Sample records for waste msw landfill

  1. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    PubMed

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  2. Implications of variable waste placement conditions for MSW landfills.

    PubMed

    Cox, Jason T; Yesiller, Nazli; Hanson, James L

    2015-12-01

    This investigation was conducted to evaluate the influence of waste placement practices on the engineering response of municipal solid waste (MSW) landfills. Waste placement conditions were varied by moisture addition to the wastes at the time of disposal. Tests were conducted at a California landfill in test plots (residential component of incoming wastes) and full-scale active face (all incoming wastes including residential, commercial, and self-delivered components). The short-term effects of moisture addition were assessed by investigating compaction characteristics and moisture distribution and the long-term effects by estimating settlement characteristics of the variably placed wastes. In addition, effects on engineering properties including hydraulic conductivity and shear strength, as well as economic aspects were investigated. The unit weight of the wastes increased with moisture addition to a maximum value and then decreased with further moisture addition. At the optimum moisture conditions, 68% more waste could be placed in the same landfill volume compared to the baseline conditions. Moisture addition raised the volumetric moisture content of the wastes to the range 33-42%, consistent with values at and above field capacity. Moisture transfer occurred between consecutive layers of compacted wastes and a moisture addition schedule of 2 days of as-received conditions and 1 day of moisture addition was recommended. Settlement of wastes was estimated to increase with moisture addition, with a 34% increase at optimum moisture compared to as-received conditions. Overall, moisture addition during compaction increased unit weight, the amount of incoming wastes disposed in a given landfill volume, biological activity potential, and predicted settlement. The combined effects have significant environmental and economic implications for landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Raster-based outranking method: a new approach for municipal solid waste landfill (MSW) siting.

    PubMed

    Hamzeh, Mohamad; Abbaspour, Rahim Ali; Davalou, Romina

    2015-08-01

    MSW landfill siting is a complicated process because it requires integration of several factors. In this paper, geographic information system (GIS) and multiple criteria decision analysis (MCDA) were combined to handle the municipal solid waste (MSW) landfill siting. For this purpose, first, 16 input data layers were prepared in GIS environment. Then, the exclusionary lands were eliminated and potentially suitable areas for the MSW disposal were identified. These potentially suitable areas, in an innovative approach, were further examined by deploying Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic network process (ANP), which are two of the most recent MCDA methods, in order to determine land suitability for landfilling. PROMETHEE II was used to determine a complete ranking of the alternatives, while ANP was employed to quantify the subjective judgments of evaluators as criteria weights. The resulting land suitability was reported on a grading scale of 1-5 from 1 to 5, which is the least to the most suitable area, respectively. Finally, three optimal sites were selected by taking into consideration the local conditions of 15 sites, which were candidates for MSW landfilling. Research findings show that the raster-based method yields effective results.

  4. Geotechnical behavior of the MSW in Tianziling landfill.

    PubMed

    Zhu, Xiang-Rong; Jin, Jian-Min; Fang, Peng-Fei

    2003-01-01

    The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.

  5. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    PubMed

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.

    PubMed

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing

    2017-10-01

    The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.

  7. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    PubMed Central

    Li, Wen-Bing; Yao, Jun; Zhou, Gen-Di; Dong, Ming; Shen, Dong-Sheng

    2014-01-01

    The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation. PMID:24779006

  8. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  9. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE PAGES

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    2017-08-05

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  10. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Household hazardous waste disposal to landfill: using LandSim to model leachate migration.

    PubMed

    Slack, Rebecca J; Gronow, Jan R; Hall, David H; Voulvoulis, Nikolaos

    2007-03-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW.

  12. Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content.

    PubMed

    Zheng, Wei; Lü, Fan; Bolyard, Stephanie C; Shao, Liming; Reinhart, Debra R; He, Pinjing

    2015-02-01

    To understand the applicability of the termination indicators for landfill municipal solid waste (MSW) with low initial lignin content, four different accelerated landfill stabilization techniques were applied to anaerobic landfilled waste, including anaerobic flushing with water, anaerobic flushing with Fenton-treated leachate, and aerobic flushing with Fenton-treated and UV/H2O2-treated leachate. Termination indicators, including total organic carbon (TOC), ammonia-N (NH4(+)-N), the ratio of UV absorbance at 254 nm to TOC concentration (SUVA254), fluorescence spectra of leachate, methane production, oxygen consumption, lignocellulose content, and humus-like content were evaluated. Results suggest that oxygen consumption related indicators used as a termination indicator for low-lignin-content MSW were more sensitive than methane consumption related indicators. Aeration increased humic acid (HA) and (HA+FA)/HyI content by 2.9 and 1.7 times compared to the anaerobically stabilized low-lignin-content MSW. On the other hand, both the fulvic acid (FA) and hydrophilic (HyI) fractions remained constant regardless of stabilization technique. The target value developed for low-lignin-content MSW was quite different than developed countries mainly due to low residual biodegradable organic carbon content in stabilized low-lignin-content MSW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Biodegradation of organic matters from mixed unshredded municipal solid waste through air convection before landfilling.

    PubMed

    Mahar, Rasool B; Liu, Jianguo; Yue, Dongbei; Nie, Yongfeng

    2007-01-01

    Landfilling is a dominant municipal solid waste (MSW) disposal method in most developing countries. In China, approximately 85% of the generated MSW is being disposed of in the landfills. The amount of MSW is growing rapidly with the rate of approximately 8-10% annually, which contains a high quantity of moisture and organic matters. The problems of leachate treatment and landfill gas (LFG) emissions are increasing gradually. Reducing the hazard before emplacement, pretreatment of MSW before landfilling has become very important for the conventional landfill. In this study, aerobic pretreatment of mixed MSW was used, and much attention has been given to the natural convection of air in the mixed and unshredded MSW for bioconversion of organic matter (OM). This study is an attempt to investigate aerobic pretreatment suitability for the mixed and unshredded MSW at Beijing. A pilot-scale aerobic pretreatment simulator (APS) was developed at Beishen Shu Landfill in Beijing. To work out the biodegradation of the OM in the APS, fresh and pretreated MSW samples were collected and analyzed for OM, moisture content, temperature, chemical oxygen demand, total organic carbon, carbon, nitrogen, hydrogen, lignocelluloses, and biochemical methane potential at various stages of the pretreatment. Furthermore, results of the fresh and pretreated MSW are compared. Significant reduction in the observed parameters of the pretreated waste samples is observed. This work demonstrates that pretreatment is significantly effective in reducing the landfill emissions that is leachate and LFG.

  14. RCRA SUBTITLE D (258): SEISMIC DESIGN GUIDANCE FOR MUNICIPAL SOLID WASTE LANDFILL FACILITIES

    EPA Science Inventory

    On October 9, 1993, the new RCRA Subtitle D regulations (40 CFR Part 258) went into effect. These regulations are applicable to landfills receiving municipal solid waste (MSW) and establish minimum Federal criteria for the siting, design, operation, and closure of MSW landfills....

  15. Leachate composition and toxicity assessment: an integrated approach correlating physicochemical parameters and toxicity of leachates from MSW landfill in Delhi.

    PubMed

    Gupta, Anshu; Paulraj, R

    2017-07-01

    Landfills are considered the most widely practiced method for disposal of municipal solid waste (MSW) and 95% of the total MSW collected worldwide is disposed of in landfills. Leachate produced from MSW landfills may contain a number of pollutants and pose a potential environmental risk for surface as well as ground water. In the present study, chemical analysis and toxicity assessment of landfill leachate have been carried out. Leachate samples were collected from Ghazipur landfill site, New Delhi. Leachates were characterized by measuring the concentration of heavy metals (Pb, Cu, Cr and Ni), 5-day biochemical oxygen demand (BOD 5 ), chemical oxygen demand (COD), pH, electrical conductivity and SO 4 2 -. For toxicity testing of leachate, Triticum aestivum (wheat) was selected and testing was done in a time- and dose-dependent manner using the crude leachate. Median lethal concentration after 24 and 48 h of exposure was observed. The main objective of this study was to evaluate toxicity of MSW landfill leachate and establish a possible correlation between the measured physicochemical parameters and resultant toxicity. Statistical analysis showed that toxicity was dependent on the concentration of heavy metals (Pb, Cu), conductivity, and organic matter (COD and BOD5).

  16. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at; Hrad, Marlies; Huber-Humer, Marion

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated themore » isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of

  17. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    PubMed

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-08-01

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.

    PubMed

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G

    2013-10-01

    Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and

  19. Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data.

    PubMed

    De la Cruz, Florentino B; Barlaz, Morton A

    2010-06-15

    The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, k(lab), for the major biodegradable MSW components were used to derive field-scale decay rates (k(field)) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04 yr(-1), k(field) was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029 yr(-1), for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard waste and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.

  20. Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors.

    PubMed

    Sun, Wenjie; Sun, Mei; Barlaz, Morton A

    2016-07-01

    Landfills that accept municipal solid waste (MSW) in the U.S. may also accept a number of sulfur-containing wastes including residues from coal or MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, microbially mediated processes can convert sulfate to hydrogen sulfide (H2S). The presence of H2S in landfill gas is problematic for several reasons including its low odor threshold, human toxicity, and corrosive nature. The objective of this study was to develop and demonstrate a laboratory-scale reactor method to measure the H2S production potential of a range of sulfur-containing wastes. The H2S production potential was measured in 8-L reactors that were filled with a mixture of the target waste, newsprint as a source of organic carbon required for microbial sulfate reduction, and leachate from decomposed residential MSW as an inoculum. Reactors were operated with and without N2 sparging through the reactors, which was designed to reduce H2S accumulation and toxicity. Both H2S and CH4 yields were consistently higher in reactors that were sparged with N2 although the magnitude of the effect varied. The laboratory-measured first order decay rate constants for H2S and CH4 production were used to estimate constants that were applicable in landfills. The estimated constants ranged from 0.11yr(-1) for C&D fines to 0.38yr(-1) for a mixed fly ash and bottom ash from MSW combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    PubMed

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  2. Post-closure care of engineered municipal solid waste landfills.

    PubMed

    Bagchi, Amalendu; Bhattacharya, Abhik

    2015-03-01

    Post-closure care is divided into perpetual care (PPC) and long-term care (LTC). Guidelines for post-closure care and associated costs are important for engineered municipal solid waste (MSW) landfills. In many states in the USA, landfill owners are required to set aside funds for 30-40 years of LTC. Currently there are no guidelines for PPC, which is also required. We undertook a pilot study, using two landfills (note: average landfill capacity 2.5 million MT MSW waste) in Wisconsin, to establish an approach for estimating the LTC period using field data and PPC funding need. Statistical analysis of time versus concentration data of selected leachate parameters showed that the concentration of most parameters is expected to be at or below the preventive action limit of groundwater and leachate volume will be very low, within 40 years of the LTC period. The gas extraction system may need to be continued for more than 100 years. Due to lack of data no conclusion could be made regarding adequacy of the LTC period for the groundwater monitoring system. The final cover must be maintained for perpetuity. The pilot study shows that although technology is available, the financial liability of maintaining a 'Dry Tomb' design for landfills is significantly higher than commonly perceived. The paper will help landfill professionals to estimate realistic post-closure funding and to develop field-based policies for LTC and PPC of engineered MSW landfills. © The Author(s) 2015.

  3. A comparison of landfill leachates based on waste composition.

    PubMed

    Moody, Chris M; Townsend, Timothy G

    2017-05-01

    Samples of leachate were collected from fourteen landfills in the state of Florida, United States that contained primarily putrescible waste (municipal solid waste, MSW, and yard waste), MSW incinerator (MSWI) ash, or a combination of both. Assessment of leachates included trace metals, anions, and nutrients in order to create a mass balance of total dissolved solids (TDS). As expected from previously literature, MSW leached a complex matrix of contaminants while MSWI ash leachate TDS was more than 98% metallic salts. The pH of the MSWI ash leachate samples was slightly acidic or neutral in character, which is contradictory to the results commonly reported in the literature. The cause of this is hypothesized to be a short-circuiting of rainfall in the landfill due to low hydraulic conductivities reported in ash landfills. The difference in pH likely contributed to the findings with respect to MSWI ash-characteristic trace metals in leachates such as aluminum. The authors have concluded that the research findings in this study are an indication of the differences between laboratory leachate quality studies and the conditions encountered in the field. In addition, a characterization of organic matter using qualitative and quantitative analyses determined that COD is not an accurate indicator of organic matter in leachates from landfills with a significant fraction of MSWI ash. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Co-disposal of electronic waste with municipal solid waste in bioreactor landfills.

    PubMed

    Visvanathan, C; Visvanthan, C; Yin, Nang Htay; Karthikeyan, Obuli P

    2010-12-01

    Three pilot scale lysimeters were adopted to evaluate the stability pattern and leaching potential of heavy metals from MSW landfills under the E-waste co-disposed condition. One lysimeter served as control and solely filled with MSW, whereas the other two lysimeters were provided with 10% and 25% of E-waste scraps (% by weight), respectively. The reactors were monitored over a period of 280 days at ambient settings with continuous leachate recirculation. Stabilization pattern of carbon appears to be more than 50% in all the three lysimeters with irrespective of their operating conditions. Iron and zinc concentrations were high in leachate during bioreactor landfill operation and correlating with the TCLP leachability test results. In contrast, Pb concentration was around <0.6 mg/L, but which showed maximum leaching potential under TCLP test conditions. But, no heavy metal accumulation was found with leachate recirculation practices in lysimeters. Mobility of the metal content from the E-waste was found to be amplified with the long term disposal or stabilization within landfills. The results showed that the TCLP test cannot be completely reliable tool for measuring long-term leachability of toxic substances under landfill condition; rather landfill lysimeter studies are necessary to get the real scenario. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellner, Johann, E-mail: j.fellner@tuwien.ac.a; Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.a

    2010-11-15

    The flow of water through Municipal Solid Waste (MSW) landfills is highly non-uniform and dominated by preferential pathways. Thus, concepts to simulate landfill behavior require that a heterogeneous flow regime is considered. Recent models are based on a 2-domain approach, differentiating between channel domain with high hydraulic conductivity, and matrix domain of slow water movement with high water retention capacity. These models focus on the mathematical description of rapid water flow in channel domain. The present paper highlights the importance of water exchange between the two domains, and expands the 1-dimensional, 2-domain flow model by taking into account water flowsmore » in two dimensions. A flow field consisting of a vertical path (channel domain) surrounded by the waste mass (matrix domain) is defined using the software HYDRUS-2D. When the new model is calibrated using data sets from a MSW-landfill site the predicted leachate generation corresponds well with the observed leachate discharge. An overall model efficiency in terms of r{sup 2} of 0.76 was determined for a simulation period of almost 4 years. The results confirm that water in landfills follows a preferential path way characterized by high permeability (K{sub s} = 300 m/d) and zero retention capacity, while the bulk of the landfill (matrix domain) is characterized by low permeability (K{sub s} = 0.1 m/d) and high retention capacity. The most sensitive parameters of the model are the hydraulic conductivities of the channel domain and the matrix domain, and the anisotropy of the matrix domain.« less

  6. Geotechnical properties of municipal solid waste at Laogang Landfill, China.

    PubMed

    Feng, Shi-Jin; Gao, Ke-Wei; Chen, Yi-Xin; Li, Yao; Zhang, L M; Chen, H X

    2017-05-01

    Landfills have been widely constructed all around the world in order to properly dispose municipal solid waste (MSW). Understanding geotechnical properties of MSW is essential for the design and operation of landfills. A comprehensive investigation of geotechnical properties of MSW at the largest landfill in China was conducted, including waste composition, unit weight, void ratio, water content, hydraulic conductivity, and shear behavior. A large-scale rigid-wall permeameter and a direct-shear apparatus were adopted to test the hydraulic conductivity and shear behavior of the MSW, respectively. The composition of the MSW varied with age. With the depth increasing from 0 to 16m, the unit weight increased from 7.2 to 12.5kN/m 3 , while the void ratio decreased from 2.5 to 1.76. The water content ranged between 30.0% and 68.9% but did not show a trend with depth. The hydraulic conductivity of the MSW ranged between 4.6×10 -4 and 6.7×10 -3 cm/s. It decreased as the dry unit weight increased and was sensitive to changes in dry unit weight in deeper layers. Displacement-hardening was observed during the whole shearing process and the shear strength increased with the normal stress, the displacement rate, and the unit weight. The friction angle and cohesion varied from (15.7°, 29.1kPa) to (21.9°, 18.3kPa) with depth increasing from 4 to 16m. The shear strength of the MSW obtained in this study was lower than the reported values in other countries, which was caused by the less fibrous materials in the specimens in this study. The results in this study will provide guidance in the design and operation of the landfills in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India.

    PubMed

    Anbazhagan, P; SivakumarBabu, G L; Lakshmikanthan, P; VivekAnand, K S

    2016-03-01

    Seismic design of landfills requires an understanding of the dynamic properties of municipal solid waste (MSW) and the dynamic site response of landfill waste during seismic events. The dynamic response of the Mavallipura landfill situated in Bangalore, India, is investigated using field measurements, laboratory studies and recorded ground motions from the intraplate region. The dynamic shear modulus values for the MSW were established on the basis of field measurements of shear wave velocities. Cyclic triaxial testing was performed on reconstituted MSW samples and the shear modulus reduction and damping characteristics of MSW were studied. Ten ground motions were selected based on regional seismicity and site response parameters have been obtained considering one-dimensional non-linear analysis in the DEEPSOIL program. The surface spectral response varied from 0.6 to 2 g and persisted only for a period of 1 s for most of the ground motions. The maximum peak ground acceleration (PGA) obtained was 0.5 g and the minimum and maximum amplifications are 1.35 and 4.05. Amplification of the base acceleration was observed at the top surface of the landfill underlined by a composite soil layer and bedrock for all ground motions. Dynamic seismic properties with amplification and site response parameters for MSW landfill in Bangalore, India, are presented in this paper. This study shows that MSW has less shear stiffness and more amplification due to loose filling and damping, which need to be accounted for seismic design of MSW landfills in India. © The Author(s) 2016.

  8. Characterization of municipal solid waste from the main landfills of Havana city

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa Llorens, Ma. del C; Lopez Torres, Matilde; Alvarez, Haydee

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of themore » waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vias landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.« less

  9. Characterization of municipal solid waste from the main landfills of Havana city.

    PubMed

    Espinosa Lloréns, Ma Del C; Torres, Matilde López; Alvarez, Haydee; Arrechea, Alexis Pellón; García, Jorge Alejandro; Aguirre, Susana Díaz; Fernández, Alejandro

    2008-01-01

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vías landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.

  10. Landfill Mining - Wet mechanical treatment of fine MSW with a wet jigger.

    PubMed

    Wanka, Sebastian; Münnich, Kai; Fricke, Klaus

    2017-01-01

    The motives for landfill mining are various. In the last couple of years Enhanced Landfill Mining (ELFM) has become increasingly important in academic discourse and practical implementation. The main goal of ELFM is to recover as much material as possible from deposited municipal solid waste (MSW). In most of the projects carried out so far, the main focus has been set on coarse materials such as plastics, woods, papers and metals. These fractions can be separated easily by sieving in combination with magnetic separation. In these projects most of the fine materials, which might represent as much as 60-70% of the total mass of the landfill body, had to be deposited again. A further treatment aiming at reducing the masses of these fine materials, which are still a conglomerate of soil, calorific fractions, metals, minerals and residues, usually did not take place. One topic in the framework of the landfill mining project TÖNSLM, in addition to the separation of the calorific fraction and metals has been the treatment of fine materials with the goal to re-use these e.g. for construction purposes. This paper shows the results obtained after the wet mechanical treatment of fine MSW 10-60mm with a wet jigger. The physical principle of this process is the separation of the mass flux due to the different densities of the waste constituents. As a result, three main waste fluxes are obtained: Dense inert and dense fine fraction with a high content of minerals and a lightweight fraction with a high calorific value between 16 and 20MJ/kg. An additional positive effect of wet mechanical treatment is the removal of the finest particles from the surface of the waste material, thus increasing the quality of the generated waste fluxes. The mass fluxes of the different fractions and their qualities as well as possible recovery paths are described below. An economical and ecological consideration of the treatment of the fine materials does not take place within the framework of

  11. Sustainable disposal of municipal solid waste: post bioreactor landfill polishing.

    PubMed

    Batarseh, Eyad S; Reinhart, Debra R; Berge, Nicole D

    2010-11-01

    Sustainable disposal of municipal solid waste (MSW) requires assurance that contaminant release will be minimized or prevented within a reasonable time frame before the landfill is abandoned so that the risk of contamination release is not passed to future generations. This could be accomplished through waste acceptance criteria such as those established by the European Union (EU) that prohibit land disposal of untreated organic matter. In the EU, mechanical, biological and/or thermal pretreatment of MSW is therefore necessary prior to landfilling which is complicated and costly. In other parts of the world, treatment within highly engineered landfills is under development, known as bioreactor landfills. However, the completed bioreactor landfill still contains material, largely nonbiodegradable carbon and ammonia that may be released to the environment over the long-term. This paper provides a conceptual analysis of an approach to ensure landfill sustainability by the rapid removal of these remaining materials, leachate treatment and recirculation combined with aeration. The analysis in this paper includes a preliminary experimental evaluation using real mature leachate and waste samples, a modeling effort using a simplified mass balance approach and input parameters from real typical bioreactor cases, and a cost estimate for the suggested treatment method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Impact of electronic waste disposal on lead concentrations in landfill leachate.

    PubMed

    Spalvins, Erik; Dubey, Brajesh; Townsend, Timothy

    2008-10-01

    Lead is the element most likely to cause discarded electronic devices to be characterized as hazardous waste. To examine the fate of lead from discarded electronics in landfills, five columns were filled with synthetic municipal solid waste (MSW). A mix of electronic devices was added to three columns (6% by weight), while two columns served as controls. A sixth column contained waste excavated from an existing MSW landfill. Leachate quality was monitored for 440 days. In columns with the synthetic waste, leachate pH indicated that the simulated landfill environment was characteristic of the acid phase of waste decomposition; lead leachability should be greater in the acid phase of landfill degradation as compared to the methanogenic phase. Lead concentrations ranged from 7 to 66 microg/L in the columns containing electronic waste and ranged from < 2 to 54 microg/L in the control columns. Although the mean lead concentrations in the columns containing electronic devices were greater than those in the controls, the difference was not found to be statistically significant when comparing the data sets over the entire monitoring period. Lead results from the excavated waste column suggest that lead concentrations in all columns will decrease as the pH increases toward more neutral methanogenic conditions.

  13. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission guidelines for municipal solid...

  14. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission guidelines for municipal solid...

  15. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  16. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore.

    PubMed

    Sivakumar Babu, G L; Lakshmikanthan, P; Santhosh, L G

    2015-05-01

    Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3kN/m(3) to 10.3kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Simulating settlement during waste placement at a landfill with waste lifts placed under frozen conditions.

    PubMed

    Van Geel, Paul J; Murray, Kathleen E

    2015-12-01

    Twelve instrument bundles were placed within two waste profiles as waste was placed in an operating landfill in Ste. Sophie, Quebec, Canada. The settlement data were simulated using a three-component model to account for primary or instantaneous compression, secondary compression or mechanical creep and biodegradation induced settlement. The regressed model parameters from the first waste layer were able to predict the settlement of the remaining four waste layers with good agreement. The model parameters were compared to values published in the literature. A MSW landfill scenario referenced in the literature was used to illustrate how the parameter values from the different studies predicted settlement. The parameters determined in this study and other studies with total waste heights between 15 and 60 m provided similar estimates of total settlement in the long term while the settlement rates and relative magnitudes of the three components varied. The parameters determined based on studies with total waste heights less than 15m resulted in larger secondary compression indices and lower biodegradation induced settlements. When these were applied to a MSW landfill scenario with a total waste height of 30 m, the settlement was overestimated and provided unrealistic values. This study concludes that more field studies are needed to measure waste settlement during the filling stage of landfill operations and more field data are needed to assess different settlement models and their respective parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Environmental performance review and cost analysis of MSW landfilling by baling-wrapping technology versus conventional system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldasano, J.M.; Gasso, S.; Perez, C

    2003-07-01

    This paper first reviews the chemical, physical and biological processes, and the environmental performance of MSW compacted and plastic-wrapped into air-tight bales with low-density polyethylene (LDPE). The baling-wrapping process halts the short and half-term biological activity and consequently the emission of gases and leachates. It also facilitates the handling of the refuse, and considerably reduces the main environmental impacts of a landfill. The main technologies available for baling-wrapping MSW are also presented. Furthermore, a cost analysis comparing a conventional landfill (CL) without baling system versus two landfills using different baling-wrapping technologies (rectangular and cylindrical bales) is carried out. The resultsmore » are presented comparatively under the conditions of construction, operation and maintenance and postclosure, as required by European Directive 1999/31. A landfill using rectangular plastic-wrapped bales (LRPB) represents an economically competitive option compared to a CL. The increased capacity of the waste disposal zone when using rectangular bales due to the high density of the bales compensates for the increased operating and maintenance (O and M) costs of the method. Landfills using cylindrical plastic-wrapped bales (LCPB's) do not fare so well, mainly because the density within the bales is lower, the cylindrical geometry of the bales does not allow such an efficient use of the space within the landfill, and the processing capacity of the machinery is lower. From the cost model, the resulting unit costs per tonne in a LRPB, a LCPB and a CL for 100,000 t/year of waste, an operation time of 15 years and a landfill depth (H) of 20 m, are 31.52, 43.36 and 31.83 Euro/t, respectively.« less

  19. Leaching, geochemical modelling and field verification of a municipal solid waste and a predominantly non-degradable waste landfill.

    PubMed

    van der Sloot, H A; Kosson, D S; van Zomeren, A

    2017-05-01

    In spite of the known heterogeneity, wastes destined for landfilling can be characterised for their leaching behaviour by the same protocols as soil, contaminated soil, sediments, sludge, compost, wood, waste and construction products. Characterisation leaching tests used in conjunction with chemical speciation modelling results in much more detailed insights into release controlling processes and factors than single step batch leaching tests like TCLP (USEPA) and EN12457 (EU Landfill Directive). Characterisation testing also can provide the potential for mechanistic impact assessments by making use of a chemical speciation fingerprint (CSF) derived from pH dependence leaching test results. This CSF then forms the basis for subsequent chemical equilibrium and reactive transport modelling to assess environmental impact in a landfill scenario under relevant exposure conditions, including conditions not readily evaluated through direct laboratory testing. This approach has been applied to municipal solid waste (MSW) and predominantly non-degradable waste (PNW) that is representative of a significant part of waste currently being landfilled. This work has shown that a multi-element modelling approach provides a useful description of the release from each of these matrices because relevant release controlling properties and parameters (mineral dissolution/precipitation, sorption on Fe and Al oxides, clay interaction, interaction with dissolved and particulate organic carbon and incorporation in solid solutions) are taken into consideration. Inclusion of dissolved and particulate organic matter in the model is important to properly describe release of the low concentration trace constituents observed in the leachate. The CSF allows the prediction of release under different redox and degradation conditions in the landfill by modifying the redox status and level of dissolved and particulate organic matter in the model runs. The CSF for MSW provides a useful starting point

  20. Microbial community structure and diversity in a municipal solid waste landfill.

    PubMed

    Wang, Xiaolin; Cao, Aixin; Zhao, Guozhu; Zhou, Chuanbin; Xu, Rui

    2017-08-01

    Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    NASA Astrophysics Data System (ADS)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  2. A review of groundwater contamination near municipal solid waste landfill sites in China.

    PubMed

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  3. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    PubMed Central

    Kong, Qingna; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill. PMID:28044139

  4. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.

    PubMed

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  5. Analysis the potential gas production of old municipal solid waste landfill as an alternative energy source: Preliminary results

    NASA Astrophysics Data System (ADS)

    Hayati, A. P.; Emalya, N.; Munawar, E.; Schwarzböck, T.; Lederer, J.; Fellner, J.

    2018-03-01

    The MSW landfill produces gas which is represent the energy resource that lost and polluted the ambient air. The objective of this study is to evaluate the potential gas production of old landfill as an alternative energy source. The study was conducted by using 10 years old waste in landfill simulator reactor (LSR). Four Landfills Simulator Reactors (LSR) were constructed for evaluate the gas production of old MSW landfilled. The LSR was made of high density poly ethylene (HDPE) has 50 cm outside diameter and 150 cm of high. The 10 years old waste was excavated from closed landfill and subsequently separated from inorganic fraction and sieved to maximum 50 mm size particle prior emplaced into the LSR. Although quite small compare to the LSR containing fresh waste has been reported, the LRS containing 10 years old waste still produce much landfill gas. The landfill gas produced of LSR operated with and without leachate recirculation were about 29 and 21 litter. The composition of landfill gas produced was dominated by CO2 with the composition of CH4 and O2 were around 12.5% and 0.2 %, respectively.

  6. Influences of operational practices on municipal solid waste landfill storage capacity.

    PubMed

    Li, Yu-Chao; Liu, Hai-Long; Cleall, Peter John; Ke, Han; Bian, Xue-Cheng

    2013-03-01

    The quantitative effects of three operational factors, that is initial compaction, decomposition condition and leachate level, on municipal solid waste (MSW) landfill settlement and storage capacity are investigated in this article via consideration of a hypothetical case. The implemented model for calculating landfill compression displacement is able to consider decreases in compressibility induced by biological decomposition and load dependence of decomposition compression for the MSW. According to the investigation, a significant increase in storage capacity can be achieved by intensive initial compaction, adjustment of decomposition condition and lowering of leachate levels. The quantitative investigation presented aims to encourage landfill operators to improve management to enhance storage capacity. Furthermore, improving initial compaction and creating a preferential decomposition condition can also significantly reduce operational and post-closure settlements, respectively, which helps protect leachate and gas management infrastructure and monitoring equipment in modern landfills.

  7. Mercury emission to the atmosphere from municipal solid waste landfills: A brief review

    NASA Astrophysics Data System (ADS)

    Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli

    2017-12-01

    Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.

  8. Application of continuous normal-lognormal bivariate density functions in a sensitivity analysis of municipal solid waste landfill.

    PubMed

    Petrovic, Igor; Hip, Ivan; Fredlund, Murray D

    2016-09-01

    The variability of untreated municipal solid waste (MSW) shear strength parameters, namely cohesion and shear friction angle, with respect to waste stability problems, is of primary concern due to the strong heterogeneity of MSW. A large number of municipal solid waste (MSW) shear strength parameters (friction angle and cohesion) were collected from published literature and analyzed. The basic statistical analysis has shown that the central tendency of both shear strength parameters fits reasonably well within the ranges of recommended values proposed by different authors. In addition, it was established that the correlation between shear friction angle and cohesion is not strong but it still remained significant. Through use of a distribution fitting method it was found that the shear friction angle could be adjusted to a normal probability density function while cohesion follows the log-normal density function. The continuous normal-lognormal bivariate density function was therefore selected as an adequate model to ascertain rational boundary values ("confidence interval") for MSW shear strength parameters. It was concluded that a curve with a 70% confidence level generates a "confidence interval" within the reasonable limits. With respect to the decomposition stage of the waste material, three different ranges of appropriate shear strength parameters were indicated. Defined parameters were then used as input parameters for an Alternative Point Estimated Method (APEM) stability analysis on a real case scenario of the Jakusevec landfill. The Jakusevec landfill is the disposal site of the capital of Croatia - Zagreb. The analysis shows that in the case of a dry landfill the most significant factor influencing the safety factor was the shear friction angle of old, decomposed waste material, while in the case of a landfill with significant leachate level the most significant factor influencing the safety factor was the cohesion of old, decomposed waste material. The

  9. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    PubMed

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  10. SPH-based numerical simulations of flow slides in municipal solid waste landfills.

    PubMed

    Huang, Yu; Dai, Zili; Zhang, Weijie; Huang, Maosong

    2013-03-01

    Most municipal solid waste (MSW) is disposed of in landfills. Over the past few decades, catastrophic flow slides have occurred in MSW landfills around the world, causing substantial economic damage and occasionally resulting in human victims. It is therefore important to predict the run-out, velocity and depth of such slides in order to provide adequate mitigation and protection measures. To overcome the limitations of traditional numerical methods for modelling flow slides, a mesh-free particle method entitled smoothed particle hydrodynamics (SPH) is introduced in this paper. The Navier-Stokes equations were adopted as the governing equations and a Bingham model was adopted to analyse the relationship between material stress rates and particle motion velocity. The accuracy of the model is assessed using a series of verifications, and then flow slides that occurred in landfills located in Sarajevo and Bandung were simulated to extend its applications. The simulated results match the field data well and highlight the capability of the proposed SPH modelling method to simulate such complex phenomena as flow slides in MSW landfills.

  11. Settlement analysis of fresh and partially stabilised municipal solid waste in simulated controlled dumps and bioreactor landfills.

    PubMed

    Swati, M; Joseph, Kurian

    2008-01-01

    The patterns of settlement of fresh as well as partially stabilised municipal solid waste (MSW), undergoing degradation in five different landfill lysimeters, were studied elaborately. The first two lysimeters, R1 and R2, contained fresh MSW while the other three lysimeters, R3, R4 and R5, contained partially stabilised MSW. R1 and R3 simulated conventional controlled dumps with fortnightly disposal of drained leachate. R2 and R4 simulated bioreactor landfills with leachate recirculation. Fortnightly water flushing was done in R5. Settlement of MSW, monitored over a period of 58 weeks, was correlated with the organic carbon content of leachate and residual volatile matter in the MSW to establish the relationship between settlement and organic destruction. Compressibility parameters such as modulus of elasticity and compression indices were determined and empirical equations were applied for the settlement data. Overall settlements up to 49% were observed in the case of landfill lysimeters, filled with fresh MSW. Landfill lysimeters with liquid addition, in the form of leachate or water, experienced lower primary settlements and higher secondary settlements than conventional fills, where no liquid addition was practised. Modified secondary compression indices for MSW in lysimeters with leachate recirculation and flushing were 30%-44% higher than that for lysimeters where no liquid addition was done. Secondary settlements in bioreactor landfills were found to vary exponentially with time.

  12. Pyrite formation driven by MSW landfill leachate in the Madrid Basin, Spain

    NASA Astrophysics Data System (ADS)

    Castelló, Ricardo; Recio, Clemente; Morillas, Pilar; Vizcayno, Carmen

    2008-04-01

    The role of municipal solid waste (MSW) landfill leachate on the genesis of minor amounts of pyrite associated with gypsum in an otherwise predominantly evaporitic sequence was studied in geological and geochemical terms. The potential association between landfill leachate and the conditions required for bacterial reduction of sulfate and fixation of H2S as pyrite were examined. The lithological column was generally found to contain little or no Fe. The δ34S values for sulfates were consistent with previously reported data; however, the measured δ18O values were slightly higher. Sulfides disseminated in the marl/lutite exhibited higher δ34S values (≈-8‰) than gypsum-coating pyrite crystals (δ34S < -30‰). Dissolution of gypsum to sulfate and the supply of metabolizable organic matter and Fe required for H2S fixation as sulfides may have originated from landfill leachate. Intermittent availability of leachate, a result of the precipitation regime, can facilitate sulfur disproportionation and lead to fractionations as high as δ_{text{SO}4^{2-}-{text{S}^{2-}}}≈ - {text{50}}permille.

  13. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    PubMed

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste.

    PubMed

    Zhang, Yuanyuan; Yue, Dongbei; Liu, Jianguo; Lu, Peng; Wang, Ying; Liu, Jing; Nie, Yongfeng

    2012-06-30

    Characteristics of non-methane organic compounds (NMOCs) emissions during the anaerobic decomposition of untreated (APD-0) and four aerobically pretreated (APD-20, APD-39, APD-49, and APD-63) samples of municipal solid waste (MSW) were investigated in laboratory. The cumulative mass of the NMOCs of APD-20, APD-39, APD-49, and APD-63 accounted for 15%, 9%, 16%, and 15% of that of APD-0, respectively. The intensities of the NMOC emissions calculated by dividing the cumulative NMOC emissions by the quantities of organic matter removed (Q(VS)) decreased from 4.1 mg/kg Q(VS) for APD-0 to 0.8-3.4 mg/kg Q(VS) for aerobically pretreated MSW. The lipid and starch contents might have significant impact on the intensity of the NMOC emissions. Alkanes dominated the NMOCs released from the aerobically pretreated MSW, while oxygenated compounds were the chief component of the NMOCs generated from untreated MSW. Aerobic pretreatment of MSW prior to landfilling reduces the organic content of the waste and the intensity of the NMOC emissions, and increases the odor threshold, thereby reducing the environmental impact of landfills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste (MSW) landfill sites.

    PubMed

    Asakura, Hiroshi; Matsuto, Toshihiko; Tanaka, Nobutoshi

    2007-01-01

    Influent and processed water were sampled at different points in the leachate treatment facilities of five municipal solid waste (MSW) landfill sites. Then, the concentrations of endocrine-disrupting chemicals (EDCs), namely, alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs), in the treated leachate samples were determined and the behavior of the EDCs in the treatment processes was discussed. The concentrations of APs were as low as those in surface waters, and no OTs were detected (detection limit: 0.01 microg/L). Meanwhile, diethylhexyl phthalate (DEHP), which was the most abundant of the four substances measured as PAEs, and BPA were found in all of the influent samples. BPA was considerably degraded by aeration, except when the water temperature was low and the total organic carbon (TOC) was high. By contrast, aeration, biological treatment, and coagulation/sedimentation removed only a small amount of DEHP.

  16. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    PubMed

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  18. Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates.

    PubMed

    Jang, Yong-Chul; Townsend, Timothy G

    2003-10-15

    The proper management of discarded electronic devices (E-waste) is an important issue for solid waste professionals because of the magnitude of the waste stream and because these devices often contain a variety of toxic metals (e.g., lead). While recycling of E-waste is developing, much of this waste stream is disposed in landfills. Leaching tests are frequently used to characterize the potential of a solid waste to leach when disposed in a landfill. In the United States, the Toxicity Characteristic Leaching Procedure (TCLP) is used to determine whether a solid waste is a hazardous waste by the toxicity characteristic. The TCLP is designed to simulate worse-case leaching in a landfill environment where the waste is co-disposed with municipal solid waste (MSW). While the TCLP is a required analysis from a regulatory perspective, the leachate concentrations measured may not accurately reflect the concentrations observed under typical landfill conditions. Another method that can be performed to assess the degree a pollutant might leach from a waste in a landfill is to use actual landfill leachate as the leaching solution. In this study, two lead-containing components found in electronic devices (printed wire boards from computers and cathode ray tubes from computers and televisions) were leached using the TCLP and leachates from 11 Florida landfills. California's Waste Extraction Test (WET) and the Synthetic Precipitation Leaching Procedure were also performed. The results indicated that the extractions using MSW landfill leachates resulted in lower lead concentrations than those by the TCLP. The pH of the leaching solution and the ability of the organic acids in the TCLP and WET to complex with the lead are factors that regulate the amount of lead leached.

  19. Evaluation of landfill leachate in arid climate-a case study.

    PubMed

    Al-Yaqout, A F; Hamoda, M F

    2003-08-01

    Generation of leachate from municipal solid waste (MSW) landfill in arid regions has long been neglected on the assumption that minimal leachate could be formed in the absence of precipitation. Therefore, a case study was conducted at two unlined MSW landfills, of different ages, in the state of Kuwait in order to determine the chemical characteristics of leachate and examine the mechanism of leachate formation. Leachate quality data were collected from both active and old (closed) landfills where co-disposal of MSW and other solid and liquid wastes is practiced. The analysis of data confirms that leachates from both landfills are severely contaminated with organics, salts and heavy metals. However, the organic strength of the leachate collected from the old landfill was reduced due to waste decomposition and continuous gas flaring. A significant degree of variability was encountered and factors which may influence leachate quality were identified and discussed. A water balance at the landfill site was assessed and a conceptual model was presented which accounts for leachate generation due to rising water table, capillary water and moisture content of the waste.

  20. Remediation of Highland Drive Landfill: Technical Challenges of Segregating Co-Mingled LLRW and Municipal Solid Waste in an Urbanized Area - 13319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Jeff; Lawrence, Dave; Case, Glenn

    Highland Drive Landfill is an inactive Municipal Solid Waste (MSW) Landfill which received waste from the 1940's until its closure in 1991. During a portion of its active life, the Landfill received low-level radioactive waste (LLRW) which currently exists both in a defined layer and co-mingled with MSW. Remediation of this site to remove the LLRW to meet established cleanup criteria, forms part of the Port Hope Project being undertaken by Atomic Energy Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). The total volume of LLRW and co-mingledmore » LLRW/MSW estimated to require removal from the Highland Drive Landfill is approximately 51,900 cubic metres (m{sup 3}). The segregation and removal of LLRW at the Highland Drive Landfill presents a number of unique technical challenges due to the co-mingled waste and location of the Landfill in an urbanized area. Key challenges addressed as part of the design process included: delineation of the extent of LLRW, development of cut lines, and estimation of the quantity of co-mingled LLRW in a heterogeneous matrix; protection of adjacent receptors in a manner which would not impact the use of adjacent facilities which include residences, a recreational facility, and a school; coordination and phasing of the work to allow management of six separate material streams including clean soil, MSW, co-mingled LLRW/MSW, LLRW, un-impacted water, and impacted water/leachate within a confined environment; and development of a multi-tiered and adaptive program of monitoring and control measures for odour, dust, and water including assessment of risk of exceedance of monitoring criteria. In addition to ensuring public safety and protection of the environment during remedy implementation, significant effort in the design process was paid to balancing the advantages of increased certainty, including higher production rates, against the costs of attaining

  1. Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: A brief review.

    PubMed

    Nagendran, R; Selvam, A; Joseph, Kurian; Chiemchaisri, Chart

    2006-01-01

    Environmental problems posed by municipal solid waste (MSW) are well documented. Scientifically designed landfills and/or open dumpsites are used to dispose MSW in many developed and developing countries. Non-availability of land and need to reuse the dumpsite space, especially in urban areas, call for rehabilitation of these facilities. A variety of options have been tried to achieve the goals of rehabilitation. In the last couple of decades, phytoremediation, collectively referring to all plant-based technologies using green plants to remediate and rehabilitate municipal solid waste landfills and dumpsites, has emerged as a potential candidate. Research and development activities relating to different aspects of phytoremediation are keeping the interest of scientists and engineers alive and enriching the literature. Being a subject of multi-disciplinary interest, findings of phytoremediation research has resulted in generation of enormous data and their publication in a variety of journals and books. Collating data from such diverse sources would help understand the dynamics and dimensions of landfill and dumpsite rehabilitation. This review is an attempt in this direction.

  2. Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil.

    PubMed

    Maciel, Felipe Jucá; Jucá, José Fernando Thomé

    2011-05-01

    Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE - Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4-5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH(4) flux rates than the conventional layer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  4. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  5. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    PubMed

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project. © The Author(s) 2015.

  6. Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW)

    NASA Astrophysics Data System (ADS)

    Dianda, P.; Mahidin; Munawar, E.

    2018-03-01

    Many cities in developing countries is facing a serious problems to dealing with huge municipal solid waste (MSW) generated. The main approach to manage MSW is causes environmental impact associated with the leachate and landfill gas emissions. On the other hand, the energy available also limited by rapid growth of population and economic development due to shortage of the natural resource. In this study, the potential utilized of MSW to produce refuse derived fuel (RDF) was investigate. The RDF was produced with various organic waste content. Then, the RDF was subjected to laboratory analysis to determine its characteristic including the calorific value. The results shows the moisture content was increased by increasing organic waste content, while the calorific value was found 17-36 MJ/kg. The highest calorific value was about 36 MJ/kg obtained at RDF with 40% organic waste content. This results indicated that the RDF can be use to substitute coal in main burning process and calcinations of cement industry.

  7. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills

    EPA Science Inventory

    This revised draft document was prepared for U.S. EPA's Office of Research and Development, and describes the data analysis undertaken to update the Municipal Solid Waste (MSW) Landfill section of AP-42. This 2008 update includes the addition of data from 62 landfill gas emission...

  8. Transport of the Pathogenic Prion Protein through Landfill Materials

    PubMed Central

    Jacobson, Kurt H.; Lee, Seunghak; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrPTSE) is the major, if not sole, component of the infectious agent. Recent TSE outbreaks in domesticated and wild animal populations has created the need for safe and effective disposal of large quantities of potentially infected materials. Here, we report the results of a study to evaluate the potential for transport of PrPTSE derived from carcasses and associated wastes in a municipal solid waste (MSW) landfill. Column experiments were conducted to evaluate PrPTSE transport in quartz sand, two fine-textured burial soils currently used in landfill practice, a green waste residual material (a potential burial material), and fresh and aged MSW. PrPTSE was retained by quartz sand and the fine-textured burial soils, with no detectable PrPTSE eluted over more than 40 pore volumes. In contrast, PrPTSE was more mobile in MSW and green waste residual. Transport parameters were estimated from the experimental data and used to model PrPTSE migration in a MSW landfill. To the extent that the PrPTSE used mimics that released from decomposing carcasses, burial of CWD-infected materials at MSW landfills could provide secure containment of PrPTSE provided reasonable burial strategies (e.g., encasement in soil) are used. PMID:19368208

  9. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives.

    PubMed

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah

    2017-12-01

    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

  10. Landfill mining: Case study of a successful metals recovery project.

    PubMed

    Wagner, Travis P; Raymond, Tom

    2015-11-01

    Worldwide, the generation of municipal solid waste (MSW) is increasing and landfills continue to be the dominant method for managing solid waste. Because of inadequate diversion of reusable and recoverable materials, MSW landfills continue to receive significant quantities of recyclable materials, especially metals. The economic value of landfilled metals is significant, fostering interest worldwide in recovering the landfilled metals through mining. However, economically viable landfill mining for metals has been elusive due to multiple barriers including technological challenges and high costs of processing waste. The objective of this article is to present a case study of an economically successful landfill mining operation specifically to recover metals. The mining operation was at an ashfill, which serves a MSW waste-to-energy facility. Landfill mining operations began in November 2011. Between December 2011 and March 2015, 34,352 Mt of ferrous and non-ferrous metals were recovered and shipped for recycling, which consisted of metals >125 mm (5.2%), 50-125 mm (85.9%), <50mm (3.4%), zorba (4.6%), and mixed products (0.8%). The conservative estimated value of the recovered metal was $7.42 million. Mining also increased the landfill's airspace by 10,194 m(3) extending the life of the ashfill with an estimated economic value of $267,000. The estimated per-Mt cost for the extraction of metal was $158. This case study demonstrates that ashfills can be profitably mined for metals without financial support from government. Although there are comparatively few ashfills, the results and experience obtained from this case study can help foster further research into the potential recovery of metals from raw, landfilled MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Municipal Solid Waste Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  12. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age.

    PubMed

    Yu, Zhuofeng; He, Pinjing; Shao, Liming; Zhang, Hua; Lü, Fan

    2016-12-01

    Since municipal solid waste (MSW) landfill harbours miscellaneous wastes, pollutants and microorganisms, it gradually becomes a huge potential reservoir for breeding antibiotic resistance genes (ARGs). The objective of this study was to determine the prevalence and diversity of ARGs associated with various mobile genetic elements (MGEs) in MSW landfill leachates. The relationship of ARGs with leachate characteristics was also studied to explore the influence of landfill age. Seven sulfonamides (sulfapyridine, sulfadiazine, sulfathiazole, sulfamethoxazole, sulfamerazine, sulfamethazine and sulfaquinoxaline), three encoded ARGs (sul-I, sul-II and sul-III) and four types of MGEs (plasmids, transposons, integrons and insertion sequences) were quantified in leachates with landfill ages ranging from 3 months-6 years. ARGs increased to an absolute concentration of 10 6 copies/μL and were positively correlated (p < 0.05) to MGEs. Significant correlations (p < 0.05) were also discovered among ARGs and the increasing humic acids, heavy metals (Zn, Cu and Co) and antibiotics (except for sulfathiazole and sulfaquinoxaline), implying landfilling might contribute to the enrichment of ARGs in the long-term. Non-target full scans revealed the role of persistent unknown compounds in stimulating the ARGs dissemination. Overall, this study demonstrates the exacerbation of ARGs pollution in landfill environment and a detailed delineation of the complex inter-relationships between ARGs and the substances harbouring in landfills is badly required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bioleach: a mathematical model for the joint evaluation of leachate and biogas production in urban solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2017-04-01

    One of the most serious environmental problems in modern societies is the management and disposal of urban solid waste (MSW). Despite the efforts of the administration to promote recycling and reuse policies and energy recovery technologies, nowadays the majority of MSW still is disposed in sanitary landfills. During the phases of operation and post-closure maintenance of any solid waste disposal site, two of the most relevant problems are the production of leachate and the generation of biogas. The leachate and biogas production formation processes occur simultaneously over time and are coupled together through the consumption and/or production of water. However, no mathematical models have been easily identified that allow to the evaluation of the joint production of leachate and biogas, during the operational and the post-closure phase of an urban waste landfill. This paper introduces BIOLEACH, a new mathematical model programmed on a monthly scale, that evaluates the joint production of leachate and biogas applying water balance techniques and considers the management of the landfill as a bioreactor. The application of such a model on real landfills allows to perform an environmentally sustainable management that minimizes the environmental impacts produced being also economically more profitable.

  14. Methanogenesis acceleration of fresh landfilled waste by micro-aeration.

    PubMed

    Shao, Li-Ming; He, Pin-Jing; Zhang, Hua; Yu, Xiao-Hua; Li, Guo-Jian

    2005-01-01

    When municipal solid waste (MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids (VFA) and decrease of pH value. This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH4 in the landfill gas from the column with aeration rate of 0.39 m3/(m3 x d) and frequency of twice/d, leachate recirculation rate of 12.2 mm/d and frequency of twice/d, could amount to 40% (v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.

  15. Analysis of Indirect Emissions Benefits of Wind, Landfill Gas, and Municipal Solid Waste Generation

    EPA Science Inventory

    Techniques are introduced to calculate the hourly indirect emissions benefits of three types of green power resources: wind energy, municipal solid waste (MSW) combustion, and landfill gas (LFG) combustion. These techniques are applied to each of the U.S. EPA's eGRID subregions i...

  16. Influence of dynamic coupled hydro-bio-mechanical processes on response of municipal solid waste and liner system in bioreactor landfills.

    PubMed

    Reddy, Krishna R; Kumar, Girish; Giri, Rajiv K

    2017-05-01

    A two-dimensional (2-D) mathematical model is presented to predict the response of municipal solid waste (MSW) of conventional as well as bioreactor landfills undergoing coupled hydro-bio-mechanical processes. The newly developed and validated 2-D coupled mathematical modeling framework combines and simultaneously solves a two-phase flow model based on the unsaturated Richard's equation, a plain-strain formulation of Mohr-Coulomb mechanical model and first-order decay kinetics biodegradation model. The performance of both conventional and bioreactor landfill was investigated holistically, by evaluating the mechanical settlement, extent of waste degradation with subsequent changes in geotechnical properties, landfill slope stability, and in-plane shear behavior (shear stress-displacement) of composite liner system and final cover system. It is concluded that for the given specific conditions considered, bioreactor landfill attained an overall stabilization after a continuous leachate injection of 16years, whereas the stabilization was observed after around 50years of post-closure in conventional landfills, with a total vertical strain of 36% and 37% for bioreactor and conventional landfills, respectively. The significant changes in landfill settlement, the extent of MSW degradation, MSW geotechnical properties, along with their influence on the in-plane shear response of composite liner and final cover system, between the conventional and bioreactor landfills, observed using the mathematical model proposed in this study, corroborates the importance of considering coupled hydro-bio-mechanical processes while designing and predicting the performance of engineered bioreactor landfills. The study underscores the importance of considering the effect of coupled processes while examining the stability and integrity of the liner and cover systems, which form the integral components of a landfill. Moreover, the spatial and temporal variations in the landfill settlement, the

  17. MONITORING GUIDANCE FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  18. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 40 CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppo...

  19. Anaerobic degradation of nonylphenol mono- and diethoxylates in digestor sludge, landfilled municipal solid waste, and landfilled sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejlertsson, J.; Oequist, M.; Svensson, B.H.

    1999-01-15

    The aim of this study was to investigate the extent to which anaerobic digestor sludge, landfilled sludge, and landfilled municipal solid waste (MSW) degrade NPEOs [nonylphenol ethoxylates] under methanogenic conditions. NPEO1 and NPEO2 (NPEO1-2), used in a mixture, were chosen as model compounds. Anaerobic experimental bottles were amended with 100% digestor sludge at three different concentrations of NPEO1-2: 2, 60, and 308 mg L{sup {minus}1}. [U-{sup 14}C]-NPEO1-2 was used to detect any possible decomposition of the aromatic moiety of the NPEO1-2. All inoculates used degraded NPEO1-2 at 2 mg L{sup {minus}1}, with nonylphenol (NP) forming the ultimate degradation product. Themore » NP formed was not further degraded, and the incubations with labeled NPEO showed that the aromatic structure remained intact. Both landfill inoculates also transformed NPEO1-2 at 60 mg L{sup {minus}1}. CH{sub 4} production was temporarily hampered in bottles with MSW landfill inoculum at 60 and 308 mg L{sup {minus}1}. With 2 mg L{sup {minus}1} of NPEO, CH{sub 4} production closely followed that in the controls. Both NP and NPEO1-2 interacted with the organic matter which resulted in sorption to the solid phase.« less

  20. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.

    PubMed

    Woon, K S; Lo, Irene M C

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH4) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH4 recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills.

    PubMed

    Jafari, Navid H; Stark, Timothy D; Thalhamer, Todd

    2017-01-01

    Elevated temperatures in waste containment facilities can pose health, environmental, and safety risks because they generate toxic gases, pressures, leachate, and heat. In particular, MSW landfills undergo changes in behavior that typically follow a progression of indicators, e.g., elevated temperatures, changes in gas composition, elevated gas pressures, increased leachate migration, slope movement, and unusual and rapid surface settlement. This paper presents two MSW landfill case studies that show the spatial and time-lapse movements of these indicators and identify four zones that illustrate the transition of normal MSW decomposition to the region of elevated temperatures. The spatial zones are gas front, temperature front, and smoldering front. The gas wellhead temperature and the ratio of CH 4 to CO 2 are used to delineate the boundaries between normal MSW decomposition, gas front, and temperature front. The ratio of CH 4 to CO 2 and carbon monoxide concentrations along with settlement strain rates and subsurface temperatures are used to delineate the smoldering front. In addition, downhole temperatures can be used to estimate the rate of movement of elevated temperatures, which is important for isolating and containing the elevated temperature in a timely manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Impact of co-landfill proportion of bottom ash and municipal solid waste composition on the leachate characteristics during the acidogenesis phase.

    PubMed

    He, Pin-Jing; Pu, Hong-Xia; Shao, Li-Ming; Zhang, Hua

    2017-11-01

    Incineration has become an important municipal solid waste (MSW) treatment strategy, and generates a large amount of bottom ash (BA). Although some BA is reused, much BA and pretreatment residues from BA recycling are disposed in landfill. When BA and MSW are co-landfilled together, acid neutralization capacity and alkaline earth metal dissolution of BA, as well as different components of MSW may change environmental conditions within the landfill, so the degradation of organic matter and the physical and chemical properties of leachate would be affected. In this study, the effect of co-landfilled BA and MSW on the leachate characteristics during the hydrolysis and acidogenesis phase was studied using different BA/MSW ratios and MSW compositions. The results showed that the co-landfill system increased leachate pH, electric conductivity and alkalinity. For MSW with a high content of degradable components, the release and degradation of total organic carbon (TOC) and volatile fatty acids (VFA) from MSW were promoted when the BA ratio by wet weight was less than 50%, and the biodegradability of leachate was improved. When the BA ratio exceeded 50%, the degradation of organic matters was inhibited. For MSW with low content of degradable components, when the proportion of BA was less than 20%, the release and degradation of TOC and VFA from MSW were promoted and alkalinity increased. When the BA ratio exceeded 20%, the degradation of organic matters was inhibited. The 50% BA ratio could improve the bio-treatability of leachate indicated by the leachate pH and C/N ratio. However, BA inhibited the release of nitrogen (TN and NH 4 + -N) at all BA ratios and MSW compositions. At the same time, the addition of BA increased the risk of leachate collection system clogging due to the dissolution and re-precipitation of alkaline earth metals contained in BA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process.

    PubMed

    Gao, Wu; Xu, Wenjie; Bian, Xuecheng; Chen, Yunmin

    2017-11-01

    The settlement of any position of the municipal solid waste (MSW) body during the landfilling process and after its closure has effects on the integrity of the internal structure and storage capacity of the landfill. This paper proposes a practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process. The MSW body in the landfill was divided into independent column units, and the filling process of each column unit was determined by a simplified complete landfilling process. The settlement of a position in the landfill was calculated with the compression of each MSW layer in every column unit. Then, the simultaneous settlement of all the column units was integrated to obtain the settlement of the landfill and storage capacity of all the column units; this allowed to obtain the storage capacity of the landfill based on the layer-wise summation method. When the compression of each MSW layer was calculated, the effects of the fluctuation of the main leachate level and variation in the unit weight of the MSW on the overburdened effective stress were taken into consideration by introducing the main leachate level's proportion and the unit weight and buried depth curve. This approach is especially significant for MSW with a high kitchen waste content and landfills in developing countries. The stress-biodegradation compression model was used to calculate the compression of each MSW layer. A software program, Settlement and Storage Capacity Calculation System for Landfills, was developed by integrating the space and time discretization of the landfilling process and the settlement and storage capacity algorithms. The landfilling process of the phase IV of Shanghai Laogang Landfill was simulated using this software. The maximum geometric volume of the landfill error between the calculated and measured values is only 2.02%, and the accumulated filling weight error between the

  4. Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner.

    PubMed

    Pivato, A; Raga, R

    2006-01-01

    Uncontrolled leachate emissions are one of the key factors in the environmental impact of municipal solid waste (MSW) landfills. The concentration of ammonium, given the anaerobic conditions in traditional landfills, can remain significantly high for a very long period of time, as degradation does not take place and volatilisation is not significant (the pH is not high enough to considerably shift the equilibrium towards un-ionised ammonia). Recent years have witnessed a continuous enhancement of landfill technology in order to minimize uncontrolled emissions into the environment; bottom lining systems have been improved and more attention has been devoted to the study of the attenuation of the different chemicals in leachate in case of migration through the mineral barrier. Different natural materials have been considered for use as components of landfill liners in the last years and tested in order to evaluate the performance of the different alternatives. Among those materials, bentonite is often used, coupled with other materials in two different ways: in addition to in situ soil or in geocomposite clay liner (GCL). A lab-scale test was carried out in order to further investigate the influence of bentonite on the attenuation of ammonium in leachate passing through a landfill liner. Two different tests were conducted: a standardized batch test with pulverized bentonite and a batch test with compacted bentonite. The latter was proposed in order to better simulate the real conditions in a landfill liner. The two tests produced values for the partition coefficient K(d) higher than the average measured for other natural materials usually utilized as components of landfill liners. Moreover, the two tests showed similar results, thus providing a further validation of the suitability of the standard batch test with pulverized bentonite. A thorough knowledge of attenuation processes of ammonium in landfill liners is the basis for the application of risk analysis models

  5. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  6. Effect of biogas generation on radon emissions from landfills receiving radium-bearing waste from shale gas development.

    PubMed

    Walter, Gary R; Benke, Roland R; Pickett, David A

    2012-09-01

    Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings. Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper

  7. Leaching of heavy metals from E-waste in simulated landfill columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yadong; Richardson, Jay B.; Mark Bricka, R.

    2009-07-15

    In recent history the volume of electronic products purchased by consumers has dramatically escalated. As a result this has produced an ever-increasing electronic waste (E-waste) stream, which has generated concerns regarding the E-waste's potential for adversely impacting the environment. The leaching of toxic substances from obsolete personal computers (PCs) and cathode ray tubes (CRTs) of televisions and monitors, which are the most significant components in E-waste stream, was studied using landfill simulation in columns. Five columns were employed. One column served as a control which was filled with municipal solid waste (MSW), two columns were filled with a mixture ofmore » MSW and CRTs, and the other two were filled with MSW and computer components including printed wire boards, hard disc drives, floppy disc drives, CD/DVD drives, and power supply units. The leachate generated from the columns was monitored for toxic materials throughout the two-year duration of the study. Results indicate that lead (Pb) and various other heavy metals that were of environmental and health concern were not detected in the leachate from the simulators. When the samples of the solids were collected from underneath the E-waste in the columns and were analyzed, significant amount of Pb was detected. This indicates that Pb could readily leach from the E-waste, but was absorbed by the solids around the E-waste materials. While Pb was not observed in the leachate in this study, it is likely that the Pb would eventually enter the leachate after a long term transport.« less

  8. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills.

    PubMed

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2014-11-01

    The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55°C for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4-9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon content (DOCC) was in the range of 0.44-0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP values of 51.8-69.6 and 106.6-117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84-5.12% and 7.96-8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Aging and compressibility of municipal solid wastes.

    PubMed

    Chen, Y M; Zhan, Tony L T; Wei, H Y; Ke, H

    2009-01-01

    The expansion of a municipal solid waste (MSW) landfill requires the ability to predict settlement behavior of the existing landfill. The practice of using a single compressibility value when performing a settlement analysis may lead to inaccurate predictions. This paper gives consideration to changes in the mechanical compressibility of MSW as a function of the fill age of MSW as well as the embedding depth of MSW. Borehole samples representative of various fill ages were obtained from five boreholes drilled to the bottom of the Qizhishan landfill in Suzhou, China. Thirty-one borehole samples were used to perform confined compression tests. Waste composition and volume-mass properties (i.e., unit weight, void ratio, and water content) were measured on all the samples. The test results showed that the compressible components of the MSW (i.e., organics, plastics, paper, wood and textiles) decreased with an increase in the fill age. The in situ void ratio of the MSW was shown to decrease with depth into the landfill. The compression index, Cc, was observed to decrease from 1.0 to 0.3 with depth into the landfill. Settlement analyses were performed on the existing landfill, demonstrating that the variation of MSW compressibility with fill age or depth should be taken into account in the settlement prediction.

  10. Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj).

    PubMed

    Moeinaddini, Mazaher; Khorasani, Nematollah; Danehkar, Afshin; Darvishsefat, Ali Asghar; Zienalyan, Mehdi

    2010-05-01

    Selection of landfill site is a complex process and needs many diverse criteria. The purpose of this paper is to evaluate the suitability of the studied site as landfill for MSW in Karaj. Using weighted linear combination (WLC) method and spatial cluster analysis (SCA), suitable sites for allocation of landfill for a 20-year period were identified. For analyzing spatial auto-correlation of the land suitability map layer (LSML), Maron's I was used. Finally, using the analytical hierarchy process (AHP), the most preferred alternative for the landfill siting was identified. Main advantages of AHP are: relative ease of handling multiple criteria, easy to understand and effective handling of both qualitative and quantitative data. As a result, 6% of the study area is suitable for landfill siting and third alternative was identified as the most preferred for siting MSW landfill by AHP. The ranking of alternatives were obtained only by applying the WLC approach showed different results from the AHP. The WLC should be used only for the identification of alternatives and the AHP is used for prioritization. We suggest the employed procedure for other similar regions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. CHARACTERISTICS OF MODERN MSW LANDFILL PERFORMANCE

    EPA Science Inventory

    Landfills have long been used for the permanent land disposal of municipal, industrial, and hazardous solid wastes. .S. federal and state regulations require that these facilities be designed to function for an active life, plus a post-closure period, typically 30 years. n most c...

  12. Stimulation of waste decomposition in an old landfill by air injection.

    PubMed

    Wu, Chuanfu; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Chai, Xiaoli

    2016-12-01

    Three pilot-scale lysimeters were operated for 4.5years to quantify the change in the carbon and nitrogen pool in an old landfill under various air injection conditions. The results indicate that air injection at the bottom layer facilitated homogeneous distribution of oxygen in the waste matrix. Substantial total organic carbon (TOC) decomposition and methane generation reduction were achieved. Considerable amount of nitrogen was removed, suggesting that in situ nitrogen removal via the effective simultaneous nitrification and denitrification mechanism is viable. Moreover, material mass change measurements revealed a slight mass reduction of aged MSW (by approximately 4.0%) after 4.5years of aeration. Additionally, experiments revealed that intensive aeration during the final stage of the experiment did not further stimulate the degradation of the aged MSW. Therefore, elimination of the labile fraction of aged MSW should be considered the objective of in situ aeration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nitrogen removal from landfill leachate using single or combined processes.

    PubMed

    He, P J; Shao, L M; Guo, H D; Li, G J; Lee, D J

    2005-04-01

    The municipal solids waste (MSW) collected at Shanghai includes a high proportion of food waste, which is easily hydrolyzed to generate ammonia-nitrogen in leachate. This study investigated the efficiency of nitrogen removal from landfill leachate employing four different treatment processes. The simulated rainfall and direct leachate recycling produced strong leachate with high ammonia-nitrogen content, and resulted in the removal of only a small amount of nitrogen. Although pretreating the leachate using an aerobic reactor removed some nitrogen, most of which was transformed to biomass because of the high organic loading applied. Using the three-compartment system, which comprises a landfill column with fresh MSW, a column with well-decomposed refuse layer as the methane generator, and a nitrifier, the ammonia-nitrogen was converted into nitrogen gas and hence removed. Experimental results demonstrated the feasibility of adopting the three-compartment system for managing nitrogen in landfill leachate generated from high-nitrogen-content MSW.

  14. Measurement of carbon storage in landfills from the biogenic carbon content of excavated waste samples.

    PubMed

    De la Cruz, Florentino B; Chanton, Jeffrey P; Barlaz, Morton A

    2013-10-01

    Landfills are an anaerobic ecosystem and represent the major disposal alternative for municipal solid waste (MSW) in the U.S. While some fraction of the biogenic carbon, primarily cellulose (Cel) and hemicellulose (H), is converted to carbon dioxide and methane, lignin (L) is essentially recalcitrant. The biogenic carbon that is not mineralized is stored within the landfill. This carbon storage represents a significant component of a landfill carbon balance. The fraction of biogenic carbon that is not reactive in the landfill environment and therefore stored was derived for samples of excavated waste by measurement of the total organic carbon, its biogenic fraction, and the remaining methane potential. The average biogenic carbon content of the excavated samples was 64.6±18.0% (average±standard deviation), while the average carbon storage factor was 0.09±0.06g biogenic-C stored per g dry sample or 0.66±0.16g biogenic-C stored per g biogenic C. Published by Elsevier Ltd.

  15. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  16. Residents' concerns and attitudes toward a municipal solid waste landfill: integrating a questionnaire survey and GIS techniques.

    PubMed

    Che, Yue; Yang, Kai; Jin, Yan; Zhang, Weiqian; Shang, Zhaoyi; Tai, Jun

    2013-12-01

    The ever-growing industry of municipal solid waste (MSW) disposal appeals to the growing need for disposal facilities, and MSW treatment facilities are increasingly an environmental and public health concern. Residents living near MSW management facilities are confronted with various risk perceptions, especially odour. In this study, in an effort to assist responsible decision-makers in better planning and managing such a project, a structured questionnaire was designed and distributed to assess the nearby residents' concerns and attitudes surrounding the Laogang Landfill in Shanghai. Geographic information system techniques and relevance analysis were employed to conduct the spatial analysis of physical perceptions, especially odour annoyance. The findings of the research indicate that a significant percentage of the responding sample was aware of the negative impacts of landfills on the environment and public health, and residents in close proximity preferred to live farther from the landfill. The results from the spatial analysis demonstrated a definite degree of correlation between odour annoyance and distance to the facility and proved that the benefits of the socially disadvantaged have been neglected. The research findings also direct attention to the important role of public participation, information disclosure, transparency in management, and mutual communication to avoid conflicts and build social trust.

  17. Development of Automated Monitoring and Management System of Municipal Solid Waste Landfill Based on the Industrial OMRON Controller

    NASA Astrophysics Data System (ADS)

    Kostarev, S. N.; Sereda, T. G.

    2018-01-01

    The application of the programmable logic integrated circuits (PLC) for creating the software and hardware complexes of the medium complexity is an economically sound solution. The application of the OMRON controller to solve the monitoring and management tasks of safety of the municipal solid waste (MSW) landfill with the use of technology of the filtrate recirculation and the landfill maps irrigation is shown in the article. The article contains the technical solution connected with the implementation of the 2162059RU invention patent for the municipal solid waste landfill management in the Kurgan region of Russia. The calculation of maps and ponds was made with consideration of the limited sanitary and protection zone. The GRUNDFOS dosing and reactor equipment was proposed to use in the project.

  18. Characterisation of the physico-mechanical parameters of MSW.

    PubMed

    Stoltz, Guillaume; Gourc, Jean-Pierre; Oxarango, Laurent

    2010-01-01

    Following the basics of soil mechanics, the physico-mechanical behaviour of municipal solid waste (MSW) can be defined through constitutive relationships which are expressed with respect to three physical parameters: the dry density, the porosity and the gravimetric liquid content. In order to take into account the complexity of MSW (grain size distribution and heterogeneity larger than for conventional soils), a special oedometer was designed to carry out laboratory experiments. This apparatus allowed a coupled measurement of physical parameters for MSW settlement under stress. The studied material was a typical sample of fresh MSW from a French landfill. The relevant physical parameters were measured using a gas pycnometer. Moreover, the compressibility of MSW was studied with respect to the initial gravimetric liquid content. Proposed methods to assess the set of three physical parameters allow a relevant understanding of the physico-mechanical behaviour of MSW under compression, specifically, the evolution of the limit liquid content. The present method can be extended to any type of MSW. 2010 Elsevier Ltd. All rights reserved.

  19. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting.

    PubMed

    Sim, Edwin Yih Shyang; Wu, Ta Yeong

    2010-10-01

    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW. Copyright © 2010 Society of Chemical Industry.

  20. USERS MANUAL: LANDFILL GAS EMISSIONS MODEL - VERSION 2.0

    EPA Science Inventory

    The document is a user's guide for a computer model, Version 2.0 of the Landfill Gas Emissions Model (LandGEM), for estimating air pollution emissions from municipal solid waste (MSW) landfills. The model can be used to estimate emission rates for methane, carbon dioxide, nonmet...

  1. Potential Material Sources for Board Products: Used Pallets and Wastewood at Landfills

    Treesearch

    Philip A. Araman; Robert J. Bush; Vijay S. Reddy

    1997-01-01

    Millions of tons of pallets and other types of wood waste are being sent to landfills every year. At many landfills wood is or could be reclaimed. One potential use for this material is as furnish for board products. To evaluate the potential to reclaim wood waste for useful products we surveyed municipal solid waste (MSW) and construction and demolition (C&D)...

  2. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater

  3. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.

    PubMed

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2016-09-01

    The energy conversion potential of municipal solid waste (MSW) disposed of in landfills remains largely untapped because of the slow and variable rate of biogas generation, delayed and inefficient biogas collection, leakage of biogas, and landfill practices and infrastructure that are not geared toward energy recovery. A database consisting of methane (CH4) generation data, the major constituent of biogas, from 49 laboratory experiments and field monitoring data from 57 landfills was developed. Three CH4 generation parameters, i.e., waste decay rate (k), CH4 generation potential (L0), and time until maximum CH4 generation rate (tmax), were calculated for each dataset using U.S. EPA's Landfill Gas Emission Model (LandGEM). Factors influencing the derived parameters in laboratory experiments and landfills were investigated using multi-linear regression analysis. Total weight of waste (W) was correlated with biodegradation conditions through a ranked classification scheme. k increased with increasing percentage of readily biodegradable waste (Br0 (%)) and waste temperature, and reduced with increasing W, an indicator of less favorable biodegradation conditions. The values of k obtained in the laboratory were commonly significantly higher than those in landfills and those recommended by LandGEM. The mean value of L0 was 98 and 88L CH4/kg waste for laboratory and field studies, respectively, but was significantly affected by waste composition with ranges from 10 to 300L CH4/kg. tmax increased with increasing percentage of biodegradable waste (B0) and W. The values of tmax in landfills were higher than those in laboratory experiments or those based on LandGEM's recommended parameters. Enhancing biodegradation conditions in landfill cells has a greater impact on improving k and tmax than increasing B0. Optimizing the B0 and Br0 values of landfilled waste increases L0 and reduces tmax. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Study of some characteristic Mediterranean vegetation species best suited for renaturalization of terminal-phase municipal solid waste (MSW) landfills in Puglia (Southern Italy)

    NASA Astrophysics Data System (ADS)

    De Mei, Massimiliano; Di Mauro, Mariaida

    2006-07-01

    Natural recovery of worked-out or closed municipal solid waste (MSW) landfills is a current topic, but knowledge about the adaptability of Mediterranean vegetation species to such stressful conditions is still quite poor. Autochthonous plants were selected to withstand the stresses such as hot climate and drought typical of Mediterranean areas; this characteristic potentially allows the plants an easier, efficient adaptation. Our aim was to provide information in order to obtain an adequate quality of environmental renewal of a landfill and a reduced management cost while ensuring rehabilitation to an acceptable naturalistic state. The investigation lasted 3 years; some Mediterranean scrub native plant species were selected and monitored in their morphological (total and relative height, basal diameter, number of inter-nodes) and physiological (photosynthetic rate and water potential) activity. In order to test dependence on CO 2 concentration, different meteorological parameters were also monitored. Ceratonia siliqua, Phillyrea latifolia, Olea europaea and Quercus ilex showed considerable adaptability, reacting positively to every improvement in environmental conditions, particularly those of a meteorological nature. Survival and growth was satisfactory in Hedysarum coronarium, Medicago sativa, Lotus corniculatus, Rosmarinus officinalis, Myrtus communis and Viburnum tinus. Fraxinus ornus and Acer campestre suffered stress during the summer dry period and recovered quickly when atmospheric conditions improved. A drop irrigation system to ensure a satisfactory soil moisture during summer dry periods was the fundamental element for survival.

  5. Wood Pallets and Landfills - Status and Opportunities for Economic Recovery and Recycling

    Treesearch

    Philip A. Araman; Robert J. Bush; A.L. Hammett; E. Brad Hager

    1998-01-01

    Wood pallet recovery, repair, and recycling are sound environmental activities that can reduce both forest resource demands and waste in landfills. Our studies found that 6.16 million tons of wood pallets (or 223.6 million pallets) entered municipal solid waste (MSW) and construction and demolition (C&D) landfill facilities in 1995. At the same time, wood pallet...

  6. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  7. Technology selection for MSW treatment in Altiplano areas using FMDM.

    PubMed

    Jiang, Jianguo; Lou, Zhiying; Hg, Siio; Duo, Ji; Li, Zhong

    2009-10-01

    There are special requirements for municipal solid waste (MSW) treatment caused by lower oxygen content and atmospheric pressure on the Altiplano. The intention of this paper was to analyse the applicability of various technologies to MSW treatment in the Altiplano and select the best one based on the current MSW collection modes and technical levels, using the Fuzzy Mathematical Decision Method (FMDM). Technologies including landfill, incineration, composting, and anaerobic digestion (AD) were compared. The results of the studies showed that AD technology is a new technology which is attractive in economic terms and helpful for environmental harmony. AD can solve the difficulties caused by a high content of organic matter in the MSW, lower atmospheric pressure and oxygen content on the Altiplano. Moreover, it can achieve reduction and recycling of the waste, thereby saving space for treatment and disposal. Using this technology, renewable energy can be recovered to save conventional fuel consumption and the emission of greenhouse gases can be reduced to improve the conservation of the local ecosystem. Putting AD into practice in the Altiplano may be the preferred method of MSW treatment.

  8. Evaluation of the potentialities to reduce greenhouse gases (GHG) emissions resulting from various treatments of municipal solid wastes (MSW) in moist tropical climates: application to Yaounde.

    PubMed

    Ngnikam, Emmanuel; Tanawa, Emile; Rousseaux, Patrick; Riedacker, Arthur; Gourdon, Rémy

    2002-12-01

    The authors here analyse the emission of greenhouse gases (GHG) resulting from the various treatment of municipal solid waste found in the town of Yaounde. Four management systems have been taken as the basis for analyses. System 1 is the traditional collection and landfill disposal, while in system 2 the hiogas produced in the landfill is recuperated to produce electricity. In systems 3 and 4, in addition to the collection, we have introduced a centralised composting or biogas plant before the landfilling disposal of refuse. A Life Cycle Inventory (LCI) of the four systems was made; this enable us to quantify the flux of matter and of energy, consumed or produced by the systems. Following this, only the greenhouse effect was taken into account to evaluate the ecological consequences of the MSW management systems. The method used to evaluate this impact takes into consideration on the one hand, GHG emissions or avoided emission following the substitution of fuel with methane recovered from landfills or produced in the digesters, and on the other hand, sequestrated carbon in the soil following the regular deposit of compost. Landfilling without recuperation of methane is the most emitting solution for greenhouse gas: it leads to the emission of 1.7 ton of carbon dioxide equivalent (tCO2E) per ton of household waste. Composting and methanisation allow one to have a comparable level of emission reduction, either respectively 1.8 and 2 tCO2E/t of MSW. In order to reduce the emission of GHG in the waste management systems, it is advisable to avoid first of all the emissions of methane coming from the landfills. System 2 seems to be a solution that would reduce the emissions of GHG at low cost (2.2 to 4 $/tCO2E). System 2 is calculated as the most effective at the environmental and economic level in the context of Yaounde. Therefore traditional collection, landfill disposal and biogas recuperation to produce electricity is preferable in moist tropical climates.

  9. MSW management for waste minimization in Taiwan: The last two decades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.-T.; Hsiao, T.-Y.; Shang, N.-C.

    2006-07-01

    Taiwan is the second most densely populated country in the world; its 22.604 million residents (2002) live in an area of 35,967 km{sup 2} (628 people/km{sup 2}). Taiwan's economy has grown rapidly during the last 20 years, resulting in a corresponding increase in the amount of municipal solid waste (MSW). This study describes and evaluates the municipal solid waste management system in Taiwan. The study's results indicate that the amount of MSW began to decline after 1997, when the government enforced aggressive MSW management policies. By 2002, total MSW production had dropped by 27%, and the average daily per capitamore » weight of MSW had fallen from 1.14 kg in 1997 to 0.81 kg in 2002. Summarizing the successful experience of MSW reduction in Taiwan, the most important factor was the government's combining of the MSW collection system with reduction/recycling programs. The second most important factor was the policy of extended producer responsibility, which laid a foundation of recycling by producers and retailers and promoted public recycling.« less

  10. Determination of personal care products and hormones in leachate and groundwater from Polish MSW landfills by ultrasound-assisted emulsification microextraction and GC-MS.

    PubMed

    Kapelewska, Justyna; Kotowska, Urszula; Wiśniewska, Katarzyna

    2016-01-01

    Determination of the endocrine disrupting compounds (EDCs) in leachate and groundwater samples from the landfill sites is very important because of the proven harmful effects of these compounds on human and animal organisms. A method combining ultrasound-assisted emulsification microextraction (USAEME) and gas chromatography-mass spectrometry (GC-MS) was developed for simultaneous determination of seven personal care products (PCPs): methylparaben (MP), ethylparaben (EP), propylparaben (PP), buthylparaben (BP), benzophenone (BPh), 3-(4-methylbenzylidene)camphor (4-MBC), N,N-diethyltoluamide (DEET), and two hormones: estrone (E1) and β-estradiol (E2) in landfill leachate and groundwater samples. The limit of detection (LOD)/limit of quantification (LOQ) values in landfill leachate and groundwater samples were in the range of 0.003-0.083/0.009-0.277 μg L(-1) and 0.001-0.015/0.002-0.049 μg L(-1), respectively. Quantitative recoveries and satisfactory precision were obtained. All studied compounds were found in the landfill leachates from Polish municipal solid waste (MSW) landfills; the concentrations were between 0.66 and 202.42 μg L(-1). The concentration of pollutants in groundwater samples was generally below 0.1 μg L(-1).

  11. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  12. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Preliminary findings from a large-scale experiment.

    PubMed

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lü, Fan; Lan, Ji-Wu; Shao, Li-Min; Lin, Wei-An; He, Pin-Jing

    2017-05-01

    A large-scale bioreactor experiment lasting for 2years was presented in this paper to investigate the biochemical, hydrological and mechanical behaviors of high food waste content (HFWC) MSW. The experimental cell was 5m in length, 5m in width and 7.5m in depth, filled with unprocessed HFWC-MSWs of 91.3 tons. In the experiment, a surcharge loading of 33.4kPa was applied on waste surface, mature leachate refilling and warm leachate recirculation were performed to improve the degradation process. In this paper, the measurements of leachate quantity, leachate level, leachate biochemistry, gas composition, waste temperature, earth pressure and waste settlement were presented, and the following observations were made: (1) 26.8m 3 leachate collected from the 91.3 tons HFWC-MSW within the first two months, being 96% of the total amount collected in one year. (2) The leachate level was 88% of the waste thickness after waste filling in a close system, and reached to over 100% after a surcharge loading of 33.4kPa. (3) The self-weight effective stress of waste was observed to be close to zero under the condition of high leachate mound. Leachate drawdown led to a gain of self-weight effective stress. (4) A rapid development of waste settlement took place within the first two months, with compression strains of 0.38-0.47, being over 95% of the strain recorded in one year. The compression strain tended to increase linearly with an increase of leachate draining rate during that two months. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Experimental Investigation and Aspen Plus Simulation of the MSW Pyrolysis Process

    NASA Astrophysics Data System (ADS)

    Ansah, Emmanuel

    Municipal solid waste (MSW) is a potential feedstock for producing transportation fuels because it is readily available using an existing collection/transportation infrastructure and fees are provided by the suppliers or government agencies to treat MSW. North Carolina with a population of 9.4 millions generates 3.629 million metric tons of MSW each year, which contains about 113,396,356 TJs of energy. The average moisture content of MSW samples is 44.3% on a wet basis. About 77% of the dry MSW mass is combustible components including paper, organics, textile and plastics. The average heating values of MSW were 9.7, 17.5, and 22.7 MJ/kg on a wet basis, dry basis and dry combustible basis, respectively. The MSW generated in North Carolina can produce 7.619 million barrels of crude bio-oil or around 4% of total petroleum consumption in North Carolina. MSW can be thermally pyrolyzed into bio-oil in the absence of oxygen or air at a temperature of 500°C or above. As bio-oil can be easily stored and transported, compared to bulky MSW, landfill gas and electricity, pyrolysis offers significant logistical and economic advantages over landfilling and other thermal conversion processes such as combustion and gasification. Crude bio-oils produced from the pyrolysis of MSW can be further refined to transportation fuels in existing petroleum refinery facilities. The objective of this research is to analyze the technical and economic feasibility of pyrolyzing MSW into liquid transportation fuels. A combined thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC) instrument, which can serve as a micro-scale pyrolysis reactor, was used to simultaneously determine the degradation characteristics of MSW during pyrolysis. An ASPEN Plus-based mathematical model was further developed to analyze the technical and economic feasibility of pyrolysing of MSW into liquid transportation fuels in fixed bed reactors at varying operating conditions

  14. Municipal solid-waste management in Istanbul.

    PubMed

    Kanat, Gurdal

    2010-01-01

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. 2010 Elsevier Ltd. All rights reserved.

  15. The leaching of lead from lead-based paint in landfill environments.

    PubMed

    Wadanambi, Lakmini; Dubey, Brajesh; Townsend, Timothy

    2008-08-30

    Lead leaching from lead-based paint (LBP) was examined using standardized laboratory protocols and tests with leachate from actual and simulated landfill environments. Two different LBP samples were tested; leaching solutions included leachates from three municipal solid waste (MSW) landfills and three construction and demolition (C&D) debris landfills. The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were also performed. Lead concentrations were many times higher using the TCLP compared to the SPLP and the landfill leachates. No significant difference (alpha=0.05) was observed in leached lead concentrations from the MSW landfill and C&D debris landfill leachates. The impact of other building materials present in LBP debris on lead leaching was examined by testing mixtures of LBP (2%) and different building materials (98%; steel, wood, drywall, concrete). The type of substrate present impacted lead leaching results, with concrete demonstrating the most dramatic impact; the lowest lead concentrations were measured in the presence of concrete under both TCLP and SPLP extractions.

  16. Biostabilization of landfill waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.L.

    1995-06-01

    In November 1991, the city of Albany, N.Y., together with the principals of Landfill Service Corp. (Apalachin, N.Y.), proposed to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double-composite-lined Interim Landfill located in the city of Albany. The small landfill covers just 12 acres and is immediately adjacent to residential neighbors. The benefits of this biostabilization practice include a dramatic improvement in the orderliness of waste placement, with significant reduction of windblown dust and litter. The process also reduces the presence of typical landfill vectors such as flies, crows, seagulls, and rodents. The physically andmore » biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of post-closure conditions and reduction or elimination of remedial costs attendant to post-closure gross differential settlement.« less

  17. Biodegradation and flushing of MBT wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqui, A.A., E-mail: aasiddiqui.cv@amu.ac.in; Richards, D.J.; Powrie, W.

    Highlights: • Stabilization was achieved for MBT wastes of different degrees of pretreatment. • About 92% reduction in the gas generation compared with raw MSW. • Pretreatment resulted in reduced TOC, nitrogen and heavy metals in leachate. • A large proportion of carbon and nitrogen remained in the waste material. - Abstract: Mechanical–biological treatment (MBT) processes are increasingly being adopted as a means of diverting biodegradable municipal waste (BMW) from landfill, for example to comply with the EU Landfill Directive. However, there is considerable uncertainty concerning the residual pollution potential of such wastes. This paper presents the results of laboratorymore » experiments on two different MBT waste residues, carried out to investigate the remaining potential for the generation of greenhouse gases and the flushing of contaminants from these materials when landfilled. The potential for gas generation was found to be between 8% and 20% of that for raw MSW. Pretreatment of the waste reduced the potential for the release of organic carbon, ammoniacal nitrogen, and heavy metal contents into the leachate; and reduced the residual carbon remaining in the waste after final degradation from ∼320 g/kg dry matter for raw MSW to between 183 and 195 g/kg dry matter for the MBT wastes.« less

  18. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China.

    PubMed

    Wang, Yanqing; Zhang, Xiaohong; Liao, Wenjie; Wu, Jun; Yang, Xiangdong; Shui, Wei; Deng, Shihuai; Zhang, Yanzong; Lin, Lili; Xiao, Yinlong; Yu, Xiaoyu; Peng, Hong

    2018-04-25

    China has become the largest generator of municipal solid waste (MSW) in the world with its rapid urbanization, population growth and raising living standard. Among diverse solid waste disposal technologies, MSW incineration has been becoming an attractive choice. In terms of systematic point, an integrated MSW incineration system should include an incineration subsystem and a bottom ash (BA) disposal subsystem. This paper employed an extend emergy assessment method with several improved indicators, which considers the emissions' impact, to evaluate the comprehensive performances of an integrated MSW incineration system. One existing incineration plant in Yibin City, Sichuan Province, China, as a case study, is evaluated using the proposed method. Three alternative scenarios (scenario A: the incineration subsystem + the BA landfill subsystem; scenario B: the incineration subsystem + the concrete paving brick production subsystem using BA as raw material; scenario C: the incineration subsystem + the non-burnt wall brick production subsystem using BA as raw material) were compared. The study results reveal that the ratio of positive output is 1.225, 2.861 and 1.230, the improved environmental loading ratio is 2.715, 2.742 and 1.533, and the improved environmental sustainability index is 0.451, 1.043 and 0.803 for scenario A, B and C respectively. Therefore, reuse of BA can enhance the sustainability level of this integrated system greatly. Comparatively, scenario B has the best comprehensive performance among the three scenarios. Finally, some targeted recommendations are put forward for decision-making. Copyright © 2018. Published by Elsevier Ltd.

  19. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India.

    PubMed

    Chakraborty, Shubhrasekhar; Kumar, R Naresh

    2016-06-01

    Landfill leachate generated from open MSW dumpsite can cause groundwater contamination. The impact of open dumping of MSW on the groundwater of adjacent area was studied. To assess the spatial and temporal variations in groundwater quality, samples were collected around an open MSW dumping site in Ranchi city, Jharkhand, India. Groundwater samples were analysed for various physicochemical and bacteriological parameters for 1 year. Results indicated that the groundwater is getting contaminated due to vertical and horizontal migration of landfill leachate. Extent of contamination was higher in areas closer to the landfill as indicated by high alkalinity, total dissolved solids and ammonia concentration. Metals such as lead, iron, and manganese were present at concentrations of 0.097, 0.97 and 0.36 mg/L, respectively exceeding the Bureau of Indian Standards (BIS) 10,500 for drinking water. Enterobacteriaceae were also detected in several groundwater samples and highest coliform count of 2.1×10(4) CFU/mL was recorded from a dug well. In order to determine the overall groundwater quality, water quality index (WQI) was calculated using weighted arithmetic index method and this index was further modified by coupling with the analytical hierarchy process (AHP) to get specific information. WQI values indicated that the overall groundwater quality of the region came under "poor" category while zone wise classification indicated the extent of impact of landfill leachate on groundwater.

  20. In situ distributions and characteristics of heavy metals in full-scale landfill layers.

    PubMed

    He, Pin-Jing; Xiao, Zheng; Shao, Li-Ming; Yu, Ji-Yu; Lee, Duu-Jong

    2006-10-11

    The leachate from methanogenic landfill normally contains low concentrations of heavy metals. Little samples had ever been collected from the full-scale landfill piles owing to technical difficulty for well drilling. We drilled two wells in Hangzhou Tianziling landfill, 20 m and 32 m in depth each, and collected solid samples of waste age of 1-4 years from both wells. The total amounts, the sequentially extracted amounts, and the chemical binding forms of heavy metals of the samples collected at different depths were measured. With the correlation between leachate production amount and the yearly rainfall amount, the leached ratio of the heavy metals were estimated only 0.13%, 1.8%, 0.15%, and 0.19% of Cu, Cd, Pb, and Zn, respectively. The heavy metals amounts in the main compositions of MSW, like glass, food waste, paper, coal cinders, were measured using fresh MSW samples. Afterward, the contents of heavy metals initially landfilled were estimated. A positive correlation was noted between the measured and the estimated initial contents of heavy metals, indicating that the low migration of heavy metals in landfill layers. However, among the metals investigated, Zn has shown better mobility inside landfill layers. Acid volatile sulfide (AVS) and the simultaneously extracted metals (SEM) were measured for all collected samples with optimal reaction conditions identified to yield nearly perfect sulfide recovery as follows: 100 g wet samples, 80 mL min(-1) N(2) flow rate, reaction time of 150 min. The SEM/AVS ratios ranged 25-45, indicating that the AVS was insufficient to immobilize the SEM. Sequential extraction using six-fraction scheme revealed that the sum of exchangeable and the avid soluble fractions of heavy metals follow: Zn>Cd>Cu, Ni, Pb>Cr. The insoluble fraction of heavy metals in MSW was high, for instance, over 80% for Cr and Pb high insoluble fractions of heavy metals in the landfilled MSW and the sorption capability of the methanogenic landfill layers

  1. Did municipal solid waste landfill have obvious influence on polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air: A case study in East China.

    PubMed

    Li, Jiafu; Wang, Chong; Du, Lei; Lv, Zhiwei; Li, Xiaonan; Hu, Xuepeng; Niu, Zhiguang; Zhang, Ying

    2017-04-01

    Municipal solid waste (MSW) landfill was a main way to disposal of MSW and almost 95% of MSW was disposed by landfills in the world. In order to understand the influence of MSW landfill on polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in surrounding atmosphere, 42 ambient air samples were collected and analyzed from surrounding sites, background site, upwind site and downwind site of a MSW landfill in East China. The results of present study were summarized as follows. (1) The total concentrations of PCDD/Fs (∑PCDD/Fs) in ambient air from surrounding sites, background site, upwind site and downwind site were 2.215±1.004, 2.058±0.458, 2.617±1.092 and 1.822±0.566pgNm -3 , respectively. (2) The toxic equivalent concentrations (TEQ) of PCDD/Fs in ambient air from surrounding sites, background site, upwind site and downwind site were 0.103±0.017, 0.096±0.015, 0.120±0.024 and 0.108±0.014pg I-TEQNm -3 , respectively. (3) The congener profiles, ∑PCDD/Fs and TEQ between background atmosphere and surrounding atmosphere of landfill did not show statistically significant difference. (4) The ∑PCDD/Fs and TEQ in ambient air of downwind site were not higher than that of upwind site, suggesting that studied landfill did not have obvious influence on PCDD/Fs in ambient air from downwind site. (5) The 95th percentile carcinogenic risk (CR) of PCDD/Fs in ambient air from surrounding sites, background site, upwind site and downwind site were 8.03×10 -9 , 7.57×10 -9 , 9.69×10 -9 and 8.15×10 -9 , respectively, which were much lower than the threshold value of CR (10 -6 ), suggesting that studied landfill did not influence the CR of PCDD/Fs in surrounding atmosphere and negligible cancer risk occurred. (6) The non-carcinogenic risk (non-CR) analysis indicated that landfill did not have influence on the non-CR of PCDD/Fs in surrounding atmosphere and no obvious non-carcinogenic effects developed. Copyright © 2017 Elsevier Ltd. All rights

  2. Determination of as-discarded methane potential in residential and commercial municipal solid waste.

    PubMed

    Chickering, Giles W; Krause, Max J; Townsend, Timothy G

    2018-06-01

    Methane generation potential, L 0 , is a primary parameter of the first-order decay (FOD) model used for prediction and regulation of landfill gas (LFG) generation in municipal solid waste (MSW) landfills. The current US EPA AP-42 default value for L 0 , which has been in place for almost 20 years, is 100 m 3 CH 4 /Mg MSW as-discarded. Recent research suggests the yield of landfilled waste could be less than 60 m 3 CH 4 /Mg MSW. This study aimed to measure the L 0 of present-day residential and commercial as-discarded MSW. In doing so, 39 waste collection vehicles were sorted for composition before samples of each biodegradable fraction were analyzed for methane generation potential. Methane yields were determined for over 450 samples of 14 different biodegradable MSW fractions, later to be combined with moisture content and volatile solids data to calculate L 0 values for each waste load. An average value of 80 m 3 CH 4 /Mg MSW was determined for all samples with 95% of values in the interval 74-86 m 3 CH 4 /Mg MSW as-discarded. While no statistically significant difference was observed, commercial MSW yields (mean 85, median 88 m 3 CH 4 /Mg MSW) showed a higher average L 0 than residential MSW (mean 75, median 71 m 3 CH 4 /Mg MSW). Many methane potential values for individual fractions described in previous work were found within the range of values determined by BMP in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Respiratory and general health impairments of workers employed in a municipal solid waste disposal at an open landfill site in Delhi.

    PubMed

    Ray, Manas Ranjan; Roychoudhury, Sanghita; Mukherjee, Gopeshwar; Roy, Senjuti; Lahiri, Twisha

    2005-01-01

    The objective of this study was to examine the respiratory and general health of workers employed in a municipal solid waste (MSW) disposal at an open landfill site in India. Ninety-six landfill workers of Okhla landfill site, Delhi, and 90 controls matched for age, sex, and socioeconomic conditions were enrolled. Health data was obtained from questionnaire surveys, clinical examination and laboratory investigations. Lung function was evaluated by spirometry. Compared with matched controls, landfill workers had significantly higher prevalences of both upper and lower respiratory symptoms, and they suffered more often from diarrhea, fungal infection and ulceration of the skin, burning sensation in the extremities, tingling or numbness, transient loss of memory, and depression. Spirometry revealed impairment of lung function in 62% of the landfill workers compared to 27% of the controls. Sputum cytology showed squamous metaplasia, abundance of inflammatory cells, alveolar macrophages (AM) and siderophages (macrophages with iron deposits), and high elastase enzyme activity in neutrophils and AM of a majority of landfill workers, indicating adverse cellular lung reaction. Hematological profiles of these workers depicted low hemoglobin and erythrocyte levels with high total leukocyte, eosinophil and monocyte counts. Erythrocytes with target cell morphology were abundant in 42% of the landfill workers compared to 10% of the controls. Toxic granulation in neutrophils, an indication of infection and inflammation, was recorded in 94% of the landfill workers and in 49% of the controls. The results demonstrated higher prevalence of respiratory symptoms, inflammation of the airways, lung function decrement and a wide range of general health problems in MSW disposal workers.

  4. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. Itmore » was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.« less

  5. The state of municipal solid waste management in Israel.

    PubMed

    Daskal, Shira; Ayalon, Ofira; Shechter, Mordechai

    2018-06-01

    Regulation is a key tool for implementing municipal solid waste (MSW) management strategies and plans. While local authorities in Israel are responsible for the storage, collection, and disposal of MSW, Israel's Ministry of Environmental Protection (MoEP) is responsible for the formulation and implementation of waste management policies and legislation. For the past 12 years, about 80% of the MSW in Israel has been landfilled and recycling rates have not increased, despite regulations. This paper presents the state of MSW management in Israel in light of the MoEP's strategic goal of landfilling reduction, the regulations and legislation designed and implemented for achieving this goal, and the ensuing results. Among other things, the results indicate the importance of monitoring and assessing policy and regulations to examine whether regulation is in fact effective and whether it keeps track of its own targets and goals or not. It is also concluded that even when there is an extensive regulation that includes a wide range of laws, economic penalties and financial incentives (such as landfill levy and financing of MSW separation at source arrangements), this does not guarantee proper treatment or even an improvement in waste management. The key to success is first and foremost a suitable infrastructure that will enable achievement of the desired results.

  6. Health risk impacts analysis of fugitive aromatic compounds emissions from the working face of a municipal solid waste landfill in China.

    PubMed

    Liu, Yanjun; Liu, Yanting; Li, Hao; Fu, Xindi; Guo, Hanwen; Meng, Ruihong; Lu, Wenjing; Zhao, Ming; Wang, Hongtao

    2016-12-01

    Aromatic compounds (ACs) emitted from landfills have attracted a lot of attention of the public due to their adverse impacts on the environment and human health. This study assessed the health risk impacts of the fugitive ACs emitted from the working face of a municipal solid waste (MSW) landfill in China. The emission data was acquired by long-term in-situ samplings using a modified wind tunnel system. The uncertainty of aromatic emissions is determined by means of statistics and the emission factors were thus developed. Two scenarios, i.e. 'normal-case' and 'worst-case', were presented to evaluate the potential health risk in different weather conditions. For this typical large anaerobic landfill, toluene was the dominant species owing to its highest releasing rate (3.40±3.79g·m -2 ·d -1 ). Despite being of negligible non-carcinogenic risk, the ACs might bring carcinogenic risks to human in the nearby area. Ethylbenzene was the major health threat substance. The cumulative carcinogenic risk impact area is as far as ~1.5km at downwind direction for the normal-case scenario, and even nearly 4km for the worst-case scenario. Health risks of fugitive ACs emissions from active landfills should be concerned, especially for landfills which still receiving mixed MSW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Three-Loop Automatic of Control System the Landfill of Household Solid Waste

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2017-05-01

    The analysis of models of governance ground municipal solid waste (MSW). Considered a distributed circuit (spatio-temporal) ground control model. Developed a dynamic model of multicontour control landfill. Adjustable parameters are defined (the ratio of CH4 CO2 emission/fluxes, concentrations of heavy metals ions) and control (purging array, irrigation, adding reagents). Based on laboratory studies carried out with the analysis of equity flows and procedures developed by the transferring matrix that takes into account the relationship control loops. A system of differential equations in the frequency and time domains. Given the numerical approaches solving systems of differential equations in finite differential form.

  8. European trends in greenhouse gases emissions from integrated solid waste management.

    PubMed

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  9. Towards zero waste: a case study in the City of Tshwane.

    PubMed

    Snyman, Jacques; Vorster, Kobus

    2011-05-01

    Tshwane is presently landfilling all of its municipal solid waste (MSW) with no pre-processing or minimization efforts. This is a result of the available capacity of its existing landfills, thought to be able to satisfy the city's needs for, at most, the next 10 years. It is possible that the authorities will not wake up to the problem before it is too late. This study addresses these challenges. This study first identified and evaluated technologies available in developed countries for processing the various components of the MSW stream, appropriate to local conditions, as an alternative to landfilling, to ensure that these components will be either reused, recycled or rendered harmless to the environment before disposal. Then most appropriate technologies for Tshwane were selected and assembled into an optimal configuration to achieve a zero waste situation in Tshwane within a decade or two. This represents a significant change in MSW management in Tshwane, from total landfill to zero waste to landfill. Although the study focused on Tshwane, it can be argued that the findings can be implemented in any other South African municipality, and even implemented in other emerging countries.

  10. Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes.

    PubMed

    Brandstätter, Christian; Laner, David; Fellner, Johann

    2015-09-01

    Nitrogen emissions from municipal solid waste (MSW) landfills occur primarily via leachate, where they pose a long-term pollution problem in the form of ammonium. In-situ aeration was proposed as a remediation measure to mitigate nitrogenous landfill emissions, turning the anaerobic environment to anoxic and subsequently aerobic. As in-depth studies of the nitrogen cycle during landfill aeration had been largely missing, it was the aim of this work to establish a detailed nitrogen balance for aerobic and anaerobic degradation of landfilled MSW based on lab-scale experiments, and also investigating the effect of different water regimes on nitrogen transformation during aeration. Six landfill simulation reactors were operated in duplicate under different conditions: aerated wet (with water addition and recirculation), aerated dry (without water addition) and anaerobic (wet). The results showed that more than 78 % of the initial total nitrogen (TNinit) remained in the solids in all set ups, with the highest nitrogen losses achieved with water addition during aeration. In this case, gaseous nitrogen losses (as N2 due to denitrification) amounted up to 16.6 % of TNinit and around 4 % of TNinit was discharged via leachate. The aerated dry set-up showed lower denitrification rates (2.6-8.8 % of TNinit was released as N2), but was associated with the highest N2O emissions (3.8-3.9 % of TNinit). For the anaerobic treatment the main pathway of nitrogen discharge was the leachate, where NH4 accounted for around 8 % of TNinit. These findings provide the basis for improved management strategies to enhance nitrogen removal during in-situ aeration of old landfills.

  11. Analysis of physical composition and heavy metals pollution of municipal solid waste (MSW) in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, H. B.; Zhang, H. Y.; Wang, G. Q.; Bai, X. J.

    2018-03-01

    By using on-site sampling and physical-chemical analysis, the physical composition and the contents of heavy metals in Beijing MSW were researched. The result showed that the main components of MSW in Beijing are mainly kitchen waste, the average content of kitchen waste are more than 60% and 50% in summer and in winter, respectively. The pollution of Cu, Hg and Cr are all more serious for MSW in Haidian and Dongcheng district. The heavy metal pollution of MSW in summer is higher than that in winter in Beijing. Seasonal impacts should be taken into consideration when dealing with MSW. The content of heavy metals in MSW exceeded the background value of soil in Haidian and Dongcheng districts. In order to reduce heavy metal pollution, the MSW should be separated collection and treated.

  12. Washing of waste prior to landfilling.

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Occurrence, characteristics and leakage of polybrominated diphenyl ethers in leachate from municipal solid waste landfills in China.

    PubMed

    Li, Ying; Li, Jinhui; Deng, Chao

    2014-01-01

    Raw leachate samples were collected from various municipal solid waste (MSW) landfills in a densely populated city in North China to measure the levels and compositional patterns of polybrominated diphenyl ethers (PBDEs) in leachate. The total concentration of PBDEs ranged from 4.0 to 351.2 ng/L, with an average of 73.0 ng/L. BDE-209 dominated the congeners in most of the samples, followed by BDE-47 and -99. Higher PBDEs concentrations were found in leachate from younger landfill facilities in the urban area. Pearson correlation analysis implied a potential dependence of the PBDEs level on landfill age, suspended solids and dissolved organic carbon, while the results of principal component analysis (PCA) suggested potential origins and transportation of PBDEs in leachate. The Monte Carlo method was adopted to estimate the annual leakage of PBDEs into the underground environment nationwide, based on two main scenarios: simple landfills with inadequate liner systems and composite-lined landfills with defective geomembranes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Enhanced leachate recirculation and stabilization in a pilot landfill bioreactor in Taiwan.

    PubMed

    Huang, Fu-Shih; Hung, Jui-Min; Lu, Chih-Jen

    2012-08-01

    This study focused on the treatment of municipal solid waste (MSW) by modification and recirculation of leachate from a simulated landfill bioreactor. Hydrogen peroxide was added to recirculated leachate to maintain a constant oxygen concentration as the leachate passed again through the simulated landfill bioreactor. The results showed that leachate recirculation increased the dissolved oxygen concentration in the test landfill bioreactor. Over a period of 405 days, the biochemical oxygen demand (BOD(5)) in the collected leachate reduced by 99.7%, whereas the chemical oxygen demand (COD) reduced by 96%. The BOD(5)/COD ratio at the initial stage of 0.9 improved to 0.09 under aerobic conditions (leachate recirculation with added hydrogen peroxide) compared with the anaerobic test cell 0.11 (leachate recirculation alone without hydrogen peroxide). The pH increased from 5.5 to 7.6, and the degradation rate of organic carbon was 93%. Leachate recirculation brings about the biodegradation of MSW comparatively faster than the conventional landfill operation. The addition of a constant concentration of hydrogen peroxide was found to further increase the biodegradation. This increased biodegradation rate ultimately enables an MSW landfill to reach a stable state sooner and free up the land for further reuse.

  15. Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment

    PubMed Central

    Gworek, Barbara; Dmuchowski, Wojciech; Gozdowski, Dariusz; Koda, Eugeniusz; Osiecka, Renata; Borzyszkowski, Jan

    2015-01-01

    The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19–271 μg kg-1, 0.36–3.01 μg l-1, 19–66 μg kg-1 and 8–29 μg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment. PMID:26176607

  16. Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment.

    PubMed

    Gworek, Barbara; Dmuchowski, Wojciech; Gozdowski, Dariusz; Koda, Eugeniusz; Osiecka, Renata; Borzyszkowski, Jan

    2015-01-01

    The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19-271 μg kg-1, 0.36-3.01 μg l-1, 19-66 μg kg-1 and 8-29 μg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment.

  17. Performance and completion assessment of an in-situ aerated municipal solid waste landfill - Final scientific documentation of an Austrian case study.

    PubMed

    Hrad, Marlies; Huber-Humer, Marion

    2017-05-01

    By converting anaerobic landfills into a biologically stabilized state through accelerating aerobic organic matter degradation, the effort and duration necessary for post-closure procedures can be shortened. In Austria, the first full-scale application of in-situ landfill aeration by means of low pressure air injection with simultaneous off-gas collection and treatment was implemented on an old MSW-landfill and operated between 2007 and 2013. Besides complementary laboratory investigations, which included waste sampling from the landfill site prior to aeration start, a comprehensive field monitoring program was conducted to assess the influence of the aeration measure on the emission behavior of the landfilled waste during the aeration period as well as after aeration completion. Although the initial waste material was described as rather stable, the lab-scale aeration tests indicated a significant improvement of the leachate quality and even the biological solid waste stability. However, the aeration success was less pronounced for the application at the landfill site, mainly due to technical limitations in the full-scale operation. In this paper main performance data of the field investigation are compared to four other scientifically documented case studies along with stability indicators for solid waste and leachate characteristics in order to evaluate the success of aeration as well as the progress of a landfill towards completion and end of post-closure care. A number of quantitative benchmarks and relevant context information for the performance assessment of the five hitherto conducted international aeration projects are proposed aiming to support the systematization and harmonization of available results from diverse field studies and full-scale applications in future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...

  19. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...

  20. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...

  1. Determination of specific gravity of municipal solid waste.

    PubMed

    Yesiller, Nazli; Hanson, James L; Cox, Jason T; Noce, Danielle E

    2014-05-01

    This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100-350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states

  2. Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: Centrifuge and numerical modeling approach.

    PubMed

    Shu, Shi; Zhu, Wei; Wang, Shengwei; Ng, Charles Wang Wai; Chen, Yunmin; Chiu, Abraham Chung Fai

    2018-01-15

    Groundwater pollution by leachate leakage is one of the most common environmental hazards associated with municipal solid waste (MSW) landfill sites. However, landfill leachate contains a large variety of pollutants with widely different concentrations and biotoxicity. Thus, selecting leachate pollutant indicators and levels for identifying breakthrough of barrier systems are key factors in assessing their breakthrough times. This study investigated the transport behavior of leachate pollutants through landfill barrier systems using centrifuge tests and numerical modeling. The overall objective of this study is to investigate breakthrough mechanism to facilitate the establishment of a consistent pollutant threshold concentration for use as a groundwater pollution alert. The specific objective of the study is to identify which pollutant and breakthrough threshold concentration should be used as an indicator in the transport of multiple pollutants through a landfill barrier system. The threshold concentration from the Chinese groundwater quality standards was used in the analysis of the properties of leachates from many landfill sites in China. The time for the chemical oxygen demand (COD) to reach the breakthrough threshold concentration at the bottom of a 2m compacted clay liner was 1.51years according to centrifuge tests, and 1.81years according to numerical modeling. The COD breakthrough times for single and double composite liners were within the range of 16 and 36.58years. Of all the pollutants, COD was found to consistently reach the breakthrough threshold first. Therefore, COD can be selected as the key indicator for pollution alerts and used to assess the environmental risk posed by MSW landfill sites. Copyright © 2017. Published by Elsevier B.V.

  3. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants.

    PubMed

    Gioannis, G De; Muntoni, A; Cappai, G; Milia, S

    2009-03-01

    Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy.

  4. CFD modeling of hydro-biochemical behavior of MSW subjected to leachate recirculation.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Li, An-Zheng; Chen, Hong-Xin; Zheng, Qi-Teng

    2018-02-01

    The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W /H T  = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S /H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m 3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10 -6  kg/m 3 /s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.

  5. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    PubMed

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  6. Trends in sustainable landfilling in Malaysia, a developing country.

    PubMed

    Fauziah, S H; Agamuthu, P

    2012-07-01

    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.

  7. Chromium behavior during thermal treatment of MSW fly ash.

    PubMed

    Kirk, Donald W; Chan, Chris C Y; Marsh, Hilary

    2002-02-14

    Energy-from-waste incineration has been promoted as an environmentally responsible method for handling non-recyclable waste from households. Despite the benefits of energy production, elimination of organic residues and reduction of volume of waste to be landfilled, there is concern about fly ash disposal. Fly ash from an incinerator contains toxic species such as Pb, Zn, Cd and Cr which may leach into soil and ground water if landfilled. Thermal treatment of the fly ash from municipal solid waste has been tested and proposed as a treatment option for removal of metal species such as Pb, Cd and Zn, via thermal re-volatilization. However, Cr is an element that remains in the residue of the heat treated fly ash and appears to become more soluble. This Cr solubilization is of concern if it exceeds the regulatory limit for hazardous waste. Hence, this unexpected behavior of Cr was investigated. The initial work involved microscopic characterization of Cr in untreated and thermally-treated MSW fly ash. This was followed by determining leaching characteristics using standard protocol leaching tests and characterization leaching methods (sequential extraction). Finally, a mechanism explaining the increased solubilization was proposed and tested by reactions of synthetic chemicals.

  8. Modern technology for landfill waste placement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.L.

    1995-12-31

    The City of Albany, New York, together with the principals of Landfill Service Corporation, proposed in November 1991 to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double composite lined Interim Landfill located at Rapp Road in the City of Albany. This is a small facility, only 12 acres in area, which is immediately adjacent to residential neighbors. Significant advancements have been made for the control of environmental factors (odors, vectors, litter) while successfully achieving waste stabilization and air space conservations goals. Also, the procedure consumes a significant quantity of landfill leachate. The benefits ofmore » this practice include a dramatic improvement in the orderlines of waste placement with significant reduction of windblown dust and litter. The biostabilization process also reduces the presence of typical landfill vectors such as flies, crows, seagulls and rodents. All of these factors can pose serious problems for nearby residents to the City of Albany`s Interim landfill site. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of postclosure conditions and reduction or elimination of remedial costs attendant to post closure gross differential settlement. Recent research in Europe indicates that aerobic pretreatment of waste also reduces contaminant loading of leachate.« less

  9. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... stakeholder input regarding the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...

  10. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production.

    PubMed

    Frank, R R; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2016-09-01

    The effect of leachate recirculation with cellulase augmentation on municipal solid waste (MSW) biostabilisation and landfill gas production was investigated using batch bioreactors to determine the optimal conditions of moisture content, temperature and nutrients. Experimentation was thereafter scaled-up in 7L bioreactors. Three conditions were tested including (1) leachate recirculation only, (2) leachate recirculation with enzyme augmentation and (3) no leachate recirculation (control). Cumulative biogas production of the batch tests indicated that there was little difference between the leachate and control test conditions, producing on average 0.043m(3)biogaskg(-1) waste. However the addition of cellulase at 15×10(6)Utonne(-1) waste doubled the biogas production (0.074m(3)biogaskg(-1) waste). Similar trend was observed with the bioreactors. Cellulase addition also resulted in the highest COD reduction in both the waste and the leachate samples (47% and 42% COD reduction, respectively). In both cases, the quantity of biogas produced was closer to the lower value of theoretical and data-based biogas prediction indicators (0.05-0.4m(3)biogaskg(-1) waste). This was likely due to a high concentration of heavy metals present in the leachate, in particular Cr and Mn, which are known to be toxic to methanogens. The cost-benefit analysis (CBA) based on the settings of the study (cellulase concentration of 15×10(6)Utonne(-1) waste) showed that leachate bioaugmentation using cellulase is economically viable, with a net benefit of approximately €12.1million on a 5Mt mixed waste landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL...-eligible wastes in permitted hazardous waste landfills. (a) The Regional Administrator with regulatory... hazardous waste landfills not located at the site from which the waste originated, without the wastes...

  12. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill.

    PubMed

    Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas

    2016-09-01

    The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Food waste disposal units in UK households: the need for policy intervention.

    PubMed

    Iacovidou, Eleni; Ohandja, Dieudonne-Guy; Voulvoulis, Nikolaos

    2012-04-15

    The EU Landfill Directive requires Member States to reduce the amount of biodegradable waste disposed of to landfill. This has been a key driver for the establishment of new waste management options, particularly in the UK, which in the past relied heavily on landfill for the disposal of municipal solid waste (MSW). MSW in the UK is managed by Local Authorities, some of which in a less conventional way have been encouraging the installation and use of household food waste disposal units (FWDs) as an option to divert food waste from landfill. This study aimed to evaluate the additional burden to water industry operations in the UK associated with this option, compared with the benefits and related savings from the subsequent reductions in MSW collection and disposal. A simple economic analysis was undertaken for different FWD uptake scenarios, using the Anglian Region as a case study. Results demonstrated that the significant savings from waste collection arising from a large-scale uptake of FWDs would outweigh the costs associated with the impacts to the water industry. However, in the case of a low uptake, such savings would not be enough to cover the increased costs associated with the wastewater provision. As a result, this study highlights the need for policy intervention in terms of regulating the use of FWDs, either promoting them as an alternative to landfill to increase savings from waste management, or banning them as a threat to wastewater operations to reduce potential costs to the water industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. An equivalent-time-lines model for municipal solid waste based on its compression characteristics.

    PubMed

    Gao, Wu; Bian, Xuecheng; Xu, Wenjie; Chen, Yunmin

    2017-10-01

    Municipal solid waste (MSW) demonstrates a noticeable time-dependent stress-strain behavior, which contributes greatly to the settlement of landfills and therefore influences both the storage capacity of landfills and the integrity of internal structures. The long-term compression tests for MSW under different biodegradation conditions were analyzed. It showed that the primary compression can affect the secondary compression due to the biodegradation and mechanical creep. Based on the time-lines model for clays and the compression characteristics of MSW, relationships between MSW's viscous strain rate and equivalent time were established, and then the viscous strain functions of MSW under different biodegradation conditions were deduced, and an equivalent-time-lines model for MSW settlement for two biodegradation conditions was developed, including the Type I model for the enhanced biodegradation condition and the Type II model for the normal biodegradation condition. The simulated compression results of laboratory and field compression tests under different biodegradation conditions were consistent with the measured data, which showed the reliability of both types of the equivalent-time-lines model for MSW. In addition, investigations of the long-term settlement of landfills from the literature indicated that the Type I model is suitable for predicting settlement in MSW landfills with a distinct biodegradation progress of MSW, a high content of organics in MSW, a short fill age or under an enhanced biodegradation environment; while the Type II model is good at predicting settlement in MSW landfills with a distinct progress of mechanical creep compression, a low content of organics in MSW, a long fill age or under a normal biodegradation condition. Furthermore, relationships between model parameters and the fill age of landfills were summarized. Finally, the similarities and differences between the equivalent-time-lines model for MSW and the stress

  15. Leachate generation from landfill in a semi-arid climate: A qualitative and quantitative study from Sousse, Tunisia.

    PubMed

    Frikha, Youssef; Fellner, Johann; Zairi, Moncef

    2017-09-01

    Despite initiatives for enhanced recycling and waste utilization, landfill still represents the dominant disposal path for municipal solid waste (MSW). The environmental impacts of landfills depend on several factors, including waste composition, technical barriers, landfill operation and climatic conditions. A profound evaluation of all factors and their impact is necessary in order to evaluate the environmental hazards emanating from landfills. The present paper investigates a sanitary landfill located in a semi-arid climate (Tunisia) and highlights major differences in quantitative and qualitative leachate characteristics compared to landfills situated in moderate climates. Besides the qualitative analysis of leachate samples, a quantitative analysis including the simulation of leachate generation (using the HELP model) has been conducted. The results of the analysis indicate a high load of salts (Cl, Na, inorganic nitrogen) in the leachate compared to other landfills. Furthermore the simulations with HELP model highlight that a major part of the leachate generated originates form the water content of waste.

  16. Mathematical modeling of heavy metals contamination from MSW landfill site in Khon Kaen, Thailand.

    PubMed

    Tantemsapya, N; Naksakul, Y; Wirojanagud, W

    2011-01-01

    Kham Bon landfill site is one of many municipality waste disposal sites in Thailand which are in an unsanitary condition. The site has been receiving municipality wastes without separating hazardous waste since 1968. Heavy metals including, Pb, Cr and Cd are found in soil and groundwater around the site, posing a health risk to people living nearby. In this research, contamination transport modelling of Pb, Cr and Cd was simulated using MODFLOW for two periods, at the present (2010) and 20 years prediction (2030). Model results showed that heavy metals, especially Pb and Cr migrated toward the north-eastern and south-eastern direction. The 20 years prediction showed that, heavy metals tend to move from the top soil to the deeper aquifer. The migration would not exceed 500 m radius from the landfill centre in the next 20 years, which is considered to be a slow process. From the simulation model, it is recommended that a mitigation measure should be performed to reduce the risk from landfill contamination. Hazardous waste should be separated for proper management. Groundwater contamination in the aquifer should be closely monitored. Consumption of groundwater in a 500 m radius must be avoided. In addition, rehabilitation of the landfill site should be undertaken to prevent further mobilization of pollutants.

  17. Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream.

    PubMed

    Tian, Bao-Guo; Si, Ji-Tao; Zhao, Yan; Wang, Hong-Tao; Hao, Ji-Ming

    2007-01-01

    This paper deals with the procedure and methodology which can be used to select the optimal treatment and disposal technology of municipal solid waste (MSW), and to provide practical and effective technical support to policy-making, on the basis of study on solid waste management status and development trend in China and abroad. Focusing on various treatment and disposal technologies and processes of MSW, this study established a Monte-Carlo mathematical model of cost minimization for MSW handling subjected to environmental constraints. A new method of element stream (such as C, H, O, N, S) analysis in combination with economic stream analysis of MSW was developed. By following the streams of different treatment processes consisting of various techniques from generation, separation, transfer, transport, treatment, recycling and disposal of the wastes, the element constitution as well as its economic distribution in terms of possibility functions was identified. Every technique step was evaluated economically. The Mont-Carlo method was then conducted for model calibration. Sensitivity analysis was also carried out to identify the most sensitive factors. Model calibration indicated that landfill with power generation of landfill gas was economically the optimal technology at the present stage under the condition of more than 58% of C, H, O, N, S going to landfill. Whether or not to generate electricity was the most sensitive factor. If landfilling cost increases, MSW separation treatment was recommended by screening first followed with incinerating partially and composting partially with residue landfilling. The possibility of incineration model selection as the optimal technology was affected by the city scale. For big cities and metropolitans with large MSW generation, possibility for constructing large-scale incineration facilities increases, whereas, for middle and small cities, the effectiveness of incinerating waste decreases.

  18. State of municipal solid waste management in Delhi, the capital of India.

    PubMed

    Talyan, Vikash; Dahiya, R P; Sreekrishnan, T R

    2008-01-01

    Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000tonnes/day of MSW, which is projected to rise to 17,000-25,000tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW is collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system.

  19. State of municipal solid waste management in Delhi, the capital of India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talyan, Vikash; Dahiya, R.P.; Sreekrishnan, T.R.

    2008-07-01

    Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000 tonnes/day of MSW, which is projected to rise to 17,000-25,000 tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW ismore » collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system.« less

  20. Measuring organic carbon, nutrients and heavy metals in rivers receiving leachate from controlled and uncontrolled municipal solid waste (MSW) landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, N.; Department of Biology, Faculty of Science and Technology, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak; Haraguchi, A.

    2009-10-15

    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact ofmore » leachate from an active uncontrolled landfill was the highest, as the organic content, NH{sub 4}{sup +}-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH{sub 4}{sup +}-N, NO{sub 3}{sup -}-N and NO{sub 2}{sup -}-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.« less

  1. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate.

    PubMed

    Øygard, Joar Karsten; Måge, Amund; Gjengedal, Elin

    2004-07-01

    A worst-case simulation of the mass-balance for metals in the waste deposited during 1 year and the levels of cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr) and iron (Fe) in the leachate was calculated for four sanitary landfills in Western Norway. Estimates of the levels of metal content in mixed municipal solid waste (MSW) were found by using recent literature values calculated in a mass-balance study at a Norwegian waste incinerator plant. Leachate from the landfills were sampled and analyzed monthly during 1 year, and from these measurements the total annual discharge of the selected metals through the leachate was determined. The levels of the measured heavy metals in the leachate were low. For Cd less than 0.06%, for Pb less than 0.01% and for Hg less than 0.02% of the estimated year's deposited mass of metals were leached from the landfills during the year of investigation. The high retention of these metals are most likely due to sulfide precipitation, but also due to the immobile condition of the metals in their original deposited solid state (plastics, ceramics, etc.). The percentage of Cr leached was relatively higher, but less than 1.0% per year. The mass balance of Fe suggests that this element is more mobile under the prevailing conditions. The percentage of Fe leached varied and was estimated to be between 1.9% and 18%. The present study clearly supports the theory that MSW only to a small extent will lead to discharge of metals if deposited at well-constructed sanitary landfills with top layers.

  2. Constant load and constant volume response of municipal solid waste in simple shear.

    PubMed

    Zekkos, Dimitrios; Fei, Xunchang

    2017-05-01

    Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Best Management Practices to Prevent and Control Hydrogen Sulfide and Reduced Sulfur Compound Emissions at Landfills That Dispose of Gypsum Drywall

    EPA Science Inventory

    Hydrogen sulfide (H2S) gas can be emitted from both construction and demolition (C&D) debris and municipal solid waste (MSW) landfills. H2S emissions may be problematic at a landfill as they can cause odor, impact surrounding communities, cause wear or dama...

  4. Research on leachate recirculation from different types of landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi; Matsufuji, Yasushi; Dong Lu

    2006-07-01

    Landfills can produce a great amount of leachate containing highly concentrated organic matter. This is especially true for the initial leachate from landfilled municipal solid wastes (MSW) that generally has concentrations of COD{sub Cr} and BOD{sub 5} up to 80,000 and 50,000 mg/L, respectively. The leachate could be disposed by means of recirculating technique, which decomposes the organics through the action of proliferating microorganisms and thereby purifies the leachate, and simultaneously accelerates organic decomposition through water saturation control. Data from experimental results indicated that leachate recirculating could reduce the organic concentration considerably, with a maximum reduction rate of COD{sub Cr}more » over 95%; and, using a semi-aerobic process, NH{sub 3}-N concentration of treated leachate could be under 10 mg/L. In addition, the organic concentration in MSW decreased greatly.« less

  5. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.

    PubMed

    Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua

    2017-11-01

    In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6  t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3  t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.

  6. Development of numerical model for predicting heat generation and temperatures in MSW landfills.

    PubMed

    Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A

    2013-10-01

    A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates.

    PubMed

    Trulli, Ettore; Ferronato, Navarro; Torretta, Vincenzo; Piscitelli, Massimiliano; Masi, Salvatore; Mancini, Ignazio

    2018-01-01

    Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO 2  h -1  kg -1 VS , and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Spatially distributed potential of landfill biogas production and electric power generation in Brazil.

    PubMed

    Lima, Rodolfo M; Santos, Afonso H M; Pereira, Camilo R S; Flauzino, Bárbara K; Pereira, Ana Cristina O S; Nogueira, Fábio J H; Valverde, José Alfredo R

    2018-04-01

    Due to the relatively low investment, operation costs, and technical requirements, landfills are still the most widespread alternative for final disposal of municipal solid waste (MSW). The biogas produced in the landfill, a renewable energy source, may be an important alternative for electric power generation. Brazil has a significant number of operating landfills, which receive the most part of the collected MSW. However, the country has only 17 landfill biogas power plants (LBPPs), resulting in about 122 MW of capacity. The United Kingdom, for instance, which is about 3 times smaller than Brazil in population, has 442 LBPPs (corresponding to 1051 MW of capacity). This fact highlights a considerable unexplored potential of landfill biogas in Brazil. It is also important to estimate this potential throughout the country to provide information for the government, researchers and companies in decision making, planning and formulation of public policies regarding this use of landfill biogas. Therefore, this study aims at estimating the spatially distributed potential of landfill biogas production that can be used for electric power generation in Brazil from 2015 to 2045, considering two scenarios: (i) operating sanitary landfills and (ii) hypothetical scenario of Territorial Arrangements (TA) comprising every Brazilian city, considering one landfill per TA. The total installed capacity estimated in 2018 for scenario 1 is about 523 MW and 87% of this number are related to LBPPs bigger than 1 MW. In this same year, the total installed capacity estimated for scenario 2 is 768 MW and 95% of this number are related to LBPPs bigger than 1 MW. These results emphasize that Brazil has a considerable unexplored potential of landfill biogas and the importance of municipal consortiums for MSW management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Resource recovery from municipal solid waste by mechanical heat treatment: An opportunity

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Ibrahim, Nurazim; Zawawi, Mohd Hafiz

    2017-04-01

    Municipal solid waste (MSW) stream in Malaysia consists of 50 to 60 % of food wastes. In general, food wastes are commingled in nature and very difficult to be managed in sustainable manner due to high moisture content. Consequently, by dumping food wastes together with inert wastes to the landfill as final disposal destination incurs large space area and reducing the lifespan of landfill. Therefore, certain fraction of the MSW as such; food wastes (FW) can be diverted from total disposal at the landfill that can improve landfill lifespan and environmental conservation. This study aims to determine the resource characteristics of FW extracted from USM cafeteria by means of mechanical heat treatment in the presence of autoclaving technology. Sampling of FW were conducted by collecting FW samples from disposal storage at designated area within USM campus. FW characteristics was performed prior and autoclaving process. The results have demonstrated that bones fraction was the highest followed by vegetable and rice with 39, 27 and 10%, respectively. Meanwhile, based on autoclaving technique, moisture content of the FW (fresh waste) were able to be reduced ranging from 65-85% to 59-69% (treated waste). Meanwhile, chemical characteristics of treated FW results in pH, TOC, TKN, C/N ratio, TP, and TK 5.12, 27,6%, 1.6%, 17.3%, 0.9% and 0.36%. The results revealed that autoclaving technology is a promising approach for MSW diversion that can be transformed into useful byproducts such as fertilizer, RDF and recyclable items.

  10. Municipal Solid Waste Composition Study of Selected Area in Gambang, Pahang

    NASA Astrophysics Data System (ADS)

    Mokhtar, Nadiah; Ishak, Wan Faizal Wan; Suraya Romali, Noor; Fatimah Che Osmi, Siti; Armi Abu Samah, Mohd

    2013-06-01

    The amount of municipal solid waste (MSW) generated continue to increase in response to rapid growth in population, change in life style and accelerated urbanization and industrialization process. The study on MSW is important in order to determine the composition further seeks an immediate remedy to minimize the waste generated at the early stage. As most of the MSW goes to the landfill or dumping sites, particularly in Malaysia, closure of filled-up landfill may become an alarm clock for an immediate action of proper solid waste management. This research aims to determine the waste composition generated from selected residential area at Gambang, Kuantan, Pahang which represent Old residential area (ORA), Intermediate residential area (IRA) and New residential area (NRA). The study was conducted by segregating and weighing solid waste in the residential area into 6 main components ie., food waste, paper, plastic, glass, metal and others. In a period of four weeks, samples from the residential unit were taken and analyzed. The MSW generation rates were recorded vary from 0.217 to 0.388 kg person-1day-1. Food waste has become the major solid waste component generated daily which mounted up to 50%. From this research, the result revealed that the recyclable composition of waste generated by residents have a potential to be reuse, recycle and reduce at the point sources.

  11. Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills.

    PubMed

    Ko, Jae Hac; Ma, Zeyu; Jin, Xiao; Xu, Qiyong

    2016-12-01

    Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD 5 ) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD 5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day). In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.

  12. 77 FR 42493 - Proposed Consent Decree Relating to the New Source Performance Standards for Municipal Solid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Performance Standards for Municipal Solid Waste Landfills AGENCY: Environmental Protection Agency (EPA... solid waste landfills (``MSW Landfills''). The Act requires EPA to review, and if appropriate, revise...'') for municipal solid waste landfills (``MSW Landfills''), 40 CFR part 60, subpart WWW (40 CFR 60.750...

  13. 40 CFR 98.340 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.340 Definition of the source category. (a) This source category applies to municipal solid waste (MSW) landfills that accepted... of the following sources at municipal solid waste (MSW) landfills: Landfills, landfill gas collection...

  14. Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.

    PubMed

    Babel, Sandhya; Vilaysouk, Xaysackda

    2016-01-01

    Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. © The Author(s) 2015.

  15. Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India.

    PubMed

    Ramaiah, B J; Ramana, G V; Datta, Manoj

    2017-10-01

    The article presents the physical and mechanical properties of the emplaced municipal solid waste (MSW) recovered from different locations of the Ghazipur and Okhla dumps both located at Delhi, India. Mechanical compressibility and shear strength of the collected MSW were evaluated using a 300×300mm direct shear (DS) shear box. Compression ratio (C c ') of MSW at these two dumps varied between 0.11 and 0.17 and is falling on the lower bound of the range (0.1-0.5) of the data reported in the literature for MSW. Low C c ' of MSW is attributed to the relatively low percentages of compressible elements such as textiles, plastics and paper, coupled with relatively high percentages of inert materials such as soil-like and gravel sized fractions. Shear strength of MSW tested is observed to be displacement dependent. The mobilized shear strength parameters i.e., the apparent cohesion intercept (c') and friction angle (ϕ') of MSW at these two dumps are best characterized by c'=13kPa and ϕ'=23° at 25mm displacement and c'=17kPa and ϕ'=34° at 55mm displacement and are in the range reported for MSW in the literature. A large database on the shear strength of MSW from 18 countries that includes: the experimental data from 277 large-scale DS tests (in-situ and laboratory) and the data from back analysis of 11 failed landfill slopes is statistically analyzed. Based on the analysis, a simple linear shear strength envelope, characterized by c'=17kPa and ϕ'=32°, is proposed for MSW for preliminary use in the absence of site-specific data for stability evaluation of the solid waste landfill under drained conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.

    PubMed

    Jeswani, H K; Azapagic, A

    2016-04-01

    Even though landfilling of waste is the least favourable option in the waste management hierarchy, the majority of municipal solid waste (MSW) in many countries is still landfilled. This represents waste of valuable resources and could lead to higher environmental impacts compared to energy recovered by incineration, even if the landfill gas is recovered. Using life cycle assessment (LCA) as a tool, this paper aims to find out which of the following two options for MSW disposal is more environmentally sustainable: incineration or recovery of biogas from landfills, each producing either electricity or co-generating heat and electricity. The systems are compared on a life cycle basis for two functional units: 'disposal of 1 tonne of MSW' and 'generation of 1 kWh of electricity'. The results indicate that, if both systems are credited for their respective recovered energy and recyclable materials, energy from incineration has much lower impacts than from landfill biogas across all impact categories, except for human toxicity. The impacts of incineration co-generating heat and electricity are negative for nine out of 11 categories as the avoided impacts for the recovered energy and materials are higher than those caused by incineration. By improving the recovery rate of biogas, some impacts of landfilling, such as global warming, depletion of fossil resources, acidification and photochemical smog, would be significantly reduced. However, most impacts of the landfill gas would still be higher than the impacts of incineration, except for global warming and human toxicity. The analysis on the basis of net electricity produced shows that the LCA impacts of electricity from incineration are several times lower in comparison to the impacts of electricity from landfill biogas. Electricity from incineration has significantly lower global warming and several other impacts than electricity from coal and oil but has higher impacts than electricity from natural gas or UK grid. At

  17. Evaluation of Heavy Metal Exposure to Soil and Paddy Plant around the Closed Municipal Solid Waste Landfill: Case Study at Gunung Tugel Landfill, Banyumas-Central Java

    NASA Astrophysics Data System (ADS)

    Kasam; Rahmawati, Suphia; Mulya Iresha, Fajri; Wacano, Dhandhun; Farida Fauziah, Ida; Afif Amrullah, Muhammad

    2018-01-01

    This work was focused on assessing the exposure of heavy metal from closed municipal solid waste (MSW) landfill on soil and paddy plants. This study aimed to determine heavy metal content whether at the soil in the around Gunung Tugel landfill included and accumulated in the paddy plant tissues. The investigated metals include chromium (Cr), copper (Cu), cadmium (Cd), iron (Fe), and zinc (Zn). The samples were acid-digested before the desired elements were measured using Atomic Absorption Spectrophotometry (AAS). The results are presented as distribution map of the landfill area based on the total heavy metals content distribution in the soil and paddy plants. The samples shown that the concentrations of heavy metals around Gunung Tugel landfill are 6.27-34.71 mg/kg, 0.17-0.42 mg/kg, 28.29-48.69 mg/kg, 18,997.26-32,572.29 mg/kg, 342.74-834.49 mg/kg, 136.10-290.14 mg/kg at the top soil and 0.00-1.70 mg/kg, 0.00-0.26 mg/kg, 0.79-10.46 mg/kg, 13.88-61.46 mg/kg, 18.79-50.56 mg/kg, 87.27-273.22 mg/kg at the paddy for Cr, Cd, Cu, Fe, Mn, and Zn respectively. According to the results, The Gunung Tugel landfill is not a direct source of heavy metal pollution at paddy plant in the landfill area, but through surface water and soil media. Rainfall around landfill is quite high ie more 2000 mm/year of rainfall and soil permeability is 1.0 cm/sec.

  18. Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

    2006-08-29

    A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed duringmore » the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate

  19. MICROBIAL AND BIOCHEMICAL CHARACTERISTICS OF FRESHLY LANDFILLED WASTE: COMPARISONS TO LANDFILLED WASTES OF DIFFERENT AGES

    EPA Science Inventory

    A cooperative research and development agreement was initiated between U.S. EPA and Waste Management Inc. for a multi-year study of landfill bioreactors at the Outer Loop Landfill in Louisville, KY. As part of the agreement a research project is underway to study the microbiolog...

  20. Emissions from the Bena Landfill

    NASA Astrophysics Data System (ADS)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  1. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  2. Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill.

    PubMed

    Melnyk, A; Dettlaff, A; Kuklińska, K; Namieśnik, J; Wolska, L

    2015-10-15

    Due to a continuous demand of land for infrastructural and residential development there is a public concern about the condition of surface soil near municipal solid waste landfills. A total of 12 surface (0-20 cm) soil samples from a territory near a landfill were collected and the concentration of 16 PAHs and 7 PCB congeners were investigated in these samples. Limits of detection were in the range of 0.038-1.2 μg/kg for PAHs and 0.025-0.041 μg/kg for PCBs. The total concentration of ∑ PAHs ranged from 892 to 3514 μg/kg with a mean of 1974 μg/kg. The total concentration of ∑ PCBs ranged from 2.5 to 12 μg/kg with a mean of 4.5 μg/kg. Data analyses allowed to state that the PAHs in surface soils near a landfill were principally from pyrogenic sources. Due to air transport, PAHs forming at the landfill are transported outside the landfill. PCB origin is not connected with the landfill. Aroclor 1242 can be the source of PCBs in several samples. Copyright © 2015. Published by Elsevier B.V.

  3. Review of past research and proposed action plan for landfill gas-to-energy applications in India.

    PubMed

    Siddiqui, Faisal Zia; Zaidi, Sadaf; Pandey, Suneel; Khan, Mohd Emran

    2013-01-01

    Open dumps employed for disposal of municipal solid waste (MSW) are generally referred to as landfills and have been traditionally used as the ultimate disposal method in India. The deposition of MSW in open dumps eventually leads to uncontrolled emission of landfill gas (LFG). This article reviews the MSW disposal practices and LFG emissions from landfills in India during the period 1994 to 2011. The worldwide trend of feasibility of LFG to energy recovery projects and recent studies in India indicate a changed perception of landfills as a source of energy. However, facilitating the implementation of LFG to energy involves a number of challenges in terms of technology, developing a standardized framework and availability of financial incentives. The legislative framework for promotion of LFG to energy projects in India has been reviewed and a comprehensive strategy and action plan for gainful LFG recovery is suggested. It is concluded that the market for LFG to energy projects is not mature in India. There are no on-ground case studies to demonstrate the feasibility of LFG to energy applications. Future research therefore should aim at LFG emission modeling studies at regional level and based on the results, pilot studies may be conducted for the potential sites in the country to establish LFG to energy recovery potential from these landfills.

  4. Flow analysis of metals in a municipal solid waste management system.

    PubMed

    Jung, C H; Matsuto, T; Tanaka, N

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.

  5. Flow analysis of metals in a municipal solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-07-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria formore » landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.« less

  6. A study of tritium in municipal solid waste leachate and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutch Jr, R. D.; Manhattan College, Riverdale, NY; Columbia Univ., New York, NY

    2008-07-15

    It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPAmore » MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)« less

  7. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    NASA Astrophysics Data System (ADS)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  8. A novel risk assessment method for landfill slope failure: Case study application for Bhalswa Dumpsite, India.

    PubMed

    Jahanfar, Ali; Amirmojahedi, Mohsen; Gharabaghi, Bahram; Dubey, Brajesh; McBean, Edward; Kumar, Dinesh

    2017-03-01

    Rapid population growth of major urban centres in many developing countries has created massive landfills with extraordinary heights and steep side-slopes, which are frequently surrounded by illegal low-income residential settlements developed too close to landfills. These extraordinary landfills are facing high risks of catastrophic failure with potentially large numbers of fatalities. This study presents a novel method for risk assessment of landfill slope failure, using probabilistic analysis of potential failure scenarios and associated fatalities. The conceptual framework of the method includes selecting appropriate statistical distributions for the municipal solid waste (MSW) material shear strength and rheological properties for potential failure scenario analysis. The MSW material properties for a given scenario is then used to analyse the probability of slope failure and the resulting run-out length to calculate the potential risk of fatalities. In comparison with existing methods, which are solely based on the probability of slope failure, this method provides a more accurate estimate of the risk of fatalities associated with a given landfill slope failure. The application of the new risk assessment method is demonstrated with a case study for a landfill located within a heavily populated area of New Delhi, India.

  9. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills.

    PubMed

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-06-01

    Methane (CH₄) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required categories. In general, the single-phase model, LandGEM, significantly overestimated CH₄generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH₄potential (BMP) and CH₄generation rate constant (k-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH₄generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only the total disposed waste amount, but also various waste categories. By using laboratory-determined BMPs and k-values for shredder, sludge, mixed bulky waste, and street-cleaning waste, the Afvalzorg model was revised. The revised model estimated smaller cumulative CH₄generation results at the four Danish landfills (from the start of disposal until 2020 and until 2100). Through a CH₄mass balance approach, fugitive CH₄emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field measurements, indicating that the revised Afvalzorg model could provide practical and accurate estimation for Danish LFG emissions. This study is valuable for both researchers and engineers aiming to predict, control, and mitigate fugitive CH₄emissions from landfills receiving low-organic waste. Landfill operators use the first-order decay (FOD) models to estimate methane (CH₄) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in

  10. Effect of nano-ZnO on biogas generation from simulated landfills.

    PubMed

    Temizel, İlknur; Emadian, S Mehdi; Di Addario, Martina; Onay, Turgut T; Demirel, Burak; Copty, Nadim K; Karanfil, Tanju

    2017-05-01

    Extensive use of nanomaterials in commercial consumer products and industrial applications eventually leads to their release to the waste streams and the environment. Nano-ZnO is one of the most widely-used nanomaterials (NMs) due to its unique properties. It is also known to impact biological processes adversely. In this study, the effect of nano-ZnO on biogas generation from sanitary landfills was investigated. Two conventional and two bioreactor landfills were operated using real MSW samples at mesophilic temperature (35°C) for a period of about 1year. 100mg nano-ZnO/kg of dry waste was added to the simulated landfill reactors. Daily gas production, gas composition and leachate Zn concentrations were regularly monitored. A model describing the fate of the nano-ZnO was also developed. The results obtained indicated that as much as 99% of the nano-ZnO was retained within the waste matrix for both reactor operation modes. Waste stabilization was faster in simulated landfill bioreactors with and without the addition of nano-ZnO. Moreover, the presence of the nano-ZnO within the waste led to a decrease in biogas production of about 15%, suggesting that the nano-ZnO might have some inhibitory effects on waste stabilization. This reduction can have potentially significant implications on waste stabilization and the use of biogas from landfills as a renewable energy source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment.

    PubMed

    Morello, Luca; Raga, Roberto; Sgarbossa, Paolo; Rosson, Egle; Cossu, Raffaello

    2018-05-01

    The storage capacity and the potentially residual emissions of a stabilized waste coming from a landfill simulation experiment were evaluated. The evolution in time of the potential emissions and the mobility of some selected elements or compounds were determined, comparing the results of the stabilized waste samples with the values detected in the related fresh waste samples. Analyses were conducted for the total bulk waste and also for each identified category (under-sieve, kitchen residues, green and wooden materials, plastics, cellulosic material and textiles) to highlight the contribution of the different waste fractions in the total emission potential. The waste characterization was performed through analyses on solids and on leaching test eluates; the chemical speciation of carbon, nitrogen, chlorine and sulfur together with the partitioning of heavy metals through a SCE procedure were carried out. Results showed that the under-sieve is the most environmentally relevant fraction, hosting a consistent part of mobile compounds in fresh waste (40.7% of carbon, 44.0% of nitrogen, 47.6% of chloride and 40.0% of sulfur) and the greater part of potentially residual emissions in stabilized waste (88.4% of carbon, 90.9% of nitrogen, 98.4% of chloride and 91.1% of sulfur). Landfilled Municipal Solid Waste (MSW) proved to be an effective sink, finally storing more than 55% of carbon, 53% of nitrogen, 33% of sulfur and 90% of heavy metals (HM) which were initially present in fresh waste samples. A general decrease in leachable fractions from fresh to stabilized waste was observed for each category. Tests showed that solid waste is not a good sink for chlorine, whose residual non-mobile fraction amounts to 12.3% only. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.

    PubMed

    Cheng, Hefa; Hu, Yuanan

    2010-06-01

    With rapid economic growth and massive urbanization, China faces the problem of municipal solid waste (MSW) disposal and the pressing need for development of alternative energy. Waste-to-energy (WTE) incineration, which recovers energy from discarded MSW and produces electricity and/or steam for heating, is recognized as a renewable source of energy and is playing an increasingly important role in MSW management in China. This article provides an overview of the WTE industry, discusses the major challenges in expanding WTE incineration in China, namely, high capital and operational costs, equipment corrosion, air pollutant emissions, and fly ash disposal. A perspective on MSW as a renewable energy source in China is also presented. Currently, only approximately 13% of MSW generated in China is disposed in WTE facilities. With the significant benefits of environmental quality, the reduction of greenhouse gas (GHG) emissions, and government policies and financial incentives as a renewable energy source, WTE incineration industry is expected to experience significant growth in the coming decade and make greater contribution to supplying renewable energy in China. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh.

    PubMed

    Islam, K M Nazmul

    2017-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H 2 and H 5 emitted net GHGs -152.20kg CO 2 eq. and -140.32kg CO 2 eq., respectively, in comparison with 420.88kg CO 2 eq. of scenario H 1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  15. Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  16. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  17. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    PubMed

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management.

  18. ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANGEMENT OPTIONS

    EPA Science Inventory

    Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. These management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. In choosing the best possible manageme...

  19. ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANAGEMENT OPTIONS

    EPA Science Inventory

    Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. hese management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. n choosing the best possible management...

  20. Municipal solid waste in Brazil: A review.

    PubMed

    Alfaia, Raquel Greice de Souza Marotta; Costa, Alyne Moraes; Campos, Juacyara Carbonelli

    2017-12-01

    The production of municipal solid waste (MSW) represents one of the greatest challenges currently faced by waste managers all around the world. In Brazil, the situation with regard to solid waste management is still deficient in many aspects. In 2015, only 58.7% of the MSW collected in Brazilian cities received appropriate final disposal. It was only as late as 2010 that Brazil established the National Policy on Solid Waste (NPSW) based on the legislation and programmes established in the 1970s in more developed countries. However, the situation with regard to MSW management has changed little since the implementation of the NPSW. Recent data show that, in Brazil, disposal in sanitary landfills is practically the only management approach to MSW. Contrary to expectations, despite the economic recession in 2015 the total annual amount of MSW generated nationwide increased by 1.7%, while in the same period the Brazilian population grew by 0.8% and economic activity decreased by 3.8%. The article describes the panorama with regard to MSW in Brazil from generation to final disposal and discusses the issues related to the delay in implementing the NPSW. The collection of recyclable material, the recycling process, the application of reverse logistics and the determination of the gravimetric composition of MSW in Brazil are also addressed in this article. Finally, a brief comparison is made between MSW management in Brazil and in other countries, the barriers to developing effective waste disposal systems are discussed and some recommendations for future MSW management development in Brazil are given.

  1. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    PubMed

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.

  2. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    PubMed

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  3. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sri Shalini, S., E-mail: srishalini10@gmail.com; Joseph, Kurian, E-mail: kuttiani@gmail.com

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it containsmore » high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.« less

  4. Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste.

    PubMed

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2015-02-01

    Duplicate carefully-characterized municipal solid waste (MSW) specimens were reconstituted with waste constituents obtained from a MSW landfill and biodegraded in large-scale landfill simulators for about a year. Repeatability and relationships between changes in physical, chemical, and microbial characteristics taking place during the biodegradation process were evaluated. Parameters such as rate of change of soluble chemical oxygen demand in the leachate (rsCOD), rate of methane generation (rCH4), rate of specimen volume reduction (rVt), DNA concentration in the leachate, and archaeal community structures in the leachate and solid waste were monitored during operation. The DNA concentration in the leachate was correlated to rCH4 and rVt. The rCH4 was related to rsCOD and rVt when waste biodegradation was intensive. The structures of archaeal communities in the leachate and solid waste of both simulators were very similar and Methanobacteriaceae were the dominant archaeal family throughout the testing period. Monitoring the chemical and microbial characteristics of the leachate was informative of the biodegradation process and volume reduction in the simulators, suggesting that leachate monitoring could be informative of the extent of biodegradation in a full-scale landfill. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Utilization of biocatalysts in cellulose waste minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, J.; Evans, B.R.

    1996-09-01

    Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually,more » approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.« less

  6. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...

  7. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  8. Geospatial strategy for sustainable management of municipal solid waste for growing urban environment.

    PubMed

    Pandey, Prem Chandra; Sharma, Laxmi Kant; Nathawat, Mahendra Singh

    2012-04-01

    This paper presents the implementation of a Geospatial approach for improving the Municipal Solid Waste (MSW) disposal suitability site assessment in growing urban environment. The increasing trend of population growth and the absolute amounts of waste disposed of worldwide have increased substantially reflecting changes in consumption patterns, consequently worldwide. MSW is now a bigger problem than ever. Despite an increase in alternative techniques for disposing of waste, land-filling remains the primary means. In this context, the pressures and requirements placed on decision makers dealing with land-filling by government and society have increased, as they now have to make decisions taking into considerations environmental safety and economic practicality. The waste disposed by the municipal corporation in the Bhagalpur City (India) is thought to be different from the landfill waste where clearly scientific criterion for locating suitable disposal sites does not seem to exist. The location of disposal sites of Bhagalpur City represents the unconsciousness about the environmental and public health hazards arising from disposing of waste in improper location. Concerning about urban environment and health aspects of people, a good method of waste management and appropriate technologies needed for urban area of Bhagalpur city to improve this trend using Multi Criteria Geographical Information System and Remote Sensing for selection of suitable disposal sites. The purpose of GIS was to perform process to part restricted to highly suitable land followed by using chosen criteria. GIS modeling with overlay operation has been used to find the suitability site for MSW.

  9. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    PubMed

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Future landfill emissions and the effect of final cover installation--a case study.

    PubMed

    Laner, David; Fellner, Johann; Brunner, Paul H

    2011-07-01

    Municipal solid waste (MSW) landfills are potential long-term sources of emissions. Hence, they need to be managed after closure until they do not pose a threat to humans or the environment. The case study on the Breitenau MSW landfill was performed to evaluate future emission levels for this site and to illustrate the effect of final cover installation with respect to long-term environmental risks. The methodology was based on a comprehensive assessment of the state of the landfill and included analysis of monitoring data, investigations of landfilled waste, and an evaluation of containment systems. A model to estimate future emission levels was established and site-specific predictions of leachate emissions were presented based on scenario analysis. The results are used to evaluate the future pollution potential of the landfill and to compare different aftercare concepts in view of long-term emissions. As some leachable substances became available for water flow during cover construction due to a change in the water flow pattern of the waste, a substantial increase in leachate concentrations could be observed at the site (e.g. concentrations of chloride increased from 200 to 800 mg/l and of ammonia-nitrogen from 140 to about 500 mg/l). A period of intensive flushing before the final cover installation could have reduced the amount of leachable substances within the landfill body and rapidly decreased the leachate concentrations to 11 mg Cl/l and 79 mg NH(4)-N/l within 50 years. Contrarily, the minimization of water infiltration is associated with leachate concentrations in a high range for centuries (above 400 mg Cl/l and 200 mg NH(4)-N/l) with low concomitant annual emission loads (below 12 kg/year of Cl or 9 kg/year of NH(4)-N, respectively). However, an expected gradual decrease of barrier efficiency over time would be associated with higher emission loads of 50 kg of chloride and 30 kg of ammonia-nitrogen at the maximum, but a faster decrease of leachate

  11. Landfilling of waste: accounting of greenhouse gases and global warming contributions.

    PubMed

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas H; Scharff, Heijo

    2009-11-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO(2)-eq. tonne( -1) for the open dump, 300 kg CO(2)-eq. tonne( -1) for conventional landfilling of mixed waste and 70 kg CO(2)-eq. tonne(-1) for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO(2)-eq. tonne(-1). On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about -70 to 30 kg CO(2)-eq. tonne(- 1), obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO(2)-eq. tonne( -1). This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling.

  12. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haker, C.D.; Rix, G.J.; Lai, C.G.

    The seismic stability of municipal solid waste (MSW) landfills is often a significant consideration in landfill design. However, until recently, the dynamic properties of the waste material itself, which govern the seismic response of MSW landfills, have often been approximated or assumed. Tests to determine the dynamic properties of the material directly have been limited. Measurements of seismic surface waves were used to determine the dynamic properties of MSW, which are the initial tangent shear modulus and low-strain hysteretic damping ratio. Surface wave tests were performed at three MSW landfills to determine their shear modulus and damping ratio profiles. Surfacemore » wave tests are ideal for measuring the near-surface shear modulus and damping profiles of MSW landfills because the tests are non-invasive, an advantage for testing environmentally sensitive waste material. Factors which influence the dynamic properties of waste including density, confinement, age, and placement techniques are used to interpret the measured shear modulus and damping ratio profiles.« less

  14. Exploring social and infrastructural factors affecting open burning of municipal solid waste (MSW) in Indian cities: A comparative case study of three neighborhoods of Delhi.

    PubMed

    Ramaswami, Anu; Baidwan, Navneet Kaur; Nagpure, Ajay Singh

    2016-11-01

    Open municipal solid waste (MSW)-burning is a major source of particulate matter emissions in developing world cities. Despite a legal ban, MSW-burning is observed ubiquitously in Indian cities with little being known about the factors shaping it. This study seeks to uncover social and infrastructural factors that affect MSW-burning at the neighborhood level. We couple physical assessments of the infrastructure provision and the MSW-burning incidences in three different neighborhoods of varying socio-economic status in Delhi, with an accompanying study of the social actors (interviews of waste handlers and households) to explore the extent to which, and potential reasons why, MSW-burning occurs. The observed differences in MSW-burning incidences range from 130 km -2  day -1 in low-income to 30 km -2  day -1 in the high-income areas. However, two high-income areas neighborhoods with functional infrastructure service also showed statistical differences in MSW-burning incidences. Our interviews revealed that, while the waste handlers were aware of the health risks associated with MSW-burning, it was not a high priority in the context of the other difficulties they faced. The awareness of the legal ban on MSW-burning was low among both waste handlers and households. In addition to providing infrastructure for waste pickup, informal restrictions from residents and neighborhood associations can play a significant role in restricting MSW-burning at the neighborhood scale. A more efficient management of MSW requires a combined effort that involves interplay of both social and infrastructural systems. © The Author(s) 2016.

  15. Thermo-Catalytic Reforming of municipal solid waste.

    PubMed

    Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas

    2017-10-01

    Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H 2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content <7wt.% and water content <4wt.%. Due to the bio-oil's chemical and physical properties, the bio-oil was found to be directly miscible with fossil diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H 2 content of 36vol% and HHV of 17.23MJ/Nm 3 , and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H 2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. LIFE-CYCLE EVALUATION OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL SOLID WASTE MANAGEMENT IN THE UNITED STATES

    EPA Science Inventory

    The paper discusses a life-cycle evaluation of greenhouse gas (GHG) emissions from municipal soild waste (MSW) management in the U.S. (NOTE: Using integrated waste management, recycling/composting, waste-to-energy, and better control of landfill gas, communities across the U.S. a...

  17. Gas generation at a municipal waste combustor ash monofill -- Franklin, New Hampshire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musselman, C.N.; Straub, W.A.; Bidwell, J.N.

    1997-12-31

    The characterization of landfill gas generated at municipal solid waste landfills has received significant attention in recent years. Generation of landfill gas at municipal waste combustor ash monofills is generally assumed to be negligible and there is little, if any, published information available concerning the characteristics of gas generated at ash monofills. The lined residue landfill in Franklin, New Hampshire, USA has been accepting combined ash (bottom ash, fly ash, scrubber product from direct dry lime injection) from a 500 ton per day mass burn waste to energy facility in Concord, NH from 1989 through the present. In March, 1996,more » landfill operators noticed gaseous emissions from cleanout lines connected to the landfill`s primary leachate collection system beneath the landfilled residue. The landfill staff tested these emissions with a hand-held LEL meter, which tripped alarms for low O{sub 2} and explosiveness. Subsequently, a comprehensive program was completed to sample and analyze the gaseous emissions. Temperatures within the landfill mass were unexpectedly found to be as high as 156 F, higher than typical in an MSW landfill, presumably due to exothermic chemical reactions within the residue. Methane concentrations were found to be very low, and oxygen was present, although at depressed concentrations. Methanogenic bacterial activity does not appear to play a major role in gas generation in a residue landfill. Hydrogen gas was measured at significant concentrations. The hydrogen gas is postulated to be generated by reactions of elemental aluminum within the landfilled residue. These hydrogen generating aluminum reactions may be accelerated at elevated pH levels resulting from the presence of dry lime scrubber product. Volatile organic compounds were present in concentrations at the low end of concentrations generally reported for MSW landfills.« less

  18. SOLID WASTE OPTIONS FOR MUNICIPAL PLANNERS - VERSION 3.1 - A SOFTWARE TOOL FOR PRELIMINARY PLANNING - USER DOCUMENTATION

    EPA Science Inventory

    Municipalities face many challenges in managing nonhazardous solid waste. For instance, landfills are reaching capacity throughout the country, tipping fees are increasing, and regulations affecting the disposal and recycling of municipal solid waste (MSW) are being promulgated ...

  19. Options for management of municipal solid waste in New York City: A preliminary comparison of health risks and policy implications

    PubMed Central

    Moy, Pearl; Krishnan, Nikhil; Ulloa, Priscilla; Cohen, Steven; Brandt-Rauf, Paul W.

    2008-01-01

    Landfill disposal and waste-to-energy (WTE) incineration remain the two principal options for managing municipal solid waste (MSW). One critical determinant of the acceptability of these options is the different health risks associated with each. In this analysis relying on published data and exposure modeling, we have performed health risk assessments for landfill disposal versus WTE treatment options for the management of New York City’s MSW. These are based on the realistic scenario of using a waste transfer station (WTS) in Brooklyn and then transporting the untreated MSW by truck to a landfill in Pennsylvania or using a WTE facility in Brooklyn and then transporting the resultant ash by truck to a landfill in Pennsylvania. The overall results indicate that the individual cancer risks for both options would be considered generally acceptable, although the risk from landfilling is approximately 5 times greater than from WTE treatment; the individual non-cancer health risks for both options would be considered generally unacceptable, although once again the risk from landfilling is approximately 5 times greater than from WTE treatment. If one considers only the population in Brooklyn that would be directly affected by the siting of either a WTS or a WTE facility in their immediate neighborhood, individual cancer and non-cancer health risks for both options would be considered generally acceptable, but risks for the former remain considerably higher than for the latter. These results should be considered preliminary due to several limitations of this study such as: consideration of risks only from inhalation exposures; assumption that only volume and not composition of the waste stream is altered by WTE treatment; reliance on data from the literature rather than actual measurements of the sites considered, assuming comparability of the sites. However, the results of studies such as this, in conjunction with ecological, socioeconomic and equity considerations

  20. Ecotoxicological impact of MSW landfills: assessment of teratogenic effects by means of an adapted FETAX assay.

    PubMed

    de Lapuente, J; González-Linares, J; Pique, E; Borràs, M

    2014-01-01

    The introduction of chemical products into the environment can cause long-term effects on the ecosystems. Increasing efforts are being made to determine the extent of contamination in particularly affected areas using diverse methods to assess the ecotoxicological impact. We used a modified Frog Embrio Toxicity Assay-Xenopus method to determine the extent of toxicological load in different sample soils obtained near three municipal solid waste landfills in Catalonia (Spain). The results show that the Garraf landfill facility produces more embryotoxic damage to the surroundings, than the others ones: Can Mata landfill and Montferrer-Castellbó landfill. The aim of this work is to demonstrate how different management of complex sources of contamination as the controlled dumping sites can modulate the presence of toxics in the environment and their effects and through this, help determine the safer way to treat these wastes. To this effect some conceptual modifications have been made on the established American Society for Testing and Materials protocol. The validity of the new model, both as to model of calculation as to protocol, has been demonstrated in three different sites with complex sources of contamination.

  1. Municipal solid waste characterization and its assessment for potential methane generation: a case study.

    PubMed

    Mor, Suman; Ravindra, Khaiwal; De Visscher, Alex; Dahiya, R P; Chandra, A

    2006-12-01

    There has been a significant increase in municipal solid waste (MSW) generation in India during the last few decades and its management has become a major issue because the poor waste management practices affect the health and amenity of the cities. In the present study, various physico-chemical parameters of the MSW were analyzed to characterize the waste dumped at Gazipur landfill site in Delhi, India, which shows that it contains a high fraction of degradable organic components. The decomposition of organic components produces methane, a significant contributor to global warming. Based on the waste composition, waste age and the total amount dumped, a first-order decay model (FOD) was applied to estimate the methane generation potential of the Gazipur landfill site, which yields an estimate of 15.3 Gg/year. This value accounts to about 1-3% of existing Indian landfill methane emission estimates. Based on the investigation of Gazipur landfill, we estimate Indian landfill methane emissions at 1.25 Tg/year or 1.68 Tg/year of methane generation potential. These values are within the range of existing estimates. A comparison of FOD with a recently proposed triangular model was also performed and it shows that both models can be used for the estimation of methane generation. However, the decrease of the emission after closure is more gradual in the case of the first-order model, leading to larger gas production predictions after more than 10 years of closure. The regional and global implications of national landfill methane emission are also discussed.

  2. Interaction between municipal solid waste leachate and Bauru aquifer system: a study case in Brazil.

    PubMed

    de Faria, Gabriel Messias Moura; Mondelli, Giulliana

    2017-12-01

    Leachate contamination is a chronic and urgent problem present in municipal solid waste (MSW) landfill. Geochemical mathematical models in this work was suitable to study the dynamics of the leachate from an MSW landfill located in the Midwest of Sao Paulo, Brazil, a region with high precipitation and temperature and rich in chalcophile compounds and lithophile compounds, despite contamination with nitrogenous compounds. After 13 years of local aquifer monitoring, some groundwater samplings in Feb. 2004, Aug. 2007, Nov. 2009, and Feb. 2014 were chosen to be simulated. The hydrolysis is the main process at the landfill, together with absorption, adsorption, complexation, dilution, cation exchange, and oxidation, besides nitrification, reoxidation, and reduction.

  3. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  4. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.

    PubMed

    Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain

    2017-03-01

    Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.

  5. Case study comparison of functional vs. organic stability approaches for assessing threat potential at closed landfills in the USA.

    PubMed

    O'Donnell, Sean T; Caldwell, Michael D; Barlaz, Morton A; Morris, Jeremy W F

    2018-05-01

    Municipal solid waste (MSW) landfills in the USA are regulated under Subtitle D of the Resource Conservation and Recovery Act (RCRA), which includes the requirement to protect human health and the environment (HHE) during the post-closure care (PCC) period. Several approaches have been published for assessment of potential threats to HHE. These approaches can be broadly divided into organic stabilization, which establishes an inert waste mass as the ultimate objective, and functional stability, which considers long-term emissions in the context of minimizing threats to HHE in the absence of active controls. The objective of this research was to conduct a case study evaluation of a closed MSW landfill using long-term data on landfill gas (LFG) production, leachate quality, site geology, and solids decomposition. Evaluations based on both functional and organic stability criteria were compared. The results showed that longer periods of LFG and leachate management would be required using organic stability criteria relative to an approach based on functional stability. These findings highlight the somewhat arbitrary and overly stringent nature of assigning universal stability criteria without due consideration of the landfill's hydrogeologic setting and potential environmental receptors. This supports previous studies that advocated for transition to a passive or inactive control stage based on a performance-based functional stability framework as a defensible mechanism for optimizing and ending regulatory PCC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  7. Biodegradability of leachates from Chinese and German municipal solid waste*

    PubMed Central

    Selic, E.; Wang, Chi; Boes, N.; Herbell, J.D.

    2007-01-01

    The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600 000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water. PMID:17173357

  8. Biodegradability of leachates from Chinese and German municipal solid waste.

    PubMed

    Selic, E; Wang, Chi; Boes, N; Herbell, J D

    2007-01-01

    The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600 000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water.

  9. Study on detecting leachate leakage of municipal solid waste landfill site.

    PubMed

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. © The Author(s) 2015.

  10. Change in MSW characteristics under recent management strategies in Taiwan.

    PubMed

    Chang, Yu-Min; Liu, Chien-Chung; Hung, Chao-Yang; Hu, Allen; Chen, Shiao-Shing

    2008-12-01

    Reduction and recycling initiatives such as producer responsibility and pay-as-you-throw are being implemented in Taiwan. This paper presents a study assessing the impact of recently implemented municipal solid waste (MSW) reduction and recycling management strategies on the characteristics of waste feedstock for incineration in Taiwan. Through the periodic sampling of two typical MSW incineration plants, proximate and ultimate analyses were conducted according to standard methods to explore the influence of MSW reduction and recycling management strategies on incineration feed waste characteristics. It was observed that the annual amount of MSW generated in 2005 decreased by about 10% compared to 2003 and that the characteristics of MSW have changed significantly due to recent management strategies. The heating value of the MSW generated in Taiwan increased yearly by about 5% after program implementation. A comparison of the monthly variations in chemical concentrations indicated that the chlorine content in MSW has changed. This change results from usage reduction of PVC plastic due to the recycling fund management (RFM) program, and the food waste as well as salt content reduction due to the total recycling for kitchen garbage program. This achievement will improve the reduction of dioxin emissions from MSW incineration. In summary, management strategies must be conducted in tandem with the global trend to achieve a zero-waste-discharge country. When implementing these strategies and planning for future MSW management systems, it is important to consider the changes that may occur in the composition and characteristics of MSW over time.

  11. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  12. The impact of municipal solid waste management on greenhouse gas emissions in the United States.

    PubMed

    Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria

    2002-09-01

    Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.

  13. How the availability of free satellite data can improve the observation of critical infrastructures: a proposed application to landfills for municipal solid wastes

    NASA Astrophysics Data System (ADS)

    Scozzari, Andrea; Masetti, Giulio; Raco, Brunella; Battaglini, Raffaele

    2017-04-01

    Landfills for Municipal Solid Wastes (MSW) produce about 20% of the total anthropogenic methane released to the atmosphere. As a consequence, these infrastructures require a systematic and efficient monitoring. Various techniques have been proposed until now for the estimation of biogas production and its release, by using more or less direct measurements, mostly characterised by a low or completely absent invasivity. During the last 13 years, observational data about a MSW disposal site located in Tuscany (Italy) have been collected on a regular basis, consisting in direct measurements of gas flux with the accumulation chamber method, combined with infrared radiometry performed in situ with portable radiometers. The availability of free Landsat imagery and the more recent availability of ASTER data (freely available since April 2016) open new monitoring possibilities, in addition to the in situ measurements described above. In particular, we present the preliminary results of a study about the usability of low resolution thermal infrared scenes to build timeseries describing the overall status of a waste disposal site. This work discusses the possibility to complement in situ measurements with satellite observations, taking benefit from the high revisit time with respect to the timings of in situ campaigns.

  14. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  15. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  16. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards for municipal solid waste... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  17. Removal of non-biodegradable organic matter from landfill leachates by adsorption.

    PubMed

    Rodríguez, J; Castrillón, L; Marañón, E; Sastre, H; Fernández, E

    2004-01-01

    Leachates produced at the La Zoreda landfill in Asturias, Spain, were recirculated through a simulated landfill pilot plant. Prior to recirculation, three loads of different amounts of Municipal Solid Waste (MSW) were added to the plant, forming in this way consecutive layers. When anaerobic digestion was almost completed, the leachates from the landfill were recirculated. After recirculation, a new load of MSW was added and two new recirculations were carried out. The organic load of the three landfill leachates recirculated through the anaerobic pilot plant decreased from initial values of 5108, 3782 and 2560 mg/l to values of between 1500 and 1600 mg/l. Despite achieving reductions in the organic load of the leachate, a residual organic load still remained that was composed of non-biodegradable organic constituents such as humic substances. Similar values of the chemical oxygen demand (COD) were obtained when the landfill leachate was treated by a pressurised anoxic-aerobic process followed by ultrafiltration. After recirculation through the pilot plant, physico-chemical treatment was carried out to reduce the COD of the leachate. The pH of the leachate was decreased to a value of 1.5 to precipitate the humic fraction, obtaining a reduction in COD of about 13.5%. The supernatant liquid was treated with activated carbon and different resins, XAD-8, XAD-4 and IR-120. Activated carbon presented the highest adsorption capacities, obtaining COD values for the treated leachate in the order of 200mg/l. Similar results were obtained when treating with activated carbon, the leachate from the biological treatment plant at the La Zoreda landfill; in this case without decreasing the pH.

  18. Biodiesel production potential from fat fraction of municipal waste in Makkah

    PubMed Central

    2017-01-01

    In the Kingdom of Saudi Arabia (KSA), millions of Muslims come to perform Pilgrimage every year. Around one million ton of municipal solid waste (MSW) is generated in Makkah city annually. The collected MSW is disposed of in the landfills without any treatment or energy recovery. As a result, greenhouse gas (GHG) emissions and contamination of the soil and water bodies along with leachate and odors are occurring in waste disposal vicinities. The composition of MSW shows that food waste is the largest waste stream (up to 51%) of the total generated MSW. About 13% of the food waste consists of fat content that is equivalent to about 64 thousand tons per year. This study aims to estimate the production potential of biodiesel first time in Makkah city from fat/oil fractions of MSW and highlight its economic and environmental benefits. It has been estimated that 62.53, 117.15 and 6.38 thousand tons of biodiesel, meat and bone meal (MBM) and glycerol respectively could be produced in 2014. A total electricity potential of 852 Gigawatt hour (GWh) from all three sources based on their energy contents, Higher Heating Value (HHV) of 40.17, 18.33 and 19 MJ/kg, was estimated for 2014 that will increase up to 1777 GWh in 2050. The cumulative net savings from landfill waste diversion (256 to 533 million Saudi Riyal (SAR)), carbon credits (46 to 96 million SAR), fuel savings (146 to 303 million SAR) and electricity generation (273 to 569 million SAR) have a potential to add a total net revenue of 611 to 1274 million SAR every year to the Saudi economy, from 2014 to 2050 respectively. However, further studies including real-time data about annual slaughtering activities and the amount of waste generation and its management are critical to decide optimum waste management practices based on life cycle assessment (LCA) and life cycle costing (LCC) methodologies. PMID:28207856

  19. Fluorescence evolution of leachates during treatment processes from two contrasting landfills.

    PubMed

    Sun, W L; Liu, T T; Cui, F; Ni, J R

    2008-10-01

    Landfill leachates are composed of a complex mixture of organic matter, including a wide range of potentially fluorescent organic compounds. The fluorescence excitation-emission matrix (FEEM) of leachates during treatment processes is investigated. Particular attention is paid to the fluorescence evolution of leachates during treatment processes. Two typical types of landfill, landfill A (a direct municipal solid waste (MSW) landfill) and landfill B (disposal of bottom ashes from MSW incinerators), in a city in Southern China were selected. The results show that two characteristic and intense excitation-emission peaks located at Ex/Em = 310-330 nm/395-410 nm (peak alpha) and Ex/Em = 250-260 nm/450-460 nm (peak alpha') are observed. As the aromatic chemicals, capable of emitting fluorescence, are more recalcitrant to biodegradation than aliphatic chemicals, enhancement of the dissolved organic carbon normalized fluorescence intensities is demonstrated during treatment processes of leachate A and leachate B. This is confirmed by the variation of ultraviolet absorptivity of leachates at 254 nm. Peak alpha' and peak alpha are attributed to a mixture of xenobiotic organic compounds with low molecular weight and relatively stable aromatic fulvic-like matters with high molecular weight, respectively. Humic substances are more resistant to biodegradation than xenobiotic organic compounds, so a significant reduction in the Ialpha'/Ialpha values (fluorescence intensity ratios of peak alpha' and peak a) of leachate A was observed during treatment processes. However, no evident variation for the Ialpha/Ialpha values of leachate B was found during treatment processes owing to the low concentrations of xenobiotic organic compounds in leachate B after incineration.

  20. Municipal solid waste landfills harbor distinct microbiomes

    USGS Publications Warehouse

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  1. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    PubMed Central

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  2. SUSTAINABLE MSW MANAGEMENT STRATEGIES IN THE UNITED STATES

    EPA Science Inventory

    Under increasing pressure to minimize potential environmental burdens and costs for municipal solid waste (MSW) management, state and local governments often must modify programs and adopt more efficient integrated MSW management strategies that reflect dynamic shifts in MSW mana...

  3. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge.

  4. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills.

    PubMed

    Gibbons, Robert D; Morris, Jeremy W F; Prucha, Christopher P; Caldwell, Michael D; Staley, Bryan F

    2014-09-01

    Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates "gateway" indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.

    PubMed

    Hupponen, M; Grönman, K; Horttanainen, M

    2015-08-01

    The ongoing trend in the public sector is to make more sustainable procurements by taking into account the impacts throughout the entire life cycle of the procurement. Despite the trend, the only deciding factor can still be the total costs. This article answers the question of how greenhouse gas (GHG) emissions should be taken into account in municipal solid waste (MSW) management when selecting an incineration plant for source separated mixed MSW. The aim is to guide the decision making of MSW management towards more environmentally friendly procurements. The study was carried out by calculating the global warming potentials (GWPs) and costs of mixed MSW management by using the waste composition from a case area in Finland. Scenarios of landfilling and combustion in three actual waste incineration plants were used to recognise the main processes that affect the results. GWP results show that the combustion of mixed MSW is a better alternative than landfilling the waste. The GHG results from combustion are greatly affected by emissions from the combustion and substituted energy production. The significance of collection and transportation is higher from the costs' perspective than from the point of view of GHG emissions. The main costs, in addition to collection and transportation costs, result from the energy utilization or landfilling of mixed MSW. When tenders are invited for the incineration location of mixed MSW, the main focus should be: What are the annual electricity and heat recovery efficiencies and which are the substituted fuels in the area? In addition, in the case of a fluidized bed combustor it is crucial to know the combusted share of mixed MSW after preparing solid recovered fuel (SRF) and the treatment of rejects. The environmental criteria for the waste incineration plant procurements should be made in order to obtain clear instructions for the procurement units. The results can also be utilized more widely. The substituted fuels in the area and

  6. EVALUATION OF MUNICIPAL SOLID WASTE LANDFILL COVER DESIGNS

    EPA Science Inventory

    The HELP (Hydrologic Evaluation of Landfill Performance) Model was used to evaluate the hydrologic behavior of a series of one-, two-, and three-layer cover designs for municipal solid waste landfill cover designs were chosen to isolate the effects of features such as surface veg...

  7. Comparative evaluation of leachate pollution index of MSW landfill site of Kolkata with other metropolitan cities of India.

    PubMed

    Motling, Sanjay; Dutta, Amit; Mukherjee, S N; Kumar, Sunil

    2013-07-01

    The uncontrolled tipping of mixed urban solid waste in landfill site causes serious negative impacts on the environment. The major issue in this context is the generation of leachate which possesses potential of polluting freshwater ecosystem including groundwater besides associated health hazards and depletion of soil fertility. In this context, a pseudo computation quantitative tool, known as leachate pollution index (LPI), has been developed by some researchers for scaling pollution potential of landfill site owing to emergence of leachate. This paper. deals with the assessment of leachate quality of existing landfill site of Kolkata situated at Dhapa waste dumping ground through evaluation of the LPI from experimental analysis of leachate. The leachate was collected from this site in different seasons. 18 parameters were tested with real leachate samples in the Environmental Engineering Laboratory of Civil Engineering Department of Jadavpur University Kolkata. The results exhibited a very high value of organic pollutants in the leachate with COD as 21,129 mg/L and also values of TDS, Fe2+, Cr, Zn, chloride and ammonical nitrogen. The LPI value of Kolkata landfill site at Dhapa was estimated and also compared with leachate quality data of other metropolitan cities viz. Mumbai, Delhi, Chennai as available in literatures. It is found that LPI of the Kolkata landfill site is highest compared to all other landfill sites of other metropolitan cities in India.

  8. Projecting the environmental profile of Singapore's landfill activities: Comparisons of present and future scenarios based on LCA.

    PubMed

    Khoo, Hsien H; Tan, Lester L Z; Tan, Reginald B H

    2012-05-01

    This article aims to generate the environmental profile of Singapore's Semakau landfill by comparing three different operational options associated with the life cycle stages of landfilling activities, against a 'business as usual' scenario. Before life cycle assessment or LCA is used to quantify the potential impacts from landfilling activities, an attempt to incorporate localized and empirical information into the amounts of ash and MSW sent to the landfill was made. A linear regression representation of the relationship between the mass of waste disposed and the mass of incineration ash generated was modeled from waste statistics between years 2004 and 2009. Next, the mass of individual MSW components was projected from 2010 to 2030. The LCA results highlighted that in a 'business as usual' scenario the normalized total impacts of global warming, acidification and human toxicity increased by about 2% annually from 2011 to 2030. By replacing the 8000-tonne barge with a 10000-tonne coastal bulk carrier or freighter (in scenario 2) a grand total reduction of 48% of both global warming potential and acidification can be realized by year 2030. Scenario 3 explored the importance of having a Waste Water Treatment Plant in place to reduce human toxicity levels - however, the overall long-term benefits were not as significant as scenario 2. It is shown in scenario 4 that the option of increased recycling championed over all other three scenarios in the long run, resulting in a total 58% reduction in year 2030 for the total normalized results. A separate comparison of scenarios 1-4 is also carried out for energy utilization and land use in terms of volume of waste occupied. Along with the predicted reductions in environmental burdens, an additional bonus is found in the expanded lifespan of Semakau landfill from year 2032 (base case) to year 2039. Model limitations and suggestions for improvements were also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. [Optimization for MSW logistics of new Xicheng and new Dongcheng districts in Beijing based on the maximum capacity of transfer stations].

    PubMed

    Yuan, Jing; Li, Guo-xue; Zhang, Hong-yu; Luo, Yi-ming

    2013-09-01

    It is necessary to achieve the optimization for MSW logistics based on the new Xicheng (combining the former Xicheng and the former Xuanwu districts) and the new Dongcheng (combining the former Dongcheng and the former Chongwen districts) districts of Beijing. Based on the analysis of current MSW logistics system, transfer station's processing capacity and the terminal treatment facilities' conditions of the four former districts and other districts, a MSW logistics system was built by GIS methods considering transregional treatment. This article analyzes the MSW material balance of current and new logistics systems. Results show that the optimization scheme could reduce the MSW collection distance of the new Xicheng and the new Dongcheng by 9.3 x 10(5) km x a(-1), reduced by 10% compared with current logistics. Under the new logistics solution, considering transregional treatment, can reduce landfill treatment of untreated MSW about 28.3%. If the construction of three incineration plants finished based on the new logistics, the system's optimal ratio of incineration: biochemical treatment: landfill can reach 3.8 : 4.5 : 1.7 compared with 1 : 4.8 : 4.2, which is the ratio of current MSW logistics. The ratio of the amount of incineration: biochemical treatment: landfill approximately reach 4 : 3 : 3 which is the target for 2015. The research results are benefit in increasing MSW utilization and reduction rate of the new Dongcheng and Xicheng districts and nearby districts.

  10. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation.

    PubMed

    Yong, Zi Jun; Bashir, Mohammed J K; Ng, Choon Aun; Sethupathi, Sumathi; Lim, Jun-Wei

    2018-01-01

    The increase in landfill leachate generation is due to the increase of municipal solid waste (MSW) as global development continues. Landfill leachate has constantly been the most challenging issue in MSW management as it contains high amount of organic and inorganic compounds that might cause pollution to water resources. Biologically treated landfill leachate often fails to fulfill the regulatory discharge standards. Thus, to prevent environmental pollution, many landfill leachate treatment plants involve multiple stages treatment process. The Papan Landfill in Perak, Malaysia currently has no proper leachate treatment system. In the current study, sequential treatment via sequencing batch reactor (SBR) followed by coagulation was used to treat chemical oxygen demand (COD), ammoniacal nitrogen (NH 3 -N), total suspended solids (TSS), and colour from raw landfill leachate. SBR optimum aeration rate, L/min, optimal pH and dosage (g/L) of Alum for coagulation as a post-treatment were determined. The two-step sequential treatment by SBR followed by coagulation (Alum) achieved a removal efficiency of 84.89%, 94.25%, 91.82% and 85.81% for COD, NH 3 -N, TSS and colour, respectively. Moreover, the two-stage treatment process achieved 95.0% 95.0%, 95.3%, 100.0%, 87.2%, 62.9%, 50.0%, 41.3%, 41.2, 34.8, and 22.9 removals of Cadmium, Lead, Copper, Selenium, Barium, Iron, Silver, Nickel, Zinc, Arsenic, and Manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Updating and testing of a Finnish method for mixed municipal solid waste composition studies.

    PubMed

    Liikanen, M; Sahimaa, O; Hupponen, M; Havukainen, J; Sorvari, J; Horttanainen, M

    2016-06-01

    More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Material and energy recovery in integrated waste management system - An Italian case study on the quality of MSW data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchini, A.; Pellegrini, M.; Saccani, C., E-mail: cesare.saccani@unibo.it

    2011-09-15

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation wasmore » then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it.« less

  13. A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong.

    PubMed

    Woon, Kok Sin; Lo, Irene M C

    2016-01-01

    Hong Kong is experiencing a pressing need for food waste management. Currently, approximately 3600 tonnes of food waste are disposed of at landfills in Hong Kong daily. The landfills in Hong Kong are expected to be exhausted by 2020. In the long run, unavoidable food waste should be sorted out from the other municipal solid waste (MSW) and then valorized into valuable resources. A simple sorting process involving less behavioural change of residents is, therefore, of paramount importance in order to encourage residents to sort the food waste from other MSW. In this paper, a sustainable framework of food waste collection and recycling for renewable biogas fuel production is proposed. For an efficient separation and collection system, an optic bag (i.e. green bag) can be used to pack the food waste, while the residual MSW can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations in the conventional way (i.e. refuse collection vehicles). At the refuse transfer stations, the food waste is separated from the residual MSW using optic sensors which recognize the colours of the bags. The food waste in the optic bags is then delivered to the proposed Organic Waste Treatment Facilities, in which biogas is generated following the anaerobic digestion technology. The biogas can be further upgraded via gas upgrading units to a quality suitable for use as a vehicle biogas fuel. The use of biogas fuel from food waste has been widely practiced by some countries such as Sweden, France, and Norway. Hopefully, the proposed framework can provide the epitome of the waste-to-wealth concept for the sustainable collection and recycling of food waste in Hong Kong. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effects of concentrated leachate injection modes on stabilization of landfilled waste.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Chen, Min; Su, Yao; Tian, Bao-Hu

    2016-02-01

    Injection of concentrated leachate to landfills is a simple and cost-effective technology for concentrated leachate treatment. In this study, the effects of injection mode of concentrated leachate and its hydraulic loading rate on the stabilization of landfilled waste were investigated. Compared with the injection of concentrated leachate, the joint injection of leachate and concentrated leachate (1:1, v/v) was more beneficial to the degradation of landfilled waste and mitigated the discharge amount of pollutants at the hydraulic loading rate of 5.9 L m(-2) day(-1). As the hydraulic loading rate of the joint injection of leachate and concentrated leachate was increased from 5.9 to 17.6 L m(-2) day(-1), the organic matter, biologically degradable matter, and total nitrogen of landfilled waste were degraded more rapidly, with the degradation constant of the first-order kinetics of 0.005, 0.004, and 0.003, respectively. Additionally, NO2(-)-N and NO3(-)-N in the concentrated leachate could be well removed in the landfill bioreactors. These results showed that a joint injection of concentrated leachate and raw leachate might be a good way to relieve the inhibitory effect of high concentrations of toxic pollutants in the concentrated leachate and accelerate the stabilization of landfilled waste.

  15. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Closure of existing municipal solid...

  16. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Closure of existing municipal solid...

  17. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste.

    PubMed

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas H

    2010-03-01

    A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal and several impact categories have been considered, including standard categories, toxicity-related categories and groundwater contamination. Amongst the standard and toxicity-related categories, the highest potential impact is estimated for human toxicity via soil (HTs; 12 mPE/tonne). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. On the other hand, substantial net environmental savings are estimated for the categories Global Warming (GW; -31 mPE/tonne) and Eco-Toxicity in water chronic (ETwc; -53 mPE/tonne). These savings are mostly determined by the waste fractions characterized by a high content of biogenic carbon (paper, organics, other combustible waste). These savings are due to emissions from energy generation avoided by landfill gas utilization, and by the storage of biogenic carbon in the landfill due to incomplete waste degradation. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Research on solid waste management system: to improve existing situation in Corlu Town of Turkey.

    PubMed

    Tinmaz, Esra; Demir, Ibrahim

    2006-01-01

    Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day. Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.

  19. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    NASA Astrophysics Data System (ADS)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  20. Optimal planning for the sustainable utilization of municipal solid waste.

    PubMed

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupponen, M., E-mail: mari.hupponen@lut.fi; Grönman, K.; Horttanainen, M.

    Highlights: • Environmental criteria for the MSW incineration location procurements are needed. • Focus should be placed on annual energy efficiency and on substitute fuels. • In SRF combustion it is crucial to know the share and the treatment of rejects. • The GWP of transportation is a small part of the total emissions. - Abstract: The ongoing trend in the public sector is to make more sustainable procurements by taking into account the impacts throughout the entire life cycle of the procurement. Despite the trend, the only deciding factor can still be the total costs. This article answers themore » question of how greenhouse gas (GHG) emissions should be taken into account in municipal solid waste (MSW) management when selecting an incineration plant for source separated mixed MSW. The aim is to guide the decision making of MSW management towards more environmentally friendly procurements. The study was carried out by calculating the global warming potentials (GWPs) and costs of mixed MSW management by using the waste composition from a case area in Finland. Scenarios of landfilling and combustion in three actual waste incineration plants were used to recognise the main processes that affect the results. GWP results show that the combustion of mixed MSW is a better alternative than landfilling the waste. The GHG results from combustion are greatly affected by emissions from the combustion and substituted energy production. The significance of collection and transportation is higher from the costs’ perspective than from the point of view of GHG emissions. The main costs, in addition to collection and transportation costs, result from the energy utilization or landfilling of mixed MSW. When tenders are invited for the incineration location of mixed MSW, the main focus should be: What are the annual electricity and heat recovery efficiencies and which are the substituted fuels in the area? In addition, in the case of a fluidized bed combustor it is

  2. Regionalization of municipal solid waste management in Japan: balancing the proximity principle with economic efficiency.

    PubMed

    Okuda, Itaru; Thomson, Vivian E

    2007-07-01

    The proximity principle - disposing of waste close to its origin - has been a central value in municipal solid waste (MSW) management in Japan for the last 30 years and its widespread adoption has helped resolve numerous "Not in My Backyard" issues related to MSW management. However, MSW management costs have soared, in large part because of aggressive recycling efforts and because most MSW is incinerated in a country that has scarce landfill capacity. In addition, smaller, less sophisticated incinerators have been closed because of high dioxin emissions. Rising costs combined with the closure of smaller incinerators have shifted MSW management policy toward regionalization, which is the sharing of waste management facilities across municipalities. Despite the increased use of regionalized MSW facilities, the proximity principle remains the central value in Japanese MSW management. Municipal solid waste management has become increasingly regionalized in the United States, too, but different driving forces are at work in these two countries. The transition to regionalized MSW management in Japan results from strong governmental control at all levels, with the central government providing funds and policy direction and prefectures and municipalities being the primary implementing authorities. By contrast, market forces are a much stronger force with US MSW management, where local governments - with state government oversight - have primary responsibility for MSW management. We describe recent changes in Japan's MSW programs. We examine the connections between MSW facility regionalization, on the one hand, and, on the other hand, the proximity principle, coordination among local governments, central government control, and financing mechanisms.

  3. Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Barlaz, Morton A.; Green, Roger

    Highlights: • The Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup −1} (liters of liquids per metric ton of waste). • The leachate collection system yielded 60, 57 and 198 L Mg{sup −1} from the Retrofit, Control, and As-Built cells. • The head on liner in all cells was below regulatory limits. • Measured moisture content of the waste samples was consistent with that calculated from accumulated liquid by balance. • The in-place saturated hydraulic conductivity of the MSW was calculated to be in the range of 10{sup −8} to 10{sup −7} m s{sup −1}. -more » Abstract: The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup −1} (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg{sup −1} from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the

  4. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity

    NASA Astrophysics Data System (ADS)

    Abuabdou, Salahaldin M. A.; Bashir, Mohammed J. K.; Aun, Ng Choon; Sethupathi, Sumathi

    2018-04-01

    Sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). The resulted landfill leachate is a highly contaminated liquid. Even small quantities of this high-strength leachate can cause serious damage to surface and ground water receptors. Thus, these leachates must be appropriately treated before being discharged into the environment. In the last years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for leachate treatment due to the significant advantages. In the last decade, many studies have been conducted in which various types of anaerobic reactors were used in combination with membranes. This paper is a review of the potential of anaerobic membrane bioreactor technology for municipal landfill leachate treatment. A critical review in AnMBR performance interesting landfill leachate in lab scale is also done. In addition, the review discusses the impact of the various factors on both biological and filtration performances of anaerobic membrane bioreactors.

  5. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A Framework for Assessing Uncertainty Associated with Human Health Risks from MSW Landfill Leachate Contamination.

    PubMed

    Mishra, Harshit; Karmakar, Subhankar; Kumar, Rakesh; Singh, Jitendra

    2017-07-01

    Landfilling is a cost-effective method, which makes it a widely used practice around the world, especially in developing countries. However, because of the improper management of landfills, high leachate leakage can have adverse impacts on soils, plants, groundwater, aquatic organisms, and, subsequently, human health. A comprehensive survey of the literature finds that the probabilistic quantification of uncertainty based on estimations of the human health risks due to landfill leachate contamination has rarely been reported. Hence, in the present study, the uncertainty about the human health risks from municipal solid waste landfill leachate contamination to children and adults was quantified to investigate its long-term risks by using a Monte Carlo simulation framework for selected heavy metals. The Turbhe sanitary landfill of Navi Mumbai, India, which was commissioned in the recent past, was selected to understand the fate and transport of heavy metals in leachate. A large residential area is located near the site, which makes the risk assessment problem both crucial and challenging. In this article, an integral approach in the form of a framework has been proposed to quantify the uncertainty that is intrinsic to human health risk estimation. A set of nonparametric cubic splines was fitted to identify the nonlinear seasonal trend in leachate quality parameters. LandSim 2.5, a landfill simulator, was used to simulate the landfill activities for various time slices, and further uncertainty in noncarcinogenic human health risk was estimated using a Monte Carlo simulation followed by univariate and multivariate sensitivity analyses. © 2016 Society for Risk Analysis.

  7. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling.

    PubMed

    Liu, Yili; Sun, Weixin; Du, Bing; Liu, Jianguo

    2018-02-12

    Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L -1 ) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10 -8 to 10 -9 m s -1 after 1-2 years of operation and perching significant leachate above it (0.6-0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China.

  8. Ambient air monitoring of Beijing MSW logistics facilities in 2006.

    PubMed

    Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu

    2008-11-01

    In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.

  9. Material and energy recovery in integrated waste management system--an Italian case study on the quality of MSW data.

    PubMed

    Bianchini, A; Pellegrini, M; Saccani, C

    2011-01-01

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation was then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Analyzing effective municipal solid waste recycling programs: the case of county-level MSW recycling performance in Florida, USA.

    PubMed

    Park, Seejeen; Berry, Frances S

    2013-09-01

    Municipal solid waste (MSW) recycling performance, both nationally and in Florida, USA, has shown little improvement during the past decade. This research examines variations in the MSW recycling program performance in Florida counties in an attempt to identify effective recycling programs. After reviewing trends in the MSW management literature, we conducted an empirical analysis using cross-sectional multiple regression analysis. The findings suggest that the convenience-based hypothesis was supported by showing that curbside recycling had a positive effect on MSW recycling performance. Financial (cost-saving) incentive-based hypotheses were partially supported meaning that individual level incentives can influence recycling performance. Citizen environmental concern was found to positively affect the amount of county recycling, while education and political affiliation yielded no significant results. In conclusion, this article discusses the implications of the findings for both academic research and practice of MSW recycling programs.

  11. Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

    EPA Pesticide Factsheets

    Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

  12. The impact of compaction and leachate recirculation on waste degradation in simulated landfills.

    PubMed

    Ko, Jae Hac; Yang, Fan; Xu, Qiyong

    2016-07-01

    This study investigated the impact of compaction and leachate recirculation on anaerobic degradation of municipal solid waste (MSW) at different methane formation phases. Two stainless steel lysimeters, C1 and C2, were constructed by equipping a hydraulic cylinder to apply pressure load (42kPs) on the MSW. When MSW started to produce methane, C1 was compacted, but C2 was compacted when the methane production rate declined from the peak generation rate. Methane production of C1was inhibited by the compaction and resulted in producing a total of 106L methane (44L/kgVS). However, the compaction in C2 promoted MSW degradation resulting in producing a total of 298L methane (125L/kgVS). The concentrations of volatile fatty acids and chemical oxygen demand showed temporary increases, when pressure load was applied. It was considered that the increased substrate accessibility within MSW by compaction could cause either the inhibition or the enhancement of methane production, depending the tolerability of methanogens on the acidic inhibition. Leachate recirculation also gave positive effects on methane generation from wet waste in the decelerated methanogenic phase by increasing mass transfer and the concentrations of volatile fatty acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia.

    PubMed

    Malakahmad, Amirhossein; Abualqumboz, Motasem S; Kutty, Shamsul Rahman M; Abunama, Taher J

    2017-12-01

    Malaysian authorities has planned to minimize and stop when applicable unsanitary dumping of waste as it puts human health and the environment at elevated risk. Cost, energy and revenue are mostly adopted to draw the blueprint of upgrading municipal solid waste management system, while the carbon footprint emissions criterion rarely acts asa crucial factor. This study aims to alert Malaysian stakeholders on the uneven danger of carbon footprint emissions of waste technologies. Hence, three scenarios have been proposed and assessed mainly on the carbon footprint emissions using the 2006 IPCC methodology. The first scenario is waste dumping in sanitary landfills equipped with gas recovery system, while the second scenario includes anaerobic digestion of organics and recycling of recyclable wastes such as plastic, glass and textile wastes. The third scenario is waste incineration. Besides the carbon footprint emissions criterion, other environmental concerns were also examined. The results showed that the second scenario recorded the lowest carbon footprint emissions of 0.251t CO 2 eq./t MSW while the third scenario had the highest emissions of 0.646t CO 2 eq./t MSW. Additionally, the integration between anaerobic digestion and recycling techniques caused the highest avoided CO 2 eq. emissions of 0.74t CO 2 eq./t MSW. The net CO 2 eq. emissions of the second scenario equaled -0.489t CO 2 eq./t MSW due to energy recovery from the biogas and because of recycled plastic, glass and textile wastes that could replace usage of raw material. The outcomes also showed that the first scenario generates huge amount of leachate and hazardous air constituents. The study estimated that a ton of dumped waste inside the landfills generates approximately 0.88m 3 of trace risky compounds and 0.188m 3 of leachate. As for energy production, the results showed that the third scenario is capable of generating 639kWh/t MSW followed by the second scenario with 387.59kWh/t MSW. The first

  14. Risk-Based Prioritization Method for the Classification of Groundwater Pollution from Hazardous Waste Landfills.

    PubMed

    Yang, Yu; Jiang, Yong-Hai; Lian, Xin-Ying; Xi, Bei-Dou; Ma, Zhi-Fei; Xu, Xiang-Jian; An, Da

    2016-12-01

    Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.

  15. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gori, Manuela, E-mail: manuela.gori@dicea.unifi.it; Bergfeldt, Britta; Reichelt, Jürgen

    2013-04-15

    Highlights: ► Natural weathering on BA from MSW and wood waste incineration was evaluated. ► Type of mineral phases, pH and volume stability were considered. ► Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of themore » mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.« less

  16. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  17. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    PubMed

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Biogeochemical transformations of mercury in solid waste landfills and pathways for release.

    PubMed

    Lee, Sung-Woo; Lowry, Gregory V; Hsu-Kim, Heileen

    2016-02-01

    Mercury (Hg) is present in a variety of solid wastes including industrial wastes, household products, consumer electronics, and medical wastes, some of which can be disposed in conventional landfills. The presence of this neurotoxic metal in landfills is a concern due to the potential for it to leach or volatilize from the landfill and impact local ecosystems. The objective of this review is to describe general practices for the disposal of mercury-bearing solid wastes, summarize previous studies on the release of mercury from landfills, and delineate the expected transformations of Hg within landfill environments that would influence transport of Hg via landfill gas and leachate. A few studies have documented the emissions of Hg as landfill gas, primarily as gaseous elemental Hg(0) and smaller amounts as methylated Hg species. Much less is known regarding the release of Hg in leachate. Landfill conditions are unique from other subsurface environments in that they can contain water with very high conductivity and organic carbon concentration. Landfills also experience large changes in redox potential (and the associated microbial community) that greatly influence Hg speciation, transformations, and mobilization potential. Generally, Hg is not likely to persist in large quantities as dissolved species, since Hg(0) tends to evolve in the gas phase and divalent Hg(ii) sorbs strongly to particulate phases including organic carbon and sulfides. However, Hg(ii) has the potential to associate with or form colloidal particles that can be mobilized in porous media under high organic carbon conditions. Moreover, the anaerobic conditions within landfills can foster the growth of microorganisms that produced monomethyl- and dimethyl-Hg species, the forms of mercury with high potential for bioaccumulation. Much advancement has recently been made in the mercury biogeochemistry research field, and this study seeks to incorporate these findings for landfill settings.

  19. Municipal solid waste management in Beijing City.

    PubMed

    Li, Zhen-shan; Yang, Lei; Qu, Xiao-Yan; Sui, Yu-mei

    2009-09-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km(2) with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  20. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    PubMed

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  1. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  2. Benefits of improved municipal solid waste management on greenhouse gas reduction in Luangprabang, Laos.

    PubMed

    Vilaysouk, Xaysackda; Babel, Sandhya

    2017-07-01

    Climate change is a consequence of greenhouse gas emissions. Greenhouse gas (GHG) emissions from the waste sector contribute to 3% of total anthropogenic emissions. In this study, applicable solutions for municipal solid waste (MSW) management in Luangprabang (LPB) and Laos were examined. Material flow analysis of MSW was performed to estimate the amount of MSW generated in 2015. Approximately 29,419 tonnes of MSW is estimated for 2015. Unmanaged landfilling was the main disposal method, while MSW open burning was also practiced to some extent. The International Panel on Climate Change 2006 model and the Atmospheric Brown Clouds Emission Inventory Manual were used to estimate GHG emissions from existing MSW management, and total emissions are 33,889 tonnes/year carbon dioxide-equivalents (CO 2 -eq). Three scenarios were developed in order to reduce GHG emissions and environmental problems. Improvement of the MSW management by expanding MSW collection services, introducing composting and recycling, and avoiding open burning, can be considered as solutions to overcome the problems for LPB. The lowest GHG emissions are achieved in the scenario where composting and recycling are proposed, with the total GHG emissions reduction by 18,264 tonnes/year CO 2 -eq.

  3. Permitting of Landfill Bioreactor Operations: Ten Years after ...

    EPA Pesticide Factsheets

    Prior to promulgation of the Rule, there were approximately 20 full-scale bioreactor projects in North America, including one in Canada. Of these, six were permitted by EPA (four Project XL sites and two projects listed separately under a cooperative research agreement at the Outer Loop Landfill in Kentucky). In March 2014, there were about 40 bioreactor projects reported, including 30 active RD&D projects in 11 approved states and one project on tribal lands. Wisconsin features the largest number of projects at 13, due primarily to the fact that landfill owners in the state must either eliminate landfill disposal of biodegradable materials or to achieve the complete stabilization of deposited organic waste at MSW landfills within 40 years after closure. Most landfill operators have selected a bioreactor approach to attempt to achieve the latter goal. In summary, only 16 of 50 (32%) states have currently adopted the Rule, meaning that development of RD&D permitting procedures that are consistent with EPA’s requirements has generally not occurred. The predominant single reason cited for not adopting the Rule was lack of interest amongst landfill facilities in the state. Subtitle D and its state derivatives already allow leachate recirculation over prescriptive (i.e., minimum technology) liner systems, which is often the primary goal of site operators seeking to control leachate treatment costs. Other reasons related to concerns over increased time, cost

  4. Regional landfills methane emission inventory in Malaysia.

    PubMed

    Abushammala, Mohammed F M; Noor Ezlin Ahmad Basri; Basri, Hassan; Ahmed Hussein El-Shafie; Kadhum, Abdul Amir H

    2011-08-01

    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.

  5. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion.

    PubMed

    Peng, Nana; Li, Yi; Liu, Zhengang; Liu, Tingting; Gai, Chao

    2016-09-15

    Emission and distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) were investigated during municipal solid waste (MSW) and coal combustion alone and MSW/coal blend (MSW weight fraction of 25%) co-combustion within a temperature range of 500°C-900°C. The results showed that for all combustion experiments, flue gas occupied the highest proportion of total PAHs and fly ash contained more high-ring PAHs. Moreover, the 3- and 4-ring PAHs accounted for the majority of total PAHs and Ant or Phe had the highest concentrations. Compared to coal, MSW combustion generated high levels of total PAHs with the range of 111.28μg/g-10,047.22μg/g and had high toxicity equivalent value (TEQ). MSW/coal co-combustion generated the smallest amounts of total PAHs and had the lowest TEQ than MSW and coal combustion alone. Significant synergistic interactions occurred between MSW and coal during co-combustion and the interactions suppressed the formation of PAHs, especially hazardous high-ring PAHs and decreased the TEQ. The present study indicated that the reduction of the yield and toxicity of PAHs can be achieved by co-combustion of MSW and coal. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Landfills

    EPA Pesticide Factsheets

    To provide information on landfills, including laws/regulations, and technical guidance on municipal solid waste, hazardous waste, industrial, PCBs, and construction and debris landfills. To provide resources for owners and operators of landfills.

  7. Settlement behavior of municipal solid waste due to internal and external environmental factors in a lysimeter.

    PubMed

    Melo, Márcio C; Caribé, Rômulo M; Ribeiro, Libânia S; Sousa, Raul B A; Monteiro, Veruschka E D; de Paiva, William

    2016-12-05

    Long-term settlement magnitude is influenced by changes in external and internal factors that control the microbiological activity in the landfill waste body. To improve the understanding of settlement phenomena, it is instructive to study lysimeters filled with MSW. This paper aims to understand the settlement behavior of MSW by correlating internal and external factors that influence waste biodegradation in a lysimeter. Thus, a lysimeter was built, instrumented and filled with MSW from the city of Campina Grande, the state of Paraíba, Brazil. Physicochemical analysis of the waste (from three levels of depth of the lysimeter) was carried out along with MSW settlement measurements. Statistical tools such as descriptive analysis and principal component analysis (PCA) were also performed. The settlement/compression, coefficient of variation and PCA results indicated the most intense rate of biodegradation in the top layer. The PCA results of intermediate and bottom levels presented fewer physicochemical and meteorological variables correlated with compression data in contrast with the top layer. It is possible to conclude that environmental conditions may influence internal indicators of MSW biodegradation, such as the settlement.

  8. Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh.

    PubMed

    Rafizul, Islam M; Howlader, Milon Kanti; Alamgir, Muhammed

    2012-11-01

    This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800-2985 kg having the total volume of 2.80 m(3) (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH(4)), carbon dioxide (CO(2)) and oxygen (O(2)) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter

  9. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, Robert D., E-mail: rdg@uchicago.edu; Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com; Prucha, Christopher P., E-mail: cprucha@wm.com

    2014-09-15

    Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of themore » predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.« less

  10. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...

  11. Assessment of water quality of Sembilang River receiving effluent from controlled municipal solid waste (MSW) landfill in Selangor

    NASA Astrophysics Data System (ADS)

    Tengku Ibrahim, T. N. B.; Othman, F.; Mahmood, N. Z.

    2017-06-01

    Most of the landfills in Malaysia are situated near to the main river basin that supplies almost 90% of water requirement. This includes landfills in Selangor where a total of 20 landfill sites are situated in 5 main river basins and the highest number of operating landfills (three) are at the Selangor River Basin (Jeram, Bukit Tagar and Kuang Inert landfills). This situation has caused wide concern over the water safety, even the leachate has been treated. The leachate itself still contains contaminants that are difficult to treat. The main objective of this study is to investigate the effect on water quality of Sembilang River that receives effluent from the nearby landfill. In this study, we analyzed samples of water from ten sampling stations starting from the upstream to downstream of Sembilang River. The water quality was evaluated by the Water Quality Index (WQI) depending on in-situ and laboratory analysis. 11 water quality variables are selected for the quality assessment; temperature, pH, turbidity, salinity, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total suspended solid, ammoniacal nitrogen, phosphate and nitrate. The result indicated that, when the effluent mixed with the river water, the water quality decreased gradually and was found to be lower at a few stations. The water quality of Sembilang River falls under Class III of Water Quality Index with ranges between 68.03 to 43.46 mg/L. It is revealed that the present scenario of water quality of Sembilang River is due to the effect of effluent from the landfill.

  12. CCA-TREATED WOOD DISPOSED IN LANDFILLS AND LIFE-CYCLE TRADE-OFFS WITH WASTE-TO-ENERGY AND MSW LANDFILL DISPOSAL

    EPA Science Inventory

    Chromated copper arsenate (CCA) treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. In the U.S. CCA-treated wood is disposed primarily within landfills, however some of the wood is combu...

  13. Working towards a zero waste environment in Taiwan.

    PubMed

    Young, Chea-Yuan; Ni, Shih-Piao; Fan, Kuo-Shuh

    2010-03-01

    It is essential to the achievement of zero waste that emphasis is concentrated on front-end preventions rather than end-of-pipe (EOP) treatment. Zero waste is primarily based on cleaner production, waste management, the reduction of unnecessary consumption and the effective utilization of waste materials. The aim of this study was to briefly review the tasks undertaken and future plans for achieving zero waste in Taiwan. Waste prevention, source reduction, waste to product, waste to energy, EOP treatment, and adequate disposal are the sequential principal procedures to achieve the goal of zero waste. Six strategies have been adopted to implement the zero waste policy in Taiwan. These are regulatory amendments, consumption education, financial incentives, technical support, public awareness, and tracking and reporting. Stepwise targets have been set for 2005, 2007, 2011, and 2020 for both the municipal solid waste (MSW) and industrial waste to reach the goal of zero waste. The eventual aim is to achieve 70% MSW minimization and 85% industrial waste minimization by 2020. Although tools and measures have been established, some key programmes have higher priority. These include the establishment of a waste recycling programme, promotion of cleaner production, a green procurement programme, and promotion of public awareness. Since the implementation of the zero waste policy started in 2003, the volume of MSW for landfill and incineration has declined dramatically. The recycling and/or minimization of MSW quantity in 2007 was 37%, which is much higher than the goal of 25%. Industrial waste reached almost 76% minimization by the end of 2006, which is 1 year before the target year.

  14. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    PubMed

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).

  15. Waste management in the Irkutsk Region, Siberia, Russia: environmental assessment of current practice focusing on landfilling.

    PubMed

    Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut; Christensen, Thomas H

    2014-05-01

    The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has no gas or leachate collection system. The global warming contribution is due to the emission of methane of the order of 420 000 tons CO2-equivalents per year. Collection and transport of the waste are insignificant compared with impacts from the landfill. As the old landfill runs out of capacity in a few years, the LCA modelling showed that introduction of a new and modern landfill with gas and leachate collection could improve the performance of the waste management system significantly. Collection of landfill gas and utilization for 30 years for electricity production (gas turbine) would reduce the global warming completely and result in a net saving of 100 000 CO2-equivalents per year due to storage of biogenic carbon in the landfill beyond 100 years. Considering other first-order degradation rates for the landfilled organic matter did not overtly affect the results, while assumptions about the top cover oxidation of methane significantly affected the results. This shows the importance of controlling the gas escape from the landfill.

  16. A multi-objective programming model for assessment the GHG emissions in MSW management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr; Skoulaxinou, Sotiria; Gakis, Nikos

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty yearsmore » they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the

  17. Treatability of stabilize landfill leachate by using pressmud ash as an adsorbent

    NASA Astrophysics Data System (ADS)

    Azme, N. N. Mohd; Murshed, M. F.

    2018-04-01

    Leachate is a liquid produced from the landfill that contains high concentration of heavy metals, chemicals and nutrient loading. The treatability of these contaminants are complicated since the current treatment technology are costly and site specific. Therefore, this study was conducted to evaluate the treatability of stabilized landfill leachate by using waste (pressmud ash) as an absorbent. Pressmud ash was prepared by burning at different temperature from 100 to 700 degree Celsius and test at 24 hours shaking time, pH 8, and 4000 rpm. Leachate samples were collected from municipal solid waste (MSW) Pulau Burung Sanitary Landfill (PBSL) and were analyzed for heavy metal, COD, ammonia and colour. This study was performed in two phases i) leachate characteristic, ii) treatability assessment by using pressmud ash. Pressmud was sampled from the sugar mill, Malaysian Sugar Manufacturing (MSM) Sdn Bhd, Seberang Perai, Pulau Pinang. The pressmud with 400°C are highly potential material with a low cost which can be a good adsorbent was capable reducing efficiencies of COD (60.76%), ammonia (64.37%) and colour (35.78%) from real wastewater leachate. Pressmud showed good sorption capability. Surface modification with burning greatly enhanced the reducing efficiency of sugar waste based adsorbent with adsorption efficiency.

  18. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has

  19. Effect of organic compositions of aerobically pretreated municipal solid waste on non-methane organic compound emissions during anaerobic degradation.

    PubMed

    Zhang, Yuanyuan; Yue, Dongbei; Liu, Jianguo; He, Liang; Nie, Yongfeng

    2012-06-01

    Odor pollution caused by municipal solid waste (MSW) treatment plants has become a growing public concern. Although aerobic pretreatment of MSW has advantages in accelerating landfill stabilization, the property of non-methane organic compound (NMOC) emissions from aerobically pretreated MSW (APMSW) during landfilling is unknown. To investigate NMOC emissions from anaerobic degradation of APMSW and to study the impact of organic compositions of APMSW and their decomposition stages, five simulative anaerobic bioreactors (R1-R5) were filled up with APMSW of different original organic compositions in a laboratory. For NMOC analysis, samples were collected from the gas that accumulated separately during two successive independent stages of the whole experiment. The results showed that the cumulative quantities of NMOCs from R1 to R5 were 1.11, 0.30, 0.18, 0.28, and 0.31 mg/kg DM, respectively, when volatile solid was degraded by 34.8-47.2%. As the organic content of the original waste was lower, the proportion of NMOCs generated in the early stage of anaerobic degradation became higher. Multiple linear regression analyses of the relationship between the quantities of degraded organics and generated NMOCs showed that lipid and protein have a strong effect on NMOC amount. The effect of lipid on NMOC quantity lasts longer than that of protein. This observation suggests that controlling the lipid and protein contents in MSW can reduce the odor from landfills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. 40 CFR 98.340 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.340 Definition of the..., construction and demolition landfills, or industrial landfills. (c) This source category consists of the following sources at municipal solid waste (MSW) landfills: Landfills, landfill gas collection systems, and...

  1. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    NASA Astrophysics Data System (ADS)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  2. Study on potency of municipal solid waste conversion into renewable energy by thermal incineration and bioconversion: case study of Medan city

    NASA Astrophysics Data System (ADS)

    Sarah, Maya; Misran, Erni

    2018-03-01

    Municipal solid waste (MSW) in Medan City is facing problems either with the quantity and management of MSW. Local authority only dumped approximately 73.9% MSW in the landfill over the years. Spontaneous phenomena of methane formation in dumping site indicates the potency of MSW conversion into energy by biochemical conversion. On the contrary, the presence of plastics, woods, papers, etc. in the MSW show the potency of MSW to be treated by thermal conversion. Both thermal incineration and anaerobic digestion may convert MSW Medan City into energy. This study evaluates potency of MSW conversion into renewable energy using proximate and ultimate analysis. Overall, MSW of Medan City has the opportunities to be converted into energy by both thermal and biochemical conversion with a special requirement such as pre-dry the MSW prior incineration process and degrade organic MSW in a bioreactor.

  3. Landfill disposal systems.

    PubMed

    Slimak, K M

    1978-12-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  4. The current municipal solid waste management situation in Tibet.

    PubMed

    Jiang, Jianguo; Lou, Zhiying; Ng, Silo; Luobu, Ciren; Ji, Duo

    2009-03-01

    The Tibetan Plateau has an average altitude of more than 4,000 m. The total area of Tibetan Plateau is 2,400,000 km2, which occupies 25% of the area of China. Due to the high altitude, the environment has low atmospheric pressure, low oxygen content, and low temperature, and is also fragile. Investigations concerning MSW generation and characteristics, MSW management, collection and transportation, and treatment and disposal of MSW covered four representative cities, including the urban areas of Lhasa city, Shigatse, Nedong of Lhoka and Bayi of Nyingtri. The results show that MSW generation in the urban areas of Lhasa city and Tibet were 450 t/d and 3,597 t/d, respectively, in 2006. However, accelerated economic development and flourishing tourism caused by the opening of the Qinghai-Tibet Railway (QTR) have greatly increased solid waste generation to a new high. It is predicted that MSW generation in Tibet will reach 4,026 t/d in 2010 and 4,942 t/d in 2020. MSW management and disposal lag behind MSW generation due to a number of factors such as equipment shortage, insufficient maintenance, exhaustion of waste treatment capacity and low recycling efficiency. Still, MSW in most areas is dumped in the open with no controls. Because no appropriate collection and treatment systems for leachate and landfill gas exist, untreated leachate is discharged directly into the environment, causing serious secondary pollution. Some suggestions on improving the MSW management system are presented in this paper.

  5. Analysis of the contaminants released from municipal solid waste landfill site: A case study.

    PubMed

    Samadder, S R; Prabhakar, R; Khan, D; Kishan, D; Chauhan, M S

    2017-02-15

    Release and transport of leachate from municipal solid waste landfills pose a potential hazard to both surrounding ecosystems and human populations. In the present study, soil, groundwater, and surface water samples were collected from the periphery of a municipal solid waste landfill (located at Ranital of Jabalpur, Madhya Pradesh, India) for laboratory analysis to understand the release of contaminants. The landfill does not receive any solid wastes for dumping now as the same is under a landfill closure plan. Groundwater and soil samples were collected from the bore holes of 15m deep drilled along the periphery of the landfill and the surface water samples were collected from the existing surface water courses near the landfill. The landfill had neither any bottom liner nor any leachate collection and treatment system. Thus the leachate generated from the landfills finds paths into the groundwater and surrounding surface water courses. Concentrations of various physico-chemical parameters including some toxic metals (in collected groundwater, soil, and surface water samples) and microbiological parameters (in surface water samples) were determined. The analyzed data were integrated into ArcGIS environment and the spatial distribution of the metals and other physic- chemical parameter across the landfill was extrapolated to observe the distribution. The statistical analysis and spatial variations indicated the leaching of metals from the landfill to the groundwater aquifer system. The study will help the readers and the municipal engineers to understand the release of contaminants from landfills for better management of municipal solid wastes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. BIODEGRADATIVE ANALYSIS OF MUNICIPAL SOLID WASTE IN LABORATORY-SCALE LANDFILLS

    EPA Science Inventory

    The report gives results of research to characterize the anaerobic biodegradability of the major biodegradable components of municipal solid waste (MSW). Tests were conducted in quadruplicate in 2-L reactors operated to obtain maximum yields. Measured methane (CH4) yields for gra...

  7. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling

    PubMed Central

    Sun, Weixin; Liu, Jianguo

    2018-01-01

    Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L−1) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10−8 to 10−9 m s−1 after 1–2 years of operation and perching significant leachate above it (0.6–0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China. PMID:29439538

  8. Development and application of a methodology for a clean development mechanism to avoid methane emissions in closed landfills.

    PubMed

    Janke, Leandro; Lima, André O S; Millet, Maurice; Radetski, Claudemir M

    2013-01-01

    In Brazil, Solid Waste Disposal Sites have operated without consideration of environmental criteria, these areas being characterized by methane (CH4) emissions during the anaerobic degradation of organic matter. The United Nations organization has made efforts to control this situation, through the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, where projects that seek to reduce the emissions of greenhouse gases (GHG) can be financially rewarded through Certified Emission Reductions (CERs) if they respect the requirements established by the Clean Development Mechanism (CDM), such as the use of methodologies approved by the CDM Executive Board (CDM-EB). Thus, a methodology was developed according to the CDM standards related to the aeration, excavation and composting of closed Municipal Solid Waste (MSW) landfills, which was submitted to CDM-EB for assessment and, after its approval, applied to a real case study in Maringá City (Brazil) with a view to avoiding negative environmental impacts due the production of methane and leachates even after its closure. This paper describes the establishment of this CDM-EB-approved methodology to determine baseline emissions, project emissions and the resultant emission reductions with the application of appropriate aeration, excavation and composting practices at closed MSW landfills. A further result obtained through the application of the methodology in the landfill case study was that it would be possible to achieve an ex-ante emission reduction of 74,013 tCO2 equivalent if the proposed CDM project activity were implemented.

  9. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    PubMed

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  10. Is Municipal Solid Waste Recycling Economically Efficient?

    NASA Astrophysics Data System (ADS)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  11. Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill

    NASA Astrophysics Data System (ADS)

    Pasko, O. A.; Mochalova, T. N.

    2014-08-01

    The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.

  12. Municipal solid waste management in Beijing City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhenshan; Key Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, Peking University, Shenzhen 518055; Yang Lei

    2009-09-15

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km{sup 2} with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted formore » less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.« less

  13. Using life cycle assessment to address stakeholders' potential for improving municipal solid waste management.

    PubMed

    de Andrade Junior, Milton Aurelio Uba; Zanghelini, Guillherme Marcelo; Soares, Sebastião Roberto

    2017-05-01

    Because the consumption of materials is generally higher than their recovery rate, improving municipal solid waste (MSW) management is fundamental for increasing the efficiency of natural resource use and consumption in urban areas. More broadly, the characteristics of a MSW management system influence the end-of-life (EOL) impacts of goods consumed by households. We aim to indicate the extent to which greenhouse gas emissions from a MSW management system can be reduced by increasing waste paper recycling. We also address the stakeholders' contribution for driving transition towards an improved scenario. Life cycle assessment (LCA) addresses the EOL impacts of the paper industry, driven by the characteristics of MSW management in Florianópolis, Brazil, by varying the level of stakeholders' commitment through different recycling scenarios. The results show that 41% of the climate change impacts from waste paper management could be reduced when increasing the waste paper recycling rates and reducing waste paper landfilling. To achieve such emissions reduction, the industry contribution to the MSW management system would have to increase from 17% in the business-as-usual scenario to 74% in the target scenario. We were able to measure the differences in stakeholders' contribution by modelling the MSW management system processes that are under the industry's responsibility separately from the processes that are under the government's responsibility, based on the Brazilian legal framework. The conclusions indicate that LCA can be used to support policy directions on reducing the impacts of MSW management by increasing resource recovery towards a circular economy.

  14. Geophysical experiments for the pre-reclamation assessment of industrial and municipal waste landfills

    NASA Astrophysics Data System (ADS)

    Balia, R.; Littarru, B.

    2010-03-01

    Two examples of combined application of geophysical techniques for the pre-reclamation study of old waste landfills in Sardinia, Italy, are illustrated. The first one concerned a mine tailings basin and the second one a municipal solid waste landfill; both disposal sites date back to the 1970-80s. The gravity, shallow reflection, resistivity and induced polarization methods were employed in different combinations at the two sites, and in both cases useful information on the landfill's geometry has been obtained. The gravity method proved effective for locating the boundaries of the landfill and the shallow reflection seismic technique proved effective for the precise imaging of the landfill's bottom; conversely the electrical techniques, though widely employed for studying waste landfills, provided mainly qualitative and debatable results. The overall effectiveness of the surveys has been highly improved through the combined use of different techniques, whose individual responses, being strongly dependent on their specific basic physical characteristic and the complexity of the situation to be studied, did not show the same effectiveness at the two places.

  15. From dumping to sanitary landfills - solid waste management in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissim, I.; Shohat, T.; Inbar, Y.

    2005-07-01

    To address the problem of solid waste in Israel, the Ministry of the Environment has formulated a policy based on integrated waste management. The policy calls for reduction of waste at source, reuse, recycling (including composting), waste-to-energy technologies, and landfilling. Due to the implementation of this policy, all the large dumps were closed, state-of-the art landfills were built, and recovery rates have increased from 3% in the beginning of the 1990s to almost 20% in 2003. More than 95% of the municipal solid waste is disposed and treated in an environmentally sound manner - in comparison to a mere 10%more » just a decade ago. The policy was implemented utilizing both enforcement and financial support ('stick and carrot' approach)« less

  16. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Modelling for environmental assessment of municipal solid waste landfills (part II: biodegradation).

    PubMed

    Garcia de Cortázar, Amaya Lobo; Lantarón, Javier Herrero; Fernández, Oscar Montero; Monzón, Iñaki Tejero; Lamia, Maria Fantelli

    2002-12-01

    The biodegradation module of a simulation program for municipal solid waste landfills (MODUELO) was developed. The biodegradation module carries out the balance of organic material starting with the results of the hydrologic simulation and the waste composition. It simulates the biologic reactions of hydrolysis of solids and the gasification of the dissolved biodegradable material. The results of this module are: organic matter (COD, BOD and elemental components such as carbon, hydrogen, nitrogen, oxygen, sulfur and ash), ammonium nitrogen generated with the gas and transported by the leachates and the potential rates of methane and carbon dioxide generation. The model was calibrated by using the general tendency curves of the pollutants recorded in municipal solid waste landfills, fitting the first part of them to available landfill data. Although the results show some agreement, further work is being done to make MODUELO a useful tool for real landfill simulation.

  18. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways.

    PubMed

    Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit

    2016-02-01

    Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Combining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil-a case study in north of Iran.

    PubMed

    Yousefi Kebria, D; Ghavami, M; Javadi, S; Goharimanesh, M

    2017-12-16

    In the contemporary world, urbanization and progressive industrial activities increase the rate of waste material generated in many developed countries. Municipal solid waste landfills (MSWs) are designed to dispose the waste from urban areas. However, discharged landfill leachate, the soluble water mixture that filters through solid waste landfills, can potentially migrate into the soil and affect living organisms by making harmful biological changes in the ecosystem. Due to well-documented landfill problems involving contamination, it is necessary to investigate the long-term influence of discharged leachate on the consistency of the soil beds beneath MSW landfills. To do so, the current study collected vertical deep core samples from different locations in the same unlined landfill. The impacts of effluent leachate on physical and chemical properties of the soil and its propagation depth were studied, and the leachate-transport pattern between successive boreholes was predicted by a developed mathematical model using an adaptive neuro-fuzzy inference system (ANFIS). The decomposition of organic leachate admixtures in the landfill yield is to produce organic acids as well as carbon dioxide, which diminishes the pH level of the landfill soil. The chemical analysis of discharged leachate in the soil samples showed that the concentrations of heavy metals are much lower than those of chloride, COD, BOD 5 , and bicarbonate. Using linear regression and mean square errors between the measured and predicted data, the accuracy of the proposed ANFIS model has been validated. Results show a high correlation between observed and predicated data.

  20. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities.

    PubMed

    Gutiérrez-Gutiérrez, Silvia C; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-01

    Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58±6mgkg(-1) for REEs comprising 44±8mgkg(-1) for light REEs, 11±2mgkg(-1) for heavy REEs and 3±1mgkg(-1) for Scandium (Sc) and 3±1.0mgkg(-1) of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis.

    PubMed

    Wu, Jun; Zhang, Hua; He, Pin-Jing; Shao, Li-Ming

    2011-02-01

    Dissolved organic matter (DOM) plays an important role in heavy metal migration from municipal solid waste (MSW) to aquatic environments via the leachate pathway. In this study, fluorescence excitation-emission matrix (EEM) quenching combined with parallel factor (PARAFAC) analysis was adopted to characterize the binding properties of four heavy metals (Cu, Pb, Zn and Cd) and DOM in MSW leachate. Nine leachate samples were collected from various stages of MSW management, including collection, transportation, incineration, landfill and subsequent leachate treatment. Three humic-like components and one protein-like component were identified in the MSW-derived DOM by PARAFAC. Significant differences in quenching effects were observed between components and metal ions, and a relatively consistent trend in metal quenching curves was observed among various leachate samples. Among the four heavy metals, Cu(II) titration led to fluorescence quenching of all four PARAFAC-derived components. Additionally, strong quenching effects were only observed in protein-like and fulvic acid (FA)-like components with the addition of Pb(II), which suggested that these fractions are mainly responsible for Pb(II) binding in MSW-derived DOM. Moreover, the significant quenching effects of the FA-like component by the four heavy metals revealed that the FA-like fraction in MSW-derived DOM plays an important role in heavy metal speciation; therefore, it may be useful as an indicator to assess the potential ability of heavy metal binding and migration. © 2010 Elsevier Ltd. All rights reserved.

  2. Identification of Cellulose Breaking Bacteria in Landfill Samples for Organic Waste Management

    NASA Astrophysics Data System (ADS)

    Chan, P. M.; Leung, F. C.

    2015-12-01

    According to the Hong Kong Environmental Protection Department, the citizens of Hong Kong disposes 13,500 tonnes of waste to the landfill everyday. Out of the 13,500 tonnes, 3600 tonnes consist of organic waste. Furthermore, due to the limited supply of land for landfills in Hong Kong, it is estimated that landfills will be full by about 2020. Currently, organic wastes at landfills undergo anaerobic respiration, where methane gas, one of the most harmful green house gases, will be released. The management of such waste is a pressing issue, as possible solutions must be presented in this crucial period of time. The Independent Schools Foundation Academy introduced their very own method to manage the waste produced by the students. With an approximate of 1500 students on campus, the school produces 27 metric tonnes of food waste each academic year. The installation of the rocket food composter provides an alternate method of disposable of organic waste the school produces, for the aerobic environment allows for different by-products to be produced, namely compost that can be used for organic farming by the primary school students and subsequently carbon dioxide, a less harmful greenhouse gas. This research is an extension on the current work, as another natural factor is considered. It evaluates the microorganism community present in leachate samples collected from the North East New Territories Landfill, for the bacteria in the area exhibits special characteristics in the process of decomposition. Through the sequencing and analysis of the genome of the bacteria, the identification of the bacteria might lead to a break through on the current issue. Some bacteria demonstrate the ability to degrade lignin cellulose, or assist in the production of methane gas in aerobic respirations. These characteristics can hopefully be utilized in the future in waste managements across the globe.

  3. 76 FR 46290 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management. This information will be... assessments; however questions are being raised about its scope, the data sources used, the assumptions made...

  4. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  5. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill.

    PubMed

    Cossu, Raffaello; Morello, Luca; Raga, Roberto; Cerminara, Giulia

    2016-09-01

    Landfilling continues to be one of the main methods used in managing Municipal Solid Waste (MSW) worldwide, particularly in developing countries. Although in many countries national legislation aims to reduce this practice as much as possible, landfill is a necessary and unavoidable step in closing the material cycle. The need for innovative waste management techniques to improve landfill management and minimize the adverse environmental impact produced has resulted in an increasing interest in innovative systems capable of accelerating waste stabilization. Landfill bioreactors allow decomposition kinetics to be increased and post-operational phase to be shortened; in particular, hybrid bioreactors combine the benefits afforded by both aerobic and anaerobic processes. Six bioreactor simulators were used in the present study: four managed as hybrid, with an initial semi-aerobic phase and a second anaerobic phase, and two as anaerobic control bioreactors. The main goal of the first aerated phase is to reduce Volatile Fatty Acids (VFA) in order to increase pH and enhance methane production during the anaerobic phase; for this reason, air injection was stopped only when these parameters reached the optimum range for methanogenic bacteria. Biogas and leachate were constantly monitored throughout the entire methanogenic phase with the aim of calibrating a Gompertz Model and evaluating the effects of pre-aeration on subsequent methane production. The results showed that moderate and intermittent pre-aeration produces a positive effect both on methane potential and in the kinetics of reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Assessment of Hyperspectral and SAR Remote Sensing for Solid Waste Landfill Management

    NASA Astrophysics Data System (ADS)

    Ottavianelli, Giuseppe; Hobbs, Stephen; Smith, Richard; Bruno, Davide

    2005-06-01

    Globally, waste management is one of the most critical environmental concerns that modern society is facing. Controlled disposal to land (landfill) is currently important, and due to the potentially harmful effects of gas emissions and leachate land contamination, the monitoring of a landfill is inherent in all phases of the site's life cycle. Data from satellite platforms can provide key support to a number of landfill management and monitoring practices, potentially reducing operational costs and hazards, and meeting the challenges of the future waste management agenda.The few previous studies performed show the value of EO data for mapping landcover around landfills and monitoring vegetation health. However, these were largely qualitative studies limited to single sensor types. The review of these studies highlights three key aspects. Firstly, with regard to leachate and gas monitoring, space-borne remote sensing has not proved to be a valid tool for an accurate quantitative analysis, it can only support ground remediation efforts based on the expertise of the visual interpreter and the knowledge of the landfill operator. Secondly, the additional research that focuses on landfill detection concentrates only on the images' data dimension (spatial and spectral), paying less attention to the sensor-independent bio- and geo-physical variables and the modelling of remote sensing physical principles for both active and restored landfill sites. These studies show some ambiguity in their results and additional aerial images or ground truth visits are always required to support the results. Thirdly, none of the studies explores the potential of Synthetic Aperture Radar (SAR) remote sensing and SAR interferometric processing to achieve a more robust automatic detection algorithm and extract additional information and knowledge for landfill management.Based on our previous work with ERS radar images and SAR interferometry, expertise in the waste management sector, and

  7. Impact of vent pipe diameter on characteristics of waste degradation in semi-aerobic bioreactor landfill.

    PubMed

    Jiang, Guobin; Liu, Dan; Chen, Weiming; Ye, Zhicheng; Liu, Hong; Li, Qibin

    2017-10-01

    The evolution mechanism of a vent pipe diameter on a waste-stabilization process in semi-aerobic bioreactor landfills was analyzed from the organic-matter concentration, biodegradability, spectral characteristics of dissolved organic matter, correlations and principal-component analysis. Waste samples were collected at different distances from the vent pipe and from different landfill layers in semi-aerobic bioreactor landfills with different vent pipe diameters. An increase in vent pipe diameter favored waste degradation. Waste degradation in landfills can be promoted slightly when the vent pipe diameter increases from 25 to 50 mm. It could be promoted significantly when the vent pipe diameter was increased to 75 mm. The vent pipe diameter is important in waste degradation in the middle layer of landfills. The dissolved organic matter in the waste is composed mainly of long-wave humus (humin), short-wave humus (fulvic acid) and tryptophan. The humification levels of the waste that was located at the center of vent pipes with 25-, 50- and 75-mm diameters were 2.2682, 4.0520 and 7.6419 Raman units, respectively. The appropriate vent pipe diameter for semi-aerobic bioreactor landfills with an 800-mm diameter was 75 mm. The effect of different vent pipe diameters on the degree of waste stabilization is reflected by two main components. Component 1 is related mainly to the content of fulvic acid, biologically degradable material and organic matter. Component 2 is related mainly to the content of tryptophan and humin from the higher vascular plants.

  8. Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells.

    PubMed

    Abichou, Tarek; Barlaz, Morton A; Green, Roger; Hater, Gary

    2013-10-01

    The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213LMg(-1) (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198LMg(-1) from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10(-8) to 10(-7)ms(-1) which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12LMg(-1), respectively, was similar to the measured settlement of 15% and 5

  9. The current municipal solid waste management situation in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Jianguo; Lou Zhiying; Ng Silo

    The Tibetan Plateau has an average altitude of more than 4,000 m. The total area of Tibetan Plateau is 2,400,000 km{sup 2}, which occupies 25% of the area of China. Due to the high altitude, the environment has low atmospheric pressure, low oxygen content, and low temperature, and is also fragile. Investigations concerning MSW generation and characteristics, MSW management, collection and transportation, and treatment and disposal of MSW covered four representative cities, including the urban areas of Lhasa city, Shigatse, Nedong of Lhoka and Bayi of Nyingtri. The results show that MSW generation in the urban areas of Lhasa citymore » and Tibet were 450 t/d and 3,597 t/d, respectively, in 2006. However, accelerated economic development and flourishing tourism caused by the opening of the Qinghai-Tibet Railway (QTR) have greatly increased solid waste generation to a new high. It is predicted that MSW generation in Tibet will reach 4,026 t/d in 2010 and 4,942 t/d in 2020. MSW management and disposal lag behind MSW generation due to a number of factors such as equipment shortage, insufficient maintenance, exhaustion of waste treatment capacity and low recycling efficiency. Still, MSW in most areas is dumped in the open with no controls. Because no appropriate collection and treatment systems for leachate and landfill gas exist, untreated leachate is discharged directly into the environment, causing serious secondary pollution. Some suggestions on improving the MSW management system are presented in this paper.« less

  10. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  11. Investigating landfill leachate as a source of trace organic pollutants.

    PubMed

    Clarke, Bradley O; Anumol, Tarun; Barlaz, Morton; Snyder, Shane A

    2015-05-01

    Landfill leachate samples (n=11) were collected from five USA municipal solid waste (MSW) landfills and analyzed for ten trace organic pollutants that are commonly detected in surface and municipal wastewater effluents (viz., carbamazepine, DEET, fluoxetine, gemfibrozil, PFOA, PFOS, primidone, sucralose, sulfamethoxazole and trimethoprim). Carbamazepine, DEET, PFOA and primidone were detected in all leachate samples analyzed and gemfibrozil was detected in samples from four of the five-landfill sites. The contaminants found in the highest concentrations were DEET (6900-143000 ng L(-1)) and sucralose (<10-621000 ng L(-1)). Several compounds were not detected (fluoxetine) or detected infrequently (sulfamethoxazole, trimethoprim and PFOS). Using the average mass of DEET in leachate amongst the five landfills and scaling the mass release from the five test landfills to the USA population of landfills, an order of magnitude estimate is that over 10000 kg DEET yr(-1) may be released in leachate. Some pharmaceuticals have similar annual mean discharges to one another, with the estimated annual discharge of carbamazepine, gemfibrozil, primidone equating to 53, 151 and 128 kg year(-1). To the authors knowledge, this is the first time that primidone has been included in a landfill leachate study. While the estimates developed in this study are order of magnitude, the values do suggest the need for further research to better quantify the amount of chemicals sent to wastewater treatment facilities with landfill leachate, potential impacts on treatment processes and the significance of landfill leachate as a source of surface water contamination. Copyright © 2015. Published by Elsevier Ltd.

  12. Methane production from food waste leachate in laboratory-scale simulated landfill.

    PubMed

    Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck

    2010-01-01

    Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. 2010 Elsevier Ltd. All rights reserved.

  13. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    PubMed

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  14. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    PubMed

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.

  15. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictionsmore » about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.« less

  16. Growth behavior studies of bread wheat plant exposed to municipal landfill leachate.

    PubMed

    Mor, Suman; Kaur, Kamalpreet; Khaiwal, Ravindra

    2013-11-01

    Pot experiments were carried out to study the effect of different dilutions of leachate generated from municipal solid waste (MSW) landfill on bread wheat (Triticum aestivum). Eight treatment groups with different concentrations (0-100%) of leachate were prepared and treatments were given to the plants till they reached complete vegetative phase (45 days). The growth performances of wheat plants were assessed in terms of various parameters such as shoot and root length, dry biomass and chlorophyll content. Plants treated with higher concentrations of leachate (75% and 100%) showed higher growth (2.5 and 6%) and 100% survival rate as compared to control. However, high shoot weight (0.028 and 0.030 gm) and high chlorophyll content (213 and 230%) was reported in 30 and 40% leachate treatment as compared to control. Some symptoms of stress (discoloration of leaf blade, wilting and yellowing of plants) were also observed in plants, which could be related to the presence of high concentration of salts in the leachate. The current study suggests that MSW landfill leachate is rich in nutrients and can be used as fertilizer but before its application, the salinity level and concentration of toxic metals present in leachate should be considered in accordance with the tolerance ability of any plant.

  17. Secondary Aluminum Processing Waste: Baghouse Dust Characterization and Reactivity

    EPA Science Inventory

    Results presented in this document are of particular importance when trying to understand concerns associated with the disposal of BHD in MSW landfills. The MSW decomposition process is exothermic, creating landfill temperatures that are typically greater than 37° C with the pos...

  18. Bridging legal and economic perspectives on interstate municipal solid waste disposal in the US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Christine, E-mail: Christine.L.Longo@irs.gov; Wagner, Jeffrey, E-mail: jeffrey.wagner@rit.edu

    Research highlights: {yields} Legal and economic opinions of free interstate trade of MSW in the US are reviewed. {yields} Economic theory of landfill space as the article of commerce can align opinions. {yields} Waste management policies implied by this economic theory are compared/contrasted. - Abstract: Managing municipal solid waste (MSW) within and across regions is a complex public policy problem. One challenge regards conceptualizing precisely what commodity is to be managed across space and time. The US Supreme Court view is that waste disposal is the article of commerce per se. Some justices, however, have argued that while waste disposalmore » is the article of commerce, its interstate flow could be impeded by states on the grounds that they have the authority to regulate natural resource quality within their boundaries. The argument in this paper is that adopting the economic theory view of the article of commerce as landfill space brings the majority and dissenting US Supreme Court views-and the resulting sides of the public policy dispute-into closer alignment. We discuss waste management policy tools that emerge from this closer alignment that are more likely to both withstand judicial scrutiny and achieve economic efficiency.« less

  19. Quantification of regional leachate variance from municipal solid waste landfills in China.

    PubMed

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter; Shao, Li-Ming; He, Pin-Jing

    2015-12-01

    The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese waste. The two sources depended on climate conditions and waste characteristics, respectively, which both varied in different regions. In this study, 31 Chinese cities were investigated and classified into three geographic regions according to landfill leachate generation performance: northwestern China (China-NW) with semi-arid and temperate climate and waste moisture content of about 46.0%, northern China (China-N) with semi-humid and temperate climate and waste moisture content of about 58.2%, and southern China (China-S) with humid and sub-tropical/tropical climate and waste moisture content of about 58.2%. In China-NW, accumulated leachate amounts were very low and mainly the result of waste degradation, implying on-site spraying/irrigation or recirculation may be an economic approach to treatment. In China-N, water squeezed out of waste by compaction totaled 22-45% of overall leachate amounts in the first 40 years, so decreasing the initial moisture content of waste arriving at landfills could reduce leachate generation. In China-S, the leachate generated by infiltrated precipitation after HDPE geomembranes in top cover started failing, contributed more than 60% of the overall amounts over 100 years of landfilling. Therefore, the quality and placing of HDPE geomembranes in the top cover should be controlled strictly for the purpose of mitigation leachate generation

  20. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    PubMed

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills. © The Author(s) 2014.

  1. Atmospheric pollution problems and control proposals associated with solid waste management in China: a review.

    PubMed

    Tian, Hezhong; Gao, Jiajia; Hao, Jiming; Lu, Long; Zhu, Chuanyong; Qiu, Peipei

    2013-05-15

    Along with population growth, rapid urbanization and industrialization process, the volume of municipal solid waste (MSW) generation in China has been increasing sharply in the past 30 years and the total amount of MSW yields will continue to increase. Nowadays, due to global warming warrants particular attention throughout the world, a series of air pollutants (including greenhouse gases, odorous gases, PCDD/Fs, heavy metals, PM, etc.) discharged from waste disposal and treatment processes have become one of the new significant emerging air pollution sources, which arousing great concerns about their adverse effects on surrounding ambient air quality and public health. At present, the overall safely disposed ratio of the collected MSW in China is reported at approximately 78% in 2010, and there are mainly three types of MSW disposal methods practiced in China, including landfill, composting and incineration. The characteristics of air pollutants and greenhouse gases discharge vary substantially among different MSW disposal methods. By presenting a thorough review of MSW generation in China and providing a summarization of the current status of MSW disposal methods practices, this review article makes an integrated overview analysis of existing air pollution problems associated with MSW collection, separation, and disposal processes. Furthermore, some comprehensive control proposals to prevent air pollution for improving MSW management of China in the future are put forward. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Integrated waste management as a climate change stabilization wedge.

    PubMed

    Bahor, Brian; Van Brunt, Michael; Stovall, Jeff; Blue, Katherine

    2009-11-01

    Anthropogenic sources of greenhouse gas emissions are known to contribute to global increases in greenhouse gas concentrations and are widely believed to contribute to climate change. A reference carbon dioxide concentration of 383 ppm for 2007 is projected to increase to a nominal 500 ppm in less than 50 years according to business as usual models. This concentration change is equivalent to an increase of 7 billion tonnes of carbon per year (7 Gt C year(-1)). The concept of a stabilization wedge was introduced by Pacala and Socolow (Science, 305, 968-972, 2004) to break the 7 Gt C year(- 1) into more manageable 1 Gt C year(- 1) reductions that would be achievable with current technology. A total of fifteen possible 'wedges' were identified; however, an integrated municipal solid waste (MSW) management system based on the European Union's waste management hierarchy was not evaluated as a wedge. This analysis demonstrates that if the tonnage of MSW is allocated to recycling, waste to energy and landfilling in descending order in lieu of existing 'business-as-usual' practices with each option using modern technology and best practices, the system would reduce greenhouse gas emissions by more than 1 Gt C year( -1). This integrated waste management system reduces CO(2) by displacing fossil electrical generation and avoiding manufacturing energy consumption and methane emissions from landfills.

  3. Analysis of Multi-Criteria Evaluation Method of Landfill Site Selection for Municipal Solid Waste Management

    NASA Astrophysics Data System (ADS)

    Mohammed, Habiba Ibrahim; Majid, Zulkepli; Yusof, Norhakim Bin; Bello Yamusa, Yamusa

    2018-03-01

    Landfilling remains the most common systematic technique of solid waste disposal in most of the developed and developing countries. Finding a suitable site for landfill is a very challenging task. Landfill site selection process aims to provide suitable areas that will protect the environment and public health from pollution and hazards. Therefore, various factors such as environmental, physical, socio-economic, and geological criteria must be considered before siting any landfill. This makes the site selection process vigorous and tedious because it involves the processing of large amount of spatial data, rules and regulations from different agencies and also policy from decision makers. This allows the incorporation of conflicting objectives and decision maker preferences into spatial decision models. This paper particularly analyzes the multi-criteria evaluation (MCE) method of landfill site selection for solid waste management by means of literature reviews and surveys. The study will help the decision makers and waste management authorities to choose the most effective method when considering landfill site selection.

  4. [Research advances in control of N2O emission from municipal solid waste landfill sites].

    PubMed

    Cai, Chuan-Yu; Li, Bo; Lü, Hao-Hao; Wu, Wei-Xiang

    2012-05-01

    Landfill is one of the main approaches for municipal solid waste treatment, and landfill site is a main emission source of greenhouse gases nitrous oxide (N2O) and methane (CH4). As a high-efficient trace greenhouse gas, N2O has a very high warming potential, with a warming capacity 296 times of CO2, and has a long-term stability in atmosphere, giving greater damage to the ozone layer. Aiming at the researches in the control of N2O emission from municipal solid waste landfill sites, this paper summarized the characteristics and related affecting factors of the N2O emission from the landfill sites, and put forward a series of the measures adaptable to the N2O emission control of present municipal solid waste landfill sites in China. Some further research focuses on the control of N2O emission from the landfill sites were also presented.

  5. Performance evaluation of the bioreactor landfill in treatment and stabilisation of mechanically biologically treated municipal solid waste.

    PubMed

    Lakshmikanthan, P; Sivakumar Babu, G L

    2017-03-01

    The potential of bioreactor landfills to treat mechanically biologically treated municipal solid waste is analysed in this study. Developing countries like India and China have begun to investigate bioreactor landfills for municipal solid waste management. This article describes the impacts of leachate recirculation on waste stabilisation, landfill gas generation, leachate characteristics and long-term waste settlement. A small-scale and large-scale anaerobic cell were filled with mechanically biologically treated municipal solid waste collected from a landfill site at the outskirts of Bangalore, India. Leachate collected from the same landfill site was recirculated at the rate of 2-5 times a month on a regular basis for 370 days. The total quantity of gas generated was around 416 L in the large-scale reactor and 21 L in the small-scale reactor, respectively. Differential settlements ranging from 20%-26% were observed at two different locations in the large reactor, whereas 30% of settlement was observed in the small reactor. The biological oxygen demand/chemical oxygen demand (COD) ratio indicated that the waste in the large reactor was stabilised at the end of 1 year. The performance of the bioreactor with respect to the reactor size, temperature, landfill gas and leachate quality was analysed and it was found that the bioreactor landfill is efficient in the treatment and stabilising of mechanically biologically treated municipal solid waste.

  6. CH4 emission and recovery from municipal solid waste in China.

    PubMed

    Xu, Xin-Hua; Yang, Yue-Ping; Wang, Da-Hui

    2003-01-01

    Methane ( CH4) is an important greenhouse gas and a major environmental pollutant, second only to carbon dioxide (CO2) in its contribution to potential global warming. In many cases, methane emission from landfills otherwise emitted to the atmosphere can be removed and utilized, or significantly reduced in quantity by using coat-effective management methods. The gas can also be used as a residential, commercial, or industrial fuel. Therefore, emission reduction strategies have the potential to become low cost, or even profitable. The annual growth rate of Municipal Solid Waste (MSW) output in China is 6.24%, with the highest levels found in South China, Southwest China and East China. Cities and towns are developing quickly in these regions. MSW output was only 76.36 Mt in 1991 and increased to 109.82 Mt in 1997, registering an average increase of 43.8% . In China, methane emission from landfills also increased from 5.88 Mt in 1991 to 8.46 Mt in 1997; so the recovery of methane from landfills is a profitable project.

  7. Mechanical properties of Municipal Solid Waste by SDMT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelli, Francesco, E-mail: francesco.castelli@unikore.it; Maugeri, Michele

    2014-02-15

    Highlights: • The adoption of the SDMT for the measurements of MSW properties is proposed. • A comparison between SDMT results and laboratory tests was carried out. • A good reliability has been found in deriving waste properties by SDMT. • Results seems to be promising for the friction angle and Young’s modulus evaluation. - Abstract: In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the “Cozzo Vuturo” landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale onemore » dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for “fresh” and “degraded waste” have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.« less

  8. Life cycle and economic assessment of source-separated MSW collection with regard to greenhouse gas emissions: a case study in China.

    PubMed

    Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao

    2013-08-01

    In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.

  9. Metals and polybrominated diphenyl ethers leaching from electronic waste in simulated landfills.

    PubMed

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H

    2013-05-15

    Landfills established prior to the recognition of potential impacts from the leaching of heavy metals and toxic organic compounds often lack appropriate barriers and pose significant risks of contamination of groundwater. In this study, bioavailable metal(oids) and polybrominated diphenyl ethers (PBDEs) in leachates from landfill columns that contained intact or broken e-waste were studied under conditions that simulate landfills in terms of waste components and methods of disposal of e-wastes, and with realistic rainfall. Fourteen elements and PBDEs were analysed in leachates over a period of 21 months. The results demonstrate that the average concentrations of Al, Ba, Be, Cd, Co, Cr, Cu, Ni, Pb, Sb and V in leachates from the column that contained broken e-waste items were significantly higher than the column without e-waste. BDE-153 was the highest average PBDEs congener in all columns but the average of ∑PBDEs levels in columns that contained intact e-waste were (3.7 ng/l) and were not significantly higher than that in the leachates from the control column. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Slope failures in municipal solid waste dumps and landfills: a review.

    PubMed

    Blight, Geoffrey

    2008-10-01

    Between 1977 and 2005 six large-scale failures of municipal solid waste dumps and landfills have been recorded in the technical literature. The volumes of waste mobilized in the failures varied from 10-12 000 m(3) in a failure that killed nearly 300 people to 1.5 million m(3) in a failure that caused no deaths or injuries. Of the six failures, four occurred in dumps that, as far as is known, had not been subjected to any prior technical investigation of their shear stability. The remaining two failures occurred in engineer-designed landfills, one of which practised leachate recirculation, and the other co-disposed of liquid waste along with solid waste. The paper reviews, describes and analyses the failures and summarizes their causes.

  11. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.

    PubMed

    Townsend, Aaron K; Webber, Michael E

    2012-07-01

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model.

    PubMed

    Aghajani Mir, M; Taherei Ghazvinei, P; Sulaiman, N M N; Basri, N E A; Saheri, S; Mahmood, N Z; Jahan, A; Begum, R A; Aghamohammadi, N

    2016-01-15

    Selecting a suitable Multi Criteria Decision Making (MCDM) method is a crucial stage to establish a Solid Waste Management (SWM) system. Main objective of the current study is to demonstrate and evaluate a proposed method using Multiple Criteria Decision Making methods (MCDM). An improved version of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) applied to obtain the best municipal solid waste management method by comparing and ranking the scenarios. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Besides, Viekriterijumsko Kompromisno Rangiranje (VIKOR) compromise solution method applied for sensitivity analyses. The proposed method can assist urban decision makers in prioritizing and selecting an optimized Municipal Solid Waste (MSW) treatment system. Besides, a logical and systematic scientific method was proposed to guide an appropriate decision-making. A modified TOPSIS methodology as a superior to existing methods for first time was applied for MSW problems. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Next, 11 scenarios of MSW treatment methods are defined and compared environmentally and economically based on the waste management conditions. Results show that integrating a sanitary landfill (18.1%), RDF (3.1%), composting (2%), anaerobic digestion (40.4%), and recycling (36.4%) was an optimized model of integrated waste management. An applied decision-making structure provides the opportunity for optimum decision-making. Therefore, the mix of recycling and anaerobic digestion and a sanitary landfill with Electricity Production (EP) are the preferred options for MSW management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. GUIDANCE FOR LANDFILLING WASTE IN ECONOMICALLY DEVELOPING COUNTRIES

    EPA Science Inventory

    The report offers guidance on all aspects of the planning, design, and implementation of landfills in economically developing countries. The intended audience includes municipal officials, solid waste managers, engineers, and planners. The report's 18 chapters include critical ...

  14. Life in a landfill slum, children's health, and the Millennium Development Goals.

    PubMed

    Shibata, Tomoyuki; Wilson, James L; Watson, Lindsey M; Nikitin, Ivan V; Ansariadi; La Ane, Ruslan; Maidin, Alimin

    2015-12-01

    People living in slums can be considered left behind with regard to national successes in achieving Millennium Development Goals (MDGs). The objective of this study was to evaluate the living and working conditions of waste pickers and their children in a landfill slum located in the largest city in eastern Indonesia. A total of 113 people from the landfill slum and 1184 people from the general population participated in face-to-face interviews. Municipal solid waste (MSW) was analyzed for metals, metalloids and fecal indicator bacteria. Ambient air quality including particulate matter was measured in the landfill. Households in the landfill slum were 5.73 (p=0.04) times more likely to be below the international poverty line (MDG 1: Poverty) and 15.6 times (p<0.01) more likely to have no one in the household possessing a primary education (MDG 2: Universal Education), and 107 times (p<0.01) more likely not to have improved sanitation facilities (MDG 7: Environmental Sustainability) when compared to the general population. Diarrhea is one of the leading causes of death in children under five in Indonesia. Young children living in the landfill slum were 2.87 times (p=0.02) more likely to develop diarrhea than their general population counterparts. Other survey results and environmental measurements suggest that landfill slum children have additional adverse health effects (e.g. infections and poisoning). Poverty underlies several MDG issues that directly or indirectly affect child health. Therefore, eradicating extreme poverty will continue to be the most critical challenge for the MDGs beyond 2015. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  16. Influence assessment of a lab-scale ripening process on the quality of mechanically-biologically treated MSW for possible recovery.

    PubMed

    Di Lonardo, Maria Chiara; Binner, Erwin; Lombardi, Francesco

    2015-09-01

    In this study, the influence of an additional ripening process on the quality of mechanically-biologically treated MSW was evaluated in the prospective of recovering the end material, rather than landfilling. The biostabilised waste (BSW) coming from one of the MBT plants of Rome was therefore subjected to a ripening process in slightly aerated lab test cells. An in-depth investigation on the biological reactivity was performed by means of different types of tests (aerobic and anaerobic biological tests, as well as FT-IR spectroscopy method). A physical-chemical characterisation of waste samples progressively taken during the ripening phase was carried out, as well. In addition, the ripened BSW quality was assessed by comparing the characteristics of a compost sampled at the composting plant of Rome which treat source segregated organic wastes. Results showed that the additional ripening process allowed to obtain a better quality of the biostabilised waste, by achieving a much higher biological stability compared to BSW as-received and similar to that of the tested compost. An important finding was the lower heavy metals (Co, Cr, Cu, Ni, Pb and Zn) release in water phase at the end of the ripening compared to the as-received BSW, showing that metals were mainly bound to solid organic matter. As a result, the ripened waste, though not usable in agriculture as found for the compost sample, proved anyhow to be potentially suitable for land reclamation purposes, such as in landfills as cover material or mixed with degraded and contaminated soil for organic matter and nutrients supply and for metals recovery, respectively. In conclusion the study highlights the need to extend and optimise the biological treatment in the MBT facilities and opens the possibility to recover the output waste instead of landfilling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of quantity and composition of waste on the prediction of annual methane potential from landfills.

    PubMed

    Cho, Han Sang; Moon, Hee Sun; Kim, Jae Young

    2012-04-01

    A study was conducted to investigate the effect of waste composition change on the methane production in landfills. An empirical equation for the methane potential of the mixed waste is derived based on the methane potential values of individual waste components and the compositional ratio of waste components. A correction factor was introduced in the equation and was determined from the BMP and lysimeter tests. The equation and LandGEM were applied for a full size landfill and the annual methane potential was estimated. Results showed that the changes in quantity of waste affected the annual methane potential from the landfill more than the changes of waste composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. 40 CFR 63.1930 - What is the purpose of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants: Municipal Solid Waste Landfills What This Subpart Covers § 63.1930... air pollutants for existing and new municipal solid waste (MSW) landfills. This subpart requires all...

  19. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastesmore » for disposal.« less

  20. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion.

    PubMed

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-01

    Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21days (GP21) and respiration activity over 4days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due

  1. Modeling the economics of landfilling organic processing waste streams

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2005-11-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector are many examples of various liquid, sludge, and solid biological and organic waste streams that require remediation. Alternative disposal methods for food and other bio-organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. Landfilling, the traditional approach to waste remediation, however, should not be dismissed entirely. It does provide a baseline to which all other recycling and reprocessing options should be compared. This paper discusses the implementation of a computer model designed to examine the economics of landfilling bio-organic processing waste streams. Not only are these results applicable to food processing operations, but any industrial or manufacturing firm would benefit from examining the trends discussed here.

  2. Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China.

    PubMed

    Wu, Dong; Huang, Zhiting; Yang, Kai; Graham, David; Xie, Bing

    2015-04-07

    Many studies have quantified antibiotics and antibiotic resistance gene (ARG) levels in soils, surface waters, and waste treatment plants (WTPs). However, similar work on municipal solid waste (MSW) landfill leachates is limited, which is concerning because antibiotics disposal is often in the MSW stream. Here we quantified 20 sulfonamide (SA), quinolone (FQ), tetracycline (TC), macrolide (ML), and chloramphenicol (CP) antibiotics, and six ARGs (sul1, sul2, tetQ, tetM, ermB, and mefA) in MSW leachates from two Shanghai transfer stations (TS; sites Hulin (HL) and Xupu (XP)) and one landfill reservoir (LR) in April and July 2014. Antibiotic levels were higher in TS than LR leachates (985 ± 1965 ng/L vs 345 ± 932 ng/L, n = 40), which was because of very high levels in the HL leachates (averaging at 1676 ± 5175 ng/L, n = 40). The mean MLs (3561 ± 8377 ng/L, n = 12), FQs (975 ± 1608 ng/L, n = 24), and SAs (402 ± 704 ng/L, n = 42) classes of antibiotics were highest across all samples. ARGs were detected in all leachate samples with normalized sul2 and ermB levels being especially elevated (-1.37 ± 1.2 and -1.76 ± 1.6 log (copies/16S-rDNA), respectively). However, ARG abundances did not correlate with detected antibiotic levels, except for tetW and tetQ with TC levels (r = 0.88 and 0.81, respectively). In contrast, most measured ARGs did significantly correlate with heavy metal levels (p < 0.05), especially with Cd and Cr. This study shows high levels of ARGs and antibiotics can prevail in MSW leachates and landfills may be an underappreciated as a source of antibiotics and ARGs to the environment.

  3. Factors affecting the shear strength behavior of municipal solid wastes.

    PubMed

    Pulat, Hasan Firat; Yukselen-Aksoy, Yeliz

    2017-11-01

    In this study, the shear strength behavior of European (E-1), Turkey (T-1), and United States of America (U-1) average synthetic municipal solid waste (MSW) compositions were investigated. The large-scale direct shear tests were conducted using fresh and aged MSW samples collected from the Manisa Landfill. The natural samples' test results were compared with synthetic samples. The affecting factors such as ageing, waste composition, and waste type (synthetic and natural) on the shear strength of MSWs were investigated. The effect of composition was evaluated using three main and six modified synthetic MSW compositions. In addition to the synthetic fresh MSW samples, synthetic aged samples were also used. Angle of shearing resistance decreased with increasing organic content whereas cohesion intercept increased with increasing organic content. The fresh and aged wastes with higher coarse fraction lead to a higher angle of shearing resistance. The synthetic aged samples had higher internal friction angles but lower cohesion values than the synthetic fresh samples. Waste with average European composition had the highest internal friction angle as it has the highest fibrous content. On the other hand, the highest cohesion belonged to the Turkey composition, which had the highest organic matter ratio. The main differences between E-1, T-1 and U-1 samples in terms of compositions were observed. The results of this study indicated that shear strength of waste significantly depends on composition and hence a site specific evaluation is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Applicability of leachates originating from solid-waste landfills for irrigation in landfill restoration projects.

    PubMed

    Erdogan, Reyhan; Zaimoglu, Zeynep; Sucu, M Yavuz; Budak, Fuat; Kekec, Secil

    2008-09-01

    Since, landfill areas are still the most widely used solid waste disposal method across the world, leachate generated from landfills should be given importance. Leachate of landfills exerts environmental risks mostly on surface and groundwater with its high pollutant content, which may cause unbearable water quality. This leads to the obligation for decontamination and remediation program to be taken into progress for the landfill area. Among a number of alternatives to cope with leachate, one is to employ the technology of phytoremediation. The main objective of this study was to determine the N accumulation ratios and the effects of landfill leachate in diluted proportions of chosen ratios (as 1/1, 1/2, 1/4, 0), on the growth and development of Cynodon dactylon, Stenotaphrum secundatum, Paspalum notatum, Pennisetum clandestinum, Mentha piperita, Rosmarinus officinalis, Nerium oleander, Pelargonium peltatum and Kochia scoparia species. In order to simulate the actual conditions of the landfill, soil covering the landfill is taken and used as medium for the trials. The study showed that S. secundatum, K. scoparia and N. oleander species had an impressive survival rate of 100%, being irrigated with pure leachate, while the others' survival rates were between 0 to 35% under the same conditions. As expected, application of leachate to the plants caused an increase in the accumulation of N, in the upper parts of all plants except P. peltatum. The highest N content increase was observed at S. Secundatum set, accumulating 3.70 times higher than its control set, whereas P. clandestinum value was 3.41 times of its control set.

  5. Statistical analysis in MSW collection performance assessment.

    PubMed

    Teixeira, Carlos Afonso; Avelino, Catarina; Ferreira, Fátima; Bentes, Isabel

    2014-09-01

    The increase of Municipal Solid Waste (MSW) generated over the last years forces waste managers pursuing more effective collection schemes, technically viable, environmentally effective and economically sustainable. The assessment of MSW services using performance indicators plays a crucial role for improving service quality. In this work, we focus on the relevance of regular system monitoring as a service assessment tool. In particular, we select and test a core-set of MSW collection performance indicators (effective collection distance, effective collection time and effective fuel consumption) that highlights collection system strengths and weaknesses and supports pro-active management decision-making and strategic planning. A statistical analysis was conducted with data collected in mixed collection system of Oporto Municipality, Portugal, during one year, a week per month. This analysis provides collection circuits' operational assessment and supports effective short-term municipality collection strategies at the level of, e.g., collection frequency and timetables, and type of containers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report

    EPA Science Inventory

    Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...

  7. EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash.

    PubMed

    Donatello, S; Tyrer, M; Cheeseman, C R

    2010-01-01

    A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.

  8. Using multivariate regression modeling for sampling and predicting chemical characteristics of mixed waste in old landfills.

    PubMed

    Brandstätter, Christian; Laner, David; Prantl, Roman; Fellner, Johann

    2014-12-01

    Municipal solid waste landfills pose a threat on environment and human health, especially old landfills which lack facilities for collection and treatment of landfill gas and leachate. Consequently, missing information about emission flows prevent site-specific environmental risk assessments. To overcome this gap, the combination of waste sampling and analysis with statistical modeling is one option for estimating present and future emission potentials. Optimizing the tradeoff between investigation costs and reliable results requires knowledge about both: the number of samples to be taken and variables to be analyzed. This article aims to identify the optimized number of waste samples and variables in order to predict a larger set of variables. Therefore, we introduce a multivariate linear regression model and tested the applicability by usage of two case studies. Landfill A was used to set up and calibrate the model based on 50 waste samples and twelve variables. The calibrated model was applied to Landfill B including 36 waste samples and twelve variables with four predictor variables. The case study results are twofold: first, the reliable and accurate prediction of the twelve variables can be achieved with the knowledge of four predictor variables (Loi, EC, pH and Cl). For the second Landfill B, only ten full measurements would be needed for a reliable prediction of most response variables. The four predictor variables would exhibit comparably low analytical costs in comparison to the full set of measurements. This cost reduction could be used to increase the number of samples yielding an improved understanding of the spatial waste heterogeneity in landfills. Concluding, the future application of the developed model potentially improves the reliability of predicted emission potentials. The model could become a standard screening tool for old landfills if its applicability and reliability would be tested in additional case studies. Copyright © 2014 Elsevier Ltd

  9. Remote sensing investigations at a hazardous-waste landfill

    USGS Publications Warehouse

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  10. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK.

    PubMed

    Frank, R R; Cipullo, S; Garcia, J; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2017-05-01

    The aim of this study was to evaluate the spatial distribution of the paper and fines across seven landfill sites (LFS) and assess the relationship between waste physicochemical properties and biogas production. Physicochemical analysis of the waste samples demonstrated that there were no clear trends in the spatial distribution of total solids (TS), moisture content (MC) and waste organic strength (VS) across all LFS. There was however noticeable difference between samples from the same landfill site. The effect of landfill age on waste physicochemical properties showed no clear relationship, thus, providing evidence that waste remains dormant and non-degraded for long periods of time. Landfill age was however directly correlated with the biochemical methane potential (BMP) of waste; with the highest BMP obtained from the most recent LFS. BMP was also correlated with depth as the average methane production decreased linearly with increasing depth. There was also a high degree of correlation between the Enzymatic Hydrolysis Test (EHT) and BMP test results, which motivates its potential use as an alternative to the BMP test method. Further to this, there were also positive correlations between MC and VS, VS and biogas volume and biogas volume and CH 4 content. Outcomes of this work can be used to inform waste degradation and methane enhancement strategies for improving recovery of methane from landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Biodegradability of degradable plastic waste.

    PubMed

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  13. Scenario analysis of the benefit of municipal organic-waste composting over landfill, Cambodia.

    PubMed

    Seng, Bunrith; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Ochiai, Satoru; Kaneko, Hidehiro

    2013-01-15

    This paper presents insight into the benefits of organic waste recycling through composting over landfill, in terms of landfill life extension, compost product, and mitigation of greenhouse gases (GHGs). Future waste generation from 2003 to 2020 was forecast, and five scenarios of organic waste recycling in the municipality of Phnom Penh (MPP), Cambodia, were carried out. Organic waste-specifically food and garden waste-was used for composting, and the remaining waste was landfilled. The recycling scenarios were set based on organic waste generated from difference sources: households, restaurants, shops, markets, schools, hotels, offices, and street sweeping. Through the five scenarios, the minimum volume reductions of waste disposal were about 56, 123, and 219 m(3) d(-1) in 2003, 2012, and 2020, respectively, whereas the maximum volume reductions in these years were about 325, 643, and 1025 m(3) d(-1). These volume reductions reflect a landfill life extension of a minimum of half a year and a maximum of about four years. Compost product could be produced at a minimum of 14, 30, and 54 tons d(-1) in 2003, 2012, and 2020, respectively, and at a maximum in those years of about 80, 158, and 252 tons d(-1). At the same time benefit is gained in compost product, GHG emissions could be reduced by a minimum of 12.8% and a maximum of 65.0% from 2003 to 2020. This means about 3.23 (minimum) and 5.79 million tons CO(2)eq (maximum) contributed to GHG mitigation. In this regard, it is strongly recommended that MPP should try to initiate an organic-waste recycling strategy in a best fit scenario. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Food waste collection and recycling for value-added products: potential applications and challenges in Hong Kong.

    PubMed

    Lo, Irene M C; Woon, Kok Sin

    2016-04-01

    About 3600 tonnes food waste are discarded in the landfills in Hong Kong daily. It is expected that the three strategic landfills in Hong Kong will be exhausted by 2020. In consideration of the food waste management environment and community needs in Hong Kong, as well as with reference to the food waste management systems in cities such as Linköping in Sweden and Oslo in Norway, a framework of food waste separation, collection, and recycling for food waste valorization is proposed in this paper. Food waste can be packed in an optic bag (i.e., a bag in green color), while the residual municipal solid waste (MSW) can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations, in which food waste is separated from the residual MSW using an optic sensor. On the one hand, the sorted food waste can be converted into valuable materials (e.g., compost, swine feed, fish feed). On the other hand, the sorted food waste can be sent to the proposed Organic Waste Treatment Facilities and sewage treatment works for producing biogas. The biogas can be recovered to produce electricity and city gas (i.e., heating fuel for cooking purpose). Due to the challenges faced by the value-added products in Hong Kong, the biogas is recommended to be upgraded as a biogas fuel for vehicle use. Hopefully, the proposed framework will provide a simple and effective approach to food waste separation at source and promote sustainable use of waste to resource in Hong Kong.

  15. Doublet tracer tests to determine the contaminant flushing properties of a municipal solid waste landfill.

    PubMed

    Woodman, N D; Rees-White, T C; Beaven, R P; Stringfellow, A M; Barker, J A

    2017-08-01

    This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5m and 20m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as ~0.02 (~4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting. Copyright © 2017. Published by Elsevier B.V.

  16. Doublet tracer tests to determine the contaminant flushing properties of a municipal solid waste landfill

    NASA Astrophysics Data System (ADS)

    Woodman, N. D.; Rees-White, T. C.; Beaven, R. P.; Stringfellow, A. M.; Barker, J. A.

    2017-08-01

    This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5 m and 20 m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as 0.02 ( 4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting.

  17. 40 CFR 62.9510 - Identification of sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.9510 Identification of sources. The plan applies to all existing MSW landfill facilities in Oregon meeting the requirements as...

  18. Mixed waste landfill corrective measures study final report Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James

    2004-03-01

    The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, themore » U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.« less

  19. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    PubMed

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  20. NPDES Permit for Transit Waste's Bondad Landfill in Colorado

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO-R050005, Transit Waste, LLC is authorized to discharge from the Bondad Landfill facility in La Plata County, Colorado, to an unnamed tributary of the Animas River.

  1. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at

    Highlights: ► Current data on in situ aeration effects from the first Austrian full-scale case study. ► Data on lasting waste stabilisation after aeration completion. ► Information on the transferability of results from lab- to full-scale aeration. - Abstract: Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfullymore » applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP{sub 21}) and respiration activity over 4 days (RA{sub 4}), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below

  2. 40 CFR 62.14351 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... volume design capacity of the landfill by either horizontal or vertical expansion based on its permitted... construction on the horizontal or vertical expansion. Municipal solid waste landfill or MSW landfill means an entire disposal facility in a contiguous geographical space where household waste is placed in or on land...

  3. 40 CFR 62.14351 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... volume design capacity of the landfill by either horizontal or vertical expansion based on its permitted... construction on the horizontal or vertical expansion. Municipal solid waste landfill or MSW landfill means an entire disposal facility in a contiguous geographical space where household waste is placed in or on land...

  4. 40 CFR 62.14351 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Solid Waste Landfills That Commenced Construction Prior to May 30, 1991 and Have Not Been Modified or... construction on the horizontal or vertical expansion. Municipal solid waste landfill or MSW landfill means an... construction or installation of the collection and control system. Complete on-site construction means that all...

  5. 40 CFR 62.14351 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Solid Waste Landfills That Commenced Construction Prior to May 30, 1991 and Have Not Been Modified or... construction on the horizontal or vertical expansion. Municipal solid waste landfill or MSW landfill means an... construction or installation of the collection and control system. Complete on-site construction means that all...

  6. 77 FR 39702 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Municipal Solid Waste... electronic docket, go to www.regulations.gov . Title: NESHAP for Municipal Solid Waste Landfills (Renewal... Emission Standards for Hazardous Air Pollutants (NESHAP) for Municipal Solid Waste (MSW) Landfills were...

  7. Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix.

    PubMed

    Sajjadi, Seyed Ali; Aliakbari, Zohreh; Matlabi, Mohammad; Biglari, Hamed; Rasouli, Seyedeh Samira

    2017-02-01

    An environmental impact assessment (EIA) before embarking on any project is a useful tool to reduce the potential effects of each project, including landfill, if possible. The main objective of this study was to assess the environmental impact of the current municipal solid waste disposal site of Gonabad by using the Iranian Leopold matrix method. This cross-sectional study was conducted to assess the environmental impacts of a landfill site in Gonabad in 2015 by an Iranian matrix (modified Leopold matrix). This study was conducted based on field visits of the landfill, and collected information from various sources and analyzing and comparing between five available options, including the continuation of the current disposal practices, construction of new sanitary landfills, recycling plans, composting, and incineration plants was examined. The best option was proposed to replace the existing landfill. The current approach has a score of 2.35, the construction of new sanitary landfill has a score of 1.59, a score of 1.57 for the compost plant, and recycling and incineration plant, respectively, have scores of 1.68 and 2.3. Results showed that continuation of the current method of disposal, due to severe environmental damage and health problems, is rejected. A compost plant with the lowest negative score is the best option for the waste disposal site of Gonabad City and has priority over the other four options.

  8. Enhanced Fuzzy-OWA model for municipal solid waste landfill site selection

    NASA Astrophysics Data System (ADS)

    Ahmad, Siti Zubaidah; Ahamad, Mohd Sanusi S.; Yusoff, Mohd Suffian; Abujayyab, Sohaib K. M.

    2017-10-01

    In Malaysia, the municipal solid waste landfill site is an essential facility that needs to be evaluated as its demand is infrequently getting higher. The increment of waste generation forces the government to cater the appropriate site for waste disposal. However, the selection process for new landfill sites is a difficult task with regard to land scarcity and time consumption. In addition, the complication will proliferate when there are various criteria to be considered. Therefore, this paper intends to show the significance of the fuzzy logic-ordered weighted average (Fuzzy-OWA) model for the landfill site suitability analysis. The model was developed to generalize the multi-criteria combination that was extended to the GIS applications as part of the decision support module. OWA has the capability to implement different combination operators through the selection of appropriate order weight that is possible in changing the form of aggregation such as minimum, intermediate and maximum types of combination. OWA give six forms of aggregation results that have their specific significance that indirectly evaluates the environmental, physical and socio-economic (EPSE) criteria respectively. Nevertheless, one of the aggregated results has shown similarity with the weighted linear combination (WLC) method.

  9. Photostabilization of a landfill containing coal combustion waste

    Treesearch

    Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake

    2005-01-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...

  10. Phytostabilization of a landfill containing coal combustion waste

    Treesearch

    Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake

    2005-01-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...

  11. 40 CFR Table Tt-1 to Subpart Tt of... - Default DOC and Decay Rate Values for Industrial Waste Landfills

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Industrial Waste Landfills TT Table TT-1 to Subpart TT of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Waste... for Industrial Waste Landfills Industry/Waste Type DOC(weight fraction, wet basis) k[dry climatea] (yr...

  12. 40 CFR Table Tt-1 to Subpart Tt of... - Default DOC and Decay Rate Values for Industrial Waste Landfills

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Industrial Waste Landfills TT Table TT-1 to Subpart TT of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Waste... for Industrial Waste Landfills Industry/Waste Type DOC(weight fraction, wet basis) k[dry climatea] (yr...

  13. Assessment of the disposal of radioactive petroleum industry waste in nonhazardous landfills using risk-based modeling.

    PubMed

    Smith, Karen P; Arnish, John J; Williams, Gustavious P; Blunt, Deborah L

    2003-05-15

    Certain petroleum production activities cause naturally occurring radioactive materials (NORM) to accumulate in concentrations above natural background levels, making safe and cost-effective management of such technologically enhanced NORM (TENORM) a key issue for the petroleum industry. As a result, both industry and regulators are interested in identifying cost-effective disposal alternatives that provide adequate protection of human health and the environment One such alternative, currently allowed in Michigan with restrictions, is the disposal of TENORM wastes in nonhazardous waste landfills. The disposal of petroleum industry wastes containing radium-226 (Ra-226) in nonhazardous landfills was modeled to evaluate the potential radiological doses and health risks to workers and the public. Multiple scenarios were considered in evaluating the potential risks associated with landfill operations and the future use of the property. The scenarios were defined, in part, to evaluate the Michigan policy; sensitivity analyses were conducted to evaluate the impact of key parameters on potential risks. The results indicate that the disposal of petroleum industry TENORM wastes in nonhazardous landfills in accordance with the Michigan policy and existing landfill regulations presents a negligible risk to most of the potential receptors considered in this study.

  14. Production of energy and high-value chemicals from municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colucci-Raeos, J.A.; Saliceti-Piazza, L.; Herncndez, A.

    1996-12-31

    Landfills have been used for decades in Puerto Rico as the only alternative for the disposal of municipal solid waste (MSW). In the present, 7,300 metric tons (8,000 tons) of MSW are generated on a daily basis, of which about 43% are generated in the San Juan Metropolitan Area. Garbage dumps in the Metropolitan Area have an estimated useful life of two years from now. Furthermore, Puerto Rico`s average daily per capita generation exceeds that of US and is almost as twice as that of Europe. A novel alternative for the disposal of MSW needs to be implemented. The Universitymore » of Puerto Rico (Department of Chemical Engineering), in a collaborative effort with the Sandia National Laboratory, the National Renewable Energy Laboratory, Puerto Rico`s Energy Affairs Administration, and the Institute of Chemical Engineers of Puerto Rico, have conceptualized a research program that would address the utilization of MSW and other agricultural residues for the generation of energy and/or high-value chemical products. The concept, {open_quotes}biorefinery{close_quotes} would consist of the collection of MSW and other agricultural wastes, separation of materials for recycling (glass, ceramics, metals), and use of gasification and/or hydrolysis of the screened material to produce energy and/or chemicals (such as alcohols and oxyaromatics).« less

  15. GUIDANCE AVAILABLE FOR LANDFILLING WASTE IN ECONOMICALLY DEVELOPING COUNTRIES

    EPA Science Inventory

    The paper provides a brief summary of a report that offers guidance on all aspects of the planning, design, and implementation of landfills in economically developing countries. The intended audience includes municipal officials, solid waste managers, engineers, and planners. T...

  16. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-04-15

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemispheremore » and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto

  17. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-waste landfill sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasbrouck, J.C.

    1992-11-01

    Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemicalmore » Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the 60's Pits'' area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP.« less

  19. Measuring Water in Bioreactor Landfills

    NASA Astrophysics Data System (ADS)

    Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

    2004-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water

  20. A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel

    NASA Astrophysics Data System (ADS)

    Hidayah, Nurul; Syafrudin

    2018-02-01

    Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.

  1. Does industrial waste taxation contribute to reduction of landfilled waste? Dynamic panel analysis considering industrial waste category in Japan.

    PubMed

    Sasao, Toshiaki

    2014-11-01

    Waste taxes, such as landfill and incineration taxes, have emerged as a popular option in developed countries to promote the 3Rs (reduce, reuse, and recycle). However, few studies have examined the effectiveness of waste taxes. In addition, quite a few studies have considered both dynamic relationships among dependent variables and unobserved individual heterogeneity among the jurisdictions. If dependent variables are persistent, omitted variables cause a bias, or common characteristics exist across the jurisdictions that have introduced waste taxes, the standard fixed effects model may lead to biased estimation results and misunderstood causal relationships. In addition, most existing studies have examined waste in terms of total amounts rather than by categories. Even if significant reductions in total waste amounts are not observed, some reduction within each category may, nevertheless, become evident. Therefore, this study analyzes the effects of industrial waste taxation on quantities of waste in landfill in Japan by applying the bias-corrected least-squares dummy variable (LSDVC) estimators; the general method of moments (difference GMM); and the system GMM. In addition, the study investigates effect differences attributable to industrial waste categories and taxation types. This paper shows that industrial waste taxes in Japan have minimal, significant effects on the reduction of final disposal amounts thus far, considering dynamic relationships and waste categories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Siting of hazardous waste landfills and their correlation with racial and economic status of surrounding communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-06-01

    This report provides information on the racial and economic characteristics of communities surrounding four hazardous waste landfills in three southeastern States. It also describes Federal criteria for siting landfills and provides data on public participation and how the Environmental Protection Agency's (EPA's) proposed hazardous waste facility permit changes will affect it.

  3. Leachate flow around a well in MSW landfill: Analysis of field tests using Richards model.

    PubMed

    Slimani, R; Oxarango, L; Sbartai, B; Tinet, A-J; Olivier, F; Dias, D

    2017-05-01

    During the lifespan of a Municipal Solid Waste landfill, its leachate drainage system may get clogged. Then, as a consequence of rainfall, leachate generation and possibly leachate injection, the moisture content in the landfill increases to the point that a leachate mound could be created. Therefore, pumping the leachate becomes a necessary solution. This paper presents an original analysis of leachate pumping and injection in an instrumented well. The water table level around the well is monitored by nine piezometers which allow the leachate flow behaviour to be captured. A numerical model based on Richards equation and an exponential relationship between saturated hydraulic conductivity and depth is used to analyze the landfill response to pumping and injection. Decreasing permeability with depth appears to have a major influence on the behaviour of the leachate flow. It could have a drastic negative impact on the pumping efficiency with a maximum quasi-stationary pumping rate limited to approximately 1m 3 /h for the tested well and the radius of influence is less than 20m. The numerical model provides a reasonable description of both pumping and injection tests. However, an anomalous behaviour observed at the transition between pumping and recovery phases is observed. This could be due to a limitation of the Richards model in that it neglects the gas phase behaviour and other double porosity heterogeneous effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Application of inert wastes in the construction, operation and closure of landfills: Calculation tool.

    PubMed

    Colomer Mendoza, Francisco J; Esteban Altabella, Joan; Gallardo Izquierdo, Antonio

    2017-01-01

    Waste from construction and demolition activities represents one of the highest volumes of waste in Europe. 500 million tonnes are produced throughout the whole EU every year. In some EU members like Spain, approximately 83 per cent of such waste is disposed in landfills. The remaining part is classified and processed in treatment facilities so that it can later be used as recycled aggregates in the construction sector (sand, gravel, aggregates, etc.) but without much commercial success. The aim of this study is to use recycled aggregates from inert wastes (IW) in the different phases of a landfill (construction, operation and closure) with the aid of a new computer tool called LABWASTE.14. This tool incorporates the mathematical relationship among the activities of the landfill and provides as a result the economic viability of using recycled aggregates compared to aggregates from quarries. Therefore, knowing the needs of aggregates in landfills (dams, drainage layers, covering layers, collection wells, etc.) may determine the amount of IW that could be recovered. These calculations can be obtained from some of the data that is introduced (population, land physiography, etc.). Furthermore, the use of LABWASTE.14 makes it possible to reduce the demand for aggregates from quarries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cap and trade schemes on waste management: A case study of the Landfill Allowance Trading Scheme (LATS) in England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calaf-Forn, Maria, E-mail: mcalaf@ent.cat; ENT Environment and Management, Carrer Sant Joan 39, First Floor, E-08800 Vilanova i la Geltrú, Barcelona; Roca, Jordi

    Highlights: • LATS has been effective to achieve a reduction of the amount of landfilled waste. • LATS has been one of the few environmental instruments for waste management with a cap and trade methodology. • LATS has achieved to increase recycling of the biodegradable and other waste fractions. - Abstract: The Landfill Allowance Trading Scheme (LATS) is one of the main instruments used in England to enforce the landfill diversion targets established in the Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the landfill of waste (Landfill Directive). Through the LATS, biodegradablemore » municipal waste (BMW) allowances for landfilling are allocated to each local authority, otherwise known as waste disposal authorities (WDAs). The quantity of landfill allowances received is expected to decrease continuously from 2005/06 to 2019/20 so as to meet the objectives of the Landfill Directive. To achieve their commitments, WDAs can exchange, buy, sell or transfer allowances among each other, or may re-profile their own allocation through banking and/or borrowing. Despite the goals for the first seven years – which included two target years (2005/06 and 2009/10) – being widely achieved (the average allocation of allowances per WDA was 22.9% higher than those finally used), market activity among WDAs was high and prices were not very stable. Results in terms of waste reduction and recycling levels have been satisfactory. The reduction of BMW landfilled (in percentage) was higher during the first seven years of the LATS period (2005/06–2011/12) (around 7% annually) than during the previous period (2001/02–2004/05) (4.2% annually). Since 2008, the significance of the LATS diminished because of an increase in the rate of the UK Landfill Tax. The LATS was suppressed after the 2012/13 target year, before what it was initially scheduled. The purpose of this paper is to describe the particularities of the LATS, analyse its

  6. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    NASA Astrophysics Data System (ADS)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  7. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy.

    PubMed

    Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe

    2015-09-01

    This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix

    PubMed Central

    Sajjadi, Seyed Ali; Aliakbari, Zohreh; Matlabi, Mohammad; Biglari, Hamed; Rasouli, Seyedeh Samira

    2017-01-01

    Introduction An environmental impact assessment (EIA) before embarking on any project is a useful tool to reduce the potential effects of each project, including landfill, if possible. The main objective of this study was to assess the environmental impact of the current municipal solid waste disposal site of Gonabad by using the Iranian Leopold matrix method. Methods This cross-sectional study was conducted to assess the environmental impacts of a landfill site in Gonabad in 2015 by an Iranian matrix (modified Leopold matrix). This study was conducted based on field visits of the landfill, and collected information from various sources and analyzing and comparing between five available options, including the continuation of the current disposal practices, construction of new sanitary landfills, recycling plans, composting, and incineration plants was examined. The best option was proposed to replace the existing landfill. Results The current approach has a score of 2.35, the construction of new sanitary landfill has a score of 1.59, a score of 1.57 for the compost plant, and recycling and incineration plant, respectively, have scores of 1.68 and 2.3. Conclusion Results showed that continuation of the current method of disposal, due to severe environmental damage and health problems, is rejected. A compost plant with the lowest negative score is the best option for the waste disposal site of Gonabad City and has priority over the other four options. PMID:28465797

  9. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    PubMed

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  10. Landfill reduction experience in The Netherlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharff, Heijo, E-mail: h.scharff@afvalzorg.nl

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction.more » This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility

  11. GIS-based approach for optimized siting of municipal solid waste landfill.

    PubMed

    Sumathi, V R; Natesan, Usha; Sarkar, Chinmoy

    2008-11-01

    The exponential rise in the urban population of the developing countries in the past few decades and the resulting accelerated urbanization phenomenon has brought to the fore the necessity to develop environmentally sustainable and efficient waste management systems. Sanitary landfill constitutes one of the primary methods of municipal solid waste disposal. Optimized siting decisions have gained considerable importance in order to ensure minimum damage to the various environmental sub-components as well as reduce the stigma associated with the residents living in its vicinity, thereby enhancing the overall sustainability associated with the life cycle of a landfill. This paper addresses the siting of a new landfill using a multi-criteria decision analysis (MCDA) and overlay analysis using a geographic information system (GIS). The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including geology, water supply resources, land use, sensitive sites, air quality and groundwater quality. Weightings were assigned to each criterion depending upon their relative importance and ratings in accordance with the relative magnitude of impact. The results from testing the system using different sites show the effectiveness of the system in the selection process.

  12. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    PubMed

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  13. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    PubMed

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All

  14. Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes.

    PubMed

    Haight, M

    2005-01-01

    Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid.

  15. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites.

    PubMed

    Yan, Wai Yeung; Mahendrarajah, Prathees; Shaker, Ahmed; Faisal, Kamil; Luong, Robin; Al-Ahmad, Mohamed

    2014-12-01

    This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites' land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring.

  16. A RULE-BASED SYSTEM FOR EVALUATING FINAL COVERS FOR HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This chapter examines how rules are used as a knowledge representation formalism in the domain of hazardous waste management. A specific example from this domain involves performance evaluation of final covers used to close hazardous waste landfills. Final cover design and associ...

  17. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.

    PubMed

    Liu, Yili; Sun, Weixin; Liu, Jianguo

    2017-10-01

    Waste management is a major source of global greenhouse gas (GHG) emissions and many opportunities exist to reduce these emissions. To identify the GHG emissions from waste management in China, the characteristics of MSW and the current and future treatment management strategies, five typical management scenarios were modeled by EaseTech software following the principles of life cycle inventory and analyzed based on the carbon and energy flows. Due to the high organic fraction (50-70%) and moisture content (>50%) of Chinese municipal solid waste (MSW), the net GHG emissions in waste management had a significant difference from the developed countries. It was found that the poor landfill gas (LFG) collection efficiency and low carbon storage resulted landfilling with flaring and landfilling with biogas recovery scenarios were the largest GHG emissions (192 and 117 kgCO 2 -Eq/t, respectively). In contrast, incineration had the best energy recovery rate (19%), and, by grid emissions substitution, led to a substantial decrease in net GHG emissions (-124 kgCO 2 -Eq/t). Due to the high energy consumption in operation, the unavoidable leakage of CH 4 and N 2 O in treatment, and the further release of CH 4 in disposing of the digested residue or composted product, the scenarios with biological treatment of the organic fractions after sorting, such as composting or anaerobic digestion (AD), did not lead to the outstanding GHG reductions (emissions of 32 and -36 kgCO 2 -Eq/t, respectively) as expected. Copyright © 2017. Published by Elsevier Ltd.

  18. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  19. Life cycle assessment of municipal solid waste management scenarios on the small island of Mauritius.

    PubMed

    Rajcoomar, Avinash; Ramjeawon, Toolseeram

    2017-03-01

    The aim of this study was to use the life cycle assessment tool to assess, from an environmental point of view, the different possible municipal solid waste (MSW) management scenarios for the island of Mauritius. The scenarios include landfilling with energy recovery (S1), incineration with energy recovery (S2), composting, incineration and landfilling (S3) and finally composting, recycling, incineration and landfilling (S4). The MSW generated in 2010 was selected as the functional unit. Foreground data were collected through surveys and literature. Background data were obtained from ecoinvent data in SimaPro 8 libraries. The scenarios were compared both through the CML-IA baseline-midpoint method and the ReCiPe end-point method. From the midpoint method, the results obtained indicates that landfilling (S1) has the greatest impact in all the analyzed impact categories except ozone layer depletion and human toxicity, while incineration (S2) has the least impact on almost all the analyzed damage categories except in global warming potential and human toxicity. The collection and transportation of waste has a significant impact on the environment. From the end-point method, S4 reduces the damage impact categories on Human Health, Ecosystems and Resources due to the recycling process. S3 is not favorable due to the impact caused by the composting process. However, it is also very important to emphasize that for incineration, the best available technology with energy recovery shall be considered. It is recommended that S2 and S4 are considered for strategic planning.

  20. Case study on prediction of remaining methane potential of landfilled municipal solid waste by statistical analysis of waste composition data.

    PubMed

    Sel, İlker; Çakmakcı, Mehmet; Özkaya, Bestamin; Suphi Altan, H

    2016-10-01

    Main objective of this study was to develop a statistical model for easier and faster Biochemical Methane Potential (BMP) prediction of landfilled municipal solid waste by analyzing waste composition of excavated samples from 12 sampling points and three waste depths representing different landfilling ages of closed and active sections of a sanitary landfill site located in İstanbul, Turkey. Results of Principal Component Analysis (PCA) were used as a decision support tool to evaluation and describe the waste composition variables. Four principal component were extracted describing 76% of data set variance. The most effective components were determined as PCB, PO, T, D, W, FM, moisture and BMP for the data set. Multiple Linear Regression (MLR) models were built by original compositional data and transformed data to determine differences. It was observed that even residual plots were better for transformed data the R(2) and Adjusted R(2) values were not improved significantly. The best preliminary BMP prediction models consisted of D, W, T and FM waste fractions for both versions of regressions. Adjusted R(2) values of the raw and transformed models were determined as 0.69 and 0.57, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of a buried vertical well leachate recirculation system for municipal solid waste landfills.

    PubMed

    Kadambala, Ravi; Powell, Jon; Singh, Karamjit; Townsend, Timothy G

    2016-12-01

    Vertical liquids addition systems have been used at municipal landfills as a leachate management method and to enhance biostabilization of waste. Drawbacks of these systems include a limitation on pressurized injection and the occurrence of seepage. A novel vertical well system that employed buried wells constructed below a lift of compacted waste was operated for 153 days at a landfill in Florida, USA. The system included 54 wells installed in six clusters of nine wells connected with a horizontally-oriented manifold system. A cumulative volume of 8430 m 3 of leachate was added intermittently into the well clusters over the duration of the project with no incidence of surface seeps. Achievable average flow rates ranged from 9.3 × 10 -4 m 3 s -1 to 14.2 × 10 -4 m 3 s -1 , which was similar to or greater than flow rates achieved in a previous study using traditional vertical wells at the same landfill site. The results demonstrated that pressurized liquids addition in vertical wells at municipal solid waste landfills can be achieved while avoiding typical operational and maintenance issues associated with seeps. © The Author(s) 2016.

  2. Field investigation of the quality of fresh and aged leachates from selected landfills receiving e-waste in an arid climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiddee, Peeranart; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide 5095; Naidu, Ravi, E-mail: ravi.naidu@unisa.edu.au

    Highlights: • E-waste comprises approximately 6% of the waste mass going to landfill in South Australia. • Significant amounts of metal(loids)s and PBDEs are released from e-waste mixed with municipal solid in landfill leachates. • Significantly elevated concentrations of lead and PBDEs are detected in groundwater wells downgradient of landfills. • Significant temporal variation exists in electrical conductivity and in the concentrations of As, Cd and Pb in leachates. - Abstract: The management of electronic waste (e-waste) is a serious problem worldwide and much of it is landfilled. A survey of four selected landfills in an arid region of Southmore » Australia was conducted to determine the proportion of e-waste in municipal waste and the properties of each landfill site. Leachate and groundwater samples were collected upgradient and downgradient of the landfills for analysis of polybrominated diphenyl ethers (PBDEs) and 14 metals and metalloids, including Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, V and Zn. Our data demonstrate that the selected landfills in South Australia continue to receive municipal waste containing in excess of 6%, or 25,000 tonnes per year, of e-waste. The leachates and groundwater collected from the landfills contained significantly elevated concentrations of Pb with the highest concentration in groundwater of 38 μg/l, almost four times higher than the Australian drinking water guideline of 10 μg/l. The presence of PBDEs was detected in both leachate and groundwater samples. Total PBDEs values of 2.13–59.75 ng/l in leachate samples were 10 times higher than in groundwater samples, which recorded a range of 0.41–6.53 ng/l at all sites. Moreover, the concentrations of metals and metalloids in sampled groundwater contained elevated levels of Al, As, Fe, Ni and Pb that exceeded Australian drinking water guideline values. For these reasons potential leaching of these contaminants is of concern and while difficult to

  3. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-12-15

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airbornemore » emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.« less

  4. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy.

    PubMed

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-12-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  5. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.

    PubMed

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-01

    Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Design of experiment (DOE) based screening of factors affecting municipal solid waste (MSW) composting.

    PubMed

    Kazemi, Khoshrooz; Zhang, Baiyu; Lye, Leonard M; Cai, Qinghong; Cao, Tong

    2016-12-01

    A design of experiment (DOE) based methodology was adopted in this study to investigate the effects of multiple factors and their interactions on the performance of a municipal solid waste (MSW) composting process. The impact of four factors, carbon/nitrogen ratio (C/N), moisture content (MC), type of bulking agent (BA) and aeration rate (AR) on the maturity, stability and toxicity of compost product was investigated. The statistically significant factors were identified using final C/N, germination index (GI) and especially the enzyme activities as responses. Experimental results validated the use of enzyme activities as proper indices during the course of composting. Maximum enzyme activities occurred during the active phase of decomposition. MC has a significant effect on dehydrogenase activity (DGH), β-glucosidase activity (BGH), phosphodiesterase activity (PDE) and the final moisture content of the compost. C/N is statistically significant for final C/N, DGH, BGH, and GI. The results provided guidance to optimize a MSW composting system that will lead to increased decomposition rate and the production of more stable and mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Resource management performance in Bahrain: a systematic analysis of municipal waste management, secondary material flows and organizational aspects.

    PubMed

    Al Sabbagh, Maram K; Velis, Costas A; Wilson, David C; Cheeseman, Christopher R

    2012-08-01

    This paper presents a detailed review of municipal solid waste (MSW) and resource management in Bahrain, using the recently developed UN-Habitat city profile methodology. Performance indicators involve quantitative assessment of waste collection and sweeping, controlled disposal, materials recovery and financial sustainability together with qualitative assessment of user and provider inclusivity and institutional coherence. MSW management performance in Bahrain is compared with data for 20 other cities. The system in Bahrain is at an intermediate stage of development. A waste/material flow diagram allows visualization of the MSW system and quantifies all inputs and outputs, with the vast majority of MSW deposited in a controlled, but not engineered landfill. International comparative analysis shows that recycling and material recovery rates in Bahrain (8% wt. for domestic waste, of which 3% wt. due to informal sector) are generally lower than other cities, whereas waste quantities and generation rates at 1.1 kg capita(-1) day(-1)) are relatively high. The organic fraction (60% wt.) is comparable to that in middle- and low-income cities (50-80% wt.), although on the basis of gross domestic product Bahrain is classified as a high-income city, for which the average is generally less than 30% wt. Inclusivity in waste governance is at a medium stage as not all waste system stakeholders are considered in decision-making. While the system now appears to be financially stable, key pending issues are cost-effectiveness, improving the standards of disposal and deployment of extensive materials recovery/recycling services.

  9. Estimation of methane emission rate changes using age-defined waste in a landfill site.

    PubMed

    Ishii, Kazuei; Furuichi, Toru

    2013-09-01

    Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample's methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.0501/y and 0.0621/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35×10(4)m(3)-CH(4), which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34×10(5)t-CO(2)/y). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanat, Gurdal, E-mail: gkanat@gmail.co

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from themore » landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.« less

  11. Recirculation of reverse osmosis concentrate in lab-scale anaerobic and aerobic landfill simulation reactors.

    PubMed

    Morello, Luca; Cossu, Raffaello; Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina

    2016-10-01

    Leachate treatment is a major issue in the context of landfill management, particularly in view of the consistent changes manifested over time in the quality and quantity of leachate produced, linked to both waste and landfill characteristics, which renders the procedure technically difficult and expensive. Leachate recirculation may afford a series of potential advantages, including improvement of leachate quality, enhancement of gas production, acceleration of biochemical processes, control of moisture content, as well as nutrients and microbe migration within the landfill. Recirculation of the products of leachate treatment, such as reverse osmosis (RO) concentrate, is a less common practice, with widespread controversy relating to its suitability, potential impacts on landfill management and future gaseous and leachable emissions. Scientific literature provides the results of only a few full-scale applications of concentrate recirculation. In some cases, an increase of COD and ammonium nitrogen in leachate was observed, coupled with an increase of salinity; which, additionally, might negatively affect performance of the RO plant itself. In other cases, not only did leachate production not increase significantly but the characteristics of leachate extracted from the well closest to the re-injection point also remained unchanged. This paper presents the results of lab-scale tests conducted in landfill simulation reactors, in which the effects of injection of municipal solid waste (MSW) landfill leachate RO concentrate were evaluated. Six reactors were managed with different weekly concentrate inputs, under both anaerobic and aerobic conditions, with the aim of investigating the short and long-term effects of this practice on landfill emissions. Lab-scale tests resulted in a more reliable identification of compound accumulation and kinetic changes than full-scale applications, further enhancing the development of a mass balance in which gaseous emissions and waste

  12. Cap and trade schemes on waste management: a case study of the landfill allowance trading scheme (LATS) in England.

    PubMed

    Calaf-Forn, Maria; Roca, Jordi; Puig-Ventosa, Ignasi

    2014-05-01

    The Landfill Allowance Trading Scheme (LATS) is one of the main instruments used in England to enforce the landfill diversion targets established in the Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the landfill of waste (Landfill Directive). Through the LATS, biodegradable municipal waste (BMW) allowances for landfilling are allocated to each local authority, otherwise known as waste disposal authorities (WDAs). The quantity of landfill allowances received is expected to decrease continuously from 2005/06 to 2019/20 so as to meet the objectives of the Landfill Directive. To achieve their commitments, WDAs can exchange, buy, sell or transfer allowances among each other, or may re-profile their own allocation through banking and/or borrowing. Despite the goals for the first seven years - which included two target years (2005/06 and 2009/10) - being widely achieved (the average allocation of allowances per WDA was 22.9% higher than those finally used), market activity among WDAs was high and prices were not very stable. Results in terms of waste reduction and recycling levels have been satisfactory. The reduction of BMW landfilled (in percentage) was higher during the first seven years of the LATS period (2005/06-2011/12) (around 7% annually) than during the previous period (2001/02-2004/05) (4.2% annually). Since 2008, the significance of the LATS diminished because of an increase in the rate of the UK Landfill Tax. The LATS was suppressed after the 2012/13 target year, before what it was initially scheduled. The purpose of this paper is to describe the particularities of the LATS, analyse its performance as a waste management policy, make a comparison with the Landfill Tax, discuss its main features as regards efficiency, effectiveness and the application of the "polluter pays" principle and finally discuss if the effect of the increase in the Landfill Tax is what made the LATS ultimately unnecessary. Copyright © 2014

  13. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.

  14. Modeling of leachate recirculation using combined drainage blanket-horizontal trench systems in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Xie, Hai-Jian

    2017-10-01

    Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.

  15. Landfill reduction experience in The Netherlands.

    PubMed

    Scharff, Heijo

    2014-11-01

    Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: a case study of Tianjin, China.

    PubMed

    Zhao, Wei; Huppes, Gjalt; van der Voet, Ester

    2011-06-01

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. 40 CFR Table Tt-1 to Subpart Tt - Default DOC and Decay Rate Values for Industrial Waste Landfills

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Industrial Waste Landfills TT Table TT-1 to Subpart TT Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Waste Landfills Pt. 98, Subpt. TT, Table TT Table TT-1 to Subpart TT—Default DOC and Decay Rate Values for Industrial...

  18. Mining the Midden: A Facility for Dynamic Waste Harvesting at the Cedar Hills Regional Landfill

    NASA Astrophysics Data System (ADS)

    Allan, Aaron

    Mining the Midden intends to re-frame the sanitary landfill as a new typology of public land containing an embodied energy of cultural and material value. By reconnecting the public with the landfill and seriously exposing its layers of history and then digesting both mined and new waste within an industrial facility of materials recovery and plasma gasification technology waste-to-energy plant. The sequence of experience for a public visitor begins where the waste is transformed to energy and flows in the opposite direction of the trash through the facility and then into the active landfill mining operation which is the large site component of the project. The mine is flanked by the visitor path, which is suspended from the soldier piles of the excavation system and allows the visitor to interpret along the 1/3 mile path their personal connection to the waste stream and the consumption patterns which drive our waste. Interpretation results from multi-sensory experience of the open mine and its connection to the processing structure as one hovers above, through moments of seeing through structural glass lagging directly into the sectional cut of the landfill, and through cultural artifacts harvested by landfill archaeologists which are displayed in rhythm with the structure and lagging. The culmination of the prescribed path is a narrow cut which frames the view of Mt. Rainier in the distance and opens up a visual connection with the remaining majority of the landfill which have up to this point been blocked by the small mountain of trash which they just walked up and through. This thesis intends that by confronting people with the juxtapositions of 2 potentially destructive mounds or mountains, and how we as a culture value and protect land while we simultaneously dump our rubbish on other lands, this experience will make the visitor more conscious of ones personal contribution to our culture of disposable commodities.

  19. Guidance: Policy for Municipality and MSW CERCLA Settlements at NPL Co-Disposal Sites

    EPA Pesticide Factsheets

    Transmittal memorandum and policy supplementing the 9/30/89 Interim Policy on CERCLA Settlements Involving Municipalities and Municipal Wastes. 1998 MSW Policy states that EPA will continue its policy of generally not identifying generators and transporters of MSW as PRPs at NPL sites.

  20. [Impact of waste landfills in the Saratov region on the sanitary condition of the soil].

    PubMed

    Eremin, V N; Reshetnikov, M V; Sheshnev, A S

    Monitoring of environment in regions of the location of waste landfills includes the implementation of the control over a sanitary condition of soils. The main origins of the spread ofpollutants into soils are the solid particles from aerosol emissions from the functioning of landfills transmitted to surrounding territories. Within zones of the impact of three largest waste landfills in the Saratov region (Aleksandrovsky, Guselsky in the city of Saratov and Balakovsky in the city of Balakovo) there were taken 152 soil samples. According to results of the estimation in soil concentration of gross and motile forms of heavy metals of the first (Zn, Cd, Ni) and the second danger classes (Cu, Cr, Pb) there was performed the analysis of coefficients of danger- K0 and total coefficients ofpollution - Zc. There was executed the assessment of both a sanitary and hygienic condition of soils and degree of danger ofpollution. The most contrast areal features of the distribution of the danger coefficient - Ko in soils are characteristic for motile forms of heavy metals. For all three studied objects persistently there is stood out the dangerous and areal pollution of soils by association of Ni and Cu . The danger ofpollution of soils by gross forms of heavy metals is minimum. The coefficient of total pollution of Zc exceeds admissible level on motile forms of heavy metals only for the soils surrounding the Balakovo landfill. In zones of the impact of waste landfills there are located the processed lands with an adverse sanitary and hygienic condition of soils. In the region of the Guselsky object soils of the processed agricultural grounds are dangerously polluted by motile forms of Ni and Cu. In vicinities of the Balakovo waste landfill considerable areas of private gardening enterprises are dangerously polluted by the motile forms of Ni, Cu and Zn.

  1. Towards low carbon society in Iskandar Malaysia: Implementation and feasibility of community organic waste composting.

    PubMed

    Bong, Cassendra Phun-Chien; Goh, Rebecca Kar Yee; Lim, Jeng-Shiun; Ho, Wai Shin; Lee, Chew-Tin; Hashim, Haslenda; Abu Mansor, Nur Naha; Ho, Chin Siong; Ramli, Abdul Rahim; Takeshi, Fujiwara

    2017-12-01

    Rapid population growth and urbanisation have generated large amount of municipal solid waste (MSW) in many cities. Up to 40-60% of Malaysia's MSW is reported to be food waste where such waste is highly putrescible and can cause bad odour and public health issue if its disposal is delayed. In this study, the implementation of community composting in a village within Iskandar Malaysia is presented as a case study to showcase effective MSW management and mitigation of GHG emission. The selected village, Felda Taib Andak (FTA), is located within a palm oil plantation and a crude palm oil processing mill. This project showcases a community-composting prototype to compost food and oil palm wastes into high quality compost. The objective of this article is to highlight the economic and environment impacts of a community-based composting project to the key stakeholders in the community, including residents, oil palm plantation owners and palm oil mill operators by comparing three different scenarios, through a life cycle approach, in terms of the greenhouse gas emission and cost benefit analysis. First scenario is the baseline case, where all the domestic waste is sent to landfill site. In the second scenario, a small-scale centralised composting project was implemented. In the third scenario, the data obtained from Scenario 2 was used to do a projection on the GHG emission and costing analysis for a pilot-scale centralised composting plant. The study showed a reduction potential of 71.64% on GHG emission through the diversion of food waste from landfill, compost utilisation and significant revenue from the compost sale in Scenario 3. This thus provided better insight into the feasibility and desirability in implementing a pilot-scale centralised composting plant for a sub-urban community in Malaysia to achieve a low carbon and self-sustainable society, in terms of environment and economic aspects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Treatment of mechanically sorted organic waste by bioreactor landfill: Experimental results and preliminary comparative impact assessment with biostabilization and conventional landfill.

    PubMed

    Di Maria, Francesco; Micale, Caterina; Sisani, Luciano; Rotondi, Luca

    2016-09-01

    Treatment and disposal of the mechanically sorted organic fraction (MSOF) of municipal solid waste using a full-scale hybrid bioreactor landfill was experimentally analyzed. A preliminary life cycle assessment was used to compare the hybrid bioreactor landfill with the conventional scheme based on aerobic biostabilization plus landfill. The main findings showed that hybrid bioreactor landfill was able to achieve a dynamic respiration index (DRI)<1000 mgO2/(kgVSh) in 20weeks, on average. Landfill gas (LFG) generation with CH4 concentration >55% v/v started within 140days from MSOF disposal, allowing prompt energy recovery and higher collection efficiency. With the exception of fresh water eutrophication with the bioreactor scenario there was a reduction of the impact categories by about 30% compared to the conventional scheme. Such environmental improvement was mainly a consequence of the reduction of direct and indirect emissions from conventional aerobic biostabilization and of the lower amount of gaseous loses from the bioreactor landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Finding urban waste management solutions and policies: Waste-to-energy development and livelihood support system in Payatas, Metro Manila, Philippines.

    PubMed

    Serrona, Kevin Roy; Yu, Jeong-Soo

    2009-01-01

    One of the potential solutions in social and environmental sustainability in municipal solid waste management (MSW) in Metro Manila is to combine community-based recycling and sound landfill management strategies. The marriage of the two puts importance on recycling as a source of livelihood while proper landfill management aims to improve the aesthetic and environmental quality of disposal facilities in urban areas. To do this, a social mapping of wastepickers, junkshops and local recycling practices needs to be undertaken and at the same time assess strategies of the national and local governments vis-à-vis existing laws on municipal solid waste. The case of Payatas controlled disposal facility was taken as a pilot study because it represents the general condition of disposal sites in Metro Manila and the social landscape that it currently has. In addition, a waste-to-energy (WTE) project has been established in Payatas to produce electricity from methane gas. Preliminary interviews with wastepickers show that development interventions in disposal sites such as WTE pose no opposition from host communities for as long as alternative livelihood opportunities are provided. Regulating the flow of wastepickers into the landfill has advantages like improved income and security. Felt needs were also articulated like provision of financial support or capital for junkshop operation and skills training. Overall, a smooth relationship between the local government and community associations pays well in a transitioning landfill management scheme such as Payatas.

  4. Functional and environmental assessment of the urboecosystems designed in the biologically reclamated landfill with industrial wastes (in Ryazan city)

    NASA Astrophysics Data System (ADS)

    Karyakin, Alexey; Vasenev, Ivan; Karyakina, Svetlana

    2015-04-01

    Regional environmental bodies' ability to understand, model and predict their soil cover environmental functions are especially important in case of landfill reclamation. The special attention has to be done to landfills with industrial wastes created earlier in frame of big city - comparatively closed to their residential areas. Dominated in Ryazan region sandy loam gray forest soils with not so high soil organic matter content and soil exchange capacity determine additional problems with landfill biological reclamation and continuous sustainable vegetation cover development. The modern environmental monitoring system has been developed in the big landfill with tanning industrial wastes from the biggest in Europe tannery to develop recommendation on the environmentally friendly reclamation technologies adapted to concrete landscape conditions and functional features of 2 m fresh soil-ground coating the landfill surface. More detailed monitoring system has to be developed to assess the regulatory environmental functions of the regenerated soil cover to minimize the reclamated landfill' negative impacts on the urban ecosystem air, surface and ground water quality. Obtained result will be useful for similar landfills with tanning industrial wastes environmental impact assessment and smart design.

  5. Waste disposal mapping with electrical resistivity tomography case: Leuwigajah landfill

    NASA Astrophysics Data System (ADS)

    Aryanti, Erisha; Ardi, Ahmad Puji; Almunziri, Muaz; Xanggam, Zael Yahd; Eleazar, Adino; Widodo

    2017-07-01

    Leuwigajah landfill as administrative is located between district of Bandung and Cimahi citythat has an environmental and social problem that caused aquifer contamination due to the big amount of waste from Bandung city, Cimahi and Bandung regency. It is occupied in abandoned andesite mine site with an area of about 25 hectare. The aim of this research is to map the geology structure and to study the leachate towards aquifer layer below Leuwigajah landfill. Here, we present the study of Leuwigajah landfill subsurface using Electrical Resistivity Tomography (ERT). ERT is one of the most promising prospecting techniques mainly concerning its effective contribution to resolve several environmental problems, was applied for the geophysical modeling. ERT is a robust imaging method the theory and implementation of which are well documented in geophysical research literature. The geological setting comprises clayed weathered layer, fractured andesitic dike. Due to the above-mentioned geological singularity and in the light of the requirement for an environmentally safe construction of the landfill, an ERT survey was carried out with dipole-dipole array, 78 m of acquisition line and 6 m of electrode spacing. The model consists of 4 layers below the Leuwigajah landfill and andesitic fracture until depth of 18.7 m below the surface.

  6. PRESENT AND LONG-TERM COMPOSITION OF MSW LANDFILL LEACHATE: A REVIEW. (R827580)

    EPA Science Inventory

    The major potential environmental impacts related to landfill leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can be categorized into four groups (dissolved organic matter, inorganic macrocomponents, heavy metals, and xenobi...

  7. Extraction of heavy metals from MSW incinerator fly ash using saponins.

    PubMed

    Hong, K J; Tokunaga, S; Ishigami, Y; Kajiuchi, T

    2000-08-01

    An extraction process with saponins was evaluated for removing heavy metals from MSW (municipal solid waste) incinerator fly ashes. Two different fly ashes, A and B, were treated on a laboratory scale with three triterpene-glycoside type of saponins, M, Q, and T, in the pH range 4-9. The results were compared with those of the HCI and EDTA treatment. The treatment with saponins extracted 20-45% of Cr from the fly ashes. Saponins were also effective in extracting Cu from fly ash A attaining 50-60% extraction. Saponin T extracted 100% of Pb from fly ash A at pH around 4. The extraction of Zn with the saponin treatment was similar to that of the HCl treatment. Further, Cr, Cu, Pb, and Zn were fractionated by sequential extraction to investigate the effect of saponins on each fraction. Extraction behavior of other elements during the saponin treatment was also studied. The leaching test on the residues received after the saponin treatment showed that the fly ashes were successfully detoxified to meet the landfilling guideline.

  8. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    EPA Pesticide Factsheets

    Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW) generation, recycling, composting, combustion with energy recovery and landfilling. The 2014 report provides information on historical tipping fees for MSW, and information on the construction and demolition debris generation, which is outside of the scope of MSW. The Facts and Figures website includes recent reports (2012 to 2014 as well as historical information on materials in the U.S. Municipal Waste Stream, 1960 to 2014 (in tons). The reports for both current and historical waste prevention can be accessed at EPA's SMM website. The recent Annual Facts and Figures reports are accessible at the following link: https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures-report. Historical data as well as studies and summary tables related to the Advancing Sustainable Materials Management Report are accessible here: https://www.epa.gov/smm/studies-summary-tables-and-data-related-advancing-sustainable-materials-management-report. An excel file containing the data from 1960 - 2014 is located here: https://edg.epa.gov/data/PUBLIC/OLEM/Materials_Municipal_Waste_Stream_1960_to_2014.xlsx. EPA also maintains a list of state and local waste characterization studies (reports are not available for all states). You can search for your state at https://www.epa.gov/smm/advancing-

  9. Effect of enzyme additions on methane production and lignin degradation of landfilled sample of municipal solid waste.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, Sunil

    2011-04-01

    Operation of waste cells as landfill bioreactors with leachate recirculation is known to accelerate waste degradation and landfill gas generation. However, waste degradation rates in landfill bioreactors decrease with time, with the accumulation of difficult to degrade materials, such as lignin-rich waste. Although, potential exists to modify the leachate quality to promote further degradation of such waste, very little information is available in literature. The objective of this study was to determine the viability of augmenting leachate with enzymes to increase the rate of degradation of lignin-rich waste materials. Among the enzymes evaluated MnP enzyme showed the best performance in terms of methane yield and substrate (lignin) utilization. Methane production of 200 mL CH(4)/g VS was observed for the MnP amended reactor as compared to 5.7 mL CH(4)/g VS for the control reactor. The lignin reduction in the MnP amended reactor and control reactor was 68.4% and 6.2%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Treatment of hazardous waste landfill leachate using Fenton oxidation process

    NASA Astrophysics Data System (ADS)

    Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei

    2018-03-01

    The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.

  11. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    PubMed

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering

  12. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it; Gisi, Sabino De

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. Wemore » wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.« less

  13. LINERS FOR SANITARY LANDFILLS AND CHEMICAL AND HAZARDOUS WASTE DISPOSAL SITES

    EPA Science Inventory

    This report lists addresses of sanitary landfills and chemical and hazardous waste disposal sites and holding ponds with some form of impermeable lining. Liners included are polyethylene, polyvinyl chloride, Hypalon R, ethylene propylene diene monomer, butyl rubber, conventional ...

  14. Characterization and open windrow composting of MSW in Jodhpur City, Rajasthan, India.

    PubMed

    Ambade, Bhushan; Sharma, Sunil; Sharma, Yukti; Sharma, Yagya

    2013-07-01

    Solid waste is sometimes not suitable for direct land application. Processing solid waste through composting converts it to a humus-containing organic material advantageous for agriculture/horticulture use. Major advantages of composting are stabilization of the wastes; substantially reduced C/N ratio and gas formation, and virtually elimination of odors and pathogens. Composting is accomplished under aerobic conditions developing temperatures of 55 degrees C or above. The windrow technique is simple and accomplished easily with standard equipments. The open windrow composting of municipal solid waste (MSW) in windrows was analyzed in this study for six weeks. The raw MSW was introduced to active composting without any source segregations. The moisture content of the MSW dropped from 58.88% to 48.06% and windrow attained a thermophillic temperature for about two weeks. It was observed that the pH, C/N ratio and temperature variations were comparable to that of traditional windrow composting. The peak temperature recorded was 68 degrees C and temperature remained above 60 degrees C for more than three weeks. The volume reduction was obtained by using one-cu.m. cage. The results indicate that the bulk composting could reduce by about 29% the total mass of the waste.

  15. Simulating the heat budget for waste as it is placed within a landfill operating in a northern climate.

    PubMed

    Megalla, Dina; Van Geel, Paul J; Doyle, James T

    2016-09-01

    A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility.

    PubMed

    Eskandari, Mahnaz; Homaee, Mehdi; Falamaki, Amin

    2016-06-01

    Several cities across the world are located in mountainous and landslide prone areas. Any landfill siting without considering landslide susceptibility in such regions may impose additional environmental adversity. This study was aimed to propose a practical method for selecting waste disposal site that accounts for landslide exposure. The proposed method was applied to a city which is highly proneness to landslide due to its geology, morphology, and climatic conditions. First, information on the previously occurred landslides of the region was collected. Based on this information, proper landslide causative factors were selected and their thematic maps were prepared. Factors' classes were then standardized in 0-1 domain, and thematic layers were weighted by using analytical hierarchy process (AHP). The landslide susceptibility map was prepared afterwards. Unsuitable areas for landfill location were masked in GIS environment by Boolean method, retaining sufficient areas for further evaluation. Nine remaining alternatives were selected through comprehensive field visits and were ranked by using AHP. Consequently, 17 factors in three environmental, economical, and social perspectives were employed. Sensitivity analyses were performed to assess the stability of the alternatives ranking with respect to variations in criterion weights. Based on the obtained landslide susceptible map, nearly 36 % of the entire region is proneness to landslide. The prepared Boolean map indicates that potential areas for landfill construction cover 11 % of the whole region. The results further indicated that if landslide susceptible areas are not considered in landfill site selection, the potential landfill sites would become more than twice. It can be concluded that if any of these landslide prone sites are selected for landfilling, further environmental disaster would be terminated in the future. It can be further concluded that the proposed method could reasonably well be adjusted to

  17. An economic evaluation and assessment of environmental impact of the municipal solid waste management system for Taichung City in Taiwan.

    PubMed

    Chang, Yao-Jen; Chu, Chien-Wei; Lin, Min-Der

    2012-05-01

    Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. For sustainable MSWM strategies, the critical management factors to be considered include not only economic efficiency of MSW treatment but also life-cycle assessment of the environmental impact. This paper employed linear programming technique to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of a MSWM system, and investigated the correlations between the economical optimization and pollutant emissions. A case study based on real-world MSW operating parameters in Taichung City is also presented. The results showed that the costs, benefits, streams of MSW, and throughputs of incinerators and landfills will be affected if pollution emission reductions are implemented in the MSWM strategies. In addition, the quantity of particulate matter is the best pollutant indicator for the MSWM system performance of emission reduction. In particular this model will assist the decision maker in drawing up a friendly MSWM strategy for Taichung City in Taiwan. Recently, life-cycle assessments of municipal solid waste management (MSWM) strategies have been given more considerations. However, what seems to be lacking is the consideration of economic factors and environmental impacts simultaneously. This work analyzed real-world data to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of the MSWM system. The results indicated that the consideration of environmental impacts will affect the costs, benefits, streams of MSW, and throughputs of incinerators and landfills. This work is relevant to public discussion and may establish useful guidelines for the MSWM policies.

  18. Current status of solid waste management in small island developing states: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohee, Romeela; Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu; Bundhoo, Zumar M.A.

    Highlights: • Waste management is a matter of great concern for small island developing states. • On average, waste generation rate in these islands amounts to 1.29 kg/capita/day. • Illegal dumping and landfilling prevail in most small island developing states. • Sustainable waste management practices, previously absent, are now emerging. • However, many challenges still hinder the implementation of these practices. - Abstract: This article reviews the current status of waste management in Small Island Developing States (SIDS) and the challenges that are faced in solid waste management. The waste generation rates of SIDS were compared within the three geographicmore » regions namely Caribbean SIDS, Pacific SIDS and Atlantic, Indian Ocean, Mediterranean and South China (AIMS) SIDS and with countries of the Organisation for Economic Co-Operation and Development (OECD). Only Pacific SIDS had a waste generation rate less than 1 kg/capita/day. The waste generation rates for the three SIDS regions averaged 1.29 kg/capita/day while that for OECD countries was at a mean value of 1.35 kg/capita/day. The waste compositions in the different SIDS regions were almost similar owing to comparable consumption patterns while these differed to a large extent with wastes generated in OECD countries. In SIDS, the major fraction of MSW comprised of organics (44%) followed by recyclables namely paper, plastics, glass and metals (total: 43%). In contrast, MSW in OECD countries consisted mainly of recyclables (43%) followed by organics (37%). This article also reviewed the other functional elements of the waste management systems in SIDS. Several shortcomings were noted in the process of waste collection, transfer and transport namely the fact of having outdated collection vehicles and narrow roads which are inaccessible. Among the waste management practices in SIDS, waste disposal via landfilling, illegal dumping and backyard burning were favoured most of the time at the

  19. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    NASA Astrophysics Data System (ADS)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  20. Study of stress-strain and volume change behavior of emplaced municipal solid waste using large-scale triaxial testing.

    PubMed

    Ramaiah, B J; Ramana, G V

    2017-05-01

    The article presents the stress-strain and volume change behavior, shear strength and stiffness parameters of landfilled municipal solid waste (MSW) collected from two dump sites located in Delhi, India. Over 30 drained triaxial compression (TXC) tests were conducted on reconstituted large-scale specimens of 150mm diameter to study the influence of fiber content, age, density and confining pressure on the shear strength of MSW. In addition, a few TXC tests were also conducted on 70mm diameter specimen to examine the effect of specimen size on the mobilized shear strength. It is observed that the fibrous materials such as textiles and plastics, and their percentage by weight have a significant effect on the stress-strain-volume change behavior, shear strength and stiffness of solid waste. The stress-strain-volume change behavior of MSW at Delhi is qualitatively in agreement with the behavior reported for MSW from different countries. Results of large-scale direct shear tests conducted on MSW with an identical composition used for TXC tests revealed the cross-anisotropic behavior as reported by previous researchers. Effective shear strength parameters of solid waste evaluated from this study is best characterized by ϕ'=39° and c'=0kPa for the limiting strain-based failure criteria of K 0 =0.3+5% axial strain and are in the range of the data reported for MSW from different countries. Data presented in this article is useful for the stress-deformation and stability analysis of the dump sites during their operation as well as closure plans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Field investigation of the quality of fresh and aged leachates from selected landfills receiving e-waste in an arid climate.

    PubMed

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H; Hearn, Laurence; Muller, Jochen F

    2014-11-01

    The management of electronic waste (e-waste) is a serious problem worldwide and much of it is landfilled. A survey of four selected landfills in an arid region of South Australia was conducted to determine the proportion of e-waste in municipal waste and the properties of each landfill site. Leachate and groundwater samples were collected upgradient and downgradient of the landfills for analysis of polybrominated diphenyl ethers (PBDEs) and 14 metals and metalloids, including Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, V and Zn. Our data demonstrate that the selected landfills in South Australia continue to receive municipal waste containing in excess of 6%, or 25,000 tonnes per year, of e-waste. The leachates and groundwater collected from the landfills contained significantly elevated concentrations of Pb with the highest concentration in groundwater of 38 μg/l, almost four times higher than the Australian drinking water guideline of 10 μg/l. The presence of PBDEs was detected in both leachate and groundwater samples. Total PBDEs values of 2.13-59.75 ng/l in leachate samples were 10 times higher than in groundwater samples, which recorded a range of 0.41-6.53 ng/l at all sites. Moreover, the concentrations of metals and metalloids in sampled groundwater contained elevated levels of Al, As, Fe, Ni and Pb that exceeded Australian drinking water guideline values. For these reasons potential leaching of these contaminants is of concern and while difficult to attribute elevated contaminant levels to e-waste, we do not recommend continued disposal of e-waste in old landfills that were not originally designed to contain leachates. The survey also revealed temporal variation in the electrical conductivity and concentrations of As, Cd and Pb present in leachates of landfills in arid Mediterranean climates. These results are consistent with the marked variations in rainfall patterns observed for such climates. The solute concentration (EC and other ions including As

  2. Sustainable Practices for Landfill Design and Operation (Part of book series Waste Management Principles and Practice)

    EPA Science Inventory

    The management of municipal solid waste (MSW) in many countries throughout the world has changed significantly over the past fifty years, with a shift from uncontrolled dumping or burning to complex systems that integrate multiple processes to recover materials or energy and prov...

  3. Combining geographic information system, multicriteria evaluation techniques and fuzzy logic in siting MSW landfills

    NASA Astrophysics Data System (ADS)

    Gemitzi, Alexandra; Tsihrintzis, Vassilios A.; Voudrias, Evangelos; Petalas, Christos; Stravodimos, George

    2007-01-01

    This study presents a methodology for siting municipal solid waste landfills, coupling geographic information systems (GIS), fuzzy logic, and multicriteria evaluation techniques. Both exclusionary and non-exclusionary criteria are used. Factors, i.e., non-exclusionary criteria, are divided in two distinct groups which do not have the same level of trade off. The first group comprises factors related to the physical environment, which cannot be expressed in terms of monetary cost and, therefore, they do not easily trade off. The second group includes those factors related to human activities, i.e., socioeconomic factors, which can be expressed as financial cost, thus showing a high level of trade off. GIS are used for geographic data acquisition and processing. The analytical hierarchy process (AHP) is the multicriteria evaluation technique used, enhanced with fuzzy factor standardization. Besides assigning weights to factors through the AHP, control over the level of risk and trade off in the siting process is achieved through a second set of weights, i.e., order weights, applied to factors in each factor group, on a pixel-by-pixel basis, thus taking into account the local site characteristics. The method has been applied to Evros prefecture (NE Greece), an area of approximately 4,000 km2. The siting methodology results in two intermediate suitability maps, one related to environmental and the other to socioeconomic criteria. Combination of the two intermediate maps results in the final composite suitability map for landfill siting.

  4. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    PubMed

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    PubMed

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  6. Mass balance evaluation of polybrominated diphenyl ethers in landfill leachate and potential for transfer from e-waste.

    PubMed

    Danon-Schaffer, Monica N; Mahecha-Botero, Andrés; Grace, John R; Ikonomou, Michael

    2013-09-01

    Previous research on brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) has largely focussed on their concentrations in the environment and their adverse effects on human health. This paper explores their transfer from waste streams to water and soil. A comprehensive mass balance model is developed to track polybrominated diphenyl ethers (PBDEs), originating from e-waste and non-e-waste solids leaching from a landfill. Stepwise debromination is assumed to occur in three sub-systems (e-waste, aqueous leachate phase, and non-e-waste solids). Analysis of landfill samples and laboratory results from a solid-liquid contacting chamber are used to estimate model parameters to simulate an urban landfill system, for past and future scenarios. Sensitivity tests to key model parameters were conducted. Lower BDEs require more time to disappear than high-molecular weight PBDEs, since debromination takes place in a stepwise manner, according to the simplified reaction scheme. Interphase mass transfer causes the decay pattern to be similar in all three sub-systems. The aqueous phase is predicted to be the first sub-system to eliminate PBDEs if their input to the landfill were to be stopped. The non-e-waste solids would be next, followed by the e-waste sub-system. The model shows that mass transfer is not rate-limiting, but the evolution over time depends on the kinetic degradation parameters. Experimental scatter makes model testing difficult. Nevertheless, the model provides qualitative understanding of the influence of key variables. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. BEHAVIOR AND ASSIMILATION OF ORGANIC AND INORGANIC PRIOIRTY POLLUTANTS CODISPOSED WITH MUNICIPAL REFUSE - VOLUME II - APPENDICES

    EPA Science Inventory

    Organic and inorganic priority pollutants codisposed with municipal solid waste (MSW) in ten pilot-scale simulated landfill columns, operated under single pass leaching or leachate recycle, were capable of being attenuated by microbially-mediated landfill stabilization processes....

  8. ELECTRICITY GENERATION FROM LANDFILL GAS IN TURKEY.

    PubMed

    Salihoglu, Nezih Kamil

    2018-05-08

    Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p < 0.01, 2-tailed) was found between the amounts of landfilled waste and the ambient temperature, which can be attributed to food consumption and kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m 3 LFG/ton waste landfilled and 0.08 MWh/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m 3 /MWh.

  9. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galowitz, Stephen

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven andmore » reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.« less

  10. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling.

    PubMed

    Cimpan, Ciprian; Maul, Anja; Jansen, Michael; Pretz, Thomas; Wenzel, Henrik

    2015-06-01

    Today's waste regulation in the EU comprises stringent material recovery targets and calls for comprehensive programs in order to achieve them. A similar movement is seen in the US where more and more states and communities commit to high diversion rates from landfills. The present paper reviews scientific literature, case studies and results from pilot projects, on the topic of central sorting of recyclable materials commonly found in waste from households. The study contributes, inter alia, with background understanding on the development of materials recovery, both in a historical and geographical perspective. Physical processing and sorting technology has reached a high level of maturity, and many quality issues linked to cross-contamination by commingling have been successfully addressed to date. New sorting plants tend to benefit from economies of scale, and innovations in automation and process control, which are targeted at curtailing process inefficiencies shown by operational practice. Technology developed for the sorting of commingled recyclables from separate collection is also being successfully used to upgrade residual MSW processing plants. The strongest motivation for central sorting of residual MSW is found for areas where source separation and separate collection is difficult, such as urban agglomerations, and can in such areas contribute to increasing recycling rates, either complementary to- or as a substitute for source separation of certain materials, such as plastics and metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Wood waste decomposition in landfills: An assessment of current knowledge and implications for emissions reporting.

    PubMed

    O'Dwyer, Jean; Walshe, Dylan; Byrne, Kenneth A

    2018-03-01

    Large quantities of wood products have historically been disposed of in landfills. The fate of this vast pool of carbon plays an important role in national carbon balances and accurate emission reporting. The Republic of Ireland, like many EU countries, utilises the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for greenhouse gas reporting in the waste sector, which provides default factors for emissions estimation. For wood products, the release of carbon is directly proportional to the decomposition of the degradable organic carbon fraction of the product, for which the IPCC provides a value of 0.5 (50%). However, in situ analytic results of the decomposition rates of carbon in landfilled wood do not corroborate this figure; suggesting that carbon emissions are likely overestimated. To assess the impact of this overestimation on emission reporting, carbon decomposition values obtained from literature and the IPCC default factor were applied to the Irish wood fraction of landfilled waste for the years 1957-2016 and compared. Univariate analysis found a statistically significant difference between carbon (methane) emissions calculated using the IPCC default factor and decomposition factors from direct measurements for softwoods (F = 45.362, p = <.001), hardwoods (F = 20.691, p = <.001) and engineered wood products (U = 4.726, p = <.001). However, there was no significant difference between emissions calculated using only the in situ analytic decomposition factors, regardless of time in landfill, location or subsequently, climate. This suggests that methane emissions from the wood fraction of landfilled waste in Ireland could be drastically overestimated; potentially by a factor of 56. The results of this study highlight the implications of emission reporting at a lower tierand prompts further research into the decomposition of wood products in landfills at a national level. Copyright © 2017 Elsevier Ltd. All rights

  12. A simulation model for methane emissions from landfills with interaction of vegetation and cover soil.

    PubMed

    Bian, Rongxing; Xin, Danhui; Chai, Xiaoli

    2018-01-01

    Global climate change and ecological problems brought about by greenhouse gas effect have become a severe threat to humanity in the 21st century. Vegetation plays an important role in methane (CH 4 ) transport, oxidation and emissions from municipal solid waste (MSW) landfills as it modifies the physical and chemical properties of the cover soil, and transports CH 4 to the atmosphere directly via their conduits, which are mainly aerenchymatous structures. In this study, a novel 2-D simulation CH 4 emission model was established, based on an interactive mechanism of cover soil and vegetation, to model CH 4 transport, oxidation and emissions in landfill cover soil. Results of the simulation model showed that the distribution of CH 4 concentration and emission fluxes displayed a significant difference between vegetated and non-vegetated areas. CH 4 emission flux was 1-2 orders of magnitude higher than bare areas in simulation conditions. Vegetation play a negative role in CH 4 emissions from landfill cover soil due to the strong CH 4 transport capacity even though vegetation also promotes CH 4 oxidation via changing properties of cover soil and emitting O 2 via root system. The model will be proposed to allow decision makers to reconsider the actual CH 4 emission from vegetated and non-vegetated covered landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 40 CFR 60.753 - Operational standards for collection and control systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Municipal Solid Waste Landfills § 60.753 Operational standards for collection and control... that gas is collected from each area, cell, or group of cells in the MSW landfill in which solid waste... two calibration gases are required, a zero and span, and ambient air may be used as the span; (iv) A...

  14. 40 CFR 60.753 - Operational standards for collection and control systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Performance for Municipal Solid Waste Landfills § 60.753 Operational standards for collection and control... that gas is collected from each area, cell, or group of cells in the MSW landfill in which solid waste... two calibration gases are required, a zero and span, and ambient air may be used as the span; (iv) A...

  15. Assessment of municipal solid waste settlement models based on field-scale data analysis.

    PubMed

    Bareither, Christopher A; Kwak, Seungbok

    2015-08-01

    An evaluation of municipal solid waste (MSW) settlement model performance and applicability was conducted based on analysis of two field-scale datasets: (1) Yolo and (2) Deer Track Bioreactor Experiment (DTBE). Twelve MSW settlement models were considered that included a range of compression behavior (i.e., immediate compression, mechanical creep, and biocompression) and range of total (2-22) and optimized (2-7) model parameters. A multi-layer immediate settlement analysis developed for Yolo provides a framework to estimate initial waste thickness and waste thickness at the end-of-immediate compression. Model application to the Yolo test cells (conventional and bioreactor landfills) via least squares optimization yielded high coefficient of determinations for all settlement models (R(2)>0.83). However, empirical models (i.e., power creep, logarithmic, and hyperbolic models) are not recommended for use in MSW settlement modeling due to potential non-representative long-term MSW behavior, limited physical significance of model parameters, and required settlement data for model parameterization. Settlement models that combine mechanical creep and biocompression into a single mathematical function constrain time-dependent settlement to a single process with finite magnitude, which limits model applicability. Overall, all models evaluated that couple multiple compression processes (immediate, creep, and biocompression) provided accurate representations of both Yolo and DTBE datasets. A model presented in Gourc et al. (2010) included the lowest number of total and optimized model parameters and yielded high statistical performance for all model applications (R(2)⩾0.97). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Landfill alternative offers powerful case.

    PubMed

    Baillie, Jonathan

    2011-04-01

    With many of Europe's landfill sites now close to capacity, and the EU Landfill Directive requiring that, by 2020, the amount of waste sent to landfill should be just 35% of the volume similarly disposed of in 1995, pressure is mounting to find environmentally acceptable waste disposal alternatives. At a recent IHEEM waste seminar, Gary Connelly, a technical consultant at environmental technology consultancy the Cameron Corporation, described a technology which he explained can effectively convert 85% of the European Waste Catalogue of materials into an inert residue, is "cleaner and cheaper" than incineration, and can generate both electricity an waste heat. As HEJ editor Jonathan Baillie reports, a key target market is healthcare facilities.

  17. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    PubMed

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less

  19. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    PubMed

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  20. Urban construction and demolition waste and landfill failure in Shenzhen, China.

    PubMed

    Yang, Hong; Xia, Junqiang; Thompson, Julian R; Flower, Roger J

    2017-05-01

    On December 20, 2015 at 11:40 am a landslide in one of China's most advanced cities, Shenzhen, killed 73 people and damaged 33 buildings. In the absence of heavy rainfall or earthquakes, the landslide was an unexpected and profound shock to many people. According to China's Ministry of Land and Resources, the landslide was triggered by the collapse of an enormous pile of construction and demolition waste (CDW). With China's rapid urbanization, an increasing amount of CDW is being generated, especially in major cities. In total, China produces some 30% of the world's municipal solid waste and of this about 40% is CDW. To prevent landslides associated with CDW, the volume of waste dumped in landfills should be regulated. More specifically 4-Rs (reduce, reuse, recycle and recover) policies should be implemented more widely and efficiently. Although landfill will continue to be an important disposal option, proper management and careful monitoring of CDW are urgently needed to satisfy pressing safety issues. International collaboration, sharing of knowledge, and use of the latest technologies are needed so that the similar landslides can be prevented in China and elsewhere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. THE USEPA'S LANDFILL RESEARCH AND REGULATORY STRATEGY

    EPA Science Inventory

    The priorities and initiatives of Environmental Protection Agency's landfill research and regulatory program over the next five years will be described. This will include municipal solid waste landfills as well as abandoned hazardous waste landfills.

    Regarding municipals s...

  2. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rada, E.C., E-mail: Elena.Rada@ing.unitn.it; Ragazzi, M.; Fedrizzi, P.

    Highlights: ► As an appropriate solution for MSW management in developed and transient countries. ► As an option to increase the efficiency of MSW selective collection. ► As an opportunity to integrate MSW management needs and services inventories. ► As a tool to develop Urban Mining actions. - Abstract: Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspectsmore » related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector.« less

  3. Hazardous Waste Management - Liquids in Landfills - Federal Register Notice, November 18, 1992

    EPA Pesticide Factsheets

    Under authority of the Resource Conservation and Recovery Act (RCRA) as amended by the Hazardous and Solid Waste Amendments of 1984 (HSWA), EPA is promulgating this final rule regarding the landfill disposal of containerized liquids mixed with sorbents.

  4. Landfill Gas Energy

    EPA Pesticide Factsheets

    This guide describes how local governments and communities can achieve energy, environmental, health, and economic benefits by using landfill gas (LFG) recovered from municipal solid waste landfills as a source of renewable energy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in; Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com; Santhosh, L.G., E-mail: lgsanthu2006@gmail.com

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated bymore » performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.« less

  6. Specific model for the estimation of methane emission from municipal solid waste landfills in India.

    PubMed

    Kumar, Sunil; Nimchuk, Nick; Kumar, Rakesh; Zietsman, Josias; Ramani, Tara; Spiegelman, Clifford; Kenney, Megan

    2016-09-01

    The landfill gas (LFG) model is a tool for measuring methane (CH4) generation rates and total CH4 emissions from a particular landfill. These models also have various applications including the sizing of the LFG collection system, evaluating the benefits of gas recovery projects, and measuring and controlling gaseous emissions. This research paper describes the development of a landfill model designed specifically for Indian climatic conditions and the landfill's waste characteristics. CH4, carbon dioxide (CO2), oxygen (O2) and temperature were considered as the prime factor for the development of this model. The developed model was validated for three landfill sites in India: Shillong, Kolkata, and Jaipur. The autocorrelation coefficient for the model was 0.915, while the R(2) value was 0.429. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of intermediate soil cover on municipal solid waste decomposition.

    PubMed

    Márquez-Benavides, L; Watson-Craik, I

    2003-01-01

    A complex series of chemical and microbiological reactions is initiated with the burial of refuse in a sanitary landfill. At the end of each labour day, the municipal solid wastes (MSW) are covered with native soil (or an alternative material). To investigate interaction between the intermediate cover and the MSW, five sets of columns were set up, one packed with refuse only, and four with a soil-refuse mixture (a clay loam, an organic-rich peaty soil, a well limed sandy soil and a chalky soil). The anaerobic degradation over 6 months was followed in terms of leachate volatile fatty acids, chemical oxygen demand, pH and ammoniacal-N performance. Results suggest that the organic-rich peaty soil may accelerate the end of the acidogenic phase. Clay appeared not to have a significant effect on the anaerobic degradation process.

  8. Effects of biodrying process on municipal solid waste properties.

    PubMed

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Spatio-temporal variation of landfill gas in pilot-scale semi-aerobic and anaerobic landfills over 5years.

    PubMed

    Wu, Xiaohui; Yue, Bo; Huang, Qifei; Wang, Qi; Lin, Ye; Zhang, Wei; Yan, Zhuoyi

    2017-04-01

    Variation of CH 4 , CO 2 , and O 2 concentrations in layers of different depths in semi-aerobic and anaerobic landfills was analyzed over a period of 5years. The results showed that most of the municipal solid waste became basically stable after 5years of landfill disposal. In the upper and middle layer, the concentration of CH 4 in the semi-aerobic landfill was significantly lower than that in the anaerobic landfill in different landfill periods, while in the lower layer, there was little difference in the CH 4 concentration between the semi-aerobic and anaerobic landfills. The average concentration of CH 4 and CO 2 in the anaerobic landfill was always higher than that in the semi-aerobic landfill, while the O 2 concentration showed an opposite variation in different landfill periods. This was related to the aerobic reaction of landfill waste around the perforated pipe in the semi-aerobic landfill, which inhibited effective landfill gas generation. Copyright © 2016. Published by Elsevier B.V.

  10. Heavy Metal Veggies: A Decision Case for Environmental and Nutrition Education.

    ERIC Educational Resources Information Center

    Schramm, J.; And Others

    1994-01-01

    One alternative to continued landfilling or incineration is the development of municipal solid waste (MSW) composting facilities. This case study permits students to examine issues associated with environmental contamination by MSW and to make decisions based on agricultural, environmental, economic, food safety, and ethical considerations. The…

  11. Key parameters for behaviour related to source separation of household organic waste: A case study in Hanoi, Vietnam.

    PubMed

    Kawai, Kosuke; Huong, Luong Thi Mai

    2017-03-01

    Proper management of food waste, a major component of municipal solid waste (MSW), is needed, especially in developing Asian countries where most MSW is disposed of in landfill sites without any pretreatment. Source separation can contribute to solving problems derived from the disposal of food waste. An organic waste source separation and collection programme has been operated in model areas in Hanoi, Vietnam, since 2007. This study proposed three key parameters (participation rate, proper separation rate and proper discharge rate) for behaviour related to source separation of household organic waste, and monitored the progress of the programme based on the physical composition of household waste sampled from 558 households in model programme areas of Hanoi. The results showed that 13.8% of 558 households separated organic waste, and 33.0% discharged mixed (unseparated) waste improperly. About 41.5% (by weight) of the waste collected as organic waste was contaminated by inorganic waste, and one-third of the waste disposed of as organic waste by separators was inorganic waste. We proposed six hypothetical future household behaviour scenarios to help local officials identify a final or midterm goal for the programme. We also suggested that the city government take further actions to increase the number of people participating in separating organic waste, improve the accuracy of separation and prevent non-separators from discharging mixed waste improperly.

  12. Optimal control of greenhouse gas emissions and system cost for integrated municipal solid waste management with considering a hierarchical structure.

    PubMed

    Li, Jing; He, Li; Fan, Xing; Chen, Yizhong; Lu, Hongwei

    2017-08-01

    This study presents a synergic optimization of control for greenhouse gas (GHG) emissions and system cost in integrated municipal solid waste (MSW) management on a basis of bi-level programming. The bi-level programming is formulated by integrating minimizations of GHG emissions at the leader level and system cost at the follower level into a general MSW framework. Different from traditional single- or multi-objective approaches, the proposed bi-level programming is capable of not only addressing the tradeoffs but also dealing with the leader-follower relationship between different decision makers, who have dissimilar perspectives interests. GHG emission control is placed at the leader level could emphasize the significant environmental concern in MSW management. A bi-level decision-making process based on satisfactory degree is then suitable for solving highly nonlinear problems with computationally effectiveness. The capabilities and effectiveness of the proposed bi-level programming are illustrated by an application of a MSW management problem in Canada. Results show that the obtained optimal management strategy can bring considerable revenues, approximately from 76 to 97 million dollars. Considering control of GHG emissions, it would give priority to the development of the recycling facility throughout the whole period, especially in latter periods. In terms of capacity, the existing landfill is enough in the future 30 years without development of new landfills, while expansion to the composting and recycling facilities should be paid more attention.

  13. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: strong N2O hotspots at the working face.

    PubMed

    Harborth, Peter; Fuss, Roland; Münnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-01

    Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20-200gCO2eq.m(-2)h(-1) magnitude (up to 428mgNm(-2)h(-1)) were observed within 20m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30-40m from the working face, where they reached about 10gCO2eq.m(-2)h(-1). The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000ppmv in material below the emission hotspot. At a depth of 50cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongyu; College of Resources and Environment Sciences, China Agricultural University, Beijing 100094; Schuchardt, Frank

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solidmore » waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.« less

  15. Effects of ambient air pollution from municipal solid waste landfill on children's non-specific immunity and respiratory health.

    PubMed

    Yu, Yunjiang; Yu, Ziling; Sun, Peng; Lin, Bigui; Li, Liangzhong; Wang, Zhengdong; Ma, Ruixue; Xiang, Mingdeng; Li, Hui; Guo, Shu

    2018-05-01

    This cross-sectional study investigated the association between air pollutant (AP) and respiratory health of 951 children residing near a municipal solid waste (MSW) landfill in Northern China. Results showed that students in non-exposure areas had significantly higher levels of lysozyme, secretory immunoglobulin A (SIgA), and better lung capacity than students in exposure areas (p < .05). Multiple regression model analysis indicated that lysozyme levels exhibited a consistent negative association with methane (CH 4 : β = -76.3, 95% CI -105 to -47.7) and sulfuretted hydrogen (H 2 S: β = -11.7, 95% CI -20.2 to -3.19). In addition, SIgA levels were negatively associated with H 2 S (β = -68.9, 95% CI -97.9 to -39.9) and ammonia (NH 3 : β = -30.3, 95% CI -51.7 to -8.96). Among all AP, H 2 S and sulfur dioxide (SO 2 ) were the most robustly related with reduced lung function. H 2 S exposure was negatively associated with six lung function indices, 1-s forced expiratory volume (FEV1%), mean forced expiratory flow between 25% and 75% (MMF), maximum voluntary ventilation (MVV), and forced expiratory flow at 25%, 50%, and 75% of the pulmonary volume (FEF25, FEF50, FEF75); and SO 2 was negatively associated with FEV1%, MVV, FEF25, FEF50 and FEF75. Our results suggested that AP exposure was negatively associated with more lung function parameters in boys than in girls. In conclusion, our findings suggested that children living adjacent to landfill sites were more likely to have deficient non-specific immunity and impaired lung function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Spatial effect of new municipal solid waste landfill siting using different guidelines.

    PubMed

    Ahmad, Siti Zubaidah; Ahamad, Mohd Sanusi S; Yusoff, Mohd Suffian

    2014-01-01

    Proper implementation of landfill siting with the right regulations and constraints can prevent undesirable long-term effects. Different countries have respective guidelines on criteria for new landfill sites. In this article, we perform a comparative study of municipal solid waste landfill siting criteria stated in the policies and guidelines of eight different constitutional bodies from Malaysia, Australia, India, U.S.A., Europe, China and the Middle East, and the World Bank. Subsequently, a geographic information system (GIS) multi-criteria evaluation model was applied to determine new suitable landfill sites using different criterion parameters using a constraint mapping technique and weighted linear combination. Application of Macro Modeler provided in the GIS-IDRISI Andes software helps in building and executing multi-step models. In addition, the analytic hierarchy process technique was included to determine the criterion weight of the decision maker's preferences as part of the weighted linear combination procedure. The differences in spatial results of suitable sites obtained signifies that dissimilarity in guideline specifications and requirements will have an effect on the decision-making process.

  17. Waste management and recycling in the former Soviet Union: the City of Bishkek, Kyrgyz Republic (Kyrgyzstan).

    PubMed

    Sim, Natasha M; Wilson, David C; Velis, Costas A; Smith, Stephen R

    2013-10-01

    The UN-Habitat Integrated Sustainable Waste Management (ISWM) benchmarking methodology was applied to profile the physical and governance features of municipal solid waste (MSW) management in the former Soviet Union city of Bishkek, capital of the Kyrgyz Republic. Most of the ISWM indicators were in the expected range for a low-income city when compared with 20 reference cities. Approximately 240,000 t yr(-1) of MSW is generated in Bishkek (equivalent to 200 kg capita(-1) yr(-1)); collection coverage is over 80% and 90% of waste disposed goes to semi-controlled sites operating with minimal environmental standards. The waste composition was a distinctive feature, with relatively high paper content (20-27% wt.) and intermediate organic content (30-40% wt.). The study provides the first quantitative estimates of informal sector recycling, which is currently unrecognised by the city authorities. Approximately 18% wt. of generated MSW is recycled, representing an estimated annual saving to the city authorities of US$0.7-1.1 million in avoided collection/disposal costs. The waste management system is controlled by a centralised municipal waste enterprise (Tazalyk); therefore, institutional coherence is high relative to lower-middle and low-income cities. However, performance on other governance factors, such as inclusivity and financial sustainability, is variable. Future priorities in Bishkek include extending collection to unserved communities; improving landfill standards; increasing recycling rates through informal sector cooperation; improving data availability; and engaging all stakeholders in waste management strategy decisions. Extending the scope and flexibility of the ISWM protocol is recommended to better represent the variation in conditions that occur in waste management systems in practice.

  18. Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios

    PubMed Central

    Ali Rajaeifar, Mohammad; Tabatabaei, Meisam; Ghanavati, Hossein

    2015-01-01

    Environmental assessment of municipal solid waste (MSW) management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0), landfilling combined with composting (Sc-1), incineration (Sc-2), incineration combined with composting (Sc-3), and AD combined with incineration (Sc-4). The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6). The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4). PMID:26217743

  19. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    PubMed

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Martial recycling from renewable landfill and associated risks: A review.

    PubMed

    Ziyang, Lou; Luochun, Wang; Nanwen, Zhu; Youcai, Zhao

    2015-07-01

    Landfill is the dominant disposal choice for the non-classified waste, which results in the stockpile of materials after a long term stabilization process. A novel landfill, namely renewable landfill (RL), is developed and applied as a strategy to recycle the residual materials and reuse the land occupation, aim to reduce the inherent problems of large land occupied, materials wasted and long-term pollutants released in the conventional landfill. The principle means of RL is to accelerate the waste biodegradation process in the initial period, recover the various material resources disposal and extend the landfill volume for waste re-landfilling after waste stabilized. The residual material available and risk assessment, the methodology of landfill excavation, the potential utilization routes for different materials, and the reclamation options for the unsanitary landfill are proposed, and the integrated beneficial impacts are identified finally from the economic, social and environmental perspectives. RL could be draw as the future reservoirs for resource extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.