5% jaggery as an additive produced the best outcome with least organic matter (%C) loss and lowest value of rate constant (k). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting.

    PubMed

    Amir, Soumia; Benlboukht, Fatima; Cancian, Nadia; Winterton, Peter; Hafidi, Mohamed

    2008-12-30

    In Marrakech, solid by-products from tanneries are highly polluting, generating large amounts of nitrogenous and organic matter. In the present study composting is tested as a cost-effective method for waste management to overcome many of the environmental hazards and produce a stable, rich material for soil fertilization. Two composting trials were conducted after neutralization by ammonia or lime. The aim of the neutralization was to avoid the antimicrobial effects of the acidity in the tannery waste, thus ensuring correct composting. Different techniques such as elemental analysis and 13C NMR spectroscopy were applied to analyse humic acids isolated from raw and composted materials, and to monitor the process of tannery waste composting, and the stability and maturity of the final product according to the means of neutralization. Comparison of data showed similar behaviour in both trials, but the composting process appeared to be more complete following neutralization with lime. The C, H and N content decreased, while the O increased. The FTIR and 13C NMR spectra show the decrease of aliphatic compounds demonstrated by the reduction of absorbance around 2922cm(-1) and of the resonance in the C-alkyl area around 0-55ppm. The humic acids newly formed during composting were richer in the O-N alkyl and oxidized aromatic structures that increased almost twofold on composting after neutralization with lime. The first principal component axis PC1 (54%) separated C-aliphatic, C-carboxylic and other less stable and less polycondensed compounds such as polyphenols from the more polycondensed O-N alkyl and oxidized C-aromatic compounds.

  11. Lignocellulose-degrading enzymes, free-radical transformations during composting of lignocellulosic waste and biothermal phases in small-scale reactors.

    PubMed

    Bohacz, Justyna

    2017-02-15

    Environmentally friendly strategies of waste management are both part of legal solutions currently in place and a focus of interest worldwide. Large-scale composting plants are set up across various regions while home composting is becoming increasingly popular. A variety of microbial groups are successively at work during composting and enzymatic activities detected in the composting mass fluctuate accordingly. Changes in the activities of oxidoreductases and hydrolases, i.e. glucose oxidase, horseradish peroxidase, lignin peroxidase, laccase, xylanase, superoxide dismutase and keratinase, low-molecular weight compounds, i.e. methoxyphenolic and hydroxyphenolic compounds, and the relative level of superoxide radicals and glucose were determined periodically in water extracts of composts to investigate the process of biochemical transformations of ligninocellulose in relation to biothermal phases and to identify a potential priming effect in two composts containing different ratios of lignocellulosic waste and chicken feathers. Composting was conducted for 30weeks. An important aim of the study was to demonstrate that a positive priming effect was induced during composting of a variety of lignocellulosic waste types using native keratin (chicken feathers) as a source of N. The effect was more evident in compost containing grass, which was related to a more rapid depletion of easily available sources of C and energy (glucose) during composting. Ligninolytic enzymes known to biodegrade recalcitrant organic matter were induced in subsequent biothermal phases of composting. Compost I enriched with grass (pine bark, grass, sawdust and chicken feathers) exhibited a higher enzymatic activity than compost II which did not contain any grass but which had a greater number of hardly-degradable components (pine bark, wheat straw, sawdust, chicken feathers). Similar observations were made for the concentrations of low-molecular weight compounds. The enzymes activities and

  12. Physical analyses of compost from composting plants in Brazil.

    PubMed

    Barreira, L P; Philippi Junior, A; Rodrigues, M S; Tenório, J A S

    2008-01-01

    Nowadays the composting process has shown itself to be an alternative in the treatment of municipal solid wastes by composting plants. However, although more than 50% of the waste generated by the Brazilian population is composed of matter susceptible to organic composting, this process is, still today, insufficiently developed in Brazil, due to low compost quality and lack of investments in the sector. The objective of this work was to use physical analyses to evaluate the quality of the compost produced at 14 operative composting plants in the Sao Paulo State in Brazil. For this purpose, size distribution and total inert content tests were done. The results were analyzed by grouping the plants according to their productive processes: plants with a rotating drum, plants with shredders or mills, and plants without treatment after the sorting conveyor belt. Compost quality was analyzed considering the limits imposed by the Brazilian Legislation and the European standards for inert contents. The size distribution tests showed the influence of the machinery after the sorting conveyer on the granule sizes as well as the inert content, which contributes to the presence of materials that reduce the quality of the final product.

  13. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia).

    PubMed

    Chan, Yiu C; Sinha, Rajiv K; Weijin Wang

    2011-05-01

    This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH(4) (2.2 mg m(- 2) h(-1)) than the anaerobic digestion bins (9.5 mg m(-2) h(-1)) and the vermicomposting bins (4.8 mg m(-2) h( -1)). The vermicomposting bins had lower N(2)O emission rates (1.2 mg m(-2) h(- 1)) than the others (1.5-1.6 mg m(-2) h( -1)). Total GHG emissions including both N(2)O and CH(4) were 463, 504 and 694 mg CO(2)-e m(- 2) h(-1) for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N(2)O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.

  14. Co-composting of hair waste from the tanning industry with de-inking and municipal wastewater sludges.

    PubMed

    Barrena, Raquel; Pagans, Estel la; Artola, Adriana; Vázquez, Felícitas; Sánchez, Antoni

    2007-06-01

    Production of waste hair in the leather manufacturing industry is increasing every year due to the adoption of hair-save unhairing techniques, leaving the tanners with the problem of coping with yet another solid by-product. Numerous potential strategies for hair utilisation have been proposed. However, the use of hair waste as agricultural fertiliser is one of its most promising applications due to the high nitrogen content of hair. Agricultural value of hair can be increased by composting. This paper deals with the composting of hair from the unhairing of bovine hide. Results indicated that hair cannot be either composted on its own or co-composted with de-inking sludge, a chemical complementary co-substrate. However, good results were obtained when co-composted with raw sludge from a municipal wastewater treatment plant at hair:raw sludge weight ratios 1:1, 1:2 and, 1:4 in lab scale and pilot plant scale composters. In all cases, a more stable product was achieved at the end of the process. Composting in the pilot plant composter was effectively monitored using Static Respiration Indices determined at process temperature at sampling (SRI(T)) and at 37 degrees C (SRI(37)). Notably, SRI(T) values were more sensitive to changes in the biological activity. In contrast, Respiratory Quotient (RQ) values were not adequate to follow the development of the process.

  15. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting.

    PubMed

    Liu, Ling; Wang, Shuqi; Guo, Xiaoping; Zhao, Tingning; Zhang, Bolin

    2018-03-01

    A comprehensive characterization of the bacterial diversity associated to thermophilic stages of green waste composting was achieved. In this study, eight different treatments (T1-T8) and three replicated lab-scale green waste composting were carried out to compare the effect of the cellulase (i.e. 0, 2%), microbial inoculum (i.e. 0, 2 and 4%) and particle size (i.e. 2 and 5 mm) on bacterial community structure. Physicochemical properties and bacterial communities of T1-T8 composts were observed, and the bacterial structure and diversity were examined by high-throughput sequencing via a MiSeq platform. The results showed that the most abundant phyla among the treatments were the Firmicutes, Chloroflexi and Proteobacteria. The shannon index and non-metric multidimensional scaling (NMDS) showed higher bacterial abundance and diversity at the metaphase of composting. Comparing with 5-mm treatments, particle size of 2-mm had a richer diversity of bacterial communities. The addition of cellulase and a microbial inoculum could promote the fermentation temperature, reduce the compost pH and C/N ratio and result in higher GI index. The humic substance (HS) and humic acid (HA) contents for 2-mm particle size treatments were higher than those of 5-mm treatments. Canonical correspondence analysis suggested that differences in bacterial abundance and diversity significantly correlated with HA, E 4 /E 6 and temperature, and the relationship between bacterial diversity and environmental parameters was affected by composting stages. Based on these results, the application of cellulase to promote green waste composting was feasible, and particle size was identified as a potential control of composting physicochemical properties and bacterial diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Leaching composted lignocellulosic wastes to prepare container media: feasibility and environmental concerns.

    PubMed

    Fornes, Fernando; Carrión, Carolina; García-de-la-Fuente, Rosana; Puchades, Rosa; Abad, Manuel

    2010-08-01

    The leaching of salt and mineral elements from three composts prepared with residual vegetable crop biomass (melon, pepper or zucchini) was studied using methacrylate columns and distilled water. The benefits of the leached composts to be used for ornamental potted plant production were also analysed. After leaching 5 container capacities of effluent, both the electrical conductivity and the concentration of soluble mineral elements in compost leachates decreased substantially and remained close to the target levels. Composts reacted differently to leaching due to differences in the raw waste sources and the composting process and hence, in their physical and chemical characteristics. At the end of the experiment, after pouring 8 container capacities of water, the leaching efficiency of the salts was 96%, 93% and 87% for melon, pepper and zucchini-based composts, respectively. Mineral elements differed in their ability to be removed from the composts; N (NH(4)(+) and NO(3)(-)), K(+), Na(+), Cl(-), and SO(4)(2-) were leached readily, whereas H(2)PO(4)(-), Ca(2+), and Mg(2+) were removed hardly. Leached composts showed a range of physico-chemical and chemical characteristics suitable for use as growing media constituents. Potted Calendula and Calceolaria plants grew in the substrates prepared with the leached composts better than in those made with the non-leached ones. Finally, special emphasis must be paid to the management of the effluents produced under commercial conditions to avoid environmental pollution. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Catalytic Pyrolysis of Waste Plastic Mixture

    NASA Astrophysics Data System (ADS)

    Sembiring, Ferdianta; Wahyu Purnomo, Chandra; Purwono, Suryo

    2018-03-01

    Inorganic waste especially plastics still become a major problem in many places. Low biodegradability of this materials causes the effort in recycling become very difficult. Most of the municipal solid waste (MSW) recycling facilities in developing country only use composting method to recover the organic fraction of the waste, while the inorganic fraction is still untreated. By pyrolysis, plastic waste can be treated to produce liquid fuels, flammable gas and chars. Reduction in volume and utilization of the liquid and gas as fuel are the major benefits of the process. By heat integration actually this process can become a self-sufficient system in terms of energy demand. However, the drawback of this process is usually due to the diverse type of plastic in the MSW creating low grade of liquid fuel and harmful gases. In this study, the mixture of plastics i.e. polypropylene (PP) and polyethylene terephthalate (PET) is treated using pyrolysis with catalyst in several operating temperature. PET is problematic to be treated using pyrolysis due to wax-like byproduct in liquid which may cause pipe clogging. The catalyst is the mixture of natural zeolite and bentonite which is able to handle PP and PET mixture feed to produce high grade liquid fuels in terms of calorific value and other fuel properties.

  19. Biohazards and ecotoxicological considerations of landspreading of spent compost wastes.

    PubMed

    Rao, J R; Nelson, D; Lafferty, N; Moore, J E; Millar, B C; Xu, J; Watabe, M

    2003-01-01

    Spent mushroom compost (SMC) is a major waste of the mushroom industry with low economic value. SMC arises after mushroom production in phase II compost (pIIC), predominantly comprising straw and chicken litter as principal raw ingredients. The majority of SMC waste is disposed off by application to agricultural land. It is an attractive proposition for utilising SMC as soil inorganic fertiliser supplementation. However, there is limited data available as to the consequences of this method of disposal either in terms of microbiological loading of food-borne pathogens and those of concern to mushroom industry itself. The resulting imbalance of the natural flora of the agricultural land has not been properly audited. This study aims to initially examine SMC for prevalence of faecal bacterial pathogens including Campylobacter spp., Salmonella spp. and Listeria monocytogenes that may arise from chicken litter. At another level, it aims to ascertain the pathogenic bacteria (Pseudomonas syringae, pv phaseolicola or tolasii) and fungal populations (Trichoderma, Verticillium species) originating mainly from the straw component of the SMC, which are of concern to the mushroom industry. Lastly, the study would also qualitatively identify the diversity of bacterial populations within SMC. This was largely accomplished through employment of rDNA, PCR and direct sequencing strategies on the culturable microflora. However, for specific mushroom pathogens, nucleic acids (DNA or RNA) were directly extracted from composts before subjecting to sequence analysis. In accordance with the current legislation (ABP 02/02, Animal By Products wastes disposal EC No. 1774/2002), it is imperative to regulate the farm wastes carrying residues from animal sources including SMC before they are regarded safe for land spreading operations. The ecological microbe-microbe and plant-microbe interactions that potentially occur between the native bacterial soil flora and those added annually

  20. Effect of addition of organic waste on reduction of Escherichia coli during cattle feces composting under high-moisture condition.

    PubMed

    Hanajima, Dai; Kuroda, Kazutaka; Fukumoto, Yasuyuki; Haga, Kiyonori

    2006-09-01

    To ensure Escherichia coli reduction during cattle feces composting, co-composting with a variety of organic wastes was examined. A mixture of dairy cattle feces and shredded rice straw (control) was blended with organic wastes (tofu residue, rice bran, rapeseed meal, dried chicken feces, raw chicken feces, or garbage), and composted using a bench-scale composter under the high-moisture condition (78%). The addition of organic waste except chicken feces brought about maximum temperatures of more than 55 degrees C and significantly reduced the number of E. coli from 10(6) to below 10(2)CFU/g-wet after seven days composting, while in the control treatment, E. coli survived at the same level as that of raw feces. Enhancements of the thermophilic phase and E. coli reduction were related to the initial amount of easily digestible carbon in mass determined as BOD. BOD value more than 166.2 mg O2/DMg brought about significant E. coli reduction.

  1. Characterization of organic compounds in biochars derived from municipal solid waste.

    PubMed

    Taherymoosavi, Sarasadat; Verheyen, Vince; Munroe, Paul; Joseph, Stephen; Reynolds, Alicia

    2017-09-01

    Municipal solid waste (MSW) generation has been growing in many countries, which has led to numerous environmental problems. Converting MSW into a valuable biochar-based by-product can manage waste and, possibly, improve soil fertility, depending on the soil properties. In this study, MSW-based biochars, collected from domestic waste materials and kerbsides in two Sydney's regions, were composted and pyrolysed at 450°C, 550°C and 650°C. The characteristics of the organic components and their interactions with mineral phases were investigated using a range of analytical techniques, with special attention given to polycyclic aromatic hydrocarbons and heavy metal concentrations. The MSW biochar prepared at 450°C contained the most complex organic compounds. The highest concentration of fixed C, indicating the stability of biochar, was detected in the high-temperature-biochar. Microscopic analysis showed development of pores and migration of mineral phases, mainly Ca/P/O-rich phases, into the micro-pores and Si/Al/O-rich phases on the surface of the biochar in the MSW biochar produced at 550°C. Amalgamation of organic phases with mineral compounds was observed, at higher pyrolysis temperatures, indicating chemical reactions between these two phases at 650°C. XPS analysis showed the main changes occurred in C and N bonds. During heat treatment, N-C/C=N functionalities decomposed and oxidized N configurations, mainly pyridine-N-oxide groups, were formed. The majority of the dissolved organic carbon fraction in both MSW biochar produced at 450°C and 550°C was in the form of building blocks, whereas LMW acids was the main fraction in high-temperature-biochar (59.9%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Composting of Sewage Sludge Using Recycled Matured Compost as a Single Bulking Agent

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Ren, Jian; Niu, Huasi; Wu, Xingwu

    2010-11-01

    Pretreatment (bulking agent choice and mixing) is an essential phase of dewatered raw sludge (RS) composting affecting its industrialization significantly. In this paper recycled compost (RC) was chosen as a single bulking agent in the composting experiment instead of other agents such as sawdust, rice straw, MSW, and the mixing machine was developed for mixing of SS and RC. According to the mixing experiment, SS and RC can be mixed uniformly and formed into small particles of 10˜15 mm in diameter, which improved the availability of oxygen during composting. The effect of different volumetric ratios of RS to RC, 1:1 (Exp.1), 1:2 (Exp.2) and 1:4 (Exp.3), on the performance of composting was investigated in detail. Temperature, oxygen consumption rate, organic matter, C/N ratio and moisture content were monitored in each experiment. In despite of low initial C/N of the mixture, intensive fermentation happened in all the experiments. Exp.1 and Exp.2 achieved stability and sanitization, but Exp 1 took more days to accomplish the fermentation. Exp 3 maintained thermophilic temperatures for a shortest time and did not satisfy the necessary sanitation requirements because more RC was recycled. In all experiments, the moisture content of their final composts were too high to be used as bulking agents before extra moisture was reduced. RS: RC = 1:2 (v/v) was the optimum and advisable proportion for the industrialization of sewage sludge composting of, the composting period was about 10 days, and the aeration rate 0.05 m3/(m3ṡmin) was appropriate in this study.

  3. Distribution and availability of trace elements in municipal solid waste composts.

    PubMed

    Paradelo, Remigio; Villada, Antía; Devesa-Rey, Rosa; Moldes, Ana Belén; Domínguez, Marta; Patiño, Jacobo; Barral, María Teresa

    2011-01-01

    Trace element contamination is one of the main problems linked to the quality of compost, especially when it is produced from urban wastes, which can lead to high levels of some potentially toxic elements such as Cu, Pb or Zn. In this work, the distribution and bioavailability of five elements (Cu, Zn, Pb, Cr and Ni) were studied in five Spanish composts obtained from different feedstocks (municipal solid waste, garden trimmings, sewage sludge and mixed manure). The five composts showed high total concentrations of these elements, which in some cases limited their commercialization due to legal imperatives. First, a physical fractionation of the composts was performed, and the five elements were determined in each size fraction. Their availability was assessed by several methods of extraction (water, CaCl(2)-DTPA, the PBET extract, the TCLP extract, and sodium pyrophosphate), and their chemical distribution was assessed using the BCR sequential extraction procedure. The results showed that the finer fractions were enriched with the elements studied, and that Cu, Pb and Zn were the most potentially problematic ones, due to both their high total concentrations and availability. The partition into the BCR fractions was different for each element, but the differences between composts were scarce. Pb was evenly distributed among the four fractions defined in the BCR (soluble, oxidizable, reducible and residual); Cu was mainly found in the oxidizable fraction, linked to organic matter, and Zn was mainly associated to the reducible fraction (iron oxides), while Ni and Cr were mainly present almost exclusively in the residual fraction. It was not possible to establish a univocal relation between trace elements availability and their BCR fractionation. Given the differences existing for the availability and distribution of these elements, which not always were related to their total concentrations, we think that legal limits should consider availability, in order to achieve

  4. Evaluation and Analysis of Cotton Bedding as a Bulking Agent in an Aerobic Food Waste Composting System

    NASA Astrophysics Data System (ADS)

    Chan, A. S. L.

    2017-12-01

    Food wastage is a prominent issue in Hong Kong that should be addressed. Here at The Independent Schools Foundation Academy, we are continuously looking for ways to improve, including that of food waste. In 2013 the school installed an A900 Rocket Food Composter, in hopes of reducing carbon footprint. Since the installation, the school has tested various elements of the food composter to further improve upon it to make it increasingly more sustainable and effective. These improvements vary from the revamping of the odour control system, increasing the nitrogen content and the installation of an improved grease trap. The school composts the food waste through combining a variety of substances together: coffee, compost, food waste, and a bulking agent - which will be tested in this study. Recently, the school has changed the compost bulking agent from wood shavings and cardboard to cotton bedding - a side product of the production of UK passports. In this study, I will evaluate the effectiveness of cotton bedding as a bulking agent in an aerobic composting system, focusing primarily on three points: a) microbial activity - the identification of cellulose digesting bacteria and the associated kinetics, b) the soil gas composition - the data shall be collected through the use of the Gasmet DX 4015, and c) the chemical analysis of the compost - specifically the amount of aluminum in the compost and whether or not it is significant enough to discredit cotton bedding as an effective bulking agent. The the analysis of cotton bedding using these three specifications will allow ISF Academy to evaluate the overall effectiveness of cotton bedding as a bulking agent.

  5. Geotechnical behavior of the MSW in Tianziling landfill.

    PubMed

    Zhu, Xiang-Rong; Jin, Jian-Min; Fang, Peng-Fei

    2003-01-01

    The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.

  6. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    PubMed

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  7. Mineralization dynamics in soil fertilized with seaweed-fish waste compost.

    PubMed

    Illera-Vives, Marta; López-Fabal, Adolfo; López-Mosquera, M Elvira; Ribeiro, Henrique M

    2015-12-01

    Seaweed and fish waste can be composted together to obtain fertilizer with high organic matter and nutrient contents. The nutrients, however, are mostly in organic form and must be mineralized to make them available to plants. The objective of this work was to establish a usage guideline for the compost by studying its mineralization dynamics. Also, the release of inorganic N and C from soil fertilized with the compost was monitored and modelled. C and N were released throughout the assay, to an extent significantly dependent on fertilizer rate. Mineralization of both elements fitted a first-order exponential model, and each fertilizer rate required using a specific fitting model. An increased rate favoured mineralization (especially of carbon). After 90 days, 2.3% of C and 7.7% of N were mineralized (and 23.3% of total nitrogen made plant available) with the higher rate. C mineralization was slow because organic matter in the compost was very stable. On the other hand, the relatively high initial content in mineral N of the compost increased gradually by the effect of mineralization. The amount of N available would suffice to meet the requirements of moderately demanding crops at the lower fertilizer rate, and even those of more demanding crops at the higher rate. © 2015 Society of Chemical Industry.

  8. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments

    NASA Astrophysics Data System (ADS)

    Taha, M. P. M.; Drew, G. H.; Longhurst, P. J.; Smith, R.; Pollard, S. J. T.

    The passive and active release of bioaerosols during green waste composting, measured at source is reported for a commercial composting facility in South East (SE) England as part of a research programme focused on improving risk assessments at composting facilities. Aspergillus fumigatus and actinomycetes concentrations of 9.8-36.8×10 6 and 18.9-36.0×10 6 cfu m -3, respectively, measured during the active turning of green waste compost, were typically 3-log higher than previously reported concentrations from static compost windrows. Source depletion curves constructed for A. fumigatus during compost turning and modelled using SCREEN3 suggest that bioaerosol concentrations could reduce to background concentrations of 10 3 cfu m -3 within 100 m of this site. Authentic source term data produced from this study will help to refine the risk assessment methodologies that support improved permitting of compost facilities.

  9. Fungi diversity from different depths and times in chicken manure waste static aerobic composting.

    PubMed

    Gu, Wenjie; Lu, Yusheng; Tan, Zhiyuan; Xu, Peizhi; Xie, Kaizhi; Li, Xia; Sun, Lili

    2017-09-01

    The Dirichlet multinomial mixtures mode was used to analyse illumina sequencing data to reveal both temporal and spatial variations of the fungi community present in the aerobic composting. Results showed that 670 operational taxonomic units (OTUs) were detected, and the dominant phylum was Ascomycota. There were four types of samples fungi communities during the composting process. Samples from the early composting stage were mainly grouped into type I and Saccharomycetales sp. was dominant. Fungi community in the medium composting stage were fallen into type II and III, Sordariales sp. and Acremonium alcalophilum, Saccharomycetales sp. and Scedosporium minutisporum were the dominant OTUs respectively. Samples from the late composting stage were mainly grouped into type IV and Scedosporium minutisporum was the dominant OTU; Scedosporium minutisporum was significantly affected by depth (P<0.05). Results indicate that time and depth both are factors that influence fungi distribution and variation in c waste during static aerobic composting. Copyright © 2017. Published by Elsevier Ltd.

  10. Evolution of microbial dynamics during the maturation phase of the composting of different types of waste.

    PubMed

    Villar, Iria; Alves, David; Garrido, Josefina; Mato, Salustiano

    2016-08-01

    During composting, facilities usually exert greater control over the bio-oxidative phase of the process, which uses a specific technology and generally has a fixed duration. After this phase, the material is deposited to mature, with less monitoring during the maturation phase. While there has been considerable study of biological parameters during the thermophilic phase, there is less research on the stabilization and maturation phase. This study evaluates the effects of the type of starting material on the evolution of microbial dynamics during the maturation phase of composting. Three waste types were used: sludge from the fish processing industry, municipal sewage sludge and pig manure, each independently mixed with shredded pine wood as bulking agent. The composting system for each waste type comprised a static reactor with capacity of 600L for the bio-oxidative phase followed by stabilization and maturation phase in triplicate 200L boxes for 112days. Phospholipid fatty acids, enzyme activities and physico-chemical parameters were measured throughout the maturation phase. The evolution of the total microbial biomass, Gram + bacteria, Gram - bacteria, fungi and enzymatic activities (β-glucosidase, cellulase, protease, acid and alkaline phosphatase) depended significantly on the waste type (p<0.001). The predominant microbial community for each waste type remained present throughout the maturation process, indicating that the waste type determines the microorganisms that are able to develop at this stage. While fungi predominated during fish sludge maturation, manure and municipal sludge were characterized by a greater proportion of bacteria. Both the structure of the microbial community and enzymatic activities provided important information for monitoring the composting process. More attention should be paid to the maturation phase in order to optimize composting. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Composting: Fast 2.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…

  12. Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE).

    PubMed

    Hansen, Trine Lund; Bhander, Gurbakhash S; Christensen, Thomas Højlund; Bruun, Sander; Jensen, Lars Stoumann

    2006-04-01

    A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decision-support model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4-0.7 PE), acidification (-0.06 (saving)-1.6 PE), nutrient enrichment (-1.0 (saving)-3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste

  13. Assessment of the Fluorescence Spectra Characteristics of Dissolved Organic Matter Derived from Organic Waste Composting Based on Projection Pursuit Classification (PPC).

    PubMed

    Wei, Zi-min; Wang, Xing-lei; Pan, Hong-wei; Zhao, Yue; Xie, Xin-yu; Zhao, Yi; Zhang, Lin-xue; Zhao, Tao-zhi

    2015-10-01

    The characteristics of fluorescence spectra of dissolved organic matter (DOM) derived from composting is one of the key ways to assess the compost maturity. However, the existing methods mainly focus on the qualitative description for the humification degree of compost. In this paper, projection pursuit classification (PPC) was conducted to quantitative assess the grades of compost maturity, based on the characteristics of fluorescence spectra of DOM. Eight organic wastes (chicken manure, swine manure, kitchen waste, lawn waste, fruits and vegetables waste, straw, green waste, and municipal solid waste) composting were conducted, the germination percentage (GI) and fluorescence spectra of DOM were measured during composting. Statistic analysis with all fluorescence parameters of DOM indicated that I436/I383 (a ratio between the fluorescence intensities at 436 and 383 nm in excitation spectra), FLR (an area ratio between fulvic-like region from 308 to 363 nm and total region in emission spectra), P(HA/Pro) (a regional integration ratio between humic acid-like region to protein-like region in excitation emission matrix (EEM) spectra), A4/A1 (an area ratio of the last quarter to the first quarter in emission spectra), r(A,C) (a ratio between the fluorescence intensities of peak A and peak C in EEM spectra) were correlated with each other (p < 0.01), suggesting that this fluorescence parameters could be considered as comprehensive evaluation index system of PPC. Subsequently, the four degrades of compost maturity included the best degree of maturity (I, GI > 80%), better degree of compost maturity (II, 60% < GI < 80%), maturity (III, 50% < GI < 60%), and immaturity (IV, GI < 50%) were divided according the GI value during composting. The corresponding fluorescence parameter values were calculated at each degrade of compost maturity. Then the projection values were calculated based on PPC considering the above fluorescence parameter values. The projection value was 2

  14. Comparison of mass balance, energy consumption and cost of composting facilities for different types of organic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Huijun; Matsuto, Toshihiko, E-mail: matsuto@eng.hokudai.ac.jp

    2011-03-15

    Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in themore » compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.« less

  15. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.

    PubMed

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-01

    Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Developing a Planting Medium from Solid Waste Compost and Construction and Demolition Rubble for Use in Quarry Rehabilitation

    NASA Astrophysics Data System (ADS)

    Assaf, E. A.

    2015-12-01

    The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on Lebanon and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. This research aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots). The plant species used are Mathiolla crassifolia and Zea mays (Corn). Results have shown successful growth of both corn and Mathiolla seedlings in the mixes with higher amounts of construction rubble and compost i.e. Rubble: Soil: Compost Ratio of 2:1:1 and 1:0:1. However treatments with no compost and with less quantities of rubble demonstrated the inability of the soil used to sustain plant growth alone (1:1:1 and 1:1:0). Last but not least, the control consisting of soil only ended up being the weakest mix with yellow corn leaves and small Mathiolla seedlings fifty days after planting and fertilizing. Additionally, soil analysis, rubble and compost analysis were conducted. The samples were tested for heavy metals, nutrient availability and values of pH and EC. No contamination has been reported and an abundance of macronutrients and micronutrients was documented for the soil and compost. High alkalinity is due to the presence of concrete and the high percentage of Calcium Carbonate in Lebanese soils. Accordingly, the most adequate mixes for planting are treatments A (2:1:1) and B (1:0:1) and they should be pursued for a pilot scale study to test their potential use in quarry rehabilitation and

  17. Cultivation of Chlorella sp. with livestock waste compost for lipid production.

    PubMed

    Zhu, L-D; Li, Z-H; Guo, D-B; Huang, F; Nugroho, Y; Xia, K

    2017-01-01

    Cultivation of microalgae Chlorella sp. with livestock waste compost as an alternative nutrient source was investigated in this present study. Five culture media with different nutrient concentrations were prepared. The characteristics of algal growth and lipid production were examined. The results showed that the specific growth rate together with biomass and lipid productivities was different among all the cultures. As the initial nutrient concentration decreased, the lipid content of Chlorella sp. increased. The variations in lipid productivity of Chlorella sp. among all the cultures were mainly due to the deviations in biomass productivity. The livestock waste compost medium with 2000mgL -1 COD provided an optimal nutrient concentration for Chlorella sp. cultivation, where the highest productivities of biomass (288.84mgL -1 day -1 ) and lipid (104.89mgL -1 day -1 ) were presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    EPA Pesticide Factsheets

    Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW) generation, recycling, composting, combustion with energy recovery and landfilling. The 2014 report provides information on historical tipping fees for MSW, and information on the construction and demolition debris generation, which is outside of the scope of MSW. The Facts and Figures website includes recent reports (2012 to 2014 as well as historical information on materials in the U.S. Municipal Waste Stream, 1960 to 2014 (in tons). The reports for both current and historical waste prevention can be accessed at EPA's SMM website. The recent Annual Facts and Figures reports are accessible at the following link: https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures-report. Historical data as well as studies and summary tables related to the Advancing Sustainable Materials Management Report are accessible here: https://www.epa.gov/smm/studies-summary-tables-and-data-related-advancing-sustainable-materials-management-report. An excel file containing the data from 1960 - 2014 is located here: https://edg.epa.gov/data/PUBLIC/OLEM/Materials_Municipal_Waste_Stream_1960_to_2014.xlsx. EPA also maintains a list of state and local waste characterization studies (reports are not available for all states). You can search for your state at https://www.epa.gov/smm/advancing-

  19. Microbiological study on bioremediation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) contaminated soil by agricultural waste composting.

    PubMed

    Chen, Yaoning; Ma, Shuang; Li, Yuanping; Yan, Ming; Zeng, Guangming; Zhang, Jiachao; Zhang, Jie; Tan, Xuebin

    2016-11-01

    This paper studied the degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in contaminated soil under composting and natural conditions, respectively. BDE-47 residue in agricultural waste-composting pile was determined during 45-day composting. The microbial communities were determined by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the relationships between the DGGE results and physico-chemical parameters were evaluated by redundancy analysis (RDA) and heatmap-clustering analysis. The results showed that the degradation rate of BDE-47 was significantly higher in agricultural waste-composting pile compared with control group, which was enhanced up to almost 15 % at the end of composting. There were different environmental factors which affected the distribution of composting bacterial and fungal communities. The bacterial community composition was more significantly affected by the addition of BDE-47 compared with other physico-chemical parameters, and BDE-47 had stronger influences on bacterial community than fungal community during the composting. Meanwhile, the most variation in distribution of fungal community was explained by pile temperature.

  20. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting.

    PubMed

    Wong, Jonathan W-C; Fung, Shun On; Selvam, Ammaiyappan

    2009-07-01

    To evaluate the use of coal fly ash (CFA) on the decomposition efficiency of food waste, synthetic food waste was mixed with lime at 1.5% and 3% (equivalent to 0.94% and 1.88% CaCO(3), respectively), CFA at 5%, 10% and 15% with lime so as to achieve CaCO(3) equivalent of 1.88% and composted for 42 days in a thermophilic 20 l composter with two replicates each. Alkaline materials at 1.88% CaCO(3) equivalent successfully buffered the pH during the composting and enhanced the decomposition efficiency. When these buffering was achieved with CFA+lime, the composting period could be shortened to approximately 28 days compared with approximately 42 days in 3% lime. Organic decomposition in terms of CO(2) loss, carbon turnover and nitrogen transformation were significantly higher for treatments with 1.88% CaCO(3) equivalent. Nutrient transformations and compost maturity parameters indicated that addition of CFA (5-10%) with lime at 1.88% CaCO(3) equivalent enhances the decomposition efficiency and shortens the composting period by 35%.

  1. Improvement of home composting process of food waste using different minerals.

    PubMed

    Margaritis, M; Psarras, K; Panaretou, V; Thanos, A G; Malamis, D; Sotiropoulos, A

    2018-03-01

    This article presents the experimental study of the process of composting in a prototype home-scale system with a special focus on process improvement by using different additives (i.e. woodchips, perlite, vermiculite and zeolite). The interventions with different bulking agents were realized through composting cycles using substrates with 10% additives in specific mixtures of kitchen waste materials. The pre-selected proportion of the mixtures examined was 3:1:1 in cellulosic:proteins:carbohydrates, in order to achieve an initial C/N ratio equal to 30. The control of the initial properties of the examined substrates aimed at the consequent improvement of the properties of the final product (compost). The results indicated that composting process was enhanced with the use of additives and especially the case of zeolite and perlite provided the best results, in terms of efficient temperature evolution (>55 °C for 4 consecutive days). Carbon to nitrogen ratios decreased by 40% from the initial values for the reactors were minerals were added, while for the bioreactor tested with woodchips the reduction was slight, showing slowest degradation rate. Moisture content of produced compost varied within the range of 55-64% d.m., while nutrient content (K, Na, Ca, Mg) was in accordance with the limit values reported in literature. Finally, the composts obtained, exhibited a satisfactory degree of maturity, fulfilling the criterion related to the absence of phytotoxic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.

  3. Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream.

    PubMed

    Tian, Bao-Guo; Si, Ji-Tao; Zhao, Yan; Wang, Hong-Tao; Hao, Ji-Ming

    2007-01-01

    This paper deals with the procedure and methodology which can be used to select the optimal treatment and disposal technology of municipal solid waste (MSW), and to provide practical and effective technical support to policy-making, on the basis of study on solid waste management status and development trend in China and abroad. Focusing on various treatment and disposal technologies and processes of MSW, this study established a Monte-Carlo mathematical model of cost minimization for MSW handling subjected to environmental constraints. A new method of element stream (such as C, H, O, N, S) analysis in combination with economic stream analysis of MSW was developed. By following the streams of different treatment processes consisting of various techniques from generation, separation, transfer, transport, treatment, recycling and disposal of the wastes, the element constitution as well as its economic distribution in terms of possibility functions was identified. Every technique step was evaluated economically. The Mont-Carlo method was then conducted for model calibration. Sensitivity analysis was also carried out to identify the most sensitive factors. Model calibration indicated that landfill with power generation of landfill gas was economically the optimal technology at the present stage under the condition of more than 58% of C, H, O, N, S going to landfill. Whether or not to generate electricity was the most sensitive factor. If landfilling cost increases, MSW separation treatment was recommended by screening first followed with incinerating partially and composting partially with residue landfilling. The possibility of incineration model selection as the optimal technology was affected by the city scale. For big cities and metropolitans with large MSW generation, possibility for constructing large-scale incineration facilities increases, whereas, for middle and small cities, the effectiveness of incinerating waste decreases.

  4. Waste utilization of red snapper (Lutjanus sp.) fish bone to improve phosphorus contents in compost

    NASA Astrophysics Data System (ADS)

    Ramadhani, S.; Iswanto, B.; Purwaningrum, P.

    2018-01-01

    The purpose of this research is to get the idea that bone waste will be the P content enhancer in compost so that the compost produced meets the standard P levels specified in SNI 19-7030-2004 which regulating compost quality standard. Nutrient levels were obtained in fish bone meal (FBM) are C (3.35%), N (0.48%), P (30.90%) and K (0.02%). Effects of fish bone meal to the rising levels of P in the compost has been known. P levels of compost B, C, D, and E increased at 428.57; 542.85; 657.14 and 914.28% against the compost A (blank). FBM ideal addition indicated in compost B, as much as 15 gr, with a P content of 0.37% and has been passed according standards (0.10% for P). C/N ratio decreased over the 21 days period of composting, with the greatest decline was compost E with a ratio of 16:1. Highest nitrogen (N) levels recorded respectively in compost B and C with value of 1.09% and the lowest of recorded N content was compost A, D and E (1.08%). N content in all samples of compost were eligible minimum N of 0.40%. Carbon (C) is the highest recorded in compost B; 20.20% and the lowest in the compost E; 17.34%. Highest and lowest C levels on the compost has met the minimum C of 9.80%. Composting is done in a bucket as an aerobic composter (with air holes), compost pile turnover for each sample is controlled as much as once/2 days. Mesophilic period (23-450C) occurs during the 21-day period of composting. Compost B has P content of 0.37%, so it has fulfilled the provisions of SNI 19-7030-2004 about the recommended compost standard.

  5. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    PubMed

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  6. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting

    PubMed Central

    Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  7. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.

    PubMed

    Smolinska, Beata

    2015-03-01

    Phytoextraction of mercury-contaminated soils is a new strategy that consists of using the higher plants to make the soil contaminant nontoxic. The main problem that occurs during the process is the low solubility and bioavailability of mercury in soil. Therefore, some soil amendments can be used to increase the efficiency of the Hg phytoextraction process. The aim of the investigation was to use the commercial compost from municipal green wastes to increase the efficiency of phytoextraction of mercury-contaminated soil by Lepidium sativum L. plants and determine the leaching of Hg after compost amendment. The result of the study showed that Hg can be accumulated by L. sativum L. The application of compost increased both the accumulation by whole plant and translocation of Hg to shoots. Compost did not affect the plant biomass and its biometric parameters. Application of compost to the soil decreased the leaching of mercury in both acidic and neutral solutions regardless of growing medium composition and time of analysis. Due to Hg accumulation and translocation as well as its potential leaching in acidic and neutral solution, compost can be recommended as a soil amendment during the phytoextraction of mercury-contaminated soil.

  8. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Preliminary findings from a large-scale experiment.

    PubMed

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lü, Fan; Lan, Ji-Wu; Shao, Li-Min; Lin, Wei-An; He, Pin-Jing

    2017-05-01

    A large-scale bioreactor experiment lasting for 2years was presented in this paper to investigate the biochemical, hydrological and mechanical behaviors of high food waste content (HFWC) MSW. The experimental cell was 5m in length, 5m in width and 7.5m in depth, filled with unprocessed HFWC-MSWs of 91.3 tons. In the experiment, a surcharge loading of 33.4kPa was applied on waste surface, mature leachate refilling and warm leachate recirculation were performed to improve the degradation process. In this paper, the measurements of leachate quantity, leachate level, leachate biochemistry, gas composition, waste temperature, earth pressure and waste settlement were presented, and the following observations were made: (1) 26.8m 3 leachate collected from the 91.3 tons HFWC-MSW within the first two months, being 96% of the total amount collected in one year. (2) The leachate level was 88% of the waste thickness after waste filling in a close system, and reached to over 100% after a surcharge loading of 33.4kPa. (3) The self-weight effective stress of waste was observed to be close to zero under the condition of high leachate mound. Leachate drawdown led to a gain of self-weight effective stress. (4) A rapid development of waste settlement took place within the first two months, with compression strains of 0.38-0.47, being over 95% of the strain recorded in one year. The compression strain tended to increase linearly with an increase of leachate draining rate during that two months. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    PubMed

    Galitskaya, Polina; Biktasheva, Liliya; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the

  10. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing

    PubMed Central

    Galitskaya, Polina; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the

  11. Guidance: Policy for Municipality and MSW CERCLA Settlements at NPL Co-Disposal Sites

    EPA Pesticide Factsheets

    Transmittal memorandum and policy supplementing the 9/30/89 Interim Policy on CERCLA Settlements Involving Municipalities and Municipal Wastes. 1998 MSW Policy states that EPA will continue its policy of generally not identifying generators and transporters of MSW as PRPs at NPL sites.

  12. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste.

    PubMed

    Zhang, Hongyu; Li, Guoxue; Gu, Jun; Wang, Guiqin; Li, Yangyang; Zhang, Difang

    2016-12-01

    This study investigates the influence of aeration on volatile sulfur compounds (VSCs) and ammonia (NH 3 ) emissions during kitchen waste composting. Aerobic composting of kitchen waste and cornstalks was conducted at a ratio of 85:15 (wet weight basis) in 60L reactors for 30days. The gas emissions were analyzed with force aeration at rates of 0.1 (A1), 0.2 (A2) and 0.3 (A3) L (kgDMmin) -1 , respectively. Results showed that VSCs emission at the low aeration rate (A1) was more significant than that at other two rates (i.e., A2 and A3 treatment), where no considerable emission difference was observed. On the other hand, NH 3 emission reduced as the aeration rate decreased. It is noteworthy that the aeration rate did not significantly affect the compost quality. These results suggest that the aeration rate of 0.2L (kgDMmin) -1 may be applied to control VSCs and NH 3 emissions during kitchen waste composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Role of compostable tableware in food service and waste management. A life cycle assessment study.

    PubMed

    Fieschi, Maurizio; Pretato, Ugo

    2018-03-01

    It is estimated that in Europe 88-100 million tonnes of food waste are generated every year, with a Global Warming Potential (GWP) of around 227 MT of CO 2 equivalents generated for their collection and disposal. A 12% of this waste is estimated to arise from food service within the hospitality sector, which includes quick service restaurants, casual and fine dining, contract catering (canteens, prisons, hospitals, schools etc.) as well as indoor and outdoor events and exhibitions. Given this considerable amount and that the mixed unsorted collection is often the only practicable way to handle such waste flows, the choice of tableware and cutlery can make a big difference in facilitating waste collection as well as in reducing the overall environmental impact of food waste management. This study compares the environmental performance of using biodegradable & compostable single use tableware with organic recycling of food waste through composting against a traditional scenario using fossil-based plastic tableware and disposal of the waste flows through incineration and landfill. The study has taken into account the main requirements of the recently published Product Environmental Footprint (PEF) methodology of the European Commission. The results confirm that the use of biodegradable and compostable tableware combined with organic recycling is the preferred option for catering in quick service restaurants, contract catering and events, since it reduces significantly the carbon, water and resource footprint and is fully in line with the principles of a circular economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Co-composting of vegetable wastes and carton: Effect of carton composition and parameter variations.

    PubMed

    Rawoteea, Soonita Anjeena; Mudhoo, Ackmez; Kumar, Sunil

    2017-03-01

    The aim of the study was to investigate the effects of carton in the composting process of mixed vegetable wastes using an experimental composter of capacity 80L. Three different mixes were set-up (Mixes 1, 2 and 3) which consisted of vegetable wastes, 2.0kg paper and bulking agents, vegetable wastes, 1.5kg carton and bulking agents, vegetable wastes, 4.5kg carton and bulking agents, respectively. Temperature evolution, pH trends, moisture levels, respiration rates, percentage volatile solids and electrical conductivity were monitored for a period of 50days. The system remained under thermophilic conditions for a very short period due to the small size of the reactor. The three mixes did not exceed a temperature of 55°C, where sanitization takes place by the destruction of pathogens. The highest peak of CO 2 evolution was observed in Mix 2 indicating that maximum microbial degradation took place in that mix. Copyright © 2016. Published by Elsevier Ltd.

  15. Life cycle assessment of municipal solid waste management scenarios on the small island of Mauritius.

    PubMed

    Rajcoomar, Avinash; Ramjeawon, Toolseeram

    2017-03-01

    The aim of this study was to use the life cycle assessment tool to assess, from an environmental point of view, the different possible municipal solid waste (MSW) management scenarios for the island of Mauritius. The scenarios include landfilling with energy recovery (S1), incineration with energy recovery (S2), composting, incineration and landfilling (S3) and finally composting, recycling, incineration and landfilling (S4). The MSW generated in 2010 was selected as the functional unit. Foreground data were collected through surveys and literature. Background data were obtained from ecoinvent data in SimaPro 8 libraries. The scenarios were compared both through the CML-IA baseline-midpoint method and the ReCiPe end-point method. From the midpoint method, the results obtained indicates that landfilling (S1) has the greatest impact in all the analyzed impact categories except ozone layer depletion and human toxicity, while incineration (S2) has the least impact on almost all the analyzed damage categories except in global warming potential and human toxicity. The collection and transportation of waste has a significant impact on the environment. From the end-point method, S4 reduces the damage impact categories on Human Health, Ecosystems and Resources due to the recycling process. S3 is not favorable due to the impact caused by the composting process. However, it is also very important to emphasize that for incineration, the best available technology with energy recovery shall be considered. It is recommended that S2 and S4 are considered for strategic planning.

  16. The feasibility of applying immature yard-waste compost to remove nitrate from agricultural drainage effluents: A preliminary assessment

    USGS Publications Warehouse

    Tsui, L.; Krapac, I.G.; Roy, W.R.

    2007-01-01

    Nitrate is a major agricultural pollutant found in drainage waters. Immature yard-waste compost was selected as a filter media to study its feasibility for removing nitrate from drainage water. Different operation parameters were tested to examine the denitrification efficiency, including the amounts of compost packed in columns, the flow rate, and the compost storage periods. The experimental results suggested that hydraulic retention time was the major factor to determine the extent of nitrate removal, although the amount of compost packed could also contribute to the nitrate removal efficiency. The effluent nitrate concentration increased as the flow rate decreased, and the compost column reduced nitrate concentrations from 20 mg/L to less than 5 mg/L within 1.5 h. The solution pH increased at the onset of experiment because of denitrification, but stabilized at a pH of about 7.8, suggesting that the compost had a buffering capacity to maintain a suitable pH for denitrification. Storing compost under air-dried conditions may diminish the extent nitrate removed initially, but the effects were not apparent after longer applications. It appeared that immature yard-waste compost may be a suitable material to remove nitrate from tile drainage water because of its relatively large organic carbon content, high microbial activity, and buffering capacity. ?? 2006 Elsevier B.V. All rights reserved.

  17. Changes in the microbial communities during co-composting of digestates☆

    PubMed Central

    Franke-Whittle, Ingrid H.; Confalonieri, Alberto; Insam, Heribert; Schlegelmilch, Mirko; Körner, Ina

    2014-01-01

    Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical–chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment. PMID:24456768

  18. Changes in the microbial communities during co-composting of digestates.

    PubMed

    Franke-Whittle, Ingrid H; Confalonieri, Alberto; Insam, Heribert; Schlegelmilch, Mirko; Körner, Ina

    2014-03-01

    Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical-chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    PubMed

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  20. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    PubMed Central

    2013-01-01

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications. PMID:23369502

  1. Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp. chinensis

    PubMed Central

    Neugart, Susanne; Wiesner-Reinhold, Melanie; Frede, Katja; Jander, Elisabeth; Homann, Thomas; Rawel, Harshadrai M.; Schreiner, Monika; Baldermann, Susanne

    2018-01-01

    Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold) and decreased amounts of glucosinolates (up to 4.7-fold) as well as phenolic compounds (up to 1.5-fold). PMID:29616051

  2. Substrate composition and moisture in composting source-separated human faeces and food waste.

    PubMed

    Niwagaba, C; Nalubega, M; Vinnerås, B; Sundberg, C; Jönsson, H

    2009-04-14

    The composting of a faeces/ash mixture and food waste in relative proportions of 1:0, 1:1 and 1:3 was studied in three successive experiments conducted in Kampala, Uganda in 216 L reactors insulated with 75 mm styrofoam or not insulated. The faeces/ash mixture alone exceeded 50 degrees C for < or = 12 days in insulated reactors, but did not reach or maintain 50 degrees C in non-insulated reactors. Inclusion of food waste kept temperatures above 50 degrees C for over two weeks in insulated reactors except when the substrate was too wet. Escherichia coli and total coliform concentrations decreased below detection in material that exceeded 50 degrees C for at least six days. Enterococcus spp. decreased below detection in material that exceeded 50 degrees C for at least two weeks, but remained detectable after 1.5 months in material that exceeded 50 degrees C for less than two weeks, suggesting that a period of at least two weeks above 50 degrees C, combined with mixing, is needed to achieve sanitation. Initially substrates that were too wet proved a challenge to composting and ways of decreasing substrate moisture should be investigated. The results obtained are applicable to the management of small- to medium-scale composting of faeces/ash and food waste at household and institution levels, e.g. schools and restaurants.

  3. Leaching, geochemical modelling and field verification of a municipal solid waste and a predominantly non-degradable waste landfill.

    PubMed

    van der Sloot, H A; Kosson, D S; van Zomeren, A

    2017-05-01

    In spite of the known heterogeneity, wastes destined for landfilling can be characterised for their leaching behaviour by the same protocols as soil, contaminated soil, sediments, sludge, compost, wood, waste and construction products. Characterisation leaching tests used in conjunction with chemical speciation modelling results in much more detailed insights into release controlling processes and factors than single step batch leaching tests like TCLP (USEPA) and EN12457 (EU Landfill Directive). Characterisation testing also can provide the potential for mechanistic impact assessments by making use of a chemical speciation fingerprint (CSF) derived from pH dependence leaching test results. This CSF then forms the basis for subsequent chemical equilibrium and reactive transport modelling to assess environmental impact in a landfill scenario under relevant exposure conditions, including conditions not readily evaluated through direct laboratory testing. This approach has been applied to municipal solid waste (MSW) and predominantly non-degradable waste (PNW) that is representative of a significant part of waste currently being landfilled. This work has shown that a multi-element modelling approach provides a useful description of the release from each of these matrices because relevant release controlling properties and parameters (mineral dissolution/precipitation, sorption on Fe and Al oxides, clay interaction, interaction with dissolved and particulate organic carbon and incorporation in solid solutions) are taken into consideration. Inclusion of dissolved and particulate organic matter in the model is important to properly describe release of the low concentration trace constituents observed in the leachate. The CSF allows the prediction of release under different redox and degradation conditions in the landfill by modifying the redox status and level of dissolved and particulate organic matter in the model runs. The CSF for MSW provides a useful starting point

  4. Effect of irrigation and winery waste compost rates in nitrate leaching in vulnerable zones

    NASA Astrophysics Data System (ADS)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    The winery industry is widespread in Spain (3,610,000 tonnes of wine in 2010 (FAO, 2010)), and generates wastes characterized by a high content of organic matter, a notable content in macronutrients and low heavy-metals. These organic wastes could be used for agricultural purposes after a correct stabilization process (e.g. composting).The addition of these organic wastes requires a correct management, especially on semiarid cropped areas of central Spain where environmental degradation of water supplies with high N loads is observed. An integrated optimization of both applied compost dose and amount of irrigation is important to ensure optimum yields and minimum nitrate leaching losses. The purpose of this work was to study the effect of the application of winery waste compost as fertilizer in a melon crop cultivated with different drip irrigation rates. The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. Beside the control treatment (D0), three doses of compost were applied: 6.7 (D1), 13.3 (D2) and 20 T/ha(D3).Irrigation treatments consisted of applying a 100% ETc and an excess irrigation of 120% ETc. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 m depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Drainage and nitrate concentration on the soil solution were measured weekly to determine N leached during the crop period. Crop yield was also followed by harvesting plots when a significant number of fruits were fully matured. A comparison between nitrate leached and crop production among different treatments and irrigation rates are presented. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  5. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  6. Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium.

    PubMed

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Lai, Ka Man; Wong, Jonathan W C

    2017-12-01

    Effect of single-function (oil degrading) and multi-functional bacterial consortium with zeolite as additive for post-consumption food waste (PCFW) composting was investigated through assessing the oil content reduction in a computer controlled 20-L composter. Three treatments of PCFWs combined with 10% zeolite were developed: Treatment-2 and Treatment-3 were inoculated with multi-functional (BC-1) and oil degrading bacterial consortium (BC-2), respectively, while T-1 was without bacterial inoculation and served as control. Results revealed that BC-2 inoculated treatment (T-3) was superior to control treatment and marginally better than T-2 in terms of oil degradation. The reduction of oil content was >97.8% in T-3 and 92.27% in T-2, while total organic matter degradation was marginally higher in T-2 (42.95%) than T-3 (41.67%). Other parameters of compost maturity including germination test indicated that T-2 was marginally better than T-3 and significantly enhanced the oily PCFW decomposition and shortened the composting period by 20days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting.

    PubMed

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Khan, Jamaluddin; Bundela, Pushpendra Singh; Wong, Jonathan W C; Selvam, Ammaiyappan

    2014-09-01

    Influence of fungal consortium and different turning frequency on composting of organic fraction of municipal solid waste (OFMSW) was investigated to produce compost with higher agronomic value. Four piles of OFMSW were prepared: three piles were inoculated with fungal consortium containing 5l each spore suspensions of Trichoderma viride, Aspergillus niger and Aspergillus flavus and with a turning frequency of weekly (Pile 1), twice a week (Pile 2) and daily (Pile 3), while Pile 4 with weekly turning and without fungal inoculation served as control. The fungal consortium with weekly (Pile 1) turning frequency significantly affected temperature, pH, TOC, TKN, C/N ratio and germination index. High degradation of organic matter and early maturity was observed in Pile 1. Results indicate that fungal consortium with weekly turning frequency of open windrows were more cost-effective in comparison with other technologies for efficient composting and yield safe end products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Influence of lime and struvite on microbial community succession and odour emission during food waste composting.

    PubMed

    Wang, Xuan; Selvam, Ammaiyappan; Lau, Sam S S; Wong, Jonathan W C

    2018-01-01

    Lime addition as well as formation of struvite through the addition of magnesium and phosphorus salts provide good pH buffering and may reduce odour emission. This study investigated the odour emission during food waste composting under the influence of lime addition, and struvite formation. Composting was performed in 20-L reactors for 56days using artificial food waste mixed with sawdust at 1.2:1 (w/w dry basis). VFA was one of the most important odours during food waste composting. However, during thermophilic phase, ammonia is responsible for max odour index in the exhaust gas. Trapping ammonia through struvite formation significantly reduced the maximum odour unit of ammonia from 3.0×10 4 to 1.8×10 4 . The generation and accumulation of acetic acid and butyric acid led to the acidic conditions. The addition of phosphate salts in treatment with struvite formation improved the variation of total bacteria, which in turn increased the organic decomposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Heavy Metal Veggies: A Decision Case for Environmental and Nutrition Education.

    ERIC Educational Resources Information Center

    Schramm, J.; And Others

    1994-01-01

    One alternative to continued landfilling or incineration is the development of municipal solid waste (MSW) composting facilities. This case study permits students to examine issues associated with environmental contamination by MSW and to make decisions based on agricultural, environmental, economic, food safety, and ethical considerations. The…

  10. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.

    PubMed

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing

    2017-10-01

    The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.

  11. HEAVY METAL ASPECTS OF COMPOST USE

    EPA Science Inventory

    Composts prepared from municipal solid waste, biosolids, food processing wastes, manures, yard debris, and agricultural byproducts and residues are increasingly available for agricultural use. Although many benefits are possible from use of composts, these products must be safe f...

  12. Energy or compost from green waste? - A CO{sub 2} - Based assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kranert, Martin, E-mail: martin.kranert@iswa.uni-stuttgart.d; Gottschall, Ralf; Bruns, Christian

    2010-04-15

    Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste - in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currentlymore » subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO{sub 2}-balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions.« less

  13. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways.

    PubMed

    Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit

    2016-02-01

    Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Yield, nutrient utilization and soil properties in a melon crop amended with wine-distillery waste compost

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2014-05-01

    In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting <1 kg or visually rotten were not considered), fruit average weight and fruit number per plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed

  15. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste.

    PubMed

    Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang

    2018-03-01

    In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Experimenting with Different Bulking Agents in an Aerobic Food Waste Composter

    NASA Astrophysics Data System (ADS)

    Chann, S.

    2016-12-01

    With one third of Hong Kong's solid wastage being food scraps, reducing food waste has become crucial. The ISF Academy, a Hong Kong private school, had an A900 Rocket Food Composter installed in 2013, hoping to reduce its carbon footprint. The 27 metric tons of food wastage produced annually by the school is put through an aerobic process and the wastage is converted into humus. The composter has a capacity of 1750 litres of food and it produces humus every 14 days. The base of the humus consists of a bulking agent and food waste (2:1). A bulking agent is a carbon based material used to absorb moisture and odors, add structure and air and eliminate bugs from humus. This study contains comparative data on a few of the listed bulking agents: Hemp, Kenaf, rapeseed oil straw, miscanthus and shredded cardboard. The aim of this study is to determine an alternative reliable, affordable and suitable bulking agent to wood shavings: the current agent used. The humus produced must pass regulations for "general agricultural use" as it is used for experiential learning and gardening with primary school students. Over 500 children are participating in the school's plantation project, producing legumes for the school cafeteria. ISF pioneers and sets an example for other Hong Kong schools, showing that a composting and plantation scheme, not only proves to have environmental benefits but also educational uses.

  17. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting.

    PubMed

    Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang

    2017-12-01

    During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.K.; Boldrin, A.; Christensen, T.H.

    2012-01-15

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compostmore » was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of -2 to 16 milli person equivalents (mPE) Mg{sup -1} wet waste (ww) for the non-toxic categories and -0.9 to 28 mPE Mg{sup -1} ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.« less

  19. Nitrification during extended co-composting of extreme mixtures of green waste and solid fraction of cattle slurry to obtain growing media.

    PubMed

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Martínez-Farré, F Xavier; López, Marga; Soliva, Montserrat; Marfà, Oriol

    2016-12-01

    Next generation of waste management systems should apply product-oriented bioconversion processes that produce composts or biofertilisers of desired quality that can be sold in high priced markets such as horticulture. Natural acidification linked to nitrification can be promoted during composting. If nitrification is enhanced, suitable compost in terms of pH can be obtained for use in horticultural substrates. Green waste compost (GW) represents a potential suitable product for use in growing medium mixtures. However its low N provides very limited slow-release nitrogen fertilization for suitable plant growth; and GW should be composted with a complementary N-rich raw material such as the solid fraction of cattle slurry (SFCS). Therefore, it is important to determine how very different or extreme proportions of the two materials in the mixture can limit or otherwise affect the nitrification process. The objectives of this work were two-fold: (a) To assess the changes in chemical and physicochemical parameters during the prolonged composting of extreme mixtures of green waste (GW) and separated cattle slurry (SFCS) and the feasibility of using the composts as growing media. (b) To check for nitrification during composting in two different extreme mixtures of GW and SFCS and to describe the conditions under which this process can be maintained and its consequences. The physical and physicochemical properties of both composts obtained indicated that they were appropriate for use as ingredients in horticultural substrates. The nitrification process occurred in both mixtures in the medium-late thermophilic stage of the composting process. In particular, its feasibility has been demonstrated in the mixtures with a low N content. Nitrification led to the inversion of each mixture's initial pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    PubMed Central

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  1. Application of aerobic composting system for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Yoshii, Takahiro; Moriya, Toshiyuki; Yamashita, Masamichi

    Composting is a classical technique to decompose organic wastes such as animal bodies, straw, paper, raw sludge, and so on. Compared with burning of wastes, the composting method has many advantages. It is an inexpensive and safer method because of its self-heating without spending extra energy resources. It does not emit toxic pollutants such as dioxin, NOx , and SOx . The composting products can be used as organic fertilizers for agricultural production. Composting is a promising way for digesting organic wastes safely on spaceships or manned exploration on extraterrestrial planets. We have developed a small scale high-temperature composter in order to examine its feasobility to operate food waste disposing facility and fertilizer production in space. This composter has a heated reaction vessel containing compost soil (seed bacteria) provided by a compost factory. To determine the optimal condition for its operation, we analyzed the effect of temperature on metabolic activity (CO2 production rate), and water content. The dynamics of microbial community was studied by polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE). Water content was maintained to a range between 27% and 40% by continuously adding water. The highest CO2 emission was observed at around 70° C. PCR-DGGE analysis shows that the bacterial community of the compost soil is dramatically changed by changing reaction temperature. We will discuss the application of the composter in space in order to establish the closed recycling loop of bio-elements in space agriculture.

  2. Turning refuse into resource: a study on aerobic composting.

    PubMed

    Janakiram, T; Sridevi, K

    2012-07-01

    The management of solid waste disposal had been a perennial problem every where in our country. In order to overcome this problem one possible solution is to compost the solid waste in the presence of air, so that it may be converted into an useful manure. With this intention, solid wastes like coir waste and water hyacinth had been collected and composted with the addition of cow dung. The composted material had been examined for the physical and chemical parameters. The content of macronutrients was found to be higher as the period of composting increased. There were gradual variations in the case of other parameters. A comparative account of the two types of solid waste is also given.

  3. Preliminary evaluation of pathogenic bacteria loading on organic Municipal Solid Waste compost and vermicompost.

    PubMed

    Soobhany, Nuhaa

    2018-01-15

    The use of composts or vermicomposts derived from organic fraction of Municipal Solid Waste (OFMSW) brought about certain disagreement in terms of high level of bacterial pathogens, thereby surpassing the legal restrictions. This preliminary study was undertaken to compare the evolution of pathogenic bacteria on OFMSW compost against vermicompost (generated by Eudrilus eugeniae) with promises of achieving sanitation goals. Analysis to quality data showed that OFMSW vermicomposting caused a moderately higher reduction in total coliforms in contrast to composting. E. coli in OFMSW composts was found to be in the range of 4.72-4.96 log 10  CFU g -1 whilst on a clear contrary, E. coli was undetectable in the final vermicomposts (6.01-6.14 logs of reduction) which might be explained by the involvement of the digestive processes in worms' guts. Both OFMSW composts and vermicomposts generated Salmonella-free products which were acceptable for agricultural usage and soil improvement. In comparison to compost, the analysis of this research indicated that earthworm activity can effectively destroy bacterial pathogenic load in OFMSW vermicomposts. But still, this study necessitates extra research in order to comprehend the factors that direct pathogenic bacteria in vermicomposting and earthworm-free decomposition systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Utilization of Cocoa Pod Husk Waste Composting by Tremella Sp and Pleurotus Sp as A Medium to Growth of Cocoa Seedling

    NASA Astrophysics Data System (ADS)

    Rahim, Iradhatullah; Nasruddin, A.; Kuswinanti, T.; Asrul, L.; Rasyid, B.

    2018-05-01

    Cocoa pod husk waste is a problem in the cocoa field, but it potentially as a source of organic matter to improve soil fertility.The paper discuss about the ability of Tremella sp and Pleurotus sp on producing phytohormone and on degrading cocoa pod husks waste. The research start with isolation, screening, and propagation of rot fungi were collected from decayed cocoa plants. The measurement of IAA is according to the method of Glickman and Dessaux (1995), by addition of L-Tryptophan 0.1 g l-1, whereas the Gibberellic Acid content was measured by using the method of Borrow et al., (1955). Composting process of cocoa pod husks waste was revealed during 40 days. This research showed that the IAA and GA3 content in compost fermented with Tremella sp was higher than treatment with Pleurotus sp. Similarly, the result was also observed in the ability of hemicellulose degradation. However, Pleurotus sp was capable to produce compost with higher nutrient levels. Compost fermented by rot fungi gave significant effect to the growth of cocoa seedlings. Nevertheless the difference in varieties of cocoa had no effect on growth of cocoa seedlings. Cocoa pod husk waste composted by Tremella sp and Pleurotus sp gave the significant effect on Leaf Area Index (LAI), Net Assimilation Rate (NAR), Crop Growth Rate (CGR), Root-shoot ratio, and root dry weight of Cocoa seedling.

  5. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.

    PubMed

    Liu, Yili; Sun, Weixin; Liu, Jianguo

    2017-10-01

    Waste management is a major source of global greenhouse gas (GHG) emissions and many opportunities exist to reduce these emissions. To identify the GHG emissions from waste management in China, the characteristics of MSW and the current and future treatment management strategies, five typical management scenarios were modeled by EaseTech software following the principles of life cycle inventory and analyzed based on the carbon and energy flows. Due to the high organic fraction (50-70%) and moisture content (>50%) of Chinese municipal solid waste (MSW), the net GHG emissions in waste management had a significant difference from the developed countries. It was found that the poor landfill gas (LFG) collection efficiency and low carbon storage resulted landfilling with flaring and landfilling with biogas recovery scenarios were the largest GHG emissions (192 and 117 kgCO 2 -Eq/t, respectively). In contrast, incineration had the best energy recovery rate (19%), and, by grid emissions substitution, led to a substantial decrease in net GHG emissions (-124 kgCO 2 -Eq/t). Due to the high energy consumption in operation, the unavoidable leakage of CH 4 and N 2 O in treatment, and the further release of CH 4 in disposing of the digested residue or composted product, the scenarios with biological treatment of the organic fractions after sorting, such as composting or anaerobic digestion (AD), did not lead to the outstanding GHG reductions (emissions of 32 and -36 kgCO 2 -Eq/t, respectively) as expected. Copyright © 2017. Published by Elsevier Ltd.

  6. Assessing and monitoring the effects of filter material amendments on the biophysicochemical properties during composting of solid winery waste under open field and varying climatic conditions.

    PubMed

    Mtimkulu, Y; Meyer, A H; Mulidzi, A R; Shange, P L; Nchu, F

    2017-01-01

    Waste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested as a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) ground material, lined and T5 (40%) unlined. Composting was allowed to proceed under open field conditions over 12months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df=3, 16, P<0.05) had significant effects (df=1, 3, P<0.05) on heap temperature and moisture in all treatments. Similarly, microorganisms (actinobacteria and heterotrophs) varied significantly in all treatments in response to seasonal change (df=3, 16; P<0.05). Enzyme activities fluctuated in accordance with seasonal factors and compost maturity stages, with phosphatases, esterases, amino-peptidases, proteases and glycosyl-hydrolases being most prominent. Compared to treatments T2 and T3, compost treatments with higher percentage waste filter materials (T1, T4 and T5) had higher N (16,100-21,300mg/kg), P (1500-2300mg/kg), K (19,800-28,200mg/kg), neutral pH, and lower C/N ratios (13:1-10:1), which were also comparable with commercially produced composts. Filter materials therefore, appears to be a vital ingredient for composting of winery solid waste. Copyright © 2016 Elsevier Ltd. All rights

  7. Identification of locally available structural material as co-substrate for organic waste composting in Tamil Nadu, India.

    PubMed

    Springer, C; Heldt, N

    2016-06-01

    Owing to the lack in structural strength while composting certain kinds of organic wastes, 11 co-substrates were tested that are generally locally available in rural areas of northern Tamil Nadu, India. In addition to the classical composting parameters such as carbon/nitrogen ratio, moisture content, dry matter and organic dry matter, a compression test was conducted to evaluate the structural strength and the suitability as bulking agent for composting processes. Additionally, with respect to the climatic conditions in India, the water holding capacity was also evaluated. © The Author(s) 2016.

  8. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    PubMed

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Experimental Investigation and Aspen Plus Simulation of the MSW Pyrolysis Process

    NASA Astrophysics Data System (ADS)

    Ansah, Emmanuel

    Municipal solid waste (MSW) is a potential feedstock for producing transportation fuels because it is readily available using an existing collection/transportation infrastructure and fees are provided by the suppliers or government agencies to treat MSW. North Carolina with a population of 9.4 millions generates 3.629 million metric tons of MSW each year, which contains about 113,396,356 TJs of energy. The average moisture content of MSW samples is 44.3% on a wet basis. About 77% of the dry MSW mass is combustible components including paper, organics, textile and plastics. The average heating values of MSW were 9.7, 17.5, and 22.7 MJ/kg on a wet basis, dry basis and dry combustible basis, respectively. The MSW generated in North Carolina can produce 7.619 million barrels of crude bio-oil or around 4% of total petroleum consumption in North Carolina. MSW can be thermally pyrolyzed into bio-oil in the absence of oxygen or air at a temperature of 500°C or above. As bio-oil can be easily stored and transported, compared to bulky MSW, landfill gas and electricity, pyrolysis offers significant logistical and economic advantages over landfilling and other thermal conversion processes such as combustion and gasification. Crude bio-oils produced from the pyrolysis of MSW can be further refined to transportation fuels in existing petroleum refinery facilities. The objective of this research is to analyze the technical and economic feasibility of pyrolyzing MSW into liquid transportation fuels. A combined thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC) instrument, which can serve as a micro-scale pyrolysis reactor, was used to simultaneously determine the degradation characteristics of MSW during pyrolysis. An ASPEN Plus-based mathematical model was further developed to analyze the technical and economic feasibility of pyrolysing of MSW into liquid transportation fuels in fixed bed reactors at varying operating conditions

  10. Technical note: nitrogen fertilization effects on the degradation of aged diesel oil in composted drilling wastes.

    PubMed

    Choi, Woo-Jung; Chang, Scott X

    2009-07-01

    Hydrocarbon-contaminated wastes generated from oil and gas drilling activities may be used as a soil amendment once composted and further decomposition of residual hydrocarbons can be accomplished after the composts are applied to soils. To test if N fertilization may enhance hydrocarbon decomposition, we investigated the effects of N application on hydrocarbon degradation in different-aged composts (1-, 2-, 3-, and 4-year-old composts, coded as 1Y, 2Y, 3Y, and 4Y composts, respectively) through a pot experiment planted with white spruce (Picea glauca [Moench] Voss) seedlings. The percentage degradation of total petroleum hydrocarbon (TPH, C11 to C40) in the composts without N fertilization was correlated to initial NH4+ concentrations (R = 0.99, P < 0.001). The percentage degradation of TPH was highest in the 3Y compost (41.1%) that had an initial level of 325.3 mg NH4+ -N kg(-1) and the lowest in the IY compost (9.3%) that had an initial level of 8.3 mg NH4+ -N kg(-1). The degradation of TPH was enhanced by Nfertilization in the 1Y (from 9.3 to 15.3%) and 4Y composts (from 14.3 to 22.6%) that had low initial NH4+ concentrations. Our results show that application of NH4+ -based fertilizers may enhance the degradation of TPH when initial NH4+ concentrations in the compost are low.

  11. Cultivating Composting Culture Activities among Citizens and Its Beneficial to Prolong the Landfill Lifespan

    NASA Astrophysics Data System (ADS)

    Azura Zakarya, Irnis; Azri Jamial, Khairul; Mat Tanda, Norazlinda

    2018-03-01

    Currently, the Ministry of Housing and Local Government manage solid waste in Malaysia, with the participation of the private sector. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Material valorisation of food waste usually conducted by biological processes such as composting. Compost, an organic amendment, is the final product of the composting process. These processes are efficient, low cost and environmentally friendly alternative for managing food waste and are used extensively worldwide. Therefore, organic solid waste management practices program for the communities in Perlis was conducted. The main objective of this program was to instilling environment awareness especially among Perlis citizens. This study was investigated the impact of food waste or kitchen waste composting to the citizens in Perlis State and the beneficial of compost fertilizer to our environment especially in plant growth. Composting method was taught to the food premises owner, individuals, teachers, and students and their responses to the composting practices were then summarized. In future, we can prolong our landfill lifespan by practicing organic waste composting and can preserving our environment.

  12. Pathogen re-colonization of in-house composted and non-composted broiler litter

    USDA-ARS?s Scientific Manuscript database

    “In-house” litter composting has been reintroduced to the industry and shown to reduce bacteria by as much as two orders of magnitude. Other industries have demonstrated that pathogens can recolonize a waste-residual when microbial competition has been reduced or inhibited following composting. Po...

  13. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    PubMed

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. © The Author(s) 2015.

  14. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    PubMed

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    PubMed

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  16. Municipal Solid Waste Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  17. Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model.

    PubMed

    Aghajani Mir, M; Taherei Ghazvinei, P; Sulaiman, N M N; Basri, N E A; Saheri, S; Mahmood, N Z; Jahan, A; Begum, R A; Aghamohammadi, N

    2016-01-15

    Selecting a suitable Multi Criteria Decision Making (MCDM) method is a crucial stage to establish a Solid Waste Management (SWM) system. Main objective of the current study is to demonstrate and evaluate a proposed method using Multiple Criteria Decision Making methods (MCDM). An improved version of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) applied to obtain the best municipal solid waste management method by comparing and ranking the scenarios. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Besides, Viekriterijumsko Kompromisno Rangiranje (VIKOR) compromise solution method applied for sensitivity analyses. The proposed method can assist urban decision makers in prioritizing and selecting an optimized Municipal Solid Waste (MSW) treatment system. Besides, a logical and systematic scientific method was proposed to guide an appropriate decision-making. A modified TOPSIS methodology as a superior to existing methods for first time was applied for MSW problems. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Next, 11 scenarios of MSW treatment methods are defined and compared environmentally and economically based on the waste management conditions. Results show that integrating a sanitary landfill (18.1%), RDF (3.1%), composting (2%), anaerobic digestion (40.4%), and recycling (36.4%) was an optimized model of integrated waste management. An applied decision-making structure provides the opportunity for optimum decision-making. Therefore, the mix of recycling and anaerobic digestion and a sanitary landfill with Electricity Production (EP) are the preferred options for MSW management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Research on solid waste management system: to improve existing situation in Corlu Town of Turkey.

    PubMed

    Tinmaz, Esra; Demir, Ibrahim

    2006-01-01

    Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day. Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.

  19. The Compost Pile Meets the 1990's.

    ERIC Educational Resources Information Center

    Paddock, Todd

    1991-01-01

    Advocates composting as a valuable alternative to the landfill for waste management. As much as two-thirds of garbage can be composted, and the process has become more cost effective. Some challenges to composting are producing a compost product that will sell and dealing with the odor created by the process. (KS)

  20. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific

  1. Performance of five Montreal West Island home composters.

    PubMed

    Adhikari, Bijaya K; Trémier, Anne; Barrington, Suzelle

    2012-01-01

    Even if home composting can eliminate municipal organic waste collection, handling and treatment costs, its compost quality requires investigation outside the laboratory. A study was thus conducted to evaluate the influence of the following management practices on the compost quality produced by five backyards home composters in Montreal West Island from June to October 2010: the type and backyard location of the home composter (HC), and the rate and type of organic waste (OW) fed into the home composter. The parameters monitored were compost temperature and final characteristics including trace elements and pathogens. For all HC compost, maximum but not necessarily thermophilic temperatures were highly probable within one week of adding more than 10 kg of OW composed of equal volumes of food waste (FW) and yard trimmings (YT). Top and bottom HC perforations enhanced convective aeration but concentrated OW decomposition within the bottom layer. Fed an equal volume of FW and YT, the final HC compost had a dry and organic matter content exceeding 30%, and 50%, respectively, and a total nitrogen, phosphorous and potassium level of 2, 1 and 3% on a dry matter basis, representing a good quality soil amendment. Clean OW feeding resulted in compost respecting Canadian and European regulations for Escherichia coli and Salmonella, irrespective of the temperature regime. For trace elements, regulatory limits may be exceeded when the home composter is fed ashes and soil. Homeowners must also be careful when applying pesticides to their lawns and gardens and then feeding the residues to the home composter.

  2. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review.

    PubMed

    Wu, Shaohua; He, Huijun; Inthapanya, Xayanto; Yang, Chunping; Lu, Li; Zeng, Guangming; Han, Zhenfeng

    2017-07-01

    Biochar is produced by pyrolysis of biomass residues under limited oxygen conditions. In recent years, biochar as an amendment has received increasing attention on composting and soil remediation, due to its unique properties such as chemical recalcitrance, high porosity and sorption capacity, and large surface area. This paper provides an overview on the impact of biochar on the chemical characteristics (greenhouse gas emissions, nitrogen loss, decomposition and humification of organic matter) and microbial community structure during composting of organic wastes. This review also discusses the use of biochar for remediation of soils contaminated with organic pollutants and heavy metals as well as related mechanisms. Besides its aging, the effects of biochar on the environment fate and efficacy of pesticides deserve special attention. Moreover, the combined application of biochar and compost affects synergistically on soil remediation and plant growth. Future research needs are identified to ensure a wide application of biochar in composting and soil remediation. Graphical abstract ᅟ.

  3. Effects of added polyacrylamide on changes in water states during the composting of kitchen waste.

    PubMed

    Yang, Yu-Qiang; Chen, Zhuo-Xian; Zhang, Xue-Qing; Hu, Li-Fang; Shen, Dong-Sheng; Long, Yu-Yang

    2015-02-01

    The effects of adding polyacrylamide (PAM), to attempt to delay the loss of capillary water and achieve a better level of organic matter humification, in the composting of kitchen waste were evaluated. Four treatments, with initial moisture content of 60 % were used: 0.1 % PAM added before the start of composting (R1), 0.1 % PAM added when the thermophilic phase of composting became stable (at >50 °C) (R2), 0.1 % PAM added when the moisture content significantly decreased (R3), and no PAM added (R4). The introduction of PAM in R1 and R2 significantly increased the capillary force and delayed the loss of moisture content and capillary water. The introduction of PAM in R2 and R3 improved the composting process, in terms of the degradation of biochemical fractions and the humification degree. These results show that the optimal time for adding PAM was the initial stage of the thermophilic phase.

  4. Adding worms during composting of organic waste with red mud and fly ash reduces CO2 emissions and increases plant available nutrient contents.

    PubMed

    Barthod, J; Rumpel, C; Calabi-Floody, M; Mora, M-L; Bolan, N S; Dignac, M-F

    2018-09-15

    Alkaline industrial wastes such as red mud and fly ash are produced in large quantities. They may be recycled as bulking agent during composting and vermicomposting, converting organic waste into soil amendments or plant growth media. The aim of this study was to assess the microbial parameters, greenhouse gas emissions and nutrient availability during composting and vermicomposting of household waste with red mud and fly ash 15% (dry weight). CO 2 , CH 4 and N 2 O emissions were monitored during 6 months in controlled laboratory conditions and microbial biomass and phospholipid acids, N and P availability were analysed in the end-products. Higher CO 2 emissions were observed during vermicomposting compared to composting. These emissions were decreased by red mud addition, while fly ash had no effect. Nitrate (NO 3 -N) content of the end-products were more affected by worms than by alkaline materials, while higher ammonium (NH 4 -N) contents were recorded for composts than vermicomposts. Red mud vermicompost showed higher soluble P proportion than red mud compost, suggesting that worm presence can counterbalance P adsorption to the inorganic matrix. Final composts produced with red mud showed no harmful heavy metal concentrations. Adding worms during composting thus improved the product nutrient availability and did not increase metal toxicity. From a practical point of view, this study suggests that for carbon stabilisation and end-product quality, the addition of red mud during composting should be accompanied by worm addition to counterbalance negative effects on nutrient availability. Copyright © 2018. Published by Elsevier Ltd.

  5. A systematic approach to evaluate parameter consistency in the inlet stream of source separated biowaste composting facilities: A case study in Colombia.

    PubMed

    Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Torres-López, W A; Dominguez, I; Komilis, D; Sánchez, A

    2017-04-01

    Biowaste is commonly the largest fraction of municipal solid waste (MSW) in developing countries. Although composting is an effective method to treat source separated biowaste (SSB), there are certain limitations in terms of operation, partly due to insufficient control to the variability of SSB quality, which affects process kinetics and product quality. This study assesses the variability of the SSB physicochemical quality in a composting facility located in a small town of Colombia, in which SSB collection was performed twice a week. Likewise, the influence of the SSB physicochemical variability on the variability of compost parameters was assessed. Parametric and non-parametric tests (i.e. Student's t-test and the Mann-Whitney test) showed no significant differences in the quality parameters of SSB among collection days, and therefore, it was unnecessary to establish specific operation and maintenance regulations for each collection day. Significant variability was found in eight of the twelve quality parameters analyzed in the inlet stream, with corresponding coefficients of variation (CV) higher than 23%. The CVs for the eight parameters analyzed in the final compost (i.e. pH, moisture, total organic carbon, total nitrogen, C/N ratio, total phosphorus, total potassium and ash) ranged from 9.6% to 49.4%, with significant variations in five of those parameters (CV>20%). The above indicate that variability in the inlet stream can affect the variability of the end-product. Results suggest the need to consider variability of the inlet stream in the performance of composting facilities to achieve a compost of consistent quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Composting: Wastes to Resources. 4-H Leader's/Teacher's Guide.

    ERIC Educational Resources Information Center

    Bonhotal, Jean F.; Krasny, Marianne E.

    This guide is designed for adult volunteer leaders, camp counselors, and teachers who want to set up composting projects with youth. Five sections explore: (1) an introduction to composting with illustrated instructions for making compost; (2) different methods of composting and structures needed for various composting systems; (3) how to identify…

  7. Nitrogen conservation in simulated food waste aerobic composting process with different Mg and P salt mixtures.

    PubMed

    Li, Yu; Su, Bensheng; Liu, Jianlin; Du, Xianyuan; Huang, Guohe

    2011-07-01

    To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]/MgSO4, KH2PO4/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste was composted of potatoes, rice, carrots, leaves, meat, soybeans, and seed soil, and the ratio of C and N was 17:1. Runs R1-R3 were conducted with the addition of K3PO4/ MgSO4, K2HPO4/MgSO4, and KH2PO4/MgSO4 mixtures, respectively; run R0 was a blank performed without the addition of Mg and P salts. After composting for 25 days, the degrees of degradation of the organic materials in runs R0-R3 were 53.87, 62.58, 59.14, and 49.13%, respectively. X-ray diffraction indicated that struvite crystals were formed in runs R1-R3 but not in run R0; the gaseous ammonia nitrogen (NH3-N) losses in runs R0-R3 were 21.2, 32.8, 12.6, and 3.5% of the initial total N, respectively. Of the tested Mg/P salt mixtures, the K2HPO4/ MgSO4 system provided the best combination of conservation of N and biodegradation of organic materials in this food waste composting process.

  8. Explaining the differences in household food waste collection and treatment provisions between local authorities in England and Wales.

    PubMed

    Bees, A D; Williams, I D

    2017-12-01

    Separate household food waste collection for anaerobic digestion is one method used in the sustainable management of biodegradable municipal solid waste (MSW). Recycling of food waste contributes to the UK's reuse, recycling and composting targets and can help local authorities boost plateauing rates whilst encouraging landfill diversion. This study explored the reasons for differences in the provision of food waste collections, using two comparable local authorities, one with a collection in Wales (Cardiff), and the other absent of such service in England (Southampton). A PESTLE analysis investigated the political, economic, social, technological, legal and environmental impacts of separate food waste collections. The greenhouse gas impacts of the collection and treatment systems of MSW in both cities were estimated for 2012/13. Results showed significant policy and legislative differences between devolved governments, that separate food waste collections can save local authorities significant sums of money and substantially reduce greenhouse gas impacts. A survey of one hundred respondents in each city aimed to understand attitudes and behaviours towards recycling, food waste segregation, cooking and purchasing habits. The number of frequent recyclers and levels of satisfaction were higher in the authority which provided a separate food waste collection. In the area which lacked a separate collection service, over three-quarters of respondents would participate in such a scheme if it were available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2017-12-01

    The objective of this study was to determine the effects of cow dung (CD) (at 0%, 20%, and 35%) and/or spent coffee grounds (SCGs) (at 0%, 30%, and 45%) as amendments in the two-stage co-composting of green waste (GW); the percentages refer to grams of amendment per 100g of GW based on dry weights. The combined addition of CD and SCGs improved the conditions during co-composting and the quality of the compost product in terms of composting temperature; particle-size distribution; mechanical properties; nitrogen changes; low-molecular weight compounds; humic substances; the degradation of lignin, cellulose, and hemicellulose; enzyme activities; the contents of total Kjeldahl nitrogen, total phosphorus, and total potassium; and the toxicity to germinating seeds. The combined addition of 20% CD and 45% SCGs to GW resulted in the production of the highest quality compost product and did so in only 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. From Source to Sink: Carbon Sequestration and Greenhouse Gas Mitigation Potential of Using Composted Manure and Food Waste on California's Rangelands

    NASA Astrophysics Data System (ADS)

    Vergara, S.; Silver, W. L.

    2016-12-01

    That anthropogenic climate change is irreversible, except in the case of sustained net removal of CO2 from the atmosphere, compels the scientific community to search for terrestrial carbon sinks. The soil is a promising sink: it currently stores more carbon than do the atmosphere and the vegetation combined, and most managed lands are degraded with respect to carbon. The application of compost to rangelands has been shown to enhance carbon uptake by soils, and the production of compost avoids greenhouse gas (GHG) emissions from waste management. Though these two mitigation pathways have been well studied, emissions from the composting process - which should be quantified in order to estimate the net carbon sequestration achieved by applying compost to rangelands - have not. We present a novel approach to quantifying emissions from composting, which we have deployed in Marin County, CA: a micrometerological mass balance set up, using a system of gas and wind towers surrounding a series of composting windrow piles. Real-time greenhouse gas emissions (CO2, N2O, CH4) from the composting waste are measured by a laser spectrometer, and a system of sensors measure conditions within the pile, to identify biogeochemical drivers of those emissions. Understanding these drivers improves our knowledge of the processes governing the production of short-lived climate pollutants, and provides guidance to municipalities and states seeking to minimize their greenhouse gas emissions.

  11. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting.

    PubMed

    Cayuela, M L; Mondini, C; Sánchez-Monedero, M A; Roig, A

    2008-07-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated during the extraction of olive oil by the two-phase centrifugation system. Among all the available disposal options, composting is gaining interest as a sustainable strategy to recycle TPOMW for agricultural purposes. The quality of compost for agronomical use depends on the degree of organic matter stabilization, but despite several studies on the topic, there is not a single method available which alone can give a certain indication of compost stability. In addition, information on the biological and biochemical properties, including the enzymatic activity (EA) of compost, is rare. The aim of this work was to investigate the suitability of some enzymatic activities (beta-glucosidase, arylsulphatase, acid-phosphatase, alkaline-phosphatase, urease and fluorescein diacetate hydrolysis (FDA)) as parameters to evaluate organic matter stability during the composting of TPOMW. These enzymatic indices were also compared to conventional stability indices. For this purpose two composting piles were prepared by mixing TPOMW with sheep manure and grape stalks in different proportions, with forced aeration and occasional turnings. The composting of TPOMW followed the common pattern reported previously for this kind of material with a reduction of 40-50% of organic matter, a gradual increase in pH, disappearance of phytotoxicity and formation of humic-like C. All EA increased during composting except acid-phosphatase. Significant correlations were found between EA and some important conventional stability indices indicating that EA can be a simple and reliable tool to determine the degree of stability of TPOMW composts.

  12. Life cycle assessment for optimising the level of separated collection in integrated MSW management systems.

    PubMed

    Rigamonti, L; Grosso, M; Giugliano, M

    2009-02-01

    This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.

  13. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  14. Advantages and risks of using steel slag in preparing composts from raw organic waste.

    PubMed

    Tu, Xuefei; Aneksampant, Apichaya; Kobayashi, Shizusa; Tanaka, Atsushi; Nishimoto, Ryo; Fukushima, Masami

    2017-01-02

    It had been reported that iron and manganese oxides in steel slag enhanced the production of humic acid (HA) from low-molecular-weight compounds, such as phenolic acids, amino acids, and saccharides. In the present study, this function of steel slag was applied to the composting of raw organic wastes (ROWs). The degree of humification of HAs is an important factor in evaluating compost quality. Thus, HAs were extracted from the prepared composts and the humification parameters were determined, in terms of elemental compositions, acidic functional group contents, molecular weights, spectroscopic parameters from UV-vis absorption and 13 C NMR spectra. The timing for adding steel slag affected the degree of humification of HAs in the composts. The weight average molecular weight of a HA when slag was added initially (29 kDa) was significantly higher than when slag was added after elevating the temperature of the compost pile (17-18 kDa). These results show that ROWs are decomposed to low-molecular-weight compounds after the pile temperature is elevated and the presence of slag enhances the polycondensation of these compounds to produce HAs with a higher degree of humification. Because the slag used in the present study contained several-tens ng g -1 to several μg g -1 of toxic elements (B, Cu, Cr, and Zn), leaching tests for these elements from the prepared composts were carried out. Levels for leaching boron from composts prepared by adding slag (0.2-0.4 mg L -1 ) were obviously higher than the corresponding levels without slag (0.05 mg L -1 ).

  15. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).

    PubMed

    Nishanth, D; Biswas, D R

    2008-06-01

    An attempt was made to study the efficient use of rice straw and indigenous source of phosphorus and potassium in crop production through composting technology. Various enriched composts were prepared using rice straw, rock phosphate (RP), waste mica and bioinoculant (Aspergillus awamori) and kinetics of release of phosphorus and potassium from enriched composts and their effect on yield and nutrient uptake by wheat (Triticum aestivum) were carried out. Results showed sharp increases in release in water-soluble P and K from all the composts at 8th to 12th day of leaching, thereafter, it decreased gradually. Maximum release of water-soluble P and K were obtained in ordinary compost than enriched composts during the initial stages of leaching, but their differences narrowed down at latter stages. Data in pot experiments revealed that enriched composts performed poorly than diammonium phosphate during initial stages of crop growth, but they out yielded at the latter stages, particularly at maturity stage, as evident from their higher yield, uptake, nutrient recoveries and fertility status of P and K in soils. Moreover, enriched composts prepared with RP and waste mica along with A. awamori resulted in significantly higher biomass yield, uptake and recoveries of P and K as well as available P and K in soils than composts prepared without inoculant. Results indicated that enriched compost could be an alternate technology for the efficient management of rice straw, low-grade RP and waste mica in crop production, which could help to reduce the reliance on costly chemical fertilizers.

  16. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  17. Heavy metals in MSW incineration fly ashes

    NASA Astrophysics Data System (ADS)

    Ferreira, C.; Ribeiro, A.; Ottosen, L.

    2003-05-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system is characterized regarding its physical-chemical properties: pH, solubility, chemical composition, and leaching, amongst others. Results indicate a high alkalinity and the presence of large amounts of calcium, chlorides, sulfates, carbonates, sodium and potassium. Metal concentrations in fly ash are: 6,2g/kg for zinc, 2,4g/kg for lead, 1,7g/kg for iron, and 7,9g/kg for magnesium. Copper, manganese, chromium and cadmium are also present with 546, 338, 104 and 91mg/kg of fly ash, respectively. These results are extremely important in subsequent studies on the treatment of fly ash.

  18. Effect of methods of preparation on distribution of heavy metals in different size fractions of municipal solid waste composts.

    PubMed

    Saha, J K; Panwar, N R; Coumar, M Vassanda

    2013-11-01

    The present study compares the distribution and nature of heavy metals in composts from 12 cities of India, prepared from different types of processed urban solid wastes, namely mixed wastes (MWC), partially segregated wastes (PSWC), and segregated bio-wastes (BWC). Compost samples were physically fractionated by wet sieving, followed by extraction of heavy metals by dilute HCl and NaOH. Bigger particles (>0.5 mm) constituted the major fraction in all three types of composts and had a relatively lower concentration of organic matter and heavy metals, the effect being more pronounced in MWC and PSWC in which a significant portion of the heavy metals was distributed in finer size fractions. Cd, Ni, Pb, and Zn were extracted to a greater extent by acid than by alkali, the difference being greater in MWC, which contained a higher amount of mineral matter. In contrast, Cu and Cr were extracted to a greater extent by dilute alkali, particularly from BWC containing a higher amount of organic matter. Water-soluble heavy metals were generally related to the water-soluble C or total C content as well as to pH, rather than to their total contents. This study concludes that wet sieving with dilute acid can effectively reduce heavy metal load in MWC and PSWC.

  19. Food waste collection and recycling for value-added products: potential applications and challenges in Hong Kong.

    PubMed

    Lo, Irene M C; Woon, Kok Sin

    2016-04-01

    About 3600 tonnes food waste are discarded in the landfills in Hong Kong daily. It is expected that the three strategic landfills in Hong Kong will be exhausted by 2020. In consideration of the food waste management environment and community needs in Hong Kong, as well as with reference to the food waste management systems in cities such as Linköping in Sweden and Oslo in Norway, a framework of food waste separation, collection, and recycling for food waste valorization is proposed in this paper. Food waste can be packed in an optic bag (i.e., a bag in green color), while the residual municipal solid waste (MSW) can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations, in which food waste is separated from the residual MSW using an optic sensor. On the one hand, the sorted food waste can be converted into valuable materials (e.g., compost, swine feed, fish feed). On the other hand, the sorted food waste can be sent to the proposed Organic Waste Treatment Facilities and sewage treatment works for producing biogas. The biogas can be recovered to produce electricity and city gas (i.e., heating fuel for cooking purpose). Due to the challenges faced by the value-added products in Hong Kong, the biogas is recommended to be upgraded as a biogas fuel for vehicle use. Hopefully, the proposed framework will provide a simple and effective approach to food waste separation at source and promote sustainable use of waste to resource in Hong Kong.

  20. Urban tree and woody yard residues : another wood resource

    Treesearch

    David B. McKeever; Kenneth E. Skog

    2003-01-01

    Urban tree and woody yard residues are an important component of the municipal solid waste (MSW) stream in the United States. In 2000, approximately 14.5 million tons of urban tree and woody yard residues was generated, nearly 7% of total MSW. Some woody residues are being recovered for recycling, composting, or other uses, but a large proportion is simply discarded....

  1. Effects of age of cattle, turning technology and compost environment on disappearance of bone from mortality compost.

    PubMed

    Stanford, K; Hao, X; Xu, S; McAllister, T A; Larney, F; Leonard, J J

    2009-10-01

    As residual bones in mortality compost negatively impact subsequent tillage, two studies were performed. For the first study, windrows of mature cattle or calves were placed on a base of barley straw and covered with beef manure. Windrows were divided into two sections and turned at 3-month intervals. Approximately 5000 kg of finished compost per windrow was passed through a 6mm trommel screen, with bones collected and weighed. Bone weight was 0.66% of mature cattle compost and 0.38% of calf compost on a dry matter basis, but did not differ after adjustment for weights of compost ingredients. In a subsequent study, four windrows were constructed containing mortalities, straw and beef manure (STATC) or straw, manure and slaughter waste (STATW). Also, straw, beef manure and slaughter waste was added to an 850 L rolling drum composter (DRUMW). Fresh bovine long-bones from calves were collected, weighed and embedded in the compost. Bones were retrieved and weighed when windrows were turned, or with DRUMW, after 8 weeks. Temperatures achieved followed the order STATW>STATC>DRUMW (p<0.05). Rate of bone disappearance followed a pattern identical to temperature, with the weight of bones in STATW declining by 53.7% during 7 weeks of composting. For STATC, temperatures were uniform over three composting periods, but bone disappearance was improved (p<0.05) when compost dry matter was lower (46%), as compared to 58%. Using a ratio of five parts manure to one part mortalities, results of this study demonstrated that residual bone was <1% of cured cattle compost and may be reduced by maintaining a high compost temperature and moisture content.

  2. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    NASA Astrophysics Data System (ADS)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly

  3. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chemical characterization of emissions from a municipal solid waste treatment plant.

    PubMed

    Moreno, A I; Arnáiz, N; Font, R; Carratalá, A

    2014-11-01

    Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; the average concentration of H2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H2S (in order of ppbv). Regarding NH3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30-600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv). Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2-4.3 ppmv. H2S/NH3, limonene/p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Use of a germination bioassay to test compost maturity in Tekelan Village

    NASA Astrophysics Data System (ADS)

    Oktiawan, Wiharyanto; Zaman, Badrus; Purwono

    2018-02-01

    Livestock waste from cattle farms in Tekelan village, Getasan Subdistrict, Semarang Regency can be grouped into three types, namely solid waste, slurry and waste water. Solid waste (cow dung) was processed into compost, while slurry and waste water were used to make liquid fertilizer. This compost was used as a component of planting media in horticultural crops and potted plants production. We evaluated the toxicity (phytochemical and ecotoxicological) test of compost by using germination index (GI). Vigna radiata seeds are sown on filter paper dampened with compost extract for different times. GI was calculated by relative germination (G) and relative radical length (L). The germination index (GI) = G / G0 x L / L0 x 100, where G0 and L0 are values obtained by distilled water as a control. The results showed that germination bioassay and radical length using aquades and groundwater in Tekelan village did not affect the radical length of Vigna radiata . Technically, groundwater in Tekelan village can be used as a germination bioassay control. The cow dung compost substrate appears to have a major influence on compost toxicity. Mature compost was produced on day 14 with a GI of 104.03.

  6. Carbon monoxide from composting due to thermal oxidation of biomass.

    PubMed

    Hellebrand, H J; Schade, G W

    2008-01-01

    Emissions of carbon monoxide (CO) were observed from decomposing organic wastes and litter under laboratory, pilot composting plant, and natural conditions. Field studies included air from inside a compost heap of about 200 m3, emissions from composting of livestock wastes at a biologically operating farm, and leaf litter pile air samples. The concentration of CO was up to 120 micromol mol(-1) in the compost piles of green waste, and up to 10 micromol mol(-1) in flux chambers above livestock waste windrow composts. The mean CO flux rates were approximately 20 mg CO m(-2) h(-1) for compost heaps of green waste, and varied from 30 to 100 mg CO m(-2) h(-1) for fresh dung windrows. Laboratory studies using a temperature and ventilation-controlled substrate container were performed to elucidate the origin of CO, and included hay samples of fixed moisture content at temperatures between 5 and 65 degrees C, including nonsterilized as well as sterilized samples. The concentration of CO was up to 160 micromol mol(-1) in these experiments, and Arrhenius-type plot analyses resulted in activation energies of 65 kJ mol(-1) for thermochemically produced CO from the nonsterilized compost substrate. Sterilized samples showed dramatically reduced CO2 but virtually unchanged CO emissions, albeit at a slightly lower activation energy, likely a result of the high-temperature sterilization. Though globally and regionally these CO emissions are only a minor source, thermochemically produced CO emissions might affect local air quality in and near composting facilities.

  7. Impact of thermal pretreatment and MSW origin on composition and hydrolysability in a sugar platform biorefinery

    NASA Astrophysics Data System (ADS)

    Vaurs, L. P.; Heaven, S.; Banks, C. J.

    2018-03-01

    Municipal solid waste (MSW) is a widely available large volume source of lignocellulosic material containing a waste paper/cardboard mixture which can be converted into fermentable sugars via cellulolytic enzyme hydrolysis in a sugar platform biorefinery. Thermal pretreatments are generally applied to MSW to facilitate the extraction of the lignocellulosic material from recyclable materials (plastics, metals etc.) and improve the paper pulp conversion to sugars. Applying high temperature might enhance food waste solubilisation but may collapse cellulose fibre decreasing its hydrolysability. Low temperature pre-treatment will reduce the energy demand but might result in highly contaminated pulp. Preliminary results showed that the enzymatic hydrolysis performances were dependent on the MSW origins. Using 8 different samples, the impact of thermal pretreatment and MSW origin on pulp composition and hydrolysability was assessed in this work. Low pre-treatment temperature produced pulp which contained less lignocellulosic material but which hydrolysed to a higher degree than MSW treated at high temperatures. High temperature pre-treatment could have exposed more of the inhibiting lignin to cellulase. This information would have a significant economic impact on a commercial plant as expensive autoclave could be advantageously replaced by a cheaper process. Glucan conversions were also found to vary depending on the region, the recycling rate possibly because of the lower recycling rate resulting in the use of less paper additive in the material or the difference in paper production technology (chemical VS mechanical pulping). This could also be explained by the differences in paper composition.

  8. Bioaerosols from a food waste composting plant affect human airway epithelial cell remodeling genes.

    PubMed

    Chang, Min-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-12-24

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 10(2) conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5-10 μm) having higher endotoxin levels than did fine particles (0.5-2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21 WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  9. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  10. Degradation of aldrin and endosulfan in rotary drum and windrow composting.

    PubMed

    Ali, Muntjeer; Gani, Khalid M; Kazmi, Absar A; Ahmed, Naseem

    2016-01-01

    Removal efficiencies, kinetics and degradation pathways of aldrin, endosulfan α and endosulfan β in vegetable waste were evaluated during rotary drum and conventional windrow composting. The highest percentage removal of aldrin, endosulfan α and endosulfan β in rotary drum composting was 86.8, 83.3 and 85.3% respectively, whereas in windrow composting, it was 66.6%, 77.7% and 67.2% respectively. The rate constant of degradation of aldrin, endosulfan α and endosulfan β during rotary drum composting ranged from 0.410-0.778, 0.057-0.076 and 0.009-0.061 day(-1) respectively. The pathways of degradation of these pesticides in composting process were proposed. Metabolites dieldrin and 1 hydroxychlorodene formed during composting of aldrin in the vegetable waste indicated the occurrence of epoxidation reaction and oxidation of bridge carbon of aldrin containing the methylene group. Formation of chloroendic acid and chloroendic anhydride during composting of endosulfan containing vegetable waste support the occurrence of endosulfan sulfate and dehydration reaction respectively.

  11. Current status of solid waste management in small island developing states: A review.

    PubMed

    Mohee, Romeela; Mauthoor, Sumayya; Bundhoo, Zumar M A; Somaroo, Geeta; Soobhany, Nuhaa; Gunasee, Sanjana

    2015-09-01

    This article reviews the current status of waste management in Small Island Developing States (SIDS) and the challenges that are faced in solid waste management. The waste generation rates of SIDS were compared within the three geographic regions namely Caribbean SIDS, Pacific SIDS and Atlantic, Indian Ocean, Mediterranean and South China (AIMS) SIDS and with countries of the Organisation for Economic Co-Operation and Development (OECD). Only Pacific SIDS had a waste generation rate less than 1kg/capita/day. The waste generation rates for the three SIDS regions averaged 1.29kg/capita/day while that for OECD countries was at a mean value of 1.35kg/capita/day. The waste compositions in the different SIDS regions were almost similar owing to comparable consumption patterns while these differed to a large extent with wastes generated in OECD countries. In SIDS, the major fraction of MSW comprised of organics (44%) followed by recyclables namely paper, plastics, glass and metals (total: 43%). In contrast, MSW in OECD countries consisted mainly of recyclables (43%) followed by organics (37%). This article also reviewed the other functional elements of the waste management systems in SIDS. Several shortcomings were noted in the process of waste collection, transfer and transport namely the fact of having outdated collection vehicles and narrow roads which are inaccessible. Among the waste management practices in SIDS, waste disposal via landfilling, illegal dumping and backyard burning were favoured most of the time at the expense of sustainable waste treatment technologies such as composting, anaerobic digestion and recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evaluation of microbial dynamics during post-consumption food waste composting.

    PubMed

    Awasthi, Sanjeev Kumar; Wong, Jonathan W C; Li, Jiao; Wang, Quan; Zhang, Zengqiang; Kumar, Sunil; Awasthi, Mukesh Kumar

    2018-03-01

    The objective of present study was to evaluate the efficacy of bacterial consortium to boost the microbial population and enzyme activities during post-consumption food waste (PCFWs) composting. Three treatments of PCFWs mixed with saw dust and 10% zeolite (dry weight basis) was design, where treatments T-2 and T-3 were applied with two distinctive bacterial consortium, respectively, while T-1 was served as control. The results showed that total aerobic proteolytic, amylolytic, cellulolytic, oil degrading and total aerobic bacteria populations were significantly higher in treatment T2 and T3 than T1. Consequently, the selected hydrolytic enzymes were also higher in T2 and T3 than T1, whose apparently gave the interesting information about rate of decomposition and end product stability. Furthermore, T2 and T3 showed significant correlations between the enzymatic activities and microbial population with other physico-chemical parameters. Based on germination assays and CO 2 -C evolution rate, T2 and T3 were considered phytotoxic free and highly stable final compost on day 56. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banar, Mufide; Cokaygil, Zerrin; Ozkan, Aysun

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes weremore » considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.« less

  14. Composting on Mars or the Moon: II. Temperature feedback control with top-wise introduction of waste material and air

    NASA Technical Reports Server (NTRS)

    Finstein, M. S.; Hogan, J. A.; Sager, J. C.; Cowan, R. M.; Strom, P. F.; Janes, H. W. (Principal Investigator)

    1999-01-01

    Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.

  15. Composting on Mars or the Moon: II. Temperature feedback control with top-wise introduction of waste material and air.

    PubMed

    Finstein, M S; Hogan, J A; Sager, J C; Cowan, R M; Strom, P F

    1999-01-01

    Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.

  16. Maturation of green waste compost as affected by inoculation with the white-rot fungi Trametes versicolor and Phanerochaete chrysosporium.

    PubMed

    Gong, Xiaoqiang; Li, Suyan; Sun, Xiangyang; Zhang, Lu; Zhang, Tao; Wei, Le

    2017-04-01

    Green waste was separately inoculated on day 0 and day 14 with either Trametes versicolor or Phanerochaete chrysosporium to determine their effects on composting time and compost quality. Inoculation with T. versicolor and P. chrysosporium caused more rapid and higher increases in compost temperatures, increased the duration of the thermophilic temperature stage, and reduced the maturity time. Inoculation with T. versicolor and P. chrysosporium greatly increased the quality of the final composts in terms of pH, electrical conductivity, organic matter concentration, C/N ratio, germination index, and nutrient content. Inoculation with T. versicolor and P. chrysosporium also significantly increased the degradation of lignin by 7.1% and 8.2%, respectively, and increased the degradation of cellulose by 10.6% and 13.6%, respectively.

  17. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition.

    PubMed

    Saidi, Neyla; Kouki, Soulwene; M'hiri, Fadhel; Jedidi, Naceur; Mahrouk, Meriam; Hassen, Abdennaceur; Ouzari, Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio < 15; (b) NH4+-N < 400 mg/kg; (c) CO2-C < 2000 mg CO2-C/kg; (d) dehydrogenase activity < 1 mg TPF/g dry matter; (e) germination index (GI) > 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.

  18. The effect of urban waste compost applied in a vineyard, olive grove and orange grove on soil proprieties in Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Bono, Giuseppe; Guaitoli, Fabio; Pasciuta, Giuseppe; Santoro, Antonino

    2013-04-01

    The application to soil of compost produced from urban wastes not only could improve the soil properties but also could be a solution for disposal of large quantities of different refuses. Knowledge on compost characteristic, soil properties as well as on mineral crop nutrition are important to proper management of fertilization with compost and to understanding the impact on C and N dynamics in field. We present the results of soil physical and chemical changes after the application of urban waste compost in three different orchards (vineyard, olive grove, and orange grove) in Mediterranean environment (Sicily). The compost was applied on November 2010 and samples were collected 1 month after application for two years. Soil pH, carbon content, weight of soil aggregate fractions, nitrate content were examined during the trial, comparing with adjacent no fertilized plot. The application of compost caused a decrease in soil organic carbon stock of 14% and 28% after two years in vineyard and orange grove, respectively, while a significant increase under olive grove was registered. Nitrate monitoring showed for all crops high content of Nitrate for most of the year that involved SOC stock depletion. This was not observed in olive grove, where soil received further C input thanks to soil management with cover crop. In two years of observations there were no significant change in soil physic properties.

  19. Waste heat generation: A comprehensive review.

    PubMed

    Yeşiller, Nazli; Hanson, James L; Yee, Emma H

    2015-08-01

    A comprehensive review of heat generation in various types of wastes and of the thermal regime of waste containment facilities is provided in this paper. Municipal solid waste (MSW), MSW incineration ash, and mining wastes were included in the analysis. Spatial and temporal variations of waste temperatures, thermal gradients, thermal properties of wastes, average temperature differentials, and heat generation values are provided. Heat generation was influenced by climatic conditions, mean annual earth temperatures, waste temperatures at the time of placement, cover conditions, and inherent heat generation potential of the specific wastes. Time to onset of heat generation varied between months and years, whereas timelines for overall duration of heat generation varied between years and decades. For MSW, measured waste temperatures were as high as 60-90°C and as low as -6°C. MSW incinerator ash temperatures varied between 5 and 87°C. Mining waste temperatures were in the range of -25 to 65°C. In the wastes analyzed, upward heat flow toward the surface was more prominent than downward heat flow toward the subsurface. Thermal gradients generally were higher for MSW and incinerator ash and lower for mining waste. Based on thermal properties, MSW had insulative qualities (low thermal conductivity), while mining wastes typically were relatively conductive (high thermal conductivity) with ash having intermediate qualities. Heat generation values ranged from -8.6 to 83.1MJ/m(3) and from 0.6 to 72.6MJ/m(3) for MSW and mining waste, respectively and was 72.6MJ/m(3) for ash waste. Conductive thermal losses were determined to range from 13 to 1111MJ/m(3)yr. The data and analysis provided in this review paper can be used in the investigation of heat generation and thermal regime of a wide range of wastes and waste containment facilities located in different climatic regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Identification of thermophilic bacteria in solid-waste composting.

    PubMed Central

    Strom, P F

    1985-01-01

    The thermophilic microbiota of solid-waste composting, with major emphasis on Bacillus spp., was examined with Trypticase soy broth (BBL Microbiology Systems) with 2% agar as the initial plating medium. Five 4.5-liter laboratory units at 49 to 69 degrees C were fed a mixture of dried table scraps and shredded newspaper. The composting plants treating refuse at Altoona, Pa., and refuse-sludge at Leicester, England, were also sampled. Of 652 randomly picked colonies, 87% were identified as Bacillus spp. Other isolates included two genera of unidentified nonsporeforming bacteria (one of gram-negative small rods and the other of gram-variable coccobacilli), the actinomycetes Streptomyces spp. and Thermoactinomyces sp., and the fungus Aspergillus fumigatus. Among the Bacillus isolates, the following, in order of decreasing frequency, were observed: B. circulans complex, B. stearothermophilus, B. coagulans types A and B, B. licheniformis, B. brevis, B. sphaericus, Bacillus spp. types i and ii, and B. subtilis. About 15% of the Bacillus isolates could be assigned to species only by allowing for greater variability in one or more characteristics than has been reported by other authors for their strains. In particular, growth at higher temperatures than previously reported was found for strains of several species. A small number of Bacillus isolates (less than 2%) could not be assigned to any recognized species. PMID:4083886

  1. Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.

    PubMed

    Vázquez, M A; de la Varga, D; Plana, R; Soto, M

    2017-07-04

    The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.

  2. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions.

    PubMed

    Castaldi, Paola; Garau, Giovanni; Melis, Pietro

    2008-01-01

    In this work the dynamics of biochemical (enzymatic activities) and chemical (water-soluble fraction) parameters during 100 days of municipal solid wastes composting were studied to evaluate their suitability as tools for compost characterization. The hydrolase (protease, urease, cellulase, beta-glucosidase) and dehydrogenase activities were characterized by significant changes during the first 2 weeks of composting, because of the increase of easily decomposable organic compounds. After the 4th week a "maturation phase" was identified in which the enzymatic activities tended to gently decrease, suggesting the stabilisation of organic matter. Also the water-soluble fractions (water-soluble carbon, nitrogen, carbohydrates and phenols), which are involved in many degradation processes, showed major fluctuations during the first month of composting. The results obtained showed that the hydrolytic activities and the water-soluble fractions did not vary statistically during the last month of composting. Significant correlations between the enzymatic activities, as well as between enzyme activities and water-soluble fractions, were also highlighted. These results highlight the suitability of both enzymatic activities and water soluble fractions as suitable indicators of the state and evolution of the organic matter during composting. However, since in the literature the amount of each activity or fraction at the end of composting depends on the raw material used for composting, single point determinations appear inadequate for compost characterization. This emphasizes the importance of the characterization of the dynamics of enzymatic activities and water-soluble fractions during the process.

  3. Greenhouse gas emissions from home composting in practice.

    PubMed

    Ermolaev, Evgheni; Sundberg, Cecilia; Pell, Mikael; Jönsson, Håkan

    2014-01-01

    In Sweden, 16% of all biologically treated food waste is home composted. Emissions of the greenhouse gases CH4 and N2O and emissions of NH3 from home composts were measured and factors affecting these emissions were examined. Gas and substrate in the compost bins were sampled and the composting conditions assessed 13 times during a 1-year period in 18 home composts managed by the home owners. The influence of process parameters and management factors was evaluated by regression analysis. The mean CH4 and N2O concentration was 28.1 and 5.46 ppm (v/v), respectively, above the ambient level and the CH4:CO2 and N2O:CO2 ratio was 0.38% and 0.15%, respectively (median values 0.04% and 0.07%, respectively). The home composts emitted less CH4 than large-scale composts, but similar amounts of N2O. Overall NH3 concentrations were low. Increasing the temperature, moisture content, mixing frequency and amount of added waste all increased CH4 emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Genetic and chemical analyzes of transformations in compost compounds during biodegradation of oiled bleaching earth with waste sludge.

    PubMed

    Piotrowska-Cyplik, Agnieszka; Cyplik, Paweł; Marecik, Roman; Czarny, Jakub; Szymański, Andrzej; Wyrwas, Bogdan; Framski, Grzegorz; Chrzanowski, Lukasz; Materna, Katarzyna

    2012-06-01

    Composting of oiled bleaching earth with waste sludge and corn straw was carried out to investigate the ability of microorganisms to synthesize biosurfactants that might decrease the surface tension of composts. Analytical results and changes in the surface tension suggest that biodegradation of fatty by-products was the consequence of emulsifying properties of higher fatty acids. The surface tension for isolates from all composting phases was between 37 and 43 mN m(-1). No substances synthesized by microorganisms that might be able to decrease the surface tension were detected in composts. Tensammetric, TLC and HPLC-MS results and changes in surface tension suggest that biodegradation of fatty by-products results from the emulsifying properties of higher fatty acids. A decrease in fatty content from 144 to 6 mg g(-1) dry matter was obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    PubMed

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  6. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity.

    PubMed

    Stoknes, Ketil; Beyer, David M; Norgaard, Erik

    2013-07-01

    Source-separated food waste is increasingly being treated by means of hygienisation followed by anaerobic digestion. The fibrous digester residue (digestate) is a potential mushroom substrate, while heat from the biogas can provide steam for the cultivation process. Using bag experiments the present study explored digestate as a full substitute for chicken manure conventionally used in mushroom composts. After mixing, a rapid temperature development in the compost was stimulated by a small amount of chicken manure, as aerobic microbial seeding. Mechanical elimination of lumps was essential for full mycelial colonisation. Three straw digestate composts had Agaricus bisporus mushroom yields above 370 g kg⁻¹ substrate. The optimal compost water content was 600 g kg⁻¹ at inoculation, and high digestate content (up to 500 g kg⁻¹ by dry weight) did not affect yield for this species. High yields of A. subrufescens (200 g kg⁻¹) were related to drier composts of lower digestate content (more straw) and lower pH values at inoculation. Digestate successfully substituted chicken manure in straw composts without affecting mushroom yields for both species. There were no clear differences between straw digestate and control composts in terms of mushroom dry matter, size, nitrogen or ash content. © 2012 Society of Chemical Industry.

  7. Laboratory Investigation of Rill Erosion on Compost Blankets under Concentrated Flow Conditions

    EPA Science Inventory

    A flume study was conducted using a soil, yard waste compost, and an erosion control compost to investigate the response to concentrated flow and determine if the shear stress model could be used to describe the response. Yard waste compost (YWC) and the bare Cecil soil (CS) cont...

  8. Optimization of municipal solid waste collection and transportation routes.

    PubMed

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media.

    PubMed

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Marfà, Oriol

    2015-03-01

    This study aimed to monitor process parameters when two by-products (green waste - GW, and the solid fraction of cattle slurry - SFCS) were composted to obtain growing media. Using compost in growing medium mixtures involves prolonged composting processes that can last at least half a year. It is therefore crucial to study the parameters that affect compost stability as measured in the field in order to shorten the composting process at composting facilities. Two mixtures were prepared: GW25 (25% GW and 75% SFCS, v/v) and GW75 (75% GW and 25% SFCS, v/v). The different raw mixtures resulted in the production of two different growing media, and the evolution of process management parameters was different. A new parameter has been proposed to deal with attaining the thermophilic temperature range and maintaining it during composting, not only it would be useful to optimize composting processes, but also to assess the hygienization degree. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Microbiological consequences of indoor composting.

    PubMed

    Naegele, A; Reboux, G; Vacheyrou, M; Valot, B; Millon, L; Roussel, S

    2016-08-01

    Recycling of organic waste appeals to more and more people. The aim of this study was to evaluate the microbiological contamination around organic waste bins at three distances over a 12-month period. Contamination near the customary trash of control households was evaluated at the beginning to ensure that there is no recruitment bias. Air samples using the MAS 100 impactor were carried out in 38 dwellings that do household waste composting and in 10 dwellings of controls. Collection of particles by CIP 10 rotating cup sampler and dust samples collected by electrostatic dust collector cloths were acquired in dwellings that do household waste composting. Samples were analyzed by culture and by real-time quantitative PCR. Information about dwelling characteristics and inhabitant practices was obtained by a standardized questionnaire. The genera most often isolated were Penicillium, Aspergillus, Cladosporium and Streptomyces. Near the organic waste bins, bioaerosol samples showed an increase of Acarus siro (P = 0.001). Sedimented dust analyses highlighted an increase of A. siro, Wallemia sebi, Aspergillus versicolor, and Cladosporium sphaerospermum concentrations after a 12-month survey compared to the beginning. Composting favors microorganism development over time, but does not seem to have an effect on the bioaerosol levels and the surface microbiota beyond 0.5 m from the waste bin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    PubMed

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The presence of insect at composting

    NASA Astrophysics Data System (ADS)

    Mudruňka, J.; Lyčková, B.; Kučerová, R.; Glogarová, V.; Závada, J.; Gibesová, B.; Takač, D.

    2017-10-01

    During composting biodegradable waste, microbic organisms reproduce massively, most of which belong to serious biopathogens which are able to penetrate various environmental layers. Their vector species include dipterous insect (Diptera) which reaches considerable amounts in composting plant premises as well as home composting units, mainly during summer months. Therefore measures must be taken to eliminate or reduce this unwanted phenomenon (sanitisation, disinfection). For evaluating obtained results, relative abundance calculation was chosen.

  13. Co-composting of rose oil processing waste with caged layer manure and straw or sawdust: effects of carbon source and C/N ratio on decomposition.

    PubMed

    Onursal, Emrah; Ekinci, Kamil

    2015-04-01

    Rose oil is a specific essential oil that is produced mainly for the cosmetics industry in a few selected locations around the world. Rose oil production is a water distillation process from petals of Rosa damascena Mill. Since the oil content of the rose petals of this variety is between 0.3-0.4% (w/w), almost 4000 to 3000 kg of rose petals are needed to produce 1 kg of rose oil. Rose oil production is a seasonal activity and takes place during the relatively short period where the roses are blooming. As a result, large quantities of solid waste are produced over a limited time interval. This research aims: (i) to determine the possibilities of aerobic co-composting as a waste management option for rose oil processing waste with caged layer manure; (ii) to identify effects of different carbon sources - straw or sawdust on co-composting of rose oil processing waste and caged layer manure, which are both readily available in Isparta, where significant rose oil production also takes place; (iii) to determine the effects of different C/N ratios on co-composting by the means of organic matter decomposition and dry matter loss. Composting experiments were carried out by 12 identical laboratory-scale composting reactors (60 L) simultaneously. The results of the study showed that the best results were obtained with a mixture consisting of 50% rose oil processing waste, 64% caged layer manure and 15% straw wet weight in terms of organic matter loss (66%) and dry matter loss (38%). © The Author(s) 2015.

  14. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    PubMed Central

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  15. Composting rice straw with sewage sludge and compost effects on the soil-plant system.

    PubMed

    Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R

    2009-05-01

    Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.

  16. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality.

    PubMed

    Jusoh, Mohd Lokman Che; Manaf, Latifah Abd; Latiff, Puziah Abdul

    2013-02-07

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  17. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    PubMed

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Current-use and organochlorine pesticides and polychlorinated biphenyls in the biodegradable fraction of source separated household waste, compost, and anaerobic digest.

    PubMed

    Hellström, Anna; Nilsson, Marie-Louise; Kylin, Henrik

    2011-01-01

    Several current-use (≤ 80 ng g⁻¹ dry weight) and organochlorine pesticides (≤ 15 ng g⁻¹ dry weight) and polychlorinated biphenyls (≤ 18 ng g⁻¹ dry weight) were found in the biodegradable fraction of source separated household waste, compost, and/or anaerobic digestate. The degradation rates of individual compounds differ depending on the treatment. Dieldrin and pentachloroaniline, e.g., degrade more rapidly than the waste is mineralized and accumulates in the products after all treatments. Many organochlorines degrade at the same rate as the waste and have the same concentrations in the waste and products. Chlorpyrifos degrades slower than the waste and accumulates in all products and ethion during anaerobic digestion. The polychlorinated biphenyls and some pesticides show different degradations rates relative the waste during different processes. Understanding the degradation of the contaminants under different conditions is necessary to develop quality criteria for the use of compost and digest.

  19. Biomass ash reutilisation as an additive in the composting process of organic fraction of municipal solid waste.

    PubMed

    Asquer, Carla; Cappai, Giovanna; De Gioannis, Giorgia; Muntoni, Aldo; Piredda, Martina; Spiga, Daniela

    2017-11-01

    In this work the effects of selected types of biomass ash on the composting process and final product quality were studied by conducting a 96-day long experiment where the source separated organic fraction of municipal waste, mixed with wood prunings that served as bulking agent, was added with 0%, 2%, 4% and 8% wt/wt of biomass ash. The evolution over time of the main process parameters was observed, and the final composts were characterised. On the basis of the results, both the composting process and the quality of the final product were improved by ash addition. Enhanced volatile solids reduction and biological stability (up to 32% and 52%, respectively, as compared to the unamended product) were attained when ash was added, since ash favored the aerobic degradation by acting asa physical conditioner. In the final products, higher humification of organic matter (expressed in terms of the humification index, that was 2.25 times higher in the most-enriched compost than in the unamended one) and total Ca, K, Mg and P content were observed when ash was used. The latter aspect may influence the composts marketability positively, particularly with regards to potassium and phosphorus. The heavy metals content, that is regarded as the main environmental disadvantage when using ash asa composting additive, did not negatively affect the final composts quality. However, some other controversial effects of ash, related to the moisture and temperature values attained during the process, pH (8.8-9.2 as compared to 8.2 of the unamended compost) and electrical conductivity levels (up to 53% higher as compared to the unamended compost) in the final composts, were also observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of a new dynamic chamber system for measuring harmful gas emissions from composting livestock waste.

    PubMed

    Osada, T; Fukumoto, Y

    2001-01-01

    A dynamic chamber system consisting of a chamber covering a composting mixture (3 m in diameter, 2.2 m in height, 13 m3), a ventilator for suction of air into the chamber, and equipment to measure the gas composition and indicate temperature, was developed for evaluation of harmful gas emissions from such livestock waste composting. Fresh air was introduced through the space between the floor and the lower edge of the chamber, and exhaust gas was removed through an outlet placed on top of the chamber. NH3, CH4 and N2O concentrations in exhaust air from the chamber were measured by Infrared Photoacoustic Detector (IPD, multi gas monitor type 1312, INNOVA, Copenhagen, Denmark) at 5 minutes intervals. The system was evaluated with standard gas of NH3, CH4 and N2O. High recoveries of 98.5% (NH3, SD 6.25), 96.6% (CH4, SD 4.03) and 99.5% ( N2O, SD 2.68) were obtained for each gas emission in the chamber over 17-20 min. The measured values of those gases obtained by the IPD method and conventional method at the time of a composting examination of swine waste were measured, and the differences were only a few percent of the total emissions.

  1. Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting.

    PubMed

    Haynes, R J; Belyaeva, O N; Zhou, Y-F

    2015-01-01

    In order to better characterize mechanically shredded municipal green waste used for composting, five samples from different origins were separated into seven particle size fractions (>20mm, 10-20mm, 5-10mm, 2-5mm, 1-2mm, 0.5-1.0mm and <0.5mm diameter) and analyzed for organic C and nutrient content. With decreasing particle size there was a decrease in organic C content and an increase in macronutrient, micronutrient and ash content. This reflected a concentration of lignified woody material in the larger particle fractions and of green stems and leaves and soil in the smaller particle sizes. The accumulation of nutrients in the smaller sized fractions means the practice of using large particle sizes for green fuel and/or mulch does not greatly affect nutrient cycling via green waste composting. During a 100-day incubation experiment, using different particle size fractions of green waste, there was a marked increase in both cumulative CO2 evolution and mineral N accumulation with decreasing particle size. Results suggested that during composting of bulk green waste (with a high initial C/N ratio such as 50:1), mineral N accumulates because decomposition and net N immobilization in larger particles is slow while net N mineralization proceeds rapidly in the smaller (<1mm dia.) fractions. Initially, mineral N accumulated in green waste as NH4(+)-N, but over time, nitrification proceeded resulting in accumulation of NO3(-)-N. It was concluded that the nutrient content, N mineralization potential and decomposition rate of green waste differs greatly among particle size fractions and that chemical analysis of particle size fractions provides important additional information over that of a bulk sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Diversity of bacterial isolates from commercial and homemade composts.

    PubMed

    Vaz-Moreira, Ivone; Silva, Maria E; Manaia, Célia M; Nunes, Olga C

    2008-05-01

    The diversity of heterotrophic bacterial isolates of three commercial and two homemade composts was studied. The commercial composts were produced from poultry litter (PC), sewage sludge (SC), municipal solid waste (MC), and homemade composts (thermal compost [DC] and vermicompost [VC]) from food wastes. The taxonomic and physiological diversity of the heterotrophic culturable bacteria was assessed using phenotypic and genotypic characterization and the analysis of the partial 16S rRNA gene sequence. Composts DC and SC presented the higher genotypic diversity, as could be inferred from the number of distinct genotypic patterns observed, 28 and 21, respectively. Gram-positive bacteria, mainly Firmicutes, were predominant in all the composts. Some organisms related with taxa rarely reported in composts, as Rhodanobacter spathiphylli, Moraxella osloensis, Lysobacter, Corynebacterium, Pigmentiphaga kullae, and new taxa were also isolated. The highest relative proportion of isolates able to degrade starch was found in compost SC (> 70%), to degrade gelatine in compost DC (> 70%), to degrade Tween 80 in compost PC (> 90%), and to degrade poly-epsilon-caprolactones in compost DC (> 80%). Compost MC presented the lowest relative proportions of isolates able to degrade starch (< 25%), gelatine (< 20%), and poly-epsilon-caprolactone (< 40%). When compared with the others, the homemade composts presented higher relative proportions of Gram-positive isolates able to inhibit the target organisms Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, or Pseudomonas aeruginosa. In compost MC, none of the Gram-positive isolates was able to inhibit those targets.

  3. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    PubMed

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effects of high-pressure extruding pretreatment on MSW upgrading and hydrolysis enhancement.

    PubMed

    Xu, Shuang; Kong, Xin; Liu, Jianguo; Zhao, Ke; Zhao, Guangqi; Bahdolla, Amanjol

    2016-12-01

    High-pressure extruding (HPE) is an efficient technology used to separate municipal solid waste (MSW) into wet (biodegradable) and dry (combustible) fractions. Effects of pressure, 10, 20, 30, and 40MPa on quality upgrading of the MSW and hydrolysis of the wet fraction were examined. TS of the dry fraction increased from 48.5% to 59.4% when the extruding pressure increased from 10 to 40MPa, meanwhile the biochemical methane potential (BMP) of the wet fraction extruded under 40MPa was 674mL CH 4 /g·VS, 33% higher than that of the organic fraction of the MSW (OFMSW) control. Furthermore, in the initial stage of hydrolysis experiment, the extruded wet fractions had lower pH and higher COD, volatile fatty acids (VFAs) and COD/VFA than those of the OFMSW control. The results confirmed that HPE upgraded the MSW and enhanced hydrolysis of the wet fractions. However, high extruding pressure as 40MPa aggravated the excessive acidification of the wet fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Removal of batteries from solid waste using trommel separation.

    PubMed

    Lau, S T; Cheung, W H; Kwong, C K; Wan, C P; Choy, K K H; Leung, C C; Porter, J F; Hui, C W; Mc Kay, G

    2005-01-01

    This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.

  6. Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil.

    PubMed

    Fenoll, José; Vela, Nuria; Navarro, Ginés; Pérez-Lucas, Gabriel; Navarro, Simón

    2014-09-15

    In this study, we examined the effect of four different organic wastes--composted sheep manure (CSM), spent coffee grounds (SCG), composted pine bark (CPB) and coir (CR)--on the sorption, persistence and mobility of eight symmetrical and two asymmetrical-triazine herbicides: atrazine, propazine, simazine, terbuthylazine (chlorotriazines), prometon (methoxytriazine), prometryn, simetryn, terbutryn (methylthiotriazines), metamitron and metribuzin (triazinones). The downward movement of herbicides was monitored using disturbed soil columns packed with a clay loam soil (Hipercalcic calcisol) under laboratory conditions. For unamended and amended soils, the groundwater ubiquity score (GUS) was calculated for each herbicide on the basis of its persistence (as t½) and mobility (as KOC). All herbicides showed medium/high leachability through the unamended soils. The addition of agro-industrial and composted organic wastes at a rate of 10% (w:w) strongly decreased the mobility of herbicides. Sorption coefficients normalized to the total soil organic carbon (KOC) increased in the amended soils. These results suggest that used organic wastes could be used to enhance the retention and reduce the mobility of the studied herbicides in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Sintering of MSW fly ash for reuse as a concrete aggregate.

    PubMed

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  8. Composting of empty fruit bunches in the tower composter - effect of air intake holes

    NASA Astrophysics Data System (ADS)

    Irvan; Husaini, T.; Trisakti, B.; Batubara, F.; Daimon, H.

    2018-02-01

    The process of composting empty fruit bunches (EFB) by mixing with activated liquid organic fertilizer (ALOF) is an alternative utilization of solid waste generated from palm oil mill. This study aims to find composting techniques of EFB and to obtain degradation data of composting EFB by varying the air intake holes to produce good quality compost. Composting process was carried out by tearing the EFB into four shreds, then put into the tower composter while adding ALOF until it reached the optimum moisture content of 55 -65%. During the composting process, we maintained moisture content at optimum conditions by adding ALOF. Variations of air intake holes area to the outer surface area of the composter are 0/44.314; 72.39/44.314 and 144.78/44.314 (cm2/cm2). Composting is carried out for forty days, however, based on the result, compost began to mature on the 10th day. The results revealed that there was an influence of air intake holes to the composting process. The best degradation of EFB was obtained on the variation of air intake holes 72.39/44.314 (cm2/cm2), pH 8.1, moisture content 79.14%, water holding capacity 60%, electrical conductivity 4.725 dS/m and C/N ratio 20.97.

  9. Soil bioassays as tools for sludge compost quality assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domene, Xavier, E-mail: x.domene@creaf.uab.es; Sola, Laura; Ramirez, Wilson

    2011-03-15

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed inmore » bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.« less

  10. Enrichment of antibiotic resistance genes in soil receiving composts derived from swine manure, yard wastes, or food wastes, and evidence for multiyear persistence of swine Clostridium spp.

    PubMed

    Scott, Andrew; Tien, Yuan-Ching; Drury, Craig F; Reynolds, W Daniel; Topp, Edward

    2018-03-01

    The impact of amendment with swine manure compost (SMC), yard waste compost (YWC), or food waste compost (FWC) on the abundance of antibiotic resistance genes in soil was evaluated. Following a commercial-scale application of the composts in a field experiment, soils were sampled periodically for a decade, and archived air-dried. Soil DNA was extracted and gene targets quantified by qPCR. Compared with untreated control soil, all 3 amendment types increased the abundance of gene targets for up to 4 years postapplication. The abundance of several gene targets was much higher in soil amended with SMC than in soil receiving either YWC or FWC. The gene target ermB remained higher in the SMC treatment for a decade postapplication. Clostridia were significantly more abundant in the SMC-amended soil throughout the decade following application. Eight percent of Clostridium spp. isolates from the SMC treatment carried ermB. Overall, addition of organic amendments to soils has the potential to increase the abundance of antibiotic resistance genes. Amendments of fecal origin, such as SMC, will in addition entrain bacteria carrying antibiotic resistance genes. Environmentally recalcitrant clostridia, and the antibiotic resistance genes that they carry, will persist for many years under field conditions following the application of SMC.

  11. Municipal solid waste flow and waste generation characteristics in an urban--rural fringe area in Thailand.

    PubMed

    Hiramatsu, Ai; Hara, Yuji; Sekiyama, Makiko; Honda, Ryo; Chiemchaisri, Chart

    2009-12-01

    In the urban-rural fringe of the Bangkok Metropolitan Region, rapid urbanization is creating a land-use mixture of agricultural fields and residential areas. To develop appropriate policies to enhance recycling of municipal solid waste (MSW), current MSW management was investigated in the oboto (local administrative district) of Bang Maenang in Nonthaburi Province, adjoining Bangkok. The authors conducted a structural interview survey with waste-related organizations and local residents, analysed household waste generation, and performed global positioning system (GPS) tracking of municipal garbage trucks. It was found that MSW was collected and treated by local government, private-sector entities, and the local community separately. Lack of integrated management of these entities complicated waste flow in the study area, and some residences were not served by MSW collection. Organic waste, such as kitchen garbage and yard waste, accounted for a large proportion of waste generation but was underutilized. Through GPS/GIS analysis, the waste collection rate of the generated waste amount was estimated to be 45.5- 51.1% of total generation.

  12. Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce.

    PubMed

    Busato, Jader Galba; de Carvalho, Caroline Moreira; Zandonadi, Daniel Basilio; Sodré, Fernando Fabriz; Mol, Alan Ribeiro; de Oliveira, Aline Lima; Navarro, Rodrigo Diana

    2017-11-23

    Waste from the beneficiation of fish was composted with crushed grass aiming to characterize their chemical composition and investigate the possibility of the use of the final compost as source of humic acids (HA) able to stimulate the growth of lettuce. Compost presented pH value, C/N ratio, and electrical conductivity that allow its use as an organic fertilizer. The element content was present in the following order of abundance in the compost: P > Ca > N > Mg > K > Fe > Zn > Mn > Mo > Cu, and the humus composition was similar to that observed in others kind of organic residues composted. The high content of oxygen pointed out a high level of oxidation of HA, in line with the predominance of phenolic acidity in the functional groups. The 13 C-NMR spectra showed marked resonances due to the presence of lipids and other materials resistant to degradation as methoxy substituent and N-alkyl groups. A concentration of 20 mg L -1 HA increased significantly both dry and wet root matter in lettuce but the CO 2 assimilation, stomatal conductance, and number of lateral roots of the plants were not affected. However, increases of 64% in the water-use efficiency was observed due to the HA addition, probably related to the root morphology alteration which resulted in 1.6-fold increase of lateral root average length and due to the higher H + extrusion activity. Reuse of residues from the fish beneficiation activity by composting may represent a safe tool to increase the value of recycled organic residues and generate HA with potential use as plant growth stimulants.

  13. Comparison of compostable bags and aerated bins with conventional storage systems to collect the organic fraction of municipal solid waste from homes. a Catalonia case study.

    PubMed

    Puyuelo, Belén; Colón, Joan; Martín, Patrícia; Sánchez, Antoni

    2013-06-01

    The separation of biowaste at home is key to improving, facilitating and reducing the operational costs of the treatment of organic municipal waste. The conventional method of collecting such waste and separating it at home is usually done by using a sealed bin with a plastic bag. The use of modern compostable bags is starting to be implemented in some European countries. These compostable bags are made of biodegradable polymers, often from renewable sources. In addition to compostable bags, a new model of bin is also promoted that has a perforated surface that, together with the compostable bag, makes the so-called "aerated system". In this study, different combinations of home collection systems have been systematically studied in the laboratory and at home. The results obtained quantitatively demonstrate that the aerated bin and compostable bag system combination is effective at improving the collection of biowaste without significant gaseous emissions and preparing the organic waste for further composting as concluded from the respiration indices. In terms of weight loss, temperature, gas emissions, respiration index and organic matter reduction, the best results were achieved with the aerated system. At the same time, a qualitative study of bin and bag combinations was carried in 100 homes in which more than 80% of the families participating preferred the aerated system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Biological testing of a digested sewage sludge and derived composts.

    PubMed

    Moreira, R; Sousa, J P; Canhoto, C

    2008-11-01

    Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6ton/ha or 12ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and growth tests showed that application of composts were beneficial for both plants. Composts did not affect earthworm's mass increase or reproduction, but the highest sludge amendment revealed negative effects on both parameters. Only the amendment of composts at the highest dose originated an impairment of springtails reproductive output. We suggest that bioassays using different test species may be an additional tool to evaluate effects of amendment of organic wastes in soil. Biological tests are sensitive to pollutants at low concentrations and to interactions undetected by routine chemical analysis.

  15. Evaluation of composition and performance of composts derived from guacamole production residues.

    PubMed

    González-Fernández, J Jorge; Galea, Zesay; Alvarez, José M; Hormaza, J Iñaki; López, Rafael

    2015-01-01

    The utilization of organic wastes to improve soils or for growth media components in local farms and nurseries can reduce the environmental pollution linked to waste disposal while increasing the sustainability of crop production. This approach could be applied to waste products generated from the production of guacamole (an emerging activity in the avocado production areas in mainland Spain), where appropriate treatment of this oily and doughy waste product has not been previously reported. The aim of this work is to study the feasibility of co-composting guacamole production residues (GR) with garden pruning waste (PW) as bulking agent, and the possible use of the compost produced depending on its quality. A windrow composting trial using three GR:PW ratios, 2:1, 1:2, and 1:7 was carried out. Temperature, moisture, organic matter, and C/N ratio were used to follow the evolution of the composting process during 7 months. After an additional 3-month curing period, composts were sieved to less than 10 mm and a set of European quality criteria was used to assess compost quality and intended use. In general, the 3 composting mixtures followed the classical process evolution, with minor differences among them. The 1:2 GR:PW ratio appeared most adequate for combining better process evolution and maximum GR ratio. Except for their high pH that limits their use as growing media component in some particular cases, the obtained composts fulfilled the more stringent European standards for commercial composts. Self-heating tests confirmed the high stability of the composts produced. The germination of cress by the direct contact method was satisfactory for composts GR:PW 1:2 and 1:7, showing no signs of toxicity. Avocado seedlings planted in substrates containing 67% of the GR:PW composts exhibited greater plant growth than those in the control treatment, and with no signs of phytotoxicity. The results open an interesting opportunity for the sustainable treatment of avocado

  16. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Fabao; Gu Wenjie, E-mail: guwenjie1982@yahoo.cn; Xu Peizhi

    2011-06-15

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into amore » compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.« less

  17. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes.

    PubMed

    Zhang, Fabao; Gu, Wenjie; Xu, Peizhi; Tang, Shuanhu; Xie, Kaizhi; Huang, Xu; Huang, Qiaoyi

    2011-06-01

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a "green" surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Optimization of municipal solid waste collection and transportation routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less

  19. Municipal solid waste in Brazil: A review.

    PubMed

    Alfaia, Raquel Greice de Souza Marotta; Costa, Alyne Moraes; Campos, Juacyara Carbonelli

    2017-12-01

    The production of municipal solid waste (MSW) represents one of the greatest challenges currently faced by waste managers all around the world. In Brazil, the situation with regard to solid waste management is still deficient in many aspects. In 2015, only 58.7% of the MSW collected in Brazilian cities received appropriate final disposal. It was only as late as 2010 that Brazil established the National Policy on Solid Waste (NPSW) based on the legislation and programmes established in the 1970s in more developed countries. However, the situation with regard to MSW management has changed little since the implementation of the NPSW. Recent data show that, in Brazil, disposal in sanitary landfills is practically the only management approach to MSW. Contrary to expectations, despite the economic recession in 2015 the total annual amount of MSW generated nationwide increased by 1.7%, while in the same period the Brazilian population grew by 0.8% and economic activity decreased by 3.8%. The article describes the panorama with regard to MSW in Brazil from generation to final disposal and discusses the issues related to the delay in implementing the NPSW. The collection of recyclable material, the recycling process, the application of reverse logistics and the determination of the gravimetric composition of MSW in Brazil are also addressed in this article. Finally, a brief comparison is made between MSW management in Brazil and in other countries, the barriers to developing effective waste disposal systems are discussed and some recommendations for future MSW management development in Brazil are given.

  20. Utilization of household organic compost in zinc adsorption system

    NASA Astrophysics Data System (ADS)

    Cundari, Lia; Isvaringga, Nyiayu Dita; Arinda, Yesica Maharani

    2017-11-01

    Zinc (Zn) is one of the heavy metals which is polluted to the environment in an amount greater than 15 mg/L [1]. Zinc contamination caused by the disposal of industrial waste such as batteries, electroplating, paint and other industries. One of the Zinc recovery technique that is relatively inexpensive, simple, high effectiveness and efficiency, and can be regenerated is adsorption using compost. This study has been carried out the preparation of compost from organic household waste and cow manure and its application to Zinc recovery. In this research, the raw material of compost is varied. There is an organic household waste (A1) and a mixture of organic household waste and cow manure with ratio 7:6 (A2). Decomposition of A1 and A2 with addition Effective Microorganism (EM4) requires 21 days, with 3 times inversion. Zinc adsorption is done by using a compost variation of 0.5 g, 1 g, and 2 g in every 100 and 200 mg/L Zn concentration solution. The batch process is applied to analyze the capacity of adsorption. Determination of capacity of adsorption based on the Langmuir, Freundlich, and Temkin isotherm model. Direct observation and spectrophotometry are applied in research methodology. The results show that compost A1 and A2 have fulfilled Indonesian Standart of compost and have the ability to reduce Zinc concentration to 94-96%. It indicates highly recommended biosorbent that can be applied to Zinc adsorption.

  1. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    PubMed

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Innovative biocatalytic production of soil substrate from green waste compost as a sustainable peat substitute.

    PubMed

    Kazamias, Georgios; Roulia, Maria; Kapsimali, Ioanna; Chassapis, Konstantinos

    2017-12-01

    In the present work, a new simple and quick eco-friendly method is discussed to handle effectively the green wastes and produce a sustainable peat substitute of high quality on the large scale. Principal physicochemical parameters, i.e., temperature, moisture, specific weight, pH, electrical conductivity and, also, microorganisms, organic matter, humic substances, total Kjeldahl nitrogen and total organic carbon, C/N ratio, ash, metal content and phytotoxicity, were monitored systematically. Humic substances content values were interrelated to both C/N ratio and pH values and, similarly, bulk density, TOC, TKN, C/N, GI, ash and organic matter were found interconnected to each other. A novel biocatalyst, extremely rich in soil microorganisms, prepared from compost extracts and peaty lignite, accelerated the biotransformation. Zeolite was also employed. The compost does not demonstrate any phytotoxicity throughout the entire biotransformation process and has increased humic substances content. Both humic substances content and germination index can be employed as maturation indices of the compost. Addition of compost, processed for 60 days only, in cultivations of grass plants led to a significant increase in the stem mass and root size, annotating the significant contribution of the compost to both growth and germination. The product obtained is comparable to peat humus, useful as peat substitute and can be classified as a first class soil conditioner suitable for organic farming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The potential of near infrared reflectance spectroscopy (NIRS) for the estimation of agroindustrial compost quality.

    PubMed

    Galvez-Sola, L; Moral, R; Perez-Murcia, M D; Perez-Espinosa, A; Bustamante, M A; Martinez-Sabater, E; Paredes, C

    2010-02-15

    Composting is an environmentally friendly alternative for the recycling of organic wastes and its use is increasing in recent years. An exhaustive monitoring of the composting process and of the final compost characteristics is necessary to certify that the values of compost characteristics are within the limits established by the legislation in order to obtain a safe and marketable product. The analysis of these parameters on each composting batch in the commercial composting plant is time-consuming and expensive. So, their estimation in the composting facilities based on the use of near infrared reflectance spectroscopy (NIRS) could be an interesting approach in order to monitor compost quality. In this study, more than 300 samples from 20 different composting procedures were used to calibrate and validate the NIRS estimation of compost properties (pH, electrical conductivity (EC), total organic matter (TOM), total organic carbon (TOC), total nitrogen (TN) and C/N ratio, macronutrient contents (N, P, K) and potentially pollutant element concentrations (Fe, Cu, Mn and Zn)). The composts used were elaborated using different organic wastes from agroindustrial activities (GS: grape stalk; EGM: exhausted grape marc; GM: grape marc; V: vinasse; CJW: citrus juice waste; Alpeorujo: olive-oil waste; AS: almond skin; EP: exhausted peat; TSW: tomato soup waste; SMS: spent mushroom substrate) co-composted with manures (CM: cattle manure; PM: poultry manure) or urban wastes (SS: sewage sludge) The estimation results showed that the NIRS technique needs to be fitted to each element and property, using specific spectrum transformations, in order to achieve an acceptable accuracy in the prediction. However, excellent prediction results were obtained for TOM and TOC, successful calibrations for pH, EC, Fe and Mn, and moderately successful estimations for TN, C/N ratio, P, K, Cu and Zn.

  4. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems

    PubMed Central

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H.; Hickey, William J.

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, and coffee hulls), which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase) and the finished product (mature phase). The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (group I.1b), in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have significant effects on its performance as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities) with nitrification in these systems. PMID:22787457

  5. Using an innovative criteria weighting tool for stakeholders involvement to rank MSW facility sites with the AHP.

    PubMed

    De Feo, Giovanni; De Gisi, Sabino

    2010-11-01

    The main aim of this study was to verify the efficacy of using an innovative criteria weighting tool (the "priority scale") for stakeholders involvement to rank a list of suitable municipal solid waste (MSW) facility sites with the multi-criteria decision-making (MCDM) technique known as analytic hierarchy process (AHP). One of the main objectives of the study was to verify the behaviour of the "priority scale" with both technical and non-technical decision-makers. All over the world, the siting of MSW treatment or disposal plants is a complex process involving politicians, technicians as well as citizens, where stakeholders who are not effectively involved strongly oppose (or even obstruct) the realization of new facilities. In this study, in order to pursue both the technical (select the best site) and social aims (all the stakeholders have to give their aware contribution), the use of the "priority scale" is suggested as a tool to easily collect non-contradictory criteria preferences by the various decision-makers. Every decision-maker filled in "priority scale", which was subsequently uploaded in the AHP tool in order to indirectly calculate the individual priority of alternatives given by each stakeholder (not using group aggregation techniques). The proposed method was applied to the siting of a composting plant in an area suffering from a serious MSW emergency, which has lasted for over 15 years, in the Campania Region, in Southern Italy. The best site (the "first choice") was taken as the one that appeared the most times at the first place of each decision-maker ranking list. The involved technical and non-technical decision-makers showed the same behaviour in (indirectly) selecting the best site as well as in terms of the most appraised criteria ("absence of areas of the highest value for natural habitats and species of plants and animals"). Moreover, they showed the same AHP inconsistency ratio as well as the same behaviour in comparison with a "balanced

  6. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    PubMed Central

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  7. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    PubMed

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  8. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  9. Effect of compost age and composition on the atrazine removal from solution.

    PubMed

    Tsui, Lo; Roy, William R

    2007-01-02

    Compost samples from two composting facilities, the Urbana (Illinois) Landscape Recycling Center (ULRC) and Illinois State University (ISU), were selected to examine the effect of compost age on atrazine removal from solution. The ULRC samples were made from yard waste without an additional nitrogen source. The ISU samples were made from yard waste or sawdust with the addition of manure. The 6-month-old ULRC compost had the greater capacity to remove atrazine from solution, which we attributed to its greater organic carbon content. The addition of nitrate into ULRC compost could influence the extent of atrazine removal, but did not have a significant impact on atrazine removal when applied to ISU compost, probably because manure was added to the yard waste to produce the compost. For both ULRC and ISU samples, the presence of sodium azide inhibited atrazine removal, suggesting that microbial activity contributed to the atrazine removal. Metabolic analysis demonstrated that hydroxyatrazine was the major identified metabolite that accumulated in solution before significant ring mineralization could occur. When compared with the ISU compost, the ULRC compost sample had a greater capacity to remove atrazine from solution during the 120 days of study because of the larger humic acid content. The experimental results suggested that less-mature compost may be better suited for environmental applications such as removing atrazine from tile-drainage waters.

  10. Effect of compost age and composition on the atrazine removal from solution

    USGS Publications Warehouse

    Tsui, L.; Roy, W.R.

    2007-01-01

    Compost samples from two composting facilities, the Urbana (Illinois) Landscape Recycling Center (ULRC) and Illinois State University (ISU), were selected to examine the effect of compost age on atrazine removal from solution. The ULRC samples were made from yard waste without an additional nitrogen source. The ISU samples were made from yard waste or sawdust with the addition of manure. The 6-month-old ULRC compost had the greater capacity to remove atrazine from solution, which we attributed to its greater organic carbon content. The addition of nitrate into ULRC compost could influence the extent of atrazine removal, but did not have a significant impact on atrazine removal when applied to ISU compost, probably because manure was added to the yard waste to produce the compost. For both ULRC and ISU samples, the presence of sodium azide inhibited atrazine removal, suggesting that microbial activity contributed to the atrazine removal. Metabolic analysis demonstrated that hydroxyatrazine was the major identified metabolite that accumulated in solution before significant ring mineralization could occur. When compared with the ISU compost, the ULRC compost sample had a greater capacity to remove atrazine from solution during the 120 days of study because of the larger humic acid content. The experimental results suggested that less-mature compost may be better suited for environmental applications such as removing atrazine from tile-drainage waters. ?? 2006 Elsevier B.V. All rights reserved.

  11. Enumerating actinomycetes in compost bioaerosols at source—Use of soil compost agar to address plate 'masking'

    NASA Astrophysics Data System (ADS)

    Taha, M. P. M.; Drew, G. H.; Tamer Vestlund, A.; Aldred, D.; Longhurst, P. J.; Pollard, S. J. T.

    Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days' incubation. The results are of particular value to waste management operators and their advisors undertaking regulatory risk assessments that support environmental approvals for compost facilities.

  12. Food waste impact on municipal solid waste angle of internal friction.

    PubMed

    Cho, Young Min; Ko, Jae Hac; Chi, Liqun; Townsend, Timothy G

    2011-01-01

    The impact of food waste content on the municipal solid waste (MSW) friction angle was studied. Using reconstituted fresh MSW specimens with different food waste content (0%, 40%, 58%, and 80%), 48 small-scale (100-mm-diameter) direct shear tests and 12 large-scale (430 mm × 430 mm) direct shear tests were performed. A stress-controlled large-scale direct shear test device allowing approximately 170-mm sample horizontal displacement was designed and used. At both testing scales, the mobilized internal friction angle of MSW decreased considerably as food waste content increased. As food waste content increased from 0% to 40% and from 40% to 80%, the mobilized internal friction angles (estimated using the mobilized peak (ultimate) shear strengths of the small-scale direct shear tests) decreased from 39° to 31° and from 31° to 7°, respectively, while those of large-scale tests decreased from 36° to 26° and from 26° to 15°, respectively. Most friction angle measurements produced in this study fell within the range of those previously reported for MSW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Effect of MSW source-classified collection on the emission of PCDDs/Fs and heavy metals from incineration in China.

    PubMed

    Shi, De-Zhi; Wu, Wei-Xiang; Lu, Sheng-Yong; Chen, Tong; Huang, Hui-Liang; Chen, Ying-Xu; Yan, Jian-Hua

    2008-05-01

    Municipal solid waste (MSW) source-classified collection represents a change in MSW management in China and other developing countries. Comparative experiments were performed to evaluate the effect of a newly established MSW source-classified collection system on the emission of PCDDs/Fs (polychlorinated dibenzo-p-dioxins and dibenzofurans) and heavy metals (HMs) from a full-scale incinerator in China. As a result of presorting and dewatering, the chlorine level, heavy metal and water content were lower, but heat value was higher in the source-classified MSW (classified MSW) as compared with the conventionally mixed collected MSW (mixed MSW). The generation of PCDDs/Fs in flue gas from the classified MSW incineration was 9.28 ng I-TEQ/Nm(3), only 69.4% of that from the mixed MSW incineration, and the final emission of PCDDs/Fs was only 0.12 ng I-TEQ/Nm(3), although activated carbon injection was reduced by 20%. The level of PCDDs/Fs in fly ash from the bag filter was 0.27 ng I-TEQ/g. These results indicated that the source-classified collection with pretreatment could improve the characteristics of MSW for incineration, and significantly decrease formation of PCDDs/Fs in MSW incineration. Furthermore, distributions of HMs such as Cd, Pb, Cu, Zn, Cr, As, Ni, Hg in bottom ash and fly ash were investigated to assess the need for treatment of residual ash.

  14. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    PubMed Central

    Li, Wen-Bing; Yao, Jun; Zhou, Gen-Di; Dong, Ming; Shen, Dong-Sheng

    2014-01-01

    The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation. PMID:24779006

  15. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.

    PubMed

    Nakasaki, Kiyohiko; Marui, Taketoshi

    2011-06-01

    To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.

  16. Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content.

    PubMed

    Zheng, Wei; Lü, Fan; Bolyard, Stephanie C; Shao, Liming; Reinhart, Debra R; He, Pinjing

    2015-02-01

    To understand the applicability of the termination indicators for landfill municipal solid waste (MSW) with low initial lignin content, four different accelerated landfill stabilization techniques were applied to anaerobic landfilled waste, including anaerobic flushing with water, anaerobic flushing with Fenton-treated leachate, and aerobic flushing with Fenton-treated and UV/H2O2-treated leachate. Termination indicators, including total organic carbon (TOC), ammonia-N (NH4(+)-N), the ratio of UV absorbance at 254 nm to TOC concentration (SUVA254), fluorescence spectra of leachate, methane production, oxygen consumption, lignocellulose content, and humus-like content were evaluated. Results suggest that oxygen consumption related indicators used as a termination indicator for low-lignin-content MSW were more sensitive than methane consumption related indicators. Aeration increased humic acid (HA) and (HA+FA)/HyI content by 2.9 and 1.7 times compared to the anaerobically stabilized low-lignin-content MSW. On the other hand, both the fulvic acid (FA) and hydrophilic (HyI) fractions remained constant regardless of stabilization technique. The target value developed for low-lignin-content MSW was quite different than developed countries mainly due to low residual biodegradable organic carbon content in stabilized low-lignin-content MSW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  18. Assessment of co-composting process with high load of an inorganic industrial waste.

    PubMed

    Soares, Micaela A R; Quina, Margarida J; Reis, Marco S; Quinta-Ferreira, Rosa

    2017-01-01

    This study aims to investigate the co-composting of an inorganic industrial waste (eggshell - ES) in very high levels (up to 60% w/w). Since composting is a process in which solid, liquid and gaseous phases interact in a very complex way, there is a need to shed light on statistical tools that can unravel the main relationships structuring the variability associated to this process. In this study, PCA and data visualisation were used with that purpose. The co-composting tests were designed with increasing quantities of ES (0, 10, 20, 30 and 60%ES w/w) mixed with industrial potato peel and rice husks. Principal component analysis showed that physical properties like free air space, bulk density and moisture are the most relevant variables for explaining the variability due to ES content. On the other hand, variability in time dynamics is mostly driven by some chemical and phytoxicological parameters, such as organic matter decay and nitrate content. Higher ES incorporation (60% ES) enhanced the initial biological activity of the mixture, but the higher bulk density and lower water holding capacity had a negative effect on the aerobic biological activity as the process evolved. Nevertheless, pathogen-killing temperatures (>70°C for 11h) were attained. All the final products obtained after 90days were stable and non-phytotoxic. This work proved that valorisation of high amounts of eggshell by co-composting is feasible, but prone to be influenced by the physical properties of the mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    NASA Astrophysics Data System (ADS)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    contents increased in BC10 treatment, while the K contents were similar in all treatments as well as C/N ratio (around 15). The organic matter content was BC10>BC5>BC0 and the dissolved organic C content was lower than 8.3 g kg-1 for all piles confirming the maturity of compost. The germination test showed a non-toxic effect of all amendments in the species assayed obtaining a germination index between 55% and 80.7% indicating maturity of the amendments evaluated. Our results indicated that the combined use of agricultural wastes and biochar by mean of a co-composting process is a suitable option for generating good quality amendments for improving soil condition and optimizing nutrient cycling at farm scale. Financial support for this research was provided by the National Commission for Scientific and Technological Research through FONDECYT 11140508 Project

  20. Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting.

    PubMed

    Song, Caihong; Li, Mingxiao; Qi, Hui; Zhang, Yali; Liu, Dongming; Xia, Xunfeng; Pan, Hongwei; Xi, Beidou

    2018-07-01

    This study investigated the effect of anti-acidification microbial consortium (AAMC), which act synergistically for rapid bioconversion of organic acids on carbohydrate metabolism of key microbes in the course of food waste (FW) composting by metaproteomics. AAMC was inoculated to the composting mass and compared with treatment with alkaline compounds and the control without any amendment. Inoculating AAMC could effectively accelerate carbohydrate degradation process and improve composting efficiency. Carbohydrate metabolic network profiles showed the inoculation with AAMC could increase significantly the types of enzymes catalysing the degradation of lignin, cellulose and hemicellulose. Furthermore, AAMC inoculum could increase not only diversities of microbes producing key enzymes in metabolism pathways of acetic and propionic acids, but also the amounts of these key enzymes. The increase of diversities of microbes could disperse the pressure from acidic adversity on microorganisms which were capable to degrade acetic and propionic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Comparison of five agro-industrial waste-based composts as growing media for lettuce: Effect on yield, phenolic compounds and vitamin C.

    PubMed

    Santos, Francielly T; Goufo, Piebiep; Santos, Cátia; Botelho, Donzilia; Fonseca, João; Queirós, Aurea; Costa, Mônica S S M; Trindade, Henrique

    2016-10-15

    Overall phenolic content in plants is on average higher in organic farming, including when renewable resources such as composts are used as soil amendments. In most cases, however, the composting process needs to be optimized to reach the desired outcome. Using composts obtained from chestnut, red and white grapes, olive and broccoli wastes, the relative antioxidative abilities of lettuces cultivated in greenhouse were examined. Results clearly coupled high phenolic levels with high yield in lettuce grown on the chestnut-based compost. A huge accumulation of phenolics was observed with the white grape-based compost, but this coincided with low yield. Three compounds were identified as discriminating factors between treated samples, namely quercetin 3-O-glucoside, luteolin 7-O-glucoside, and cyanidin 3-O-(6″-malonyl)-β-d-glucoside; these are also some of the compounds receiving health claims on lettuce consumption. On a negative note, all composts led to decreased vitamin C levels. Collectively, the data suggest that compost amendments can help add value to lettuce by increasing its antioxidant activity as compared to other organic resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fuzzy multicriteria disposal method and site selection for municipal solid waste.

    PubMed

    Ekmekçioğlu, Mehmet; Kaya, Tolga; Kahraman, Cengiz

    2010-01-01

    The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights. 2010 Elsevier Ltd. All rights reserved.

  3. Recycling of Vineyard and Winery Wastes as Nutritive Composts for Edible Mushroom Cultivation

    NASA Astrophysics Data System (ADS)

    Petre, Marian; Teodorescu, Alexandru

    2011-01-01

    Every year, in Romania huge amounts of wine and vine wastes cause serious environmental damages in vineyards as well as nearby winery factories, for instance, by their burning on the soil surface or their incorporation inside soil matrix. The optimal and efficient way to solve these problems is to recycle these biomass wastes as main ingredients in nutritive composts preparation that could be used for edible mushrooms cultivation. In this respect, the main aim of this work was to establish the best biotechnology of winery and vine wastes recycling by using them as appropriate growth substrata for edible and medicinal mushrooms. According to this purpose, two mushroom species of Basidiomycetes, namely Lentinula edodes as well as Pleurotus ostreatus were used as pure mushroom cultures in experiments. The experiments of inoculum preparation were set up under the following conditions: constant temperature, 23° C; agitation speed, 90-120 rev min-1 pH level, 5.0-6.0. All mycelia mushroom cultures were incubated for 120-168 h. In the next stage of experiments, the culture composts for mushroom growing were prepared from the lignocellulose wastes as vine cuttings and marc of grapes in order to be used as substrata in mycelia development and fruit body formation. The tested culture variants were monitored continuously to keep constant the temperature during the incubation as well as air humidity, air pressure and a balanced ratio of the molecular oxygen and carbon dioxide. In every mushroom culture cycle all the physical and chemical parameters that could influence the mycelia growing as well as fruit body formation of L. edodes and P. ostreatus were compared to the same fungal cultures that were grown on poplar logs used as control samples.

  4. Composting in small laboratory pilots: performance and reproducibility.

    PubMed

    Lashermes, G; Barriuso, E; Le Villio-Poitrenaud, M; Houot, S

    2012-02-01

    Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creating artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O(2) consumption and CO(2) emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Compost in plant microbial fuel cell for bioelectricity generation.

    PubMed

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A degradation model for high kitchen waste content municipal solid waste.

    PubMed

    Chen, Yunmin; Guo, Ruyang; Li, Yu-Chao; Liu, Hailong; Zhan, Tony Liangtong

    2016-12-01

    Municipal solid waste (MSW) in developing countries has a high content of kitchen waste (KW), and therefore contains large quantities of water and non-hollocellulose degradable organics. The degradation of high KW content MSW cannot be well simulated by the existing degradation models, which are mostly established for low KW content MSW in developed countries. This paper presents a two-stage anaerobic degradation model for high KW content MSW with degradations of hollocellulose, sugars, proteins and lipids considered. The ranges of the proportions of chemical compounds in MSW components are summarized with the recommended values given. Waste components are grouped into rapidly or slowly degradable categories in terms of the degradation rates under optimal water conditions for degradation. In the proposed model, the unionized VFA inhibitions of hydrolysis/acidogenesis and methanogenesis are considered as well as the pH inhibition of methanogenesis. Both modest and serious VFA inhibitions can be modeled by the proposed model. Default values for the parameters in the proposed method can be used for predictions of degradations of both low and high KW content MSW. The proposed model was verified by simulating two laboratory experiments, in which low and high KW content MSW were used, respectively. The simulated results are in good agreement with the measured data of the experiments. The results show that under low VFA concentrations, the pH inhibition of methanogenesis is the main inhibition to be considered, while the inhibitions of both hydrolysis/acidogenesis and methanogenesis caused by unionized VFA are significant under high VFA concentrations. The model is also used to compare the degradation behaviors of low and high KW content MSW under a favorable environmental condition, and it shows that the gas potential of high KW content MSW releases more quickly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Geotechnical properties of municipal solid waste at different phases of biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Krishna R., E-mail: kreddy@uic.edu; Hettiarachchi, Hiroshan, E-mail: hiroshan@ltu.edu; Gangathulasi, Janardhanan, E-mail: jganga2@uic.edu

    Highlights: > Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. > Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. > Hydraulic conductivity decreased by two orders of magnitude due to degradation. > Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. > Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were preparedmore » based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35{sup o} for fresh MSW to 28{sup o} for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1{sup o} to 9{sup o}, respectively, while the effective strength

  8. The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen.

    PubMed

    Zhang, Lihua; Zeng, Guangming; Dong, Haoran; Chen, Yaoning; Zhang, Jiachao; Yan, Ming; Zhu, Yuan; Yuan, Yujie; Xie, Yankai; Huang, Zhenzhen

    2017-04-01

    This study evaluated the influence of silver nanoparticles (AgNPs) on evolutions of organic matter and nitrogen during co-composting of sewage sludge and agricultural waste. Two co-composting piles were conducted, one was treated without AgNPs (pile 1) and the other with AgNPs (pile 2). Results showed that the AgNPs affected the quality of final composts. Less organic matter (OM) losses were determined in pile 2 (57.96%) than pile 1 (61.66%). 27.22% and 30.1% of the initial total organic matter (TOC) was decomposed in pile 1 and pile 2, respectively. The final water soluble carbon (WSC) concentration in pile 2 was 23559.27mg/kg DW compost which was significantly lower than pile 1 (25642.75mg/kg DW compost). Changes of different forms of nitrogen in the two piles showed that AgNPs could reduce the losses of TN but increase the losses of mineral N. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P., E-mail: eco@otenet.gr

    2013-11-15

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/ormore » wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was

  10. Effects of bedding type on compost quality of equine stall waste: implications for small horse farms.

    PubMed

    Komar, S; Miskewitz, R; Westendorf, M; Williams, C A

    2012-03-01

    Our objective in this study is to compare 4 of the most common bedding materials used by equine operations on the chemical and physical characteristics of composted equine stall waste. Twelve Standardbred horses were adapted to the barn and surrounding environment for 2 wk before the start of the study. Groups of 3 horses were bedded on 1 of 4 different bedding types (wood shavings, pelletized wood materials, long straw, and pelletized straw) for 16 h per day for 18 d. Stalls were cleaned by trained staff daily, and all contents removed were weighed and stored separately by bedding material on a level covered concrete pad for the duration of the study. Compost piles were constructed using 3 replicate piles of each bedding type in a randomized complete block design. Each pile was equipped with a temperature sensor and data logger. Water was added and piles were turned weekly throughout the 100-d compost process. Initial and final samples were taken, dried, and analyzed for DM mass, OM, inorganic nitrogen (nitrate-N and ammonium-N), electrical conductivity, and soluble (plant-available) nutrients. Data were analyzed using the GLM procedure, and means were separated using Fischer's protected LSD test (P < 0.05). No significant temperature differences were observed among the bedding materials. The composting process resulted in significant reductions (P < 0.05) in DM mass for each of the 4 bedding materials. The composting process resulted in significant reductions (P < 0.05) in OM and C:N ratio for all 4 bedding materials. The composted long straw material had greater concentrations of total Kjeldahl nitrogen (P < 0.05), nitrate-N (P < 0.05), and ammonium-N (P < 0.05) than the composted wood shavings. This study demonstrated that incorporating a simple aerobic composting system may greatly reduce the overall volume of manure and yield a material that is beneficial for land application in pasture-based systems. The straw-based materials may be better suited for

  11. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting.

    PubMed

    Nakasaki, Kiyohiko; Araya, Shogo; Mimoto, Hiroshi

    2013-09-01

    In this study, the yeast strain Pichia kudriavzevii RB1 was used as an inoculum to accelerate organic matter degradation of rabbit food with added organic acids, which was used as a model food waste for composting. The RB1 strain rapidly degraded the organic acids present in the raw compost material, leading to an increase in pH beyond the neutral level, within 2 days. Both mesophilic and thermophilic bacteria proliferated faster in the compost with RB1 inoculation than in that without inoculation. Although the yeast died with the increase in compost temperature, it affected the early stages of composting prior to the thermophilic stage and accelerated the composting process by 2 days by eliminating the initial lag phase seen in the growth of other microorganisms. Moreover, populations of Bacillus thermoamylovorans, Bacillus foraminis, and Bacillus coagulans became dominant during the thermophilic stages of both composting with and without RB1 inoculation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Respirometric screening of several types of manure and mixtures intended for composting.

    PubMed

    Barrena, Raquel; Turet, Josep; Busquets, Anna; Farrés, Moisès; Font, Xavier; Sánchez, Antoni

    2011-01-01

    The viability of mixtures from manure and agricultural wastes as composting sources were systematically studied using a physicochemical and biological characterization. The combination of different parameters such as C:N ratio, free air space (FAS) and moisture content can help in the formulation of the mixtures. Nevertheless, the composting process may be challenging, particularly at industrial scales. The results of this study suggest that if the respirometric potential is known, it is possible to predict the behaviour of a full scale composting process. Respiration indices can be used as a tool for determining the suitability of composting as applied to manure and complementary wastes. Accordingly, manure and agricultural wastes with a high potential for composting and some proposed mixtures have been characterized in terms of respiration activity. Specifically, the potential of samples to be composted has been determined by means of the oxygen uptake rate (OUR) and the dynamic respirometric index (DRI). During this study, four of these mixtures were composted at full scale in a system consisting of a confined pile with forced aeration. The biological activity was monitored by means of the oxygen uptake rate inside the material (OURinsitu). This new parameter represents the real activity of the process. The comparison between the potential respirometric activities at laboratory scale with the in situ respirometric activity observed at full scale may be a useful tool in the design and optimization of composting systems for manure and other organic agricultural wastes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Fertilizer efficiency and environmental risk of irrigating Impatiens with composting leachate in decentralized solid waste management.

    PubMed

    Zhou, Chuanbin; Wang, Rusong; Zhang, Yishan

    2010-06-01

    The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD(5) concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15-2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  15. Biopesticide effect of green compost against fusarium wilt on melon plants.

    PubMed

    Ros, M; Hernandez, M T; Garcia, C; Bernal, A; Pascual, J A

    2005-01-01

    The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.

  16. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    PubMed

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Public opinion about the source separation of municipal solid waste in Shanghai, China.

    PubMed

    Zhang, Weiqian; Che, Yue; Yang, Kai; Ren, Xiangyu; Tai, Jun

    2012-12-01

    For decades the generation of municipal solid waste (MSW) in Shanghai has been increasing. Despite the long-time efforts aimed at MSW management (MSWM), the disposal of MSW achieves poor performance. Thus, a MSW minimisation plan for Shanghai was proposed in December 2010. In this study, direct face-to-face interviews and a structured questionnaire survey were used in four different Shanghai community types. We conducted an econometric analysis of the social factors that influence the willingness to pay for MSW separation and discussed the household waste characteristics, the daily waste generation and the current treatment of kitchen wastes. The results suggested that the respondents are environmentally aware of separation, but only practise minimal separation. Negative neighbour effects, confused classification of MSW, and mixed transportation and disposal are the dominant limitations of MSW source-separated collection. Most respondents are willing to pay for MSWM. Public support is influenced by household population, income and cost. The attitudes and behaviours of citizens are important for reducing the amount of MSW disposal by 50% per capita by 2020 (relative to 2010). Concerted efforts should be taken to enlarge pilot areas. In addition, the source separation of kitchen wastes should be promoted.

  18. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory.

    PubMed

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-08-01

    The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO 3 , Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced. Copyright © 2017. Published by Elsevier Ltd.

  19. Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.; Nagle, N.J.; Kay, B.D.

    1995-12-31

    Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residuesmore » increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.« less

  20. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting.

    PubMed

    Lu, Qian; Zhao, Yue; Gao, Xintong; Wu, Junqiu; Zhou, Haixuan; Tang, Pengfei; Wei, Qingbin; Wei, Zimin

    2018-05-01

    Composting is an environment friendly method to recycling organic waste. However, with the increasing concern about greenhouse gases generated in global atmosphere, it is significant to reduce the emission of carbon dioxide (CO 2 ). This study analyzes tricarboxylic acid (TCA) cycle regulators on the effect of reducing CO 2 emission, and the relationship among organic component (OC) degradation and transformation and microorganism during composting. The results showed that adding adenosine tri-phosphate (ATP) and nicotinamide adenine dinucleotide (NADH) could enhance the transformation of OC and increase the diversity of microorganism community. Malonic acid (MA) as a competitive inhibitor could decrease the emission of CO 2 by inhibiting the TCA cycle. A structural equation model was established to explore effects of different OC and microorganism on humic acid (HA) concentration during composting. Furthermore, added MA provided an environmental benefit in reducing the greenhouse gas emission for manufacture sustainable products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Influence of biochar on heavy metals and microbial community during composting of river sediment with agricultural wastes.

    PubMed

    Chen, Yaoning; Liu, Yao; Li, Yuanping; Wu, Yanxin; Chen, Yanrong; Zeng, Guangming; Zhang, Jiachao; Li, Hui

    2017-11-01

    Studies were performed to evaluate influence of biochar addition on physico-chemical process, heavy metals transformation and bacterial community diversity during composting of sediment with agricultural wastes. Simultaneously, the relationships between those parameters including heavy metals and bacterial community compositions were evaluated by redundancy analysis (RDA). The results show that the extraction efficiency of DTPA extractable heavy metals decreased in both piles, and reduced more in pile with biochar addition about 0.1-2.96%. Biochar addition dramatically influenced the bacterial community structure during the composting process. Moreover, the bacterial community composition was significantly correlated with C/N ratio, water soluble carbon (WSC), and organic matter (OM) (P<0.05) in pile with biochar addition; while significantly correlated with temperature, WSC, and C/N ratio in pile which was free of biochar. This study would provide some valuable information for improving the composting for disposal of river sediment with heavy metals contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    PubMed

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Investigation of the microbial community structure and activity as indicators of compost stability and composting process evolution.

    PubMed

    Chroni, Christina; Kyriacou, Adamadini; Manios, Thrassyvoulos; Lasaridi, Konstantia-Ekaterini

    2009-08-01

    In a bid to identify suitable microbial indicators of compost stability, the process evolution during windrow composting of poultry manure (PM), green waste (GW) and biowaste was studied. Treatments were monitored with regard to abiotic factors, respiration activity (determined using the SOUR test) and functional microflora. The composting process went through typical changes in temperature, moisture content and microbial properties, despite the inherent feedstock differences. Nitrobacter and pathogen indicators varied as a monotonous function of processing time. Some microbial groups have shown a potential to serve as fingerprints of the different process stages, but still they should be examined in context with respirometric tests and abiotic parameters. Respiration activity reflected well the process stage, verifying the value of respirometric tests to access compost stability. SOUR values below 1 mg O(2)/g VS/h were achieved for the PM and the GW compost.

  4. Electrical and electronic plastics waste co-combustion with municipal solid waste for energy recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J.; Mark, F.E.

    1997-12-01

    The recovery or disposal of end-of-life electrical and electronic (E+E) equipment is receiving considerable attention from industry organisations such as APME in order to supply factual information which can be used in the development of a clear industry strategy. It is hoped that such information will persuade EU member states to define the best management practices for this waste stream. One of the difficulties regarding the recovery or disposal of E+E waste is a lack of data regarding its behaviour when incinerated. This lack of data has led to unfounded conclusions by sonic parties that plastic wastes contain harmful halogenatedmore » species which are difficult to treat and remove, and when incinerated contribute to the emission of halogenated species and are responsible for the major portion of emissions. APME has a comprehensive testing program investigating the impact of plastics on municipal solid waste (MSW) incineration. APME`s previous work has demonstrated the positive, beneficial effects of mixed waste plastics in the MSW energy recovery process as well as studying halogen behaviour during the combustion of packaging plastics waste and construction foam from the building industry. The current study was designed to evaluate the incineration of MSW containing typical levels of electrical and electronic (E+E) plastic waste, as well as MSW containing E+E waste in amounts up to 12%.« less

  5. Application of compost of two-phase olive mill waste on olive grove: effects on soil, olive fruit and olive oil quality.

    PubMed

    Fernández-Hernández, Antonia; Roig, Asunción; Serramiá, Nuria; Civantos, Concepción García-Ortiz; Sánchez-Monedero, Miguel A

    2014-07-01

    Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical "Picual" olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fate of pharmaceuticals and pesticides in fly larvae composting.

    PubMed

    Lalander, C; Senecal, J; Gros Calvo, M; Ahrens, L; Josefsson, S; Wiberg, K; Vinnerås, B

    2016-09-15

    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (<10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Current status of solid waste management in small island developing states: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohee, Romeela; Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu; Bundhoo, Zumar M.A.

    Highlights: • Waste management is a matter of great concern for small island developing states. • On average, waste generation rate in these islands amounts to 1.29 kg/capita/day. • Illegal dumping and landfilling prevail in most small island developing states. • Sustainable waste management practices, previously absent, are now emerging. • However, many challenges still hinder the implementation of these practices. - Abstract: This article reviews the current status of waste management in Small Island Developing States (SIDS) and the challenges that are faced in solid waste management. The waste generation rates of SIDS were compared within the three geographicmore » regions namely Caribbean SIDS, Pacific SIDS and Atlantic, Indian Ocean, Mediterranean and South China (AIMS) SIDS and with countries of the Organisation for Economic Co-Operation and Development (OECD). Only Pacific SIDS had a waste generation rate less than 1 kg/capita/day. The waste generation rates for the three SIDS regions averaged 1.29 kg/capita/day while that for OECD countries was at a mean value of 1.35 kg/capita/day. The waste compositions in the different SIDS regions were almost similar owing to comparable consumption patterns while these differed to a large extent with wastes generated in OECD countries. In SIDS, the major fraction of MSW comprised of organics (44%) followed by recyclables namely paper, plastics, glass and metals (total: 43%). In contrast, MSW in OECD countries consisted mainly of recyclables (43%) followed by organics (37%). This article also reviewed the other functional elements of the waste management systems in SIDS. Several shortcomings were noted in the process of waste collection, transfer and transport namely the fact of having outdated collection vehicles and narrow roads which are inaccessible. Among the waste management practices in SIDS, waste disposal via landfilling, illegal dumping and backyard burning were favoured most of the time at the

  8. Sewage sludge drying by energy recovery from OFMSW composting: preliminary feasibility evaluation.

    PubMed

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo

    2014-05-01

    In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Municipal solid-waste management in Istanbul.

    PubMed

    Kanat, Gurdal

    2010-01-01

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. 2010 Elsevier Ltd. All rights reserved.

  10. Assessment of applicability index for better management of municipal solid waste: a case study of Dhanbad, India.

    PubMed

    Yadav, Pooja; Samadder, S R

    2018-06-01

    Selection of suitable municipal solid waste management (MSWM) options is one of the major challenges in urban areas of the developing countries. Success of MSWM requires accurate data of generation rate, composition and physico-chemical characteristics of solid wastes. Improper handling of solid waste can have significant environmental and aesthetical impacts. The present study proposes a new method (applicability index - P ik values) for identifying the most appropriate disposal option with the help of applicability values of Composting-C P , Incineration-I P and Landfill-L P for individual components of MSW based on the results of the physico-chemical analysis of the collected representative solid waste samples from the study area, Dhanbad, India. The mean values of moisture content, carbon, hydrogen, oxygen, nitrogen, sulfur, volatile organic carbon, fixed carbon, ash content, density and calorific values (CV) of individual components were used as input values in this process. Based on the proposed applicability index (P ik ), the highest P ik values were obtained for incineration (I P ) for plastics, polythene, paper, coconut shell, wood, cardboard, textile, thermocol (polystyrene), rubber, sugarcane bagasse, cow dung and leather wastes (I P  > C P  > L P ) due to high CV of these solid waste components; the highest P ik values were obtained for composting (C P ) of kitchen waste (C P  > I P  > L P ); and the highest P ik values for inert wastes were obtained for landfill option (L P  > I P  > C P ). The highest P ik value for a particular waste for a specific treatment option signifies that the waste is suitable for treatment/disposal using that option.

  11. Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.

    PubMed

    Spargo, John T; Evanylo, Gregory K; Alley, Marcus M

    2006-01-01

    Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.

  12. Assessing the costs of municipal solid waste treatment technologies in developing Asian countries.

    PubMed

    Aleluia, João; Ferrão, Paulo

    2017-11-01

    The management of municipal solid waste (MSW) is one of the main costs incurred by local authorities in developing countries. According to some estimates, these costs can account for up to 50% of city government budgets. It is therefore of importance that policymakers, urban planners and practitioners have an adequate understanding of what these costs consist of, from collection to final waste disposal. This article focuses on a specific stage of the MSW value chain, the treatment of waste, and it aims to identify cost patterns associated with the implementation and operation of waste treatment approaches in developing Asian countries. An analysis of the capital (CAPEX) and operational expenditures (OPEX) of a number of facilities located in countries of the region was conducted based on a database gathering nearly 100 projects and which served as basis for assessing four technology categories: composting, anaerobic digestion (AD), thermal treatment, and the production of refuse-derived fuel (RDF). Among these, it was found that the least costly to invest, asa function of the capacity to process waste, are composting facilities, with an average CAPEX per ton of 21,493 USD 2015 /ton. Conversely, at the upper end featured incineration plants, with an average CAPEX of 81,880 USD 2015 /ton, with this treatment approach ranking by and large as the most capital intensive of the four categories assessed. OPEX figures of the plants, normalized and analyzed in the form of OPEX/ton, were also found to be higher for incineration than for biological treatment methods, although on this component differences amongst the technology groups were less pronounced than those observed for CAPEX. While the results indicated the existence of distinct cost implications for available treatment approaches in the developing Asian context, the analysis also underscored the importance of understanding the local context asa means to properly identify the cost structure of each specific plant

  13. Updating and testing of a Finnish method for mixed municipal solid waste composition studies.

    PubMed

    Liikanen, M; Sahimaa, O; Hupponen, M; Havukainen, J; Sorvari, J; Horttanainen, M

    2016-06-01

    More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Composting in small laboratory pilots: Performance and reproducibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We design an innovative small-scale composting device including six 4-l reactors. Black-Right-Pointing-Pointer We investigate the performance and reproducibility of composting on a small scale. Black-Right-Pointing-Pointer Thermophilic conditions are established by self-heating in all replicates. Black-Right-Pointing-Pointer Biochemical transformations, organic matter losses and stabilisation are realistic. Black-Right-Pointing-Pointer The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creatingmore » artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O{sub 2} consumption and CO{sub 2} emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the

  15. Force Provider Solid Waste Characterization Study

    DTIC Science & Technology

    2004-08-01

    energy converter (WEC) and/or composter . For a five-day period in June 2000, the solid waste generated by soldiers at the Force Provider Training Module...MATERIALS REDUCTION WASTE DISPOSAL MILITARY FACILITIES SANITARY ENGINEERING DISPOSAL FORCE PROVIDER FIELD FEEDING COMPOSTS WASTES GARBAGE WASTE RECYCLING...waste reduction through onsite waste-to-energy conversion and/or composting . The work was performed by Hughes Associates, Inc., 3610 Commerce

  16. Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms

    NASA Astrophysics Data System (ADS)

    Azura Zakarya, Irnis; Baya Khalib, Siti Noor; Ramzi, Norhasykin Mohd

    2018-03-01

    Rice straw is considered as one of the most important agricultural residues and represented as one of the major by-products from rice production process. Normally, rice straw that produced after harvesting season been directly burned on-farm. Conversion of rice straw into value added compost will improve the productivity of plant, reduction of pollution towards environment and reduction of local pollution due to open burning activity. The objective of this study was to evaluate the performance of composting rice straw ash (RSA) with food waste (FW) and effective microorganisms (EM) in term of the compost quality (pH, temperature, moisture content). RSA was prepared by burning the raw rice straw at three different temperature of 300°C, 400°C and 500°C for one hour. EM used during the composting process was prepared by mixing of brown sugar, `tempe' and water that can be used after one week of fermentation process. There are four treatments of RSA-compost; RSA (300°C), RSA (400°C), RSA (500°C) and control (raw rice straw) with the same amount of compost medium; 1kg black soil, 0.5kg RSA, 3L EM and 1kg FW. The composting process happens for 30 days. During the composting process, all the parameters of RSA-compost obtained in a range like; pH value 8-10, temperature 20-50°C and moisture content 40-60%. The result showed that all compost quality of rice straw ash compost obtained in an acceptable range for final compost to establish.

  17. Co-composting of palm oil mill sludge-sawdust.

    PubMed

    Yaser, Abu Zahrim; Abd Rahman, Rakmi; Kalil, Mohd Sahaid

    2007-12-15

    Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components.

  18. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    NASA Astrophysics Data System (ADS)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C

  19. Effect of turning frequency on co-composting pig manure and fungus residue.

    PubMed

    Jiang-Ming, Zhou

    2017-03-01

    Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for

  20. Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation.

    PubMed

    Ayalon, O; Avnimelech, Y; Shechter, M

    2001-05-01

    The increased concern about environmental problems caused by inadequate waste management, as well as the concern about global warming, promotes actions toward a sustainable management of the organic fraction of the waste. Landfills, the most common means to dispose of municipal solid waste (MSW), lead to the conversion of the organic waste to biogas, containing about 50% methane, a very active greenhouse gas (GHG). One unit of methane has a global warming potential of 21 computed for a 100-year horizon or 56 computed for 20 years. The waste sector in Israel contributes 13% of total greenhouse gases (GHG) emissions for a time horizon of 100 years (for a time horizon of 20 years, the waste sector contribution equals to more than 25% of total GHG emissions). The ultimate goal is to minimize the amount of methane (CH4) by converting it to CO2. This can be achieved by physicochemical means (e.g., landfill gas flare, incineration) or by biological processes (e.g., composting, anaerobic digestion). Since the waste in Israel has a high organic material content, it was found that the most cost-effective means to treat the degradable organic components is by aerobic composting (investment of less than US$ 10 to reduce emission of one ton CO2 equivalent per year). Another benefit of this technology is the ability to implement it within a short period. The suggested approach, which should be implemented especially in developing countries, could reduce a significant amount of GHG at relatively low cost and short time. The development of a national policy for proper waste treatment can be a significant means to abate GHG emissions in the short term, enabling a gain in time to develop other means for the long run. In addition, the use of CO2 quotas will credit the waste sector and will promote profitable proper waste management.

  1. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    EPA Pesticide Factsheets

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  2. The effects of composting on the nutritional composition of fibrous bio-regenerative life support systems (BLSS) plant waste residues and its impact on the growth of Nile tilapia ( Oreochromis niloticus)

    NASA Astrophysics Data System (ADS)

    Gonzales, John M.; Lowry, Brett A.; Brown, Paul B.; Beyl, Caula A.; Nyochemberg, Leopold

    2009-04-01

    Utilization of bio-regenerative life support systems (BLSS) plant waste residues as a nutritional source by Nile tilapia ( Oreochromis niloticus) has proven problematic as a result of high concentrations of fibrous compounds in the plant waste residues. Nutritional improvement of plant waste residues by composting with the oyster mushroom ( Pleurotus ostreatus), and the effects on growth and nutrient utilization of Nile tilapia fed such residues were evaluated. Five Nile tilapia (mean weight = 70.9 ± 3.1 g) were stocked in triplicate aquaria and fed one of two experimental diets, cowpea (CP) and composted cowpea (CCP), twice daily for a period of 8 weeks. Composting of cowpea residue resulted in reduced concentrations of nitrogen-free extract, hemi-cellulose and trypsin inhibitor activity, though trypsin inhibitor activity remained high. Composting did not reduce crude fiber, lignin, or cellulose concentrations in the diet. No significant differences ( P < 0.05) were observed in weight gain, specific growth rate, survival rate, daily consumption, and food conversion ratio between tilapia fed CP and CCP. These results suggest that P. ostreatus is not a suitable candidate for culture in conjunction with the culture of Nile tilapia. Additional work is needed to determine what, if any, benefit can be obtained from incorporating composted residue as feed for Nile tilapia.

  3. Relationship between the nutrition status and sensory characteristics of melon fertilized with wine-distillery waste compost

    NASA Astrophysics Data System (ADS)

    Requejo, María Isabel; Sánchez-Palomo, Eva; González, Miguel Angel; Castellanos, Maria Teresa; Villena, Raquel; Cartagena, Maria Carmen; Ribas, Francisco

    2015-04-01

    The interest in developing sustainable agriculture is becoming more important day by day. A large quantity of wastes from the wine and distillery industry are produced and constitute a serious problem not only environmental but also economic. The use of exhausted grape marc compost as organic amendment is a management option of the fertility of soils. On the other hand, consumers are increasingly concerned about the type, quality and origin of food production. Flavor and aroma are most often the true indicators of shelf-life from the consumer's point of view. The aim of this study was to relate the nutritional status of melon fertilized with exhausted grape marc compost with the sensory profile of fresh-cut fruits. A field experiment was established with three doses of compost (1, 2 and 3 kg per linear meter) and a control. Melons were harvested at maturity and the sensory evaluation was carried out by an expert panel of melon tasters to describe odour, flavour and texture. Nitrogen, phosphorus and potassium concentration was determined in the fruits to calculate nutrient absorption. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01

  4. Aerobic composting of distilled grain waste eluted from a Chinese spirit-making process: The effects of initial pH adjustment.

    PubMed

    Wang, Shi-Peng; Zhong, Xiao-Zhong; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-12-01

    Aerobic composting of distilled grain waste (DGW) at different initial pH values adjusted by CaO addition was investigated. Three pH-adjusted treatments with initial pH values of 4 (R1), 5 (R2) and 6 (R3) and a control treatment (R0) with a pH value of 3.5 were conducted simultaneously. The results showed that R0 had an unsuccessful start-up of composting. However, the pH-adjusted treatments produced remarkable results, with a relatively high initial pH being beneficial for the start-up. Within 65days of composting, the degradation of volatile solids (VS) and the physicochemical properties of R2 and R3 displayed similar tendencies, and both produced a mature end-product, while R1 exhibited a lower VS degradation rate, and some of its physicochemical properties indicated the end-product was immature. Quantitative PCR analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of DGW could be attributed to the activity of ammonia-oxidizing bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. An industrial ecology approach to municipal solid waste management: I. Methodology

    EPA Science Inventory

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in; Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com; Santhosh, L.G., E-mail: lgsanthu2006@gmail.com

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated bymore » performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.« less

  7. Evaluation of Composting Implementation: A Literature Review

    DTIC Science & Technology

    1990-07-13

    toxic intermediates and reaction products ; and 3. the potential for additional contami-ation of groundwaters and soils . General conclusions from these... Soil . In: Compost: Production , Quality, and Use, Proceedings of a Symposium Organized by the Commission of the European Communities, M. DeBertoldi, M...Historically, composting has been used to accelerate the biodegradation of a variety of organic wastes from agricultural products (Fujio et al., 1986

  8. Characterization of Low Firing Temperature Ceramic Glaze Using Phuket MSW and Soda Lime Cullet

    NASA Astrophysics Data System (ADS)

    Ketboonruang, P.; Jinawat, S.; Kashima, D. P.; Wasanapiarnpong, T.; Sujaridworakun, P.; Buggakuptav, W.; Traipol, N.; Jiemsirilers, S.

    2011-10-01

    The normal firing temperature of ceramic products is around 1200 °C. In order to reduce firing temperature, industrial wastes were utilized in ceramic glaze. Phuket municipal solid waste (MSW), soda lime cullet, and borax were used as raw materials for low firing temperature glazes. The glaze compositions were designed using a triaxial diagram. Stoneware ceramic body was glazed then fired at 1000 and 1150 °C for 15 minutes. Morphology and phase composition of glazes were analyzed by Scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Thermal expansion compatibility of Stoneware body and glazes were investigated using a dilatometer. Melting behaviour of selected glaze was analyzed by heating stage microscopy. Phuket MSW and Soda lime glass cullet can be used in high percentage as major raw materials for low firing temperature ceramic glaze that show good texture and vitrified at lower firing temperature without using any commercial ceramic frits. The firing temperature can be reduced up to 150 °C in this study.

  9. Use of urban composts for the regeneration of a burnt Mediterranean soil: a laboratory approach.

    PubMed

    Cellier, Antoine; Francou, Cédric; Houot, Sabine; Ballini, Christine; Gauquelin, Thierry; Baldy, Virginie

    2012-03-01

    In Mediterranean region, forest fires are a major problem leading to the desertification of the environment. Use of composts is considered as a solution for soil and vegetation rehabilitation. In this study, we determined under laboratory conditions the effects of three urban composts and their mode of application (laid on the soil surface or mixed into the soil) on soil restoration after fire: a municipal waste compost (MWC), a compost of sewage sludge mixed with green waste (SSC) and a green waste compost (GWC). Carbon (C) and nitrogen (N) mineralisation, total microbial biomass, fungal biomass and soil characteristics were measured during 77-day incubations in microcosms. The impact of composts input on hydrological behaviour related to erodibility was estimated by measuring runoff, retention and percolation (i.e. infiltration) of water using a rainfall simulator under laboratory conditions. Input of composts increased organic matter and soil nutrient content, and enhanced C and N mineralisation and total microbial biomass throughout the incubations, whereas it increased sporadically fungal biomass. For all these parameters, the MWC induced the highest improvement while GWC input had no significant effect compared to the control. Composts mixed with soil weakly limited runoff and infiltration whereas composts laid at the soil surface significantly reduced runoff and increased percolation and retention, particularly with the MWC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Bioremediation of diesel oil-contaminated soil by composting with biowaste.

    PubMed

    Van Gestel, Kristin; Mergaert, Joris; Swings, Jean; Coosemans, Jozef; Ryckeboer, Jaak

    2003-01-01

    Soil spiked with diesel oil was mixed with biowaste (vegetable, fruit and garden waste) at a 1:10 ratio (fresh weight) and composted in a monitored composting bin system for 12 weeks. Pure biowaste was composted in parallel. In order to discern the temperature effect from the additional biowaste effect on diesel degradation, one recipient with contaminated soil was hold at room temperature, while another was kept at the actual composting temperature. Measurements of composting parameters together with enumerations and identifications of microorganisms demonstrate that the addition of the contaminated soil had a minor impact on the composting process. The first-order rate constant of diesel degradation in the biowaste mixture was four times higher than in the soil at room temperature, and 1.2 times higher than in the soil at composting temperature.

  11. Changes in carbon fractions during composting and maturation of organic wastes

    NASA Astrophysics Data System (ADS)

    Garcia, Carlos; Hernandez, Teresa; Costa, Francisco

    1991-05-01

    Seven mixtures from four organic residues—an aerobic sewage sludge, a city refuse, a peat residue, and a grape debris—were composted, and the changes undergone by their different carbon fractions during their composting and maturation were studied. In most cases a decrease in carbon fractions during the composting and maturation processes was observed. The extractable carbon, however, increased during maturation. Organic matter mineralization was greater in the composts with city refuse than in those with sewage sludge. The samples with peat residue showed the lowest decreases in carbon fractions. During maturation, an increase of humiclike fraction was observed, which was reflected by a decrease in the soluble carbon-precipitated carbon ratio at pH 2. Water-soluble carbon was the carbon fraction most easily degradable by microorganisms, and its amount correlated significantly with composting time in all the samples.

  12. The utilisation of municipal waste compost for the reclamation of anthropogenic soils: implications on C dynamics.

    NASA Astrophysics Data System (ADS)

    Said-Pullicino, D.; Bol, R.; Gigliotti, G.

    2009-04-01

    The application of municipal waste compost (MWC) and other organic materials may serve to enhance soil fertility and increase C stocks of earthen materials and mine spoils used in land reclamation activities, particularly in the recovery of degraded areas left by exhausted quarries, mines, abandoned industrial zones, degraded natural areas and exhausted landfill sites. Such land management options may serve as a precondition for landscaping and reclamation of degraded areas, reforestation or agriculture. In fact, previous results have shown that compost application to the capping layer of a landfill covering soil significantly enhanced the fertility, evidenced by an improvement in soil structure, porosity and water holding capacity, an increase in the relative proportion of recalcitrant C pools and an increase in soil nutrient content, microbial activity and soil microbial biomass. Proper management of MWC requires a capacity to understand and predict their impacts on C dynamics in the field subsequent to application. Although numerous works deal with the effects of compost application in agricultural systems, little is known on how land rehabilitation practices effect C dynamics in such relatively young soil systems. The estimation of SOC pools and their potential turnover rates in land reclamation activities is fundamental to our understanding of terrestrial C dynamics. In the framework of a long-term field experiment, the objective of this work was to evaluate the temporal and spatial dynamics of compost-derived organic matter with respect to the major processes involved in organic matter cycling in an anthropogenic landfill covering soil originally amended with a single dose of MWC. We investigated long-term organic C dynamics in such systems by collecting samples at different depths over a 10 year chronosequence subsequent to compost application to the top layer of the landfill covering soil. Variations in the stable isotope composition (delta 13C) of the soil

  13. Green house gas emissions from composting and mechanical biological treatment.

    PubMed

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.

  14. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  15. Optimal control of greenhouse gas emissions and system cost for integrated municipal solid waste management with considering a hierarchical structure.

    PubMed

    Li, Jing; He, Li; Fan, Xing; Chen, Yizhong; Lu, Hongwei

    2017-08-01

    This study presents a synergic optimization of control for greenhouse gas (GHG) emissions and system cost in integrated municipal solid waste (MSW) management on a basis of bi-level programming. The bi-level programming is formulated by integrating minimizations of GHG emissions at the leader level and system cost at the follower level into a general MSW framework. Different from traditional single- or multi-objective approaches, the proposed bi-level programming is capable of not only addressing the tradeoffs but also dealing with the leader-follower relationship between different decision makers, who have dissimilar perspectives interests. GHG emission control is placed at the leader level could emphasize the significant environmental concern in MSW management. A bi-level decision-making process based on satisfactory degree is then suitable for solving highly nonlinear problems with computationally effectiveness. The capabilities and effectiveness of the proposed bi-level programming are illustrated by an application of a MSW management problem in Canada. Results show that the obtained optimal management strategy can bring considerable revenues, approximately from 76 to 97 million dollars. Considering control of GHG emissions, it would give priority to the development of the recycling facility throughout the whole period, especially in latter periods. In terms of capacity, the existing landfill is enough in the future 30 years without development of new landfills, while expansion to the composting and recycling facilities should be paid more attention.

  16. Development of functional composts using spent coffee grounds, poultry manure and biochar through microbial bioaugmentation.

    PubMed

    Emmanuel, S Aalfin; Yoo, Jangyeon; Kim, Eok-Jo; Chang, Jae-Soo; Park, Young-In; Koh, Sung-Cheol

    2017-11-02

    Spent coffee grounds (SCG), poultry manure, and agricultural waste-derived biochar were used to manufacture functional composts through microbial bioaugmentation. The highest yield of tomato stalk-based biochar (40.7%) was obtained at 450°C with a surface area of 2.35 m 2 g -1 . Four pilot-scale composting reactors were established to perform composting for 45 days. The ratios of NH 4 + -N/NO 3 - -N, which served as an indicator of compost maturity, indicate rapid, and successful composting via microbial bioaugmentation and biochar amendment. Moreover, germination indices for radish also increased by 14-34% through augmentation and biochar amendment. Microbial diversity was also enhanced in the augmented and biochar-amended composts by 7.1-8.9%, where two species of Sphingobacteriaceae were dominant (29-43%). The scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) were enhanced by 14.1% and 8.6% in the fruits of pepper plants grown in the presence of the TR-2 (augmentation applied only) and TR-3 (both augmentation and biochar amendment applied) composts, respectively. Total phenolic content was also enhanced by 68% in the fruits of the crops grown in TR-3. Moreover, the other compost, TR-L (augmentation applied only), boosted DPPH scavenging activity by 111% in leeks compared with commercial organic fertilizer, while TR-3 increased the phenolic content by 44.8%. Composting facilitated by microbial augmentation and biochar amendment shortened the composting time and enhanced the quality of the functional compost. These results indicate that functional compost has great potential to compete with commercially available organic fertilizers and that the novel composting technology could significantly contribute to the eco-friendly recycling of organic wastes such as spent coffee grounds, poultry manure, and agricultural wastes.

  17. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  18. Assessing biochar and compost from the organic fraction of municipal solid waste on nutrient availability and plant growth of lettuce

    NASA Astrophysics Data System (ADS)

    Regkouzas, Panagiotis; Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    Biochars have a high variability in chemical composition, which is determined by types of feedstock and pyrolysis conditions. Inorganic compounds, such as N, P, K and Ca, retained in biochar could be released and become available to plants. The aim of this study was to understand the effect of biochar and compost addition, derived from the organic fraction of municipal solid wastes at two different pyrolysis temperatures 3000C (BC300) and 6000C (BC600), on phosphorus availability and plant growth of lettuce (Lactuca sativa L.) grown in an alkaline loam soil. This type of soil is widely available in Greece, leading us to investigate ways to increase its fertility. A 39 d growth period of lettuce was studied in a greenhouse in triplicate. Treatments comprised of control soils (no addition of biochar or compost), soils treated only with compost (5%) or biochar (5%), and combinations of biochar (5%) plus compost (5%). No fertilization was added to any of the treatments. One biomass cut was obtained. Plant shoot yield and height were determined along with elemental concentration (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu) and uptake of shoots. Results showed that BC300 combined with compost significantly increased P uptake of lettuce. On the other hand, BC600 plus compost, along with the two biochar-only treatments, significantly decreased Ca and Mg uptake of lettuce. N, K, Fe, Zn, Mn and Cu uptakes were not affected by the application of biochar, compost or the combined treatments. Despite the significant increase of P uptake, plant height and shoot yield were not significantly influenced by any of the treatments.

  19. Regionalization of municipal solid waste management in Japan: balancing the proximity principle with economic efficiency.

    PubMed

    Okuda, Itaru; Thomson, Vivian E

    2007-07-01

    The proximity principle - disposing of waste close to its origin - has been a central value in municipal solid waste (MSW) management in Japan for the last 30 years and its widespread adoption has helped resolve numerous "Not in My Backyard" issues related to MSW management. However, MSW management costs have soared, in large part because of aggressive recycling efforts and because most MSW is incinerated in a country that has scarce landfill capacity. In addition, smaller, less sophisticated incinerators have been closed because of high dioxin emissions. Rising costs combined with the closure of smaller incinerators have shifted MSW management policy toward regionalization, which is the sharing of waste management facilities across municipalities. Despite the increased use of regionalized MSW facilities, the proximity principle remains the central value in Japanese MSW management. Municipal solid waste management has become increasingly regionalized in the United States, too, but different driving forces are at work in these two countries. The transition to regionalized MSW management in Japan results from strong governmental control at all levels, with the central government providing funds and policy direction and prefectures and municipalities being the primary implementing authorities. By contrast, market forces are a much stronger force with US MSW management, where local governments - with state government oversight - have primary responsibility for MSW management. We describe recent changes in Japan's MSW programs. We examine the connections between MSW facility regionalization, on the one hand, and, on the other hand, the proximity principle, coordination among local governments, central government control, and financing mechanisms.

  20. Developing Statistical Evaluation Model of Introduction Effect of MSW Thermal Recycling

    NASA Astrophysics Data System (ADS)

    Aoyama, Makoto; Kato, Takeyoshi; Suzuoki, Yasuo

    For the effective utilization of municipal solid waste (MSW) through a thermal recycling, new technologies, such as an incineration plant using a Molten Carbonate Fuel Cell (MCFC), are being developed. The impact of new technologies should be evaluated statistically for various municipalities, so that the target of technological development or potential cost reduction due to the increased cumulative number of installed system can be discussed. For this purpose, we developed a model for discussing the impact of new technologies, where a statistical mesh data set was utilized to estimate the heat demand around the incineration plant. This paper examines a case study by using a developed model, where a conventional type and a MCFC type MSW incineration plant is compared in terms of the reduction in primary energy and the revenue by both electricity and heat supply. Based on the difference in annual revenue, we calculate the allowable investment in MCFC-type MSW incineration plant in addition to conventional plant. The results suggest that allowable investment can be about 30 millions yen/(t/day) in small municipalities, while it is only 10 millions yen/(t/day) in large municipalities. The sensitive analysis shows the model can be useful for discussing the difference of impact of material recycling of plastics on thermal recycling technologies.