Sample records for waste numerical modeling

  1. Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation

    NASA Astrophysics Data System (ADS)

    Wardhani, Puteri Kusuma; Watanabe, Masaji

    2016-02-01

    The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.

  2. A model for managing sources of groundwater pollution

    USGS Publications Warehouse

    Gorelick, Steven M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.

  3. Numerical assessment of bureau of mines electric arc melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, S.; Hawkes, G.; Nguyen, H.D.

    1994-12-31

    An electric arc melter used for the waste treatment process at Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM) has been numerically studied. The arc melter is being used for vitrification of thermally oxidized, buried, transuranic (TRU) contaminated wastes by INEL in conjunction with the USBM as a part of the Buried Waste Integrated Demonstration project. The purpose of this study is to numerically investigate the performance of the laboratory-scale arc melter simulating the USBM arc melter. Initial results of modeling the full-scale USBM arc melter are also reported in this paper.

  4. Development of numerical model for predicting heat generation and temperatures in MSW landfills.

    PubMed

    Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A

    2013-10-01

    A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Numerical modelling for quantitative environmental risk assessment for the disposal of drill cuttings and mud

    NASA Astrophysics Data System (ADS)

    Wahab, Mohd Amirul Faiz Abdul; Shaufi Sokiman, Mohamad; Parsberg Jakobsen, Kim

    2017-10-01

    To investigate the fate of drilling waste and their impacts towards surrounding environment, numerical models were generated using an environmental software; MIKE by DHI. These numerical models were used to study the transportation of suspended drill waste plumes in the water column and its deposition on seabed in South China Sea (SCS). A random disposal site with the model area of 50 km × 25 km was selected near the Madalene Shoal in SCS and the ambient currents as well as other meteorological conditions were simulated in details at the proposed location. This paper was focusing on sensitivity study of different drill waste particle characteristics on impacts towards marine receiving environment. The drilling scenarios were obtained and adapted from the oil producer well at offshore Sabah (Case 1) and data from actual exploration drilling case at Pumbaa location (PL 469) in the Norwegian Sea (Case 2). The two cases were compared to study the effect of different drilling particle characteristics and their behavior in marine receiving environment after discharged. Using the Hydrodynamic and Sediment Transport models simulated in MIKE by DHI, the variation of currents and the behavior of the drilling waste particles can be analyzed and evaluated in terms of multiple degree zones of impacts.

  6. Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1979-01-04

    Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric andmore » 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables.« less

  7. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills.

    PubMed

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2014-11-01

    The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55°C for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4-9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon content (DOCC) was in the range of 0.44-0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP values of 51.8-69.6 and 106.6-117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84-5.12% and 7.96-8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Numerical simulation of mechanical properties tests of tungsten mud waste geopolymer

    NASA Astrophysics Data System (ADS)

    Paszek, Natalia; Krystek, Małgorzata

    2018-03-01

    Geopolymers are believed to become in the future an environmental friendly alternative for the concrete. The low CO2 emission during the production process and the possibility of ecological management of the industrial wastes are mentioned as main advantages of geopolymers. The main drawback, causing problems with application of geopolymers as a building material is the lack of the theoretical material model. Indicated problem is being solved now by the group of scientists from the Silesian University of Technology. The series of laboratory tests are carried out within the European research project REMINE. The paper introduces the numerical analyses of tungsten mud waste geopolymer samples which have been performed in the Atena software on the basis of the laboratory tests. Numerical models of bended and compressed samples of different shapes are presented in the paper. The results obtained in Atena software were compared with results obtained in Abaqus and Mafem3D software.

  9. Numerical modeling of pollutant transport using a Lagrangian marker particle technique

    NASA Technical Reports Server (NTRS)

    Spaulding, M.

    1976-01-01

    A derivation and code were developed for the three-dimensional mass transport equation, using a particle-in-cell solution technique, to solve coastal zone waste discharge problems where particles are a major component of the waste. Improvements in the particle movement techniques are suggested and typical examples illustrated. Preliminary model comparisons with analytic solutions for an instantaneous point release in a uniform flow show good results in resolving the waste motion. The findings to date indicate that this computational model will provide a useful technique to study the motion of sediment, dredged spoils, and other particulate waste commonly deposited in coastal waters.

  10. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    NASA Astrophysics Data System (ADS)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  11. Chemical Transport in a Fissured Rock: Verification of a Numerical Model

    NASA Astrophysics Data System (ADS)

    Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.

    1982-10-01

    Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress.

  12. Experiments and Modeling to Support Field Test Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Peter Jacob; Bourret, Suzanne Michelle; Zyvoloski, George Anthony

    Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested atmore » several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.« less

  13. Large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading.

    PubMed

    Kavazanjian, Edward; Gutierrez, Angel

    2017-10-01

    A large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading was conducted to help validate a numerical model for performance based design of geomembrane liner systems. The test was conducted using the 240g-ton centrifuge at the University of California at Davis under the U.S. National Science Foundation Network for Earthquake Engineering Simulation Research (NEESR) program. A 0.05mm thin film membrane was used to model the liner. The waste was modeled using a peat-sand mixture. The side slope membrane was underlain by lubricated low density polyethylene to maximize the difference between the interface shear strength on the top and bottom of the geomembrane and the induced tension in it. Instrumentation included thin film strain gages to monitor geomembrane strains and accelerometers to monitor seismic excitation. The model was subjected to an input design motion intended to simulate strong ground motion from the 1994 Hyogo-ken Nanbu earthquake. Results indicate that downdrag waste settlement and seismic loading together, and possibly each phenomenon individually, can induce potentially damaging tensile strains in geomembrane liners. The data collected from this test is publically available and can be used to validate numerical models for the performance of geomembrane liner systems. Published by Elsevier Ltd.

  14. Numerical simulation of organic waste aerobic biodegradation: a new way to correlate respiration kinetics and organic matter fractionation.

    PubMed

    Denes, Jeremy; Tremier, Anne; Menasseri-Aubry, Safya; Walter, Christian; Gratteau, Laurette; Barrington, Suzelle

    2015-02-01

    Composting wastes permits the reuse of organic matter (OM) as agricultural amendments. The fate of OM during composting and the subsequent degradation of composts in soils largely depend on waste OM quality. The proposed study aimed at developing a model to predict the evolution in organic matter quality during the aerobic degradation of organic waste, based on the quantification of the various OM fractions contained in the wastes. The model was calibrated from data gathered during the monitoring of four organic wastes (two non-treated wastes and their digestates) exposed to respirometric tests. The model was successfully fitted for all four wastes and permitted to predict respiration kinetics, expressed as CO2 production rates, and the evolution of OM fractions. The calibrated model demonstrated that hydrolysis rates of OM fractions were similar for all four wastes whereas the parameters related to microbial activity (eg. growth and death rates) were specific to each substrate. These later parameters have been estimated by calibration on respirometric data, thus demonstrating that coupling analyses of OM fractions in initial wastes and respirometric tests permit the simulation of the biodegradation of various type of waste. The biodegradation model presented in this paper could thereafter be integrated in a composting model by implementing mass and heat balance equations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. DECOVALEX Project: from 1992 to 2007

    NASA Astrophysics Data System (ADS)

    Tsang, Chin-Fu; Stephansson, Ove; Jing, Lanru; Kautsky, Fritz

    2009-05-01

    The DECOVALEX project is a unique international research collaboration, initiated in 1992, for advancing the understanding and mathematical modelling of coupled thermo-hydro-mechanical (THM) and thermo-hydro-mechanical-chemical (THMC) processes in geological systems—subjects of importance for performance assessment of radioactive waste repositories in geological formations. From 1992 up to 2007, the project has made important progress and played a key role in the development of numerical modelling of coupled processes in fractured rocks and buffer/backfill materials. The project has been conducted by research teams supported by a large number of radioactive-waste-management organizations and regulatory authorities, including those of Canada, China, Finland, France, Japan, Germany, Spain, Sweden, UK, and the USA. Through this project, in-depth knowledge has been gained of coupled THM and THMC processes associated with nuclear waste repositories, as well as numerical simulation models for their quantitative analysis. The knowledge accumulated from this project, in the form of a large number of research reports and international journal and conference papers in the open literature, has been applied effectively in the implementation and review of national radioactive-waste-management programmes in the participating countries. This paper presents an overview of the project.

  16. Chemical transport in a fissured rock: Verification of a numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.

    1982-10-01

    Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end, we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions with or without decaymore » and source terms. The method is based on an integrated finite-difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10{sup -3} % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters is likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. work in this direction is in progress.« less

  17. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains.

  18. Experimental and numerical studies of rotating drum grate furnace

    NASA Astrophysics Data System (ADS)

    Basista, Grzegorz; Szubel, Mateusz; Filipowicz, Mariusz; Tomczyk, Bartosz; Krakowiak, Joanna

    Waste material from the meat industry can be taken into account as a biofuel. Studies confirm, that calorific value is higher and ash content is lower comparing to some conventional fuels. EU directives regulate details of thermal disposal of the waste material from the meat industry - especially in range of the process temperature and time of the particle presence in area of the combustion zone. The paper describes design of the rotating drum grate stove, dedicated to thermal disposal of the meat wastes as well as solid biomass (pellet, small bricket, wood chips) combustion. Device has been developed in frames of cooperation between AGH University of Science and Technology (Krakow, Poland) and producer focused on technologies of energy utilization of biomass in distributed generation. Results of measurements of selected operational parameters performed during startup of the furnace have been presented and discussed. Furthermore, numerical model of the combustion process has been developed to complement experimental results in range of the temperature and oxygen distribution in the area of the combustion chamber. ANSYS CFX solver has been applied to perform simulations including rotational domain related with specifics of operation of the device. Results of numerical modelling and experimental studies have been summarized and compared.

  19. Impact of diet on the design of waste processors in CELSS

    NASA Technical Reports Server (NTRS)

    Waleh, Ahmad; Kanevsky, Valery; Nguyen, Thoi K.; Upadhye, Ravi; Wydeven, Theodore

    1991-01-01

    The preliminary results of a design analysis for a waste processor which employs existing technologies and takes into account the constraints of human diet are presented. The impact of diet is determined by using a model and an algorithm developed for the control and management of diet in a Controlled Ecological Life Support System (CELSS). A material and energy balance model for thermal oxidation of waste is developed which is consistent with both physical/chemical methods of incineration and supercritical water oxidation. The two models yield quantitative analysis of the diet and waste streams and the specific design parameters for waste processors, respectively. The results demonstrate that existing technologies can meet the demands of waste processing, but the choice and design of the processors or processing methods will be sensitive to the constraints of diet. The numerical examples are chosen to display the nature and extent of the gap in the available experiment information about CELSS requirements.

  20. Seamount subduction underneath an accretionary wedge: modelling mass wasting and wedge collapse

    NASA Astrophysics Data System (ADS)

    Mannu, Utsav; Ueda, Kosuke; Willett, Sean; Gerya, Taras; Strasser, Michael

    2017-04-01

    Seamounts (h >1 km) and knolls (h = 500 m-1000 m) cover about one-fifth of the total ocean floor area. These topographical highs of the ocean floor eventually get subducted. Subduction of these topographical features leads to severe deformation of the overriding plate and can cause extensive tectonic erosion and mass wasting of the frontal prism, which can ultimately cause a forearc wedge collapse. Large submarine landslides and the corresponding wedge collapse have previously been reported, for instance, in the northern part of the Hikurangi margin where the landslide is known as the giant Ruatoria debris avalanche, and have also been frequently reported in several seismic sections along the Costa Rica margin. Size and frequency relation of landslides suggest that the average size of submarine landslides in margins with rough subducting plates tends to be larger. However, this observation has not yet been tested or explained by physical models. In numerical subduction models, landslides take place, if at all, on a much larger timescale (in the order of 104-105 years, depending on the time steps of the model) than in natural cases. On the other hand, numerical models simulating mass wasting events such as avalanches and submarine landslides, typically model single events at a much smaller spatio-temporal domain, and do not consider long-term occurrence patterns of freely forming landslides. In this contribution, we present a multi-scale nested numerical approach to emulate short-term landslides within long-term progressive subduction. The numerical approach dynamically produces instantaneous submarine landslides and the resulting debris flow in the spatially and temporally refined inner model. Then we apply these convoluted changes in topography (e.g. due to the submarine landslide etc.) back to an outer larger-scale model instance that addresses wedge evolution. We use this approach to study the evolution of the accretionary wedge during seamount subduction.

  1. UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayer, M.J.; Jones, T.L.

    1990-04-01

    This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet thismore » need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.« less

  2. FY15 Report on Thermomechanical Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Buchholz, Stuart

    2015-08-01

    Sandia is participating in the third phase of a United States (US)-German Joint Project that compares constitutive models and simulation procedures on the basis of model calculations of the thermomechanical behavior and healing of rock salt (Salzer et al. 2015). The first goal of the project is to evaluate the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Among the numerical modeling tools required to address this are constitutive models that are used in computer simulations for the description of the thermal, mechanical, and hydraulic behavior of the host rockmore » under various influences and for the long-term prediction of this behavior. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure disposal of radioactive wastes in rock salt. Results of the Joint Project may ultimately be used to make various assertions regarding stability analysis of an underground repository in salt during the operating phase as well as long-term integrity of the geological barrier in the post-operating phase A primary evaluation of constitutive model capabilities comes by way of predicting large-scale field tests. The Joint Project partners decided to model Waste Isolation Pilot Plant (WIPP) Rooms B & D which are full-scale rooms having the same dimensions. Room D deformed under natural, ambient conditions while Room B was thermally driven by an array of waste-simulating heaters (Munson et al. 1988; 1990). Existing laboratory test data for WIPP salt were carefully scrutinized and the partners decided that additional testing would be needed to help evaluate advanced features of the constitutive models. The German partners performed over 140 laboratory tests on WIPP salt at no charge to the US Department of Energy (DOE).« less

  3. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    NASA Technical Reports Server (NTRS)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

  4. Modeling microbiological and chemical processes in municipal solid waste bioreactor, Part II: Application of numerical model BIOKEMOD-3P.

    PubMed

    Gawande, Nitin A; Reinhart, Debra R; Yeh, Gour-Tsyh

    2010-02-01

    Biodegradation process modeling of municipal solid waste (MSW) bioreactor landfills requires the knowledge of various process reactions and corresponding kinetic parameters. Mechanistic models available to date are able to simulate biodegradation processes with the help of pre-defined species and reactions. Some of these models consider the effect of critical parameters such as moisture content, pH, and temperature. Biomass concentration is a vital parameter for any biomass growth model and often not compared with field and laboratory results. A more complex biodegradation model includes a large number of chemical and microbiological species. Increasing the number of species and user defined process reactions in the simulation requires a robust numerical tool. A generalized microbiological and chemical model, BIOKEMOD-3P, was developed to simulate biodegradation processes in three-phases (Gawande et al. 2009). This paper presents the application of this model to simulate laboratory-scale MSW bioreactors under anaerobic conditions. BIOKEMOD-3P was able to closely simulate the experimental data. The results from this study may help in application of this model to full-scale landfill operation.

  5. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    PubMed

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills. © The Author(s) 2014.

  6. Influence of transitional volcanic strata on lateral diversion at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Selker, John S.

    2003-01-01

    Natural hydraulic barriers exist at Yucca Mountain, Nevada, a potential high‐level nuclear waste repository, that have been identified as possible lateral diversions for reducing deep percolation through the waste storage area. Historical development of the conceptual model of lateral diversion has been limited by available field data, but numerical investigations presented the possibility of significant lateral diversion due to the presence of a thin, porous rock layer, the Paintbrush nonwelded tuffs. Analytical analyses of the influence of transitional changes in properties suggest that minimal lateral diversion is likely at Yucca Mountain. Numerical models, to this point, have not accounted for the gradual transition of properties or the existence of multiple layers that could inadvertently influence the simulation of lateral diversion as an artifact of numerical model discretization. Analyses were made of subsurface matric potential measurements, and comparisons were made of surface infiltration estimates with deeper percolation flux calculations using chloride‐mass‐balance calculations and simulations of measured temperature profiles. These analyses suggest that insignificant lateral diversion has occurred above the repository horizon and that water generally moves vertically through the Paintbrush nonwelded tuffs.

  7. Finite-Length Line Source Superposition Model (FLLSSM)

    NASA Astrophysics Data System (ADS)

    1980-03-01

    A linearized thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high level waste or spent fuel assemblies were represented as finite length line sources in a continuous media. The combined effects of multiple canisters in a representative storage pattern were established at selected points of interest by superposition of the temperature rises calculated for each canister. The methodology is outlined and the computer code FLLSSM which performs required numerical integrations and superposition operations is described.

  8. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  9. Simulating the heat budget for waste as it is placed within a landfill operating in a northern climate.

    PubMed

    Megalla, Dina; Van Geel, Paul J; Doyle, James T

    2016-09-01

    A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Modeling transient heat transfer in nuclear waste repositories.

    PubMed

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  11. EXPERIMENTAL EVALUATION OF TWO SHARP FRONT MODELS FOR VADOSE ZONE NON-AQUEOUS PHASE LIQUID TRANSPORT

    EPA Science Inventory

    Recent research efforts on the transport of immiscible organic wastes in subsurface the development of numerical models of various levels of sophistication. Systems have focused on the site characterization data needed to obtain. However, in real field applications, the model p...

  12. A review of numerical simulation of hydrothermal systems.

    USGS Publications Warehouse

    Mercer, J.W.; Faust, C.R.

    1979-01-01

    Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors

  13. Models Show Subsurface Cracking May Complicate Groundwater Cleanup at Hazardous Waste Sites

    EPA Science Inventory

    Chlorinated solvents like trichloroethylene contaminate groundwater at numerous sites nationwide. This modeling study, conducted at the Air Force Institute of Technology, shows that subsurface cracks, either natural or due to the presence of the contaminant itself, may result in...

  14. New Rapid Evaluation for Long-Term Behavior in Deep Geological Repository by Geotechnical Centrifuge—Part 2: Numerical Simulation of Model Tests in Isothermal Condition

    NASA Astrophysics Data System (ADS)

    Sawada, Masataka; Nishimoto, Soshi; Okada, Tetsuji

    2017-01-01

    In high-level radioactive waste disposal repositories, there are long-term complex thermal, hydraulic, and mechanical (T-H-M) phenomena that involve the generation of heat from the waste, the infiltration of ground water, and swelling of the bentonite buffer. The ability to model such coupled phenomena is of particular importance to the repository design and assessments of its safety. We have developed a T-H-M-coupled analysis program that evaluates the long-term behavior around the repository (called "near-field"). We have also conducted centrifugal model tests that model the long-term T-H-M-coupled behavior in the near-field. In this study, we conduct H-M-coupled numerical simulations of the centrifugal near-field model tests. We compare numerical results with each other and with results obtained from the centrifugal model tests. From the comparison, we deduce that: (1) in the numerical simulation, water infiltration in the rock mass was in agreement with the experimental observation. (2) The constant-stress boundary condition in the centrifugal model tests may cause a larger expansion of the rock mass than in the in situ condition, but the mechanical boundary condition did not affect the buffer behavior in the deposition hole. (3) The numerical simulation broadly reproduced the measured bentonite pressure and the overpack displacement, but did not reproduce the decreasing trend of the bentonite pressure after 100 equivalent years. This indicates the effect of the time-dependent characteristics of the surrounding rock mass. Further investigations are needed to determine the effect of initial heterogeneity in the deposition hole and the time-dependent behavior of the surrounding rock mass.

  15. Remedial action assessment system: Decision support for environmental cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennock, K.A.; Bohn, S.; Franklin, A.L.

    1991-11-01

    A large number of hazardous waste sites across the United States await treatment. Waste sites can be physically complex entities composed of multiple, possibly interacting contaminants distributed throughout one or more media. The sites may be active as well with contaminants escaping through one or more potential escape paths. Treatment of these sites requires a long and costly commitment involving the coordination of activities among several waste treatment professionals. In order to reduce the cost and time required for the specification of treatment at these waste sites. The Remedial Action Assessment System (RAAS) was proposed. RAAS is an automated informationmore » management system which utilizes a combination of expert reasoning and numerical models to produce the combinations of treatment technologies, known as treatment trains, which satisfy the treatment objectives of a particular site. In addition, RAAS supports the analysis of these trains with regard to effectiveness and cost so that the viable treatment trains can be measured against each other. The Remedial Action Assessment System is a hybrid system designed and constructed using object-oriented tools and techniques. RAAS is advertised as a hybrid system because it combines, in integral fashion, numerical computing (primarily quantitative models) with expert system reasoning. An object-oriented approach was selected due to many of its inherent advantages, among these the naturalness of modeling physical objects and processes.« less

  16. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. Inmore » this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.« less

  17. Etude du comportement hydrogeologique de couvertures avec effet de barriere capillaire faites entierement de materiaux miniers

    NASA Astrophysics Data System (ADS)

    Kalonji, Alex Kabambi

    The acid mining drainage (AMD) generating mine sites must be restored to limit their long-term contamination of the environment. At the end of mining operations, covers with capillary barrier effects (CCBE), generally made of natural materials soils, are used as an oxygen barrier to isolate the tailings that generate acid mining drainage (AMD) from their immediate environment. Due to economic and social acceptability contraints and to the environmental impact of stripping (footprint) of natural soil pits, mining companies are increasingly interested in using non-acid generating waste rock as a substitute for natural soils as base materials to form capillary break layers in covers. The overall objective of this study was to evaluate the hydrogeological behaviour of CCBE made entirely of mining materials (desulphurized tailings from a desulphurization process and non-acid generating waste rock). The specific objectives of this project were : 1) to characterize the hydrogeological properties of waste rock (with truncated size) and desulphurized tailings; 2) to evaluate in laboratory instrumented columns the effectiveness of CCBE made entirely of mining materials; 3) to simulate the column tests using a 1D numerical code to model the fluid (water and gas) flow in the unsaturated media; and 4) to validate with 2D numerical modeling the ability to restore LaRonde tailings impoundment (Agnico Eagle Mines Limited) using a CCBE made of low-sulfide tailings and non-acid generating waste rock. To achieve the objectives, samples of waste rock were collected from Bousquet waste rock pile and tailings from the ore concentration plant before being pumped to the tailings impoundment. Desulphurized tailings with less than 2% S were produced in order to construct a non-reactive CCBE. After the physical, chemical, mineralogical and hydrogeotechnical characterization of cover materials, laboratory physical models of CCBC in instrumented columns were performed. Three configurations were tested. The first two columns had a different waste rock grain size (0-20 mm and 0-50 mm) in their lower coarse layers, and the tailings were introduced at a high solid percent, approximatively 74% (simulating mechanical deposition). The third column also had waste rock with particle size 0-50 mm in its bottom coarse layer, but with tailings placed a lower solid percent, approximatively 55% (simulating hydraulic deposition). The particle size of the coarse waste rock in the top layers was set at 0-50 mm for all three columns. Several cycles of wetting drainage in the three columns were performed. The results of these laboratory investigations in terms of volumetric water content and suction profiles confirm the potential of non-acid generating waste rock to be used in the capillary break layers of CCBE. To assess the long-term performance, several scenarios of numerical modeling were performed using Vadose/W 2007 numerical codes, by Geoslope int. A variation of the depth of the water table and natural and extreme climatic conditions were considered in this parametric study. The results of these predictions confirmed the long-term effectiveness of covers with mine waste rock in capillary break layers. The effectiveness was evaluated in terms of oxygen flux at the interface between the moisture-retaining layer (MRL) and the bottom capillary break layer. Under natural and extreme climatic conditions (two months without infiltration), and a variation of the depth of the water table level from 2 to 6 m, cumulative oxygen flux over a one year period varied between 10.6 and 97.5 g/m 2/year. For extreme climatic conditions, and for the same variation of the depth of the water table, the oxygen flux varied between 14.3 and 117.9 g/m2/year. The highest oxygen flux (117 g/m2/year) was obtained for a water table depth of 6 m under extreme climatic conditions. The influence of the particle size contrast between the water retention layer and the bottom capillary break layer on the oxygen flux was further highlighted using relatively fine and coarse sand in the coarse bottom layer. The numerical modeling results obtained with the coarse sand were almost similar to those obtained with waste rock. In the absence of the strong contrast (when the relatively fine sand was used), the water retention layer was drained and the oxygen flux which reached at the bottom of this layer increased considerably. The water table depth, the grain size, and the hydraulic contrast between the MRL and the bottom capillary break layer (CBL) proved to be the key parameters of the simulated model. In field conditions, CCBE are often inclined, and that this inclination can affect the performance of the cover to control the migration of oxygen. 2D modeling was also performed. The numerical model was built to represent approximatively the case of one of the dams of LaRonde tailings impoundment. Preliminary results show that CCBE made entirely of mining materials are effective even when placed over slopes. The degree of saturation of the two slopes in the numerical model was higher than 85%. The influence of the slope has not significantly affected yet the performance of the cover for the model studied in this thesis. The cumulative oxygen flux over one year at the bottom of the MRL (for horizontal distance of 182 m of the numerical model) are 4031.3g (22.1 g/m2/year) and 4617.7g (25.3 g/m2/year) for natural and extreme climatic conditions respectively. This study confirms that waste rocks have good potential to be used as capillary break materials in the configuration of such CCBE. Thereby, it is suggested that the option of using only mining materials be included in the analysis of the optimal mode of mine reclamation. This project also suggests that good management of the tailings and waste rock produced during mining operations will provide the materials which could then be used to restore the site. More research is recommended to further investigate this reclamation option through field experimental cells. If further research validates the laboratory results at the intermediate scale, the use of mining materials would be considered as an effective option for CCBE used to control post-closure pollution. This scenario could reduce the construction costs while promoting the social acceptability of mining projects by reducing the use of natural soils.

  18. Numerical modeling of subsurface radioactive solute transport from waste seepage ponds at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Robertson, John B.

    1976-01-01

    Aqueous chemical and low-level radioactive effluents have been disposed to seepage ponds since 1952 at the Idaho National Engineering Laboratory. The solutions percolate toward the Snake River Plain aquifer (135 m below) through interlayered basalts and unconsolidated sediments and an extensive zone of ground water perched on a sedimentary layer about 40 m beneath the ponds. A three-segment numerical model was developed to simulate the system, including effects of convection, hydrodynamic dispersion, radioactive decay, and adsorption. Simulated hydraulics and solute migration patterns for all segments agree adequately with the available field data. The model can be used to project subsurface distributions of waste solutes under a variety of assumed conditions for the future. Although chloride and tritium reached the aquifer several years ago, the model analysis suggests that the more easily sorbed solutes, such as cesium-137 and strontium-90, would not reach the aquifer in detectable concentrations within 150 years for the conditions assumed. (Woodard-USGS)

  19. Quantitative comparison between PGNAA measurements and MCNP calculations in view of the characterization of radioactive wastes in Germany and France

    NASA Astrophysics Data System (ADS)

    Mauerhofer, E.; Havenith, A.; Carasco, C.; Payan, E.; Kettler, J.; Ma, J. L.; Perot, B.

    2013-04-01

    The Forschungszentrum Jülich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA) [1]. The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of some elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.

  20. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    PubMed

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package vulnerable to LNAPL release; upper bound inventory estimates of LNAPLs; incorporating the lack of any hydraulic resistance of the package vent; the lack of any degradation of dissolved LNAPL; and, significantly, the small threshold displacement pressure assumed at which LNAPL is able to enter initially water-saturated pores. Initial scoping calculations on the latter suggested that the rate at which LNAPL is able to migrate from a waste package is likely to be very small and insignificant for likely representative displacement pressure data: this represents a key result. Adopting a conservative displacement pressure, however, allowed the effect of other features and processes in the system to be assessed. High LNAPL viscosity together with low density contrast with water reduces LNAPL migration potential. Migration to the host rock is less likely if waste package vent fluxes are small, solubility limits are high and path lengths through the backfill are short. The capacity of the system to dissolve all of the free LNAPL will, however, depend on groundwater availability. Even with the conservatisms invoked, the overall conclusion of model simulations of intact and compromised (cracked or corroded) waste packages, for a range of realistic ILW LNAPL scenarios, is that it is unlikely that significant LNAPL would be able to migrate from the waste packages and even more unlikely it would be sufficiently persistent to reach the host rock immediately beyond the GDF. Copyright © 2014. Published by Elsevier B.V.

  1. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.

    PubMed

    Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru

    2009-02-01

    Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.

  2. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems

    PubMed Central

    Yu, Hao; Solvang, Wei Deng

    2016-01-01

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment. PMID:27258293

  3. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems.

    PubMed

    Yu, Hao; Solvang, Wei Deng

    2016-05-31

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  4. Design of numerical model for thermoacoustic devices using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Tisovsky, Tomas; Vit, Tomas

    2017-09-01

    Thermoacoustic devices are increasingly popular especially because of their construction simplicity and the ability to easily convert waste heat into the form of usable energy. Aim of this paper is to introduce some of the effective procedures for creating a complex mathematical model of thermoacoustic devices in OpenFOAM.

  5. A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.

    1997-02-01

    Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.

  6. Chaotic time series prediction for prenatal exposure to polychlorinated biphenyls in umbilical cord blood using the least squares SEATR model

    NASA Astrophysics Data System (ADS)

    Xu, Xijin; Tang, Qian; Xia, Haiyue; Zhang, Yuling; Li, Weiqiu; Huo, Xia

    2016-04-01

    Chaotic time series prediction based on nonlinear systems showed a superior performance in prediction field. We studied prenatal exposure to polychlorinated biphenyls (PCBs) by chaotic time series prediction using the least squares self-exciting threshold autoregressive (SEATR) model in umbilical cord blood in an electronic waste (e-waste) contaminated area. The specific prediction steps basing on the proposal methods for prenatal PCB exposure were put forward, and the proposed scheme’s validity was further verified by numerical simulation experiments. Experiment results show: 1) seven kinds of PCB congeners negatively correlate with five different indices for birth status: newborn weight, height, gestational age, Apgar score and anogenital distance; 2) prenatal PCB exposed group at greater risks compared to the reference group; 3) PCBs increasingly accumulated with time in newborns; and 4) the possibility of newborns suffering from related diseases in the future was greater. The desirable numerical simulation experiments results demonstrated the feasibility of applying mathematical model in the environmental toxicology field.

  7. Chaotic time series prediction for prenatal exposure to polychlorinated biphenyls in umbilical cord blood using the least squares SEATR model

    PubMed Central

    Xu, Xijin; Tang, Qian; Xia, Haiyue; Zhang, Yuling; Li, Weiqiu; Huo, Xia

    2016-01-01

    Chaotic time series prediction based on nonlinear systems showed a superior performance in prediction field. We studied prenatal exposure to polychlorinated biphenyls (PCBs) by chaotic time series prediction using the least squares self-exciting threshold autoregressive (SEATR) model in umbilical cord blood in an electronic waste (e-waste) contaminated area. The specific prediction steps basing on the proposal methods for prenatal PCB exposure were put forward, and the proposed scheme’s validity was further verified by numerical simulation experiments. Experiment results show: 1) seven kinds of PCB congeners negatively correlate with five different indices for birth status: newborn weight, height, gestational age, Apgar score and anogenital distance; 2) prenatal PCB exposed group at greater risks compared to the reference group; 3) PCBs increasingly accumulated with time in newborns; and 4) the possibility of newborns suffering from related diseases in the future was greater. The desirable numerical simulation experiments results demonstrated the feasibility of applying mathematical model in the environmental toxicology field. PMID:27118260

  8. Optimization of automotive Rankine cycle waste heat recovery under various engine operating condition

    NASA Astrophysics Data System (ADS)

    Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi

    2017-02-01

    An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.

  9. Three-Loop Automatic of Control System the Landfill of Household Solid Waste

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2017-05-01

    The analysis of models of governance ground municipal solid waste (MSW). Considered a distributed circuit (spatio-temporal) ground control model. Developed a dynamic model of multicontour control landfill. Adjustable parameters are defined (the ratio of CH4 CO2 emission/fluxes, concentrations of heavy metals ions) and control (purging array, irrigation, adding reagents). Based on laboratory studies carried out with the analysis of equity flows and procedures developed by the transferring matrix that takes into account the relationship control loops. A system of differential equations in the frequency and time domains. Given the numerical approaches solving systems of differential equations in finite differential form.

  10. Quantitative comparison between PGNAA measurements and MCNP calculations in view of the characterization of radioactive wastes in Germany and France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhofer, E.; Havenith, A.; Kettler, J.

    The Forschungszentrum Juelich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA). The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of somemore » elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.« less

  11. Modeling of Solid Waste Processing Options in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Rodriguez, Luis F.; Finn, Cory; Kang, Sukwon; Hogan, John; Luna, Bernadette (Technical Monitor)

    2000-01-01

    BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered. Biological options include composting, aerobic digestion, and anaerobic digestion. Physicochemical options include pyrolysis, SCWO (supercritical water oxidation), various incineration configurations, microwave incineration, magnetically assisted gasification, and low temperature plasma reaction. Modeling of these options is a necessary step to assist in the design process. A previously developed top-level model of BIO-Plex implemented in MATLAB Simulink (r) for the use of systems analysis and design has been adopted for this analysis. Presently, this model only considered incineration for solid waste processing. Present work, reported here, includes the expansion of this model to include a wider array of solid waste processing options selected from the above options, bearing in mind potential, near term solid waste treatment systems. Furthermore, a trade study has also been performed among these solid waste processing technologies in an effort to determine the ideal technology for long-term life support missions.

  12. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    NASA Astrophysics Data System (ADS)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of opportunity for Xe-133 detection from a 1 kt UNE at Rainier Mesa, with and without matching the model to SF6 and He-3 data from the 1993 Non Proliferation Experiment. Results from the data-blind Monte Carlo simulations were similar, but were biased towards earlier arrival time and less likely to show detectable Xe-133. The second study, also related to nuclear nonproliferation compliance, considered the effect of barometric pumping on predicted Xe-133 breakthrough time in a Monte Carlo framework. Barometric pumping of gas through explosion-fractured rock was investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks for two rock types (granite and saturated tuff) and three depths of burial were integrated into a numerical model driven by surface pressure signals of differing amplitude and variability. Matrix porosity and maximum fracture aperture had the greatest impact on gas breakthrough time and window of opportunity for detection. Differences in model sensitivity for granite and tuff simulations highlight the importance of accurately simulating the fracture network. From Monte Carlo simulations using randomly generated hydrogeologic parameters, normalized probability of detection curves showed differences in optimal sampling time for granite and tuff. Granite breakthrough was earlier, as was breakthrough in realizations with greater variance of barometric pressure. Next, heat-generating nuclear waste (HGNW) disposal in bedded salt during the first two years after waste emplacement was explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265°C released water in amounts greater than 20% by mass of hydrous minerals and clays. Experimental data for water loss at several temperatures were averaged to produce a water source model that was then implemented in FEHM. Simulations using this dehydration model were used to predict temperature, moisture, and porosity after heating by 750W waste canisters, assuming hydrous mineral mass fractions from 0--10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back towards the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability and fluid mobility. In certain cases, dehydration of hydrous minerals provided sufficient additional moisture to push the system into a sustained heat pipe where simulations neglecting this process did not. A laboratory-scale experiment (˜1 m3) using granular salt was conducted to gain a better understanding of the complex coupled processes involved in liquid, vapor, and solid transport occurring around heated nuclear waste in crushed salt, which could be a mode of disposal for HGNW. The experiment was designed to study transport processes in the system that have not been satisfactorily quantified in prior work. Initial results from the experimental effort offer promising insights. (Abstract shortened by UMI.).

  13. Revision of the documentation for a model for calculating effects of liquid waste disposal in deep saline aquifers

    USGS Publications Warehouse

    INTERA Environmental Consultants, Inc.

    1979-01-01

    The major limitation of the model arises using second-order correct (central-difference) finite-difference approximation in space. To avoid numerical oscillations in the solution, the user must restrict grid block and time step sizes depending upon the magnitude of the dispersivity.

  14. SPH-based numerical simulations of flow slides in municipal solid waste landfills.

    PubMed

    Huang, Yu; Dai, Zili; Zhang, Weijie; Huang, Maosong

    2013-03-01

    Most municipal solid waste (MSW) is disposed of in landfills. Over the past few decades, catastrophic flow slides have occurred in MSW landfills around the world, causing substantial economic damage and occasionally resulting in human victims. It is therefore important to predict the run-out, velocity and depth of such slides in order to provide adequate mitigation and protection measures. To overcome the limitations of traditional numerical methods for modelling flow slides, a mesh-free particle method entitled smoothed particle hydrodynamics (SPH) is introduced in this paper. The Navier-Stokes equations were adopted as the governing equations and a Bingham model was adopted to analyse the relationship between material stress rates and particle motion velocity. The accuracy of the model is assessed using a series of verifications, and then flow slides that occurred in landfills located in Sarajevo and Bandung were simulated to extend its applications. The simulated results match the field data well and highlight the capability of the proposed SPH modelling method to simulate such complex phenomena as flow slides in MSW landfills.

  15. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty.

    PubMed

    Simic, Vladimir; Dimitrijevic, Branka

    2015-02-01

    An interval linear programming approach is used to formulate and comprehensively test a model for optimal long-term planning of vehicle recycling in the Republic of Serbia. The proposed model is applied to a numerical case study: a 4-year planning horizon (2013-2016) is considered, three legislative cases and three scrap metal price trends are analysed, availability of final destinations for sorted waste flows is explored. Potential and applicability of the developed model are fully illustrated. Detailed insights on profitability and eco-efficiency of the projected contemporary equipped vehicle recycling factory are presented. The influences of the ordinance on the management of end-of-life vehicles in the Republic of Serbia on the vehicle hulks procuring, sorting generated material fractions, sorted waste allocation and sorted metals allocation decisions are thoroughly examined. The validity of the waste management strategy for the period 2010-2019 is tested. The formulated model can create optimal plans for procuring vehicle hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Obtained results are valuable for supporting the construction and/or modernisation process of a vehicle recycling system in the Republic of Serbia. © The Author(s) 2015.

  16. Development of a pyrolysis waste recovery model with designs, test plans, and applications for space-based habitats

    NASA Technical Reports Server (NTRS)

    Roberson, Bobby J.

    1992-01-01

    Extensive literature searches revealed the numerous advantages of using pyrolysis as a means of recovering usable resources from inedible plant biomass, paper, plastics, other polymers, and human waste. A possible design of a pyrolysis reactor with test plans and applications for use on a space-based habitat are proposed. The proposed system will accommodate the wastes generated by a four-person crew while requiring solar energy as the only power source. Waste materials will be collected and stored during the 15-day lunar darkness periods. Resource recovery will occur during the daylight periods. Usable gases such as methane and hydrogen and a solid char will be produced while reducing the mass and volume of the waste to almost infinitely small levels. The system will be operated economically, safely, and in a non-polluting manner.

  17. Assessment of uncertainty in discrete fracture network modeling using probabilistic distribution method.

    PubMed

    Wei, Yaqiang; Dong, Yanhui; Yeh, Tian-Chyi J; Li, Xiao; Wang, Liheng; Zha, Yuanyuan

    2017-11-01

    There have been widespread concerns about solute transport problems in fractured media, e.g. the disposal of high-level radioactive waste in geological fractured rocks. Numerical simulation of particle tracking is gradually being employed to address these issues. Traditional predictions of radioactive waste transport using discrete fracture network (DFN) models often consider one particular realization of the fracture distribution based on fracture statistic features. This significantly underestimates the uncertainty of the risk of radioactive waste deposit evaluation. To adequately assess the uncertainty during the DFN modeling in a potential site for the disposal of high-level radioactive waste, this paper utilized the probabilistic distribution method (PDM). The method was applied to evaluate the risk of nuclear waste deposit in Beishan, China. Moreover, the impact of the number of realizations on the simulation results was analyzed. In particular, the differences between the modeling results of one realization and multiple realizations were demonstrated. Probabilistic distributions of 20 realizations at different times were also obtained. The results showed that the employed PDM can be used to describe the ranges of the contaminant particle transport. The high-possibility contaminated areas near the release point were more concentrated than the farther areas after 5E6 days, which was 25,400 m 2 .

  18. Thermal Analysis of a Nuclear Waste Repository in Argillite Host Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Gomez, S. P.; Matteo, E. N.

    2017-12-01

    Disposal of high-level nuclear waste in a geological repository requires analysis of heat distribution as a result of decay heat. Such an analysis supports design of repository layout to define repository footprint as well as provide information of importance to overall design. The analysis is also used in the study of potential migration of radionuclides to the accessible environment. In this study, thermal analysis for high-level waste and spent nuclear fuel in a generic repository in argillite host rock is presented. The thermal analysis utilized both semi-analytical and numerical modeling in the near field of a repository. The semi-analytical method looks at heat transport by conduction in the repository and surroundings. The results of the simulation method are temperature histories at selected radial distances from the waste package. A 3-D thermal-hydrologic numerical model was also conducted to study fluid and heat distribution in the near field. The thermal analysis assumed a generic geological repository at 500 m depth. For the semi-analytical method, a backfilled closed repository was assumed with basic design and material properties. For the thermal-hydrologic numerical method, a repository layout with disposal in horizontal boreholes was assumed. The 3-D modeling domain covers a limited portion of the repository footprint to enable a detailed thermal analysis. A highly refined unstructured mesh was used with increased discretization near heat sources and at intersections of different materials. All simulations considered different parameter values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock), and different surface storage times. Results of the different modeling cases are presented and include temperature and fluid flow profiles in the near field at different simulation times. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-8295 A.

  19. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.

  20. Stability analysis of the phytoplankton effect model on changes in nitrogen concentration on integrated multi-trophic aquaculture systems

    NASA Astrophysics Data System (ADS)

    Widowati; Putro, S. P.; Silfiana

    2018-05-01

    Integrated Multi-Trophic Aquaculture (IMTA) is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The interaction between phytoplankton and nitrogen as waste in fish cultivation including ammonia, nitrite, and nitrate studied in the form of mathematical models. The form model is non-linear systems of differential equations with the four variables. The analytical analysis was used to study the dynamic behavior of this model. Local stability analysis is performed at the equilibrium point with the first step linearized model by using Taylor series, then determined the Jacobian matrix. If all eigenvalues have negative real parts, then the equilibrium of the system is locally asymptotic stable. Some numerical simulations were also demonstrated to verify our analytical result.

  1. Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material

    NASA Astrophysics Data System (ADS)

    Gwóźdź-Lasoń, Monika

    2017-10-01

    The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.

  2. [Role of myostatin in wasting syndrome associated with chronic diseases].

    PubMed

    Zamora, Elisabet; Galán, Amparo; Simó, Rafael

    2008-11-01

    Muscle wasting is a common process of numerous chronic diseases. Sarcopenia is associated with poor prognosis independently of the outcome of the disease. To date, the mechanisms by which sarcopenia induces these alterations are unknown, but the complexity of muscular metabolism anticipates that many factors can be involved. Myostatin, a new family member of transforming growth factor beta, was initially described from the observation of significant muscular growing in knock out mice for myostatin. Numerous experimental and clinical studies have provided insights in the physiologic knowledge of this protein and its implication in muscle wasting conditions. In recent years different substances have been described that counteract myostatin through numerous physiopathological mecanisms and, therefore, they might be novel therapeutic strategies against the wasting syndrome associated with chronic diseases. In spite of that, more studies are needed to improve the knowledge of all processes involved in muscle wasting in order to prevent its devastating consequences.

  3. Digital modeling of radioactive and chemical waste transport in the aquifer underlying the Snake River Plain at the National Reactor Testing Station, Idaho

    USGS Publications Warehouse

    Robertson, J.B.

    1974-01-01

    Industrial and low-level radioactive liquid wastes at the National Reactor Testing Station (NRTS) in Idaho have been disposed to the Snake River Plain aquifer since 1952. Monitoring studies have indicated that tritium and chloride have dispersed over a 15-square mile (39-square kilometer) area of the aquifer in low but detectable concentrations and have only migrated as far as 5 miles (8 kilometers) downgradient from discharge points. The movement of cationic waste solutes, particularly 90Sr and 137Cs, has been significantly retarded due to sorption phenomena, principally ion exchange. 137Cs has shown no detectable migration in the aquifer and 90Sr has migrated only about 1.5 miles (2 kilometers) from the Idaho Chemical Processing Plant (ICPP) discharge well, and is detectable over an area of only 1.5 square miles ( 4 square kilometers) of the aquifer. Digital modeling techniques have been applied successfully to the analysis of the complex waste-transport system by utilizing numerical solution of the coupled equations of groundwater motion and mass transport. The model includes the effects of convective transport, flow divergence, two-dimensional hydraulic dispersion, radioactive decay, and reversible linear sorption. The hydraulic phase of the model uses the iterative, alternating direction, implicit finite-difference scheme to solve the groundwater flow equations, while the waste-transport phase uses a modified method of characteristics to solve the solute transport equations simulated by the model. The modeling results indicate that hydraulic dispersion (especially transverse) is a much more significant influence than previously suggested by earlier studies. The model has been used to estimate future waste migration patterns for varied assumed hydrological and waste conditions up through the year 2000. The hydraulic effects of recharge from the Big Lost River have an important (but not predominant) influence on the simulated future migration patterns. For the assumed conditions, the model indicates that detectable concentrations of waste chloride and tritium could move as much as 15 miles (24 kilometers) downgradient from the original discharge points by the year 2000. However, the model shows 90Sr moving only 2 to 3 miles (3 to 5 kilometers) downgradient in the same time. The model may also be used to estimate the effects of the various future waste disposal practices and hydrologic conditions on subsequent migration of waste products.

  4. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed.

    PubMed

    Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M

    2015-05-01

    In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Thermal–hydraulic–mechanical modeling of a large-scale heater test to investigate rock salt and crushed salt behavior under repository conditions for heat-generating nuclear waste

    DOE PAGES

    Blanco-Martín, Laura; Wolters, Ralf; Rutqvist, Jonny; ...

    2016-04-28

    The Thermal Simulation for Drift Emplacement heater test is modeled with two simulators for coupled thermal-hydraulic-mechanical processes. Results from the two simulators are in very good agreement. The comparison between measurements and numerical results is also very satisfactory, regarding temperature, drift closure and rock deformation. Concerning backfill compaction, a parameter calibration through inverse modeling was performed due to insufficient data on crushed salt reconsolidation, particularly at high temperatures. We conclude that the two simulators investigated have the capabilities to reproduce the data available, which increases confidence in their use to reliably investigate disposal of heat-generating nuclear waste in saliferous geosystems.

  6. Thermal–hydraulic–mechanical modeling of a large-scale heater test to investigate rock salt and crushed salt behavior under repository conditions for heat-generating nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco-Martín, Laura; Wolters, Ralf; Rutqvist, Jonny

    The Thermal Simulation for Drift Emplacement heater test is modeled with two simulators for coupled thermal-hydraulic-mechanical processes. Results from the two simulators are in very good agreement. The comparison between measurements and numerical results is also very satisfactory, regarding temperature, drift closure and rock deformation. Concerning backfill compaction, a parameter calibration through inverse modeling was performed due to insufficient data on crushed salt reconsolidation, particularly at high temperatures. We conclude that the two simulators investigated have the capabilities to reproduce the data available, which increases confidence in their use to reliably investigate disposal of heat-generating nuclear waste in saliferous geosystems.

  7. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  8. Decision Support for Environmental Management of Industrial Non-Hazardous Secondary Materials: New Analytical Methods Combined with Simulation and Optimization Modeling

    EPA Science Inventory

    Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requir...

  9. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Franceschini, Andrea; Ferronato, Massimiliano; Janna, Carlo; Teatini, Pietro

    2016-06-01

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions.

  10. Large-scale redox plume in glaciofluvial deposits due to sugar-factory wastes and wastewater at Aarberg, Switzerland

    NASA Astrophysics Data System (ADS)

    Wersin, P.; Abrecht, J.; Höhener, P.

    2001-06-01

    The sugar factory at Aarberg, Switzerland, has processed about 18×106 metric tons of sugar beets in the last 100 years. This has been accompanied by releases of dissolved organic carbon to the groundwater, induced both by direct wastewater disposal until 1964 and by ongoing leakage from solid-waste deposits. Downgradient in the groundwater of the glaciofluvial aquifer, depletion of oxygen concentrations accompanied by low nitrate, high ammonium, dissolved Mn(II) and Fe(II) concentrations are observed. This study was aimed at developing a quantitative comprehension of theimpact of the leaking waste deposits on biogeochemical processes in the aquifer and on groundwater quality. The study includes a review of historical information, a survey of the hydrogeochemistry in the aquifer, the characterisation of river-water infiltration rates with the radon method, establishment of a mass-balance model based on a numerical flow and transport model, and application of a stable-carbon-isotope method to show biodegradation of sugar-waste deposits in the aquifer. The investigations demonstrate that present emissions from waste deposits would not lead to the consumption of all the O2 in the aquifer. The present occurrence of anoxic groundwater conditions is explained as a result of the long history of waste loading.

  11. Thermal - Hydraulic Behavior of Unsaturated Bentonite and Sand-Bentonite Material as Seal for Nuclear Waste Repository: Numerical Simulation of Column Experiments

    NASA Astrophysics Data System (ADS)

    Ballarini, E.; Graupner, B.; Bauer, S.

    2015-12-01

    For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.

  12. Principles of Product Quality Control of German Radioactive Waste Forms from the Reprocessing of Spent Fuel: Vitrification, Compaction and Numerical Simulation - 12529

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya

    2012-07-01

    The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste residues. The immediate benefit is the independent assessment of radio-active inventory declarations and much facilitated product quality control of waste residues that need to be returned to Germany and submitted to a German HLW-repository requirements. Wherever possible, internationally accepted standard programs are used and embedded. The innovative coupling of burn-up calculations (SCALE) with neutron and gamma transport codes (MCPN-X) allows an application in the world of virtual waste properties. If-then-else scenarios of hypothetical waste material compositions and distributions provide valuable information of long term nuclide property propagation under repository conditions over a very long time span. Benchmarking the program with real residue data demonstrates the power and remarkable accuracy of this numerical approach, boosting the reliability of the confidence aforementioned numerous applications, namely the proof tool set for on-the-spot production quality checking and data evaluation and independent verification. Moreover, using the numerical bottom-up approach helps to avoid the accumulation of fake activities that may gradually build up in a repository from the so-called conservative or penalizing nuclide inventory declarations. The radioactive waste properties and the hydrolytic and chemical stability can be predicted. The interaction with invasive chemicals can be assessed and propagation scenarios can be developed from reliable and sound data and HLW properties. Hence, the appropriate design of a future HLW repository can be based upon predictable and quality assured waste characteristics. (authors)« less

  13. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; Zhang, Z. F.; Meyer, Philip D.

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parametersmore » for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.« less

  14. Dynamic metabolic modeling of heterotrophic and mixotrophic microalgal growth on fermentative wastes

    PubMed Central

    Baroukh, Caroline; Turon, Violette; Bernard, Olivier

    2017-01-01

    Microalgae are promising microorganisms for the production of numerous molecules of interest, such as pigments, proteins or triglycerides that can be turned into biofuels. Heterotrophic or mixotrophic growth on fermentative wastes represents an interesting approach to achieving higher biomass concentrations, while reducing cost and improving the environmental footprint. Fermentative wastes generally consist of a blend of diverse molecules and it is thus crucial to understand microalgal metabolism in such conditions, where switching between substrates might occur. Metabolic modeling has proven to be an efficient tool for understanding metabolism and guiding the optimization of biomass or target molecule production. Here, we focused on the metabolism of Chlorella sorokiniana growing heterotrophically and mixotrophically on acetate and butyrate. The metabolism was represented by 172 metabolic reactions. The DRUM modeling framework with a mildly relaxed quasi-steady-state assumption was used to account for the switching between substrates and the presence of light. Nine experiments were used to calibrate the model and nine experiments for the validation. The model efficiently predicted the experimental data, including the transient behavior during heterotrophic, autotrophic, mixotrophic and diauxic growth. It shows that an accurate model of metabolism can now be constructed, even in dynamic conditions, with the presence of several carbon substrates. It also opens new perspectives for the heterotrophic and mixotrophic use of microalgae, especially for biofuel production from wastes. PMID:28582469

  15. Modeling of nitrogen transformation in an integrated multi-trophic aquaculture (IMTA)

    NASA Astrophysics Data System (ADS)

    Silfiana; Widowati; Putro, S. P.; Udjiani, T.

    2018-03-01

    The dynamic model of nitrogen transformation in IMTA (Integrated Multi-Trophic Aquaculture) is purposed. IMTA is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in IMTA consisting of ammonia (NH3), Nitrite (NO2) and Nitrate (NO3). Nitrogen transformation of several processes, nitrification, assimilation, and volatilization. Numerical simulations are performed by providing initial parameters and values based on a review of previous research. The numerical results show that the rate of change in nitrogen concentration in IMTA decrease and reaches stable at different times.

  16. A closed-loop supply chain inventory model for manufacturer - Collector system with inspection, waste disposal and price-quality dependent return rate

    NASA Astrophysics Data System (ADS)

    Putri, Anissa Rianda; Jauhari, Wakhid Ahmad; Rosyidi, Cucuk Nur

    2017-11-01

    This paper studies a closed-loop supply chain inventory model, where the primary market demand is fulfilled by newly produced products and remanufactured products. We intend to integrate a manufacturer and a collector as a supply chain system. Used items are collected and will be inspected and sorted by the collector, and the return rate of used items is depended upon price and quality factor. Used items that aren't pass this process, will be considered as waste and undergone waste disposal process. Recoverable used items will be sent to the manufacturer for recovery process. This paper applies two types of the recovery process for used products, i.e. remanufacture and refurbish. The refurbished items are sold to a secondary market with lower price than primary market price. Further, the amount of recoverable items depend upon the acceptance level of the returned items. This proposed model gives an optimal solution by maximizing the joint total profit. Moreover, a numerical example is presented to describe the application of the model.

  17. Long-Term Modeling of Coupled Processes in a Generic Salt Repository for Heat-Generating Nuclear Waste: Analysis of the Impacts of Halite Solubility Constraints

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.

    2015-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt backfill. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical modeling based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the backfill and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical modeling and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the backfill, is also addressed. References: [1] Bechthold, W. et al. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012, Lawrence Berkeley National Laboratory, Berkeley, California, Sept. 17-19, 2012. [3] Blanco-Martín L, Rutqvist J, Birkholzer JT. Long-term modelling of the thermal-hydraulic-mechanical response of a generic salt repository for heat generating nuclear waste. Eng Geol 2015;193:198-211. doi:10.1016/j.enggeo.2015.04.014.

  18. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE PAGES

    Garitte, B.; Shao, H.; Wang, X. R.; ...

    2017-01-09

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  19. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garitte, B.; Shao, H.; Wang, X. R.

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  20. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J.; Reboul, S.

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may bemore » calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the simplified model to pure component literature data suggests that the simplified model will tend to under estimate the electrical conductivity. Comparison of the computed Tank 40 conductivity with the measured conductivity shows good agreement within the range of deviation identified based on pure component literature data.« less

  1. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rui, E-mail: Sunsr@hit.edu.cn; Ismail, Tamer M., E-mail: temoil@aucegypt.edu; Ren, Xiaohan

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on themore » combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.« less

  2. A multiscale-based approach for composite materials with embedded PZT filaments for energy harvesting

    NASA Astrophysics Data System (ADS)

    El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.

    2014-03-01

    Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.

  3. Master Plan Jakarta, Indonesia: The Giant Seawall and the need for structural treatment of municipal waste water.

    PubMed

    van der Wulp, Simon A; Dsikowitzky, Larissa; Hesse, Karl Jürgen; Schwarzbauer, Jan

    2016-09-30

    In order to take actions against the annual flooding in Jakarta, the construction of a Giant Seawall has been proposed in the Master Plan for National Capital Integrated Coastal Development. The seawall provides a combination of technical solutions against flooding, but these will heavily modify the mass transports in the near-coastal area of Jakarta Bay. This study presents numerical simulations of river flux of total nitrogen and N,N-diethyl-m-toluamide, a molecular tracer for municipal waste water for similar scenarios as described in the Master Plan. Model results demonstrate a strong accumulation of municipal wastes and nutrients in the planned reservoirs to extremely high levels which will result in drastic adverse eutrophication effects if the treatment of municipal waste water is not dealt with in the same priority as the construction of the Giant Seawall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 25 Years of DECOVALEX - Research Advances and Lessons Learned from an International Model Comparison Initiative

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.

    2017-12-01

    This presentation provides an overview of an international research and model comparison collaboration (DECOVALEX) for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. Prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel, and is also relevant for a range of other sub-surface engineering activities. DECOVALEX research activities have been supported by a large number of radioactive-waste-management organizations and regulatory authorities. Research teams from more than a dozen international partner organizations have participated in the comparative modeling evaluation of complex field and laboratory experiments in the UK, Switzerland, Japan, France and Sweden. Together, these tasks (1) have addressed a wide range of relevant issues related to engineered and natural system behavior in argillaceous, crystalline and other host rocks, (2) have yielded in-depth knowledge of coupled THM and THMC processes associated with nuclear waste repositories and wider geo-engineering applications, and (3) have advanced the capability, as well as demonstrated the suitability, of numerical simulation models for quantitative analysis.

  5. Dynamic modeling of environmental risk associated with drilling discharges to marine sediments.

    PubMed

    Durgut, İsmail; Rye, Henrik; Reed, Mark; Smit, Mathijs G D; Ditlevsen, May Kristin

    2015-10-15

    Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order to properly model these stressors, natural burial, biodegradation and bioturbation processes were also included. Diagenetic equations provide the basis for quantifying environmental risk. These equations are solved numerically by an implicit-central differencing scheme. The sediment model described here is, together with a fate and risk model focusing on the water column, implemented in the DREAM and OSCAR models, both available within the Marine Environmental Modeling Workbench (MEMW) at SINTEF in Trondheim, Norway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Simulation of Industrial Wastewater Treatment from the Suspended Impurities into the Flooded Waste Mining Workings

    NASA Astrophysics Data System (ADS)

    Bondareva, L.; Zakharov, Yu; Goudov, A.

    2017-04-01

    The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.

  7. Knowledge-based and model-based hybrid methodology for comprehensive waste minimization in electroplating plants

    NASA Astrophysics Data System (ADS)

    Luo, Keqin

    1999-11-01

    The electroplating industry of over 10,000 planting plants nationwide is one of the major waste generators in the industry. Large quantities of wastewater, spent solvents, spent process solutions, and sludge are the major wastes generated daily in plants, which costs the industry tremendously for waste treatment and disposal and hinders the further development of the industry. It becomes, therefore, an urgent need for the industry to identify technically most effective and economically most attractive methodologies and technologies to minimize the waste, while the production competitiveness can be still maintained. This dissertation aims at developing a novel WM methodology using artificial intelligence, fuzzy logic, and fundamental knowledge in chemical engineering, and an intelligent decision support tool. The WM methodology consists of two parts: the heuristic knowledge-based qualitative WM decision analysis and support methodology and fundamental knowledge-based quantitative process analysis methodology for waste reduction. In the former, a large number of WM strategies are represented as fuzzy rules. This becomes the main part of the knowledge base in the decision support tool, WMEP-Advisor. In the latter, various first-principles-based process dynamic models are developed. These models can characterize all three major types of operations in an electroplating plant, i.e., cleaning, rinsing, and plating. This development allows us to perform a thorough process analysis on bath efficiency, chemical consumption, wastewater generation, sludge generation, etc. Additional models are developed for quantifying drag-out and evaporation that are critical for waste reduction. The models are validated through numerous industrial experiments in a typical plating line of an industrial partner. The unique contribution of this research is that it is the first time for the electroplating industry to (i) use systematically available WM strategies, (ii) know quantitatively and accurately what is going on in each tank, and (iii) identify all WM opportunities through process improvement. This work has formed a solid foundation for the further development of powerful WM technologies for comprehensive WM in the following decade.

  8. Regenerative life support system research and concepts

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Life support systems that involve recycling of atmospheres, water, food and waste are so complex that models incorporating all the interactions and relationships are vital to design, development, simulations, and ultimately to control of space qualified systems. During early modeling studies, FORTRAN and BASIC programs were used to obtain numerical comparisons of the performance of different regenerative concepts. Recently, models were made by combining existing capabilities with expert systems to establish an Intelligent Design Support Environment for simpliflying user interfaces and to address the need for the engineering aspects. Progress was also made toward modeling and evaluating the operational aspects of closed loop life support systems using Time-step and Dynamic simulations over a period of time. Example models are presented which show the status and potential of developed modeling techniques. For instance, closed loop systems involving algae systeMs for atmospheric purification and food supply augmentation, plus models employing high plants and solid waste electrolysis are described and results of initial evaluations are presented.

  9. Review of concrete biodeterioration in relation to nuclear waste.

    PubMed

    Turick, Charles E; Berry, Christopher J

    2016-01-01

    Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. Copyright © 2015. Published by Elsevier Ltd.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Amy B.; Stauffer, Philip H.; Reed, Donald T.

    The primary objective of the experimental effort described here is to aid in understanding the complex nature of liquid, vapor, and solid transport occurring around heated nuclear waste in bedded salt. In order to gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that (a) hydrological and physiochemical parameters and (b) processes are correctly simulated. The experiments proposed here are designed to study aspects of the system that have not been satisfactorily quantified in prior work. In addition to exploring the complex coupled physical processes in support of numerical model validation, lessons learnedmore » from these experiments will facilitate preparations for larger-scale experiments that may utilize similar instrumentation techniques.« less

  11. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    NASA Astrophysics Data System (ADS)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  12. Waste Materials in Hot Mix Asphalt - An Overview

    DOT National Transportation Integrated Search

    1992-12-01

    Numerous waste materials result from manufacturing operations, service industries, sewage treatment plants, households and mining. Legislation has been enacted by several states in recent years to either mandate the use of some waste materials or to ...

  13. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  14. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    NASA Astrophysics Data System (ADS)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  15. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Numerical Modeling of the Effects of Nutrient-rich Coastal-water Input on the Phytoplankton in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bermudez, A.; Rivas, D.

    2015-12-01

    Phytoplankton bloom dynamics depends on the interactions of favorable physical, chemical, and biotic conditions, particularly on the available nutrients that enhance phytoplankton growth, like nitrogen. Costal and estuarine environments are heavily influenced by exogenous sources of nitrogen; the anthropogenic inputs include urban and rural wastewater coming from agricultural activities (i.e., fertilizers and animal waste). In response, new production is often enhanced, leading eutrophication and phytoplankton blooms, including harmful taxa. These events have become more frequent, and with it the interest to evaluate their effects on marine ecosystems and the impact on human health. In the Gulf of California the harmful algal blooms (HABs) had affected aquaculture, fisheries, and even tourism, thereby it is important to generate information about biological and physical factors that can influence their appearance. A numerical model is a tool that may bring key information about the origin and distribution of phytoplankton blooms. Herein the analysis is based on a three-dimensional, hydrodynamical numerical model, coupled to a Nitrogen-Phytoplankton-Zooplankton-Detritus (NPZD) model. Several numerical simulations using different forcing and scenarios are carried out in order to evaluate the processes that influence the phytoplankton growth. These numerical results are compared to available observations. Thus, the main environmental factors triggering the generation of HABs can be identified.

  17. Supercritical flow characteristics at abrupt expansion structure

    NASA Astrophysics Data System (ADS)

    Lim, Jia Jun; Puay, How Tion; Zakaria, Nor Azazi

    2017-10-01

    When dealing with the design of a hydraulic structure, lateral expansion is often necessary for flow emerging at high velocity served as a cross-sectional transition. If the abrupt expansion structure is made to diverge rapidly, it will cause the major part of the flow fail to follow the boundaries. If the transition is too gradual, it will result in a waste of structural material. A preliminary study on the flow structure near the expansion and its relationship with flow parameter is carried out in this study. A two-dimensional depth-averaged model is developed to simulate the supercritical flow at the abrupt expansion structure. Constrained Interpolation Profile (CIP) scheme (which is of third order accuracy) is adopted in the numerical model. Results show that the flow structure and flow characteristics at the abrupt expansion can be reproduced numerically. The validation of numerical result is done against analytical studies. The result from numerical simulation showed good agreement with the analytical solution.

  18. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  19. Three dimensional thermal pollution models. Volume 1: Review of mathematical formulations. [waste heat discharge from power plants and effects on ecosystems

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.

    1978-01-01

    A mathematical model package for thermal pollution analyses and prediction is presented. These models, intended as user's manuals, are three dimensional and time dependent using the primitive equation approach. Although they have sufficient generality for application at sites with diverse topographical features; they also present specific instructions regarding data preparation for program execution and sample problems. The mathematical formulation of these models is presented including assumptions, approximations, governing equations, boundary and initial conditions, numerical method of solution, and same results.

  20. Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study.

    PubMed

    Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping

    2011-09-15

    A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site density) when using clay model. Moreover, increasing s/l ratio would produce more sorption sites, which helps to suppress the impact of heterogeneous surface on Cs sorption behavior under high pH environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Generic Argillite/Shale Disposal Reference Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactivemore » waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).« less

  2. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turick, C; Berry, C.

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in thismore » field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.« less

  3. Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations

    NASA Astrophysics Data System (ADS)

    Verma, A.; Pruess, K.

    1988-02-01

    Evaluation of the thermohydrological conditions near high-level nuclear waste packages is needed for the design of the waste canister and for overall repository design and performance assessment. Most available studies in this area have assumed that the hydrologic properties of the host rock are not changed in response to the thermal, mechanical, or chemical effects caused by waste emplacement. However, the ramifications of this simplifying assumption have not been substantiated. We have studied dissolution and precipitation of silica in liquid-saturated hydrothermal flow systems, including changes in formation porosity and permeability. Using numerical simulation, we compare predictions of thermohydrological conditions with and without inclusion of silica redistribution effects. Two cases were studied, namely, a canister-scale problem, and a repository-wide thermal convection problem and different pore models were employed for the permeable medium (fractures with uniform or nonuniform cross sections). We find that silica redistribution in water-saturated conditions does not have a sizeable effect on host rock and canister temperatures, pore pressures, or flow velocities.

  4. Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection.

    PubMed

    Singh, Karamjit; Kadambala, Ravi; Jain, Pradeep; Xu, Qiyong; Townsend, Timothy G

    2014-06-01

    Waste hydraulic conductivity and anisotropy represent two important parameters controlling fluid movement in landfills, and thus are the key inputs in design methods where predictions of moisture movement are necessary. Although municipal waste hydraulic conductivity has been estimated in multiple laboratory and field studies, measurements of anisotropy, particularly at full scale, are rare, even though landfilled municipal waste is generally understood to be anisotropic. Measurements from a buried liquids injection well surrounded by pressure transducers at a full-scale landfill in Florida were collected and examined to provide an estimate of in-situ waste anisotropy. Liquids injection was performed at a constant pressure and the resulting pore pressures in the surrounding waste were monitored. Numerical fluid flow modeling was employed to simulate the pore pressures expected to occur under the conditions operated. Nine different simulations were performed at three different lateral hydraulic conductivity values and three different anisotropy values. Measured flowrate and pore pressures collected from conditions of approximate steady state were compared with the simulation results to assess the range of anisotropies. The results support that compacted municipal waste in landfills is anisotropic, provide anisotropy estimates greater than previous measurements, and suggest that anisotropy decreases with landfill depth. © The Author(s) 2014.

  5. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    PubMed Central

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

  6. Summary of FY15 results of benchmark modeling activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, J. Guadalupe

    2015-08-01

    Sandia is participating in the third phase of an is a contributing partner to a U.S.-German "Joint Project" entitled "Comparison of current constitutive models and simulation procedures on the basis of model calculations of the thermo-mechanical behavior and healing of rock salt." The first goal of the project is to check the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure storage of radioactive wastes in rock salt, thereby enhancing the acceptance ofmore » the results. These results may ultimately be used to make various assertions regarding both the stability analysis of an underground repository in salt, during the operating phase, and the long-term integrity of the geological barrier against the release of harmful substances into the biosphere, in the post-operating phase.« less

  7. Validation of Groundwater Models: Meaningful or Meaningless?

    NASA Astrophysics Data System (ADS)

    Konikow, L. F.

    2003-12-01

    Although numerical simulation models are valuable tools for analyzing groundwater systems, their predictive accuracy is limited. People who apply groundwater flow or solute-transport models, as well as those who make decisions based on model results, naturally want assurance that a model is "valid." To many people, model validation implies some authentication of the truth or accuracy of the model. History matching is often presented as the basis for model validation. Although such model calibration is a necessary modeling step, it is simply insufficient for model validation. Because of parameter uncertainty and solution non-uniqueness, declarations of validation (or verification) of a model are not meaningful. Post-audits represent a useful means to assess the predictive accuracy of a site-specific model, but they require the existence of long-term monitoring data. Model testing may yield invalidation, but that is an opportunity to learn and to improve the conceptual and numerical models. Examples of post-audits and of the application of a solute-transport model to a radioactive waste disposal site illustrate deficiencies in model calibration, prediction, and validation.

  8. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changesmore » in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.« less

  9. Spanish methodological approach for biosphere assessment of radioactive waste disposal.

    PubMed

    Agüero, A; Pinedo, P; Cancio, D; Simón, I; Moraleda, M; Pérez-Sánchez, D; Trueba, C

    2007-10-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS "Reference Biospheres Methodology" and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates.

  10. Safe Management of Waste Generated during Shale Gas Operations

    NASA Astrophysics Data System (ADS)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  11. Flexible thermoelectric device to harvest waste heat from the laptop

    NASA Astrophysics Data System (ADS)

    Salhi, Imane; Belhora, Fouad; Hajjaji, Abdelowahed; Jay, Jacques; Boughaleb, Yahia

    2017-05-01

    Recovering waste heat from integrated circuits of a laptop using thermoelectricity effects seems to be an appropriate process to enhance its efficiency. Thermoelectricity, as an energy harvesting process, helps to gain on both sides: financially as it reduces the energy consumption and environmentally as it minimizes the carbon footprint. This paper presents a flexible thermoelectric generator module which is developed to harvest waste heat of the laptop to power up some external loads. First, a theoretical analysis of the system is provided where both thermal and electrical models are exposed. Second, an estimation of the power density harvested by only one thermoelectric leg is given. This estimation can reach 0.01 µW/cm2 and it is confirmed by a numerical simulation based on the finite element method. Afterwards, this power density is improved to become 0.4 µW/cm2 by adding a heat sink in the cold side showing that the thermal resistances of the air and of the heat sink play a crucial role in transferring the temperature gradient to the thermoelectric (TE) material. Finally, it is indicated that the power harvested can be enough to power up portion of the circuitry or other important micro-accessories by using numerous thermoelectric modules.

  12. Optical Emission Studies of the NRL Plasma Torch for the Shipboard Waste Treatment Program

    DTIC Science & Technology

    1999-02-26

    Arc Heating of Molten Steel in a Tundish", Plasma Chemistry and Plasma Processing, Vol.14, pp.361-381,1994. [3] H. Herman, "Plasma-sprayed...Treatment", Plasma Chemistry and Plasma Processing, Vol.15, pp.677-692,1995. [5] S. Paik and H.D. Nguyen, "Numerical Modeling of Multiphase Plasma/Soil Row...Gleizes, S. Vacquie and P. Brunelot, "Modeling of the Cathode Jet of a High- Power Transferred Arc", Plasma Chemistry and Plasma Processing, Vol.13

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.D. Francis

    The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less

  14. Experimental and theoretical assessment of the multi-domain flow behaviour in a waste body during leachate infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinet, A-J., E-mail: tinet@ujf-grenoble.fr; Oxarango, L.; Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban 4041

    2011-08-15

    The optimisation of landfill operation is a key challenge for the upcoming years. A promising solution to improve municipal solid waste (MSW) management is the bioreactor technology. A meso-scale (around 1 m{sup 3}) experimental set-up was performed to study the effect of moisture control in low density conditions with different leachate injection operations and bioreactor monitoring including the use of a neutron probe. The moisture content distribution evolution demonstrates a multi-domain flow behaviour. A classic van Genuchten-Mualem description of the connected porosity proved insufficient to correctly describe the observed phenomena. A bimodal description of the connected porosity is proposed asmore » solution and a connected/non-connected porosities numerical model was applied to the results. The model explains the experimental results reasonably well.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasparek, Eva M.; Voelzke, Holger; Scheidemann, Robert

    Rigid, closed-cell polyurethane foams are frequently used as cask impact limiters in nuclear materials and hazardous waste transport due to their high energy-absorption potential. When assessing the cask integrity in accidental scenarios based on numerical simulations, a description of the foam damping properties is required for different strain rates and for a wide temperature range with respect to waste heat generation in conjunction with critical operating and environmental conditions. Implementation and adaption of a respective finite element material model strongly relies on an appropriate experimental data base. Even though extensive impact experiments were conducted e.g. in Sandia National Laboratories, Savannahmore » River National Laboratory and by Rolls Royce plc, not all relevant factors were taken into account. Hence, BAM who is in charge of the mechanical evaluation of such packages within the approval procedure in Germany, incorporated systematic test series into a comprehensive research project aimed to develop numerical methods for a couple of damping materials. In a first step, displacement driven compression tests have been performed on confined, cubic specimens at five loading rates ranging from 0.02 mm/s to 3 m/s at temperatures between +90 deg. C and -40 deg. C. Materials include two different polyurethane foam types called FR3718 and FR3730 having densities of 280 kg/m{sup 3} and 488 kg/m{sup 3} from the product line-up of General Plastics Manufacturing Company. Their data was used to adapt an advanced plasticity model allowing for reliably simulating cellular materials under multi-axial compression states. Therefore, an automated parameter identification procedure had been established by combining an artificial neural network with local optimization techniques. Currently, the selected numerical material input values are validated and optimized by means of more complex loading configurations with the prospect of establishing methods applicable to impact limiters under severe accidental conditions. The reference data base is provided by experiments, where weights between 212 kg and 1200 kg have been dropped from heights between 1.25 m and 7 m on confined 10 cm cubic foam specimens. By presenting the deviations between experimental values and the corresponding output of finite element simulations, the potentials and restrictions of the resulting models are highlighted. Systematic compression tests on polyurethane foams had been performed at BAM test site within the framework of a research project on impact limiters for handling casks for radioactive waste. The experimental results had been used to adapt numerical models for simulating the behaviour of different foam types at different temperatures. The loading speed, however, turned out to have a major influence on their flow curves that can not be captured by simple strain-rate dependent multipliers. Especially for guided drop tests that come close to real accidental scenarios there is a significant gap between experimental and numerical results even when applying such advanced material models. Hence, the extensive data base is currently deployed for expanding the standard algorithms to include adequate dynamic hardening factors. (authors)« less

  16. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, Andrea; Ferronato, Massimiliano, E-mail: massimiliano.ferronato@unipd.it; Janna, Carlo

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion accordingmore » to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.« less

  17. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  18. Multiphase, multi-electrode Joule heat computations for glass melter and in situ vitrification simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowery, P.S.; Lessor, D.L.

    Waste glass melter and in situ vitrification (ISV) processes represent the combination of electrical thermal, and fluid flow phenomena to produce a stable waste-from product. Computational modeling of the thermal and fluid flow aspects of these processes provides a useful tool for assessing the potential performance of proposed system designs. These computations can be performed at a fraction of the cost of experiment. Consequently, computational modeling of vitrification systems can also provide and economical means for assessing the suitability of a proposed process application. The computational model described in this paper employs finite difference representations of the basic continuum conservationmore » laws governing the thermal, fluid flow, and electrical aspects of the vitrification process -- i.e., conservation of mass, momentum, energy, and electrical charge. The resulting code is a member of the TEMPEST family of codes developed at the Pacific Northwest Laboratory (operated by Battelle for the US Department of Energy). This paper provides an overview of the numerical approach employed in TEMPEST. In addition, results from several TEMPEST simulations of sample waste glass melter and ISV processes are provided to illustrate the insights to be gained from computational modeling of these processes. 3 refs., 13 figs.« less

  19. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    NASA Astrophysics Data System (ADS)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  20. Water, vapour and heat transport in concrete cells for storing radioactive waste

    NASA Astrophysics Data System (ADS)

    Carme Chaparro, M.; W. Saaltink, Maarten

    2016-08-01

    Water is collected from a drain situated at the centre of a concrete cell that stores radioactive waste at 'El Cabril', which is the low and intermediate level radioactive waste disposal facility of Spain. This indicates flow of water within the cell. 2D numerical models have been made in order to reproduce and understand the processes that take place inside the cell. Temperature and relative humidity measured by sensors in the cells and thermo-hydraulic parameters from laboratory test have been used. Results show that this phenomenon is caused by capillary rise from the phreatic level, evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. At the centre of the cell, flow of gas and convection also play a role. Three remedial actions have been studied that may avoid the leakage of water from the drain.

  1. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions

    NASA Astrophysics Data System (ADS)

    Yeh, Gour-Tsyh (George); Siegel, Malcolm D.; Li, Ming-Hsu

    2001-02-01

    The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  2. Numerical Modeling Tools for the Prediction of Solution Migration Applicable to Mining Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martell, M.; Vaughn, P.

    1999-01-06

    Mining has always had an important influence on cultures and traditions of communities around the globe and throughout history. Today, because mining legislation places heavy emphasis on environmental protection, there is great interest in having a comprehensive understanding of ancient mining and mining sites. Multi-disciplinary approaches (i.e., Pb isotopes as tracers) are being used to explore the distribution of metals in natural environments. Another successful approach is to model solution migration numerically. A proven method to simulate solution migration in natural rock salt has been applied to project through time for 10,000 years the system performance and solution concentrations surroundingmore » a proposed nuclear waste repository. This capability is readily adaptable to simulate solution migration around mining.« less

  3. Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Hadgu, T.; Park, H.

    2016-12-01

    Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7510 A

  4. Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: Centrifuge and numerical modeling approach.

    PubMed

    Shu, Shi; Zhu, Wei; Wang, Shengwei; Ng, Charles Wang Wai; Chen, Yunmin; Chiu, Abraham Chung Fai

    2018-01-15

    Groundwater pollution by leachate leakage is one of the most common environmental hazards associated with municipal solid waste (MSW) landfill sites. However, landfill leachate contains a large variety of pollutants with widely different concentrations and biotoxicity. Thus, selecting leachate pollutant indicators and levels for identifying breakthrough of barrier systems are key factors in assessing their breakthrough times. This study investigated the transport behavior of leachate pollutants through landfill barrier systems using centrifuge tests and numerical modeling. The overall objective of this study is to investigate breakthrough mechanism to facilitate the establishment of a consistent pollutant threshold concentration for use as a groundwater pollution alert. The specific objective of the study is to identify which pollutant and breakthrough threshold concentration should be used as an indicator in the transport of multiple pollutants through a landfill barrier system. The threshold concentration from the Chinese groundwater quality standards was used in the analysis of the properties of leachates from many landfill sites in China. The time for the chemical oxygen demand (COD) to reach the breakthrough threshold concentration at the bottom of a 2m compacted clay liner was 1.51years according to centrifuge tests, and 1.81years according to numerical modeling. The COD breakthrough times for single and double composite liners were within the range of 16 and 36.58years. Of all the pollutants, COD was found to consistently reach the breakthrough threshold first. Therefore, COD can be selected as the key indicator for pollution alerts and used to assess the environmental risk posed by MSW landfill sites. Copyright © 2017. Published by Elsevier B.V.

  5. Numerical modeling of flow and transport in the far-field of a generic nuclear waste repository in fractured crystalline rock using updated fracture continuum model

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2016-12-01

    Disposal of high-level radioactive waste in a deep geological repository in crystalline host rock is one of the potential options for long term isolation. Characterization of the natural barrier system is an important component of the disposal option. In this study we present numerical modeling of flow and transport in fractured crystalline rock using an updated fracture continuum model (FCM). The FCM is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The original method by McKenna and Reeves (2005) has been updated to provide capabilities that enhance representation of fractured rock. As reported in Hadgu et al. (2015) the method was first modified to include fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation. More recently the FCM has been extended to include three different methods. (1) The Sequential Gaussian Simulation (SGSIM) method uses spatial correlation to generate fractures and define their properties for FCM (2) The ELLIPSIM method randomly generates a specified number of ellipses with properties defined by probability distributions. Each ellipse represents a single fracture. (3) Direct conversion of discrete fracture network (DFN) output. Test simulations were conducted to simulate flow and transport using ELLIPSIM and direct conversion of DFN methods. The simulations used a 1 km x 1km x 1km model domain and a structured with grid block of size of 10 m x 10m x 10m, resulting in a total of 106 grid blocks. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the different methods were applied to generate representative permeability fields. The PFLOTRAN (Hammond et al., 2014) code was used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains. SAND2016-7509 A

  6. Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins.

    PubMed

    Lokireddy, Sudarsanareddy; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi; McFarlane, Craig

    2011-12-01

    Myostatin is a negative regulator of skeletal muscle growth and in fact acts as a potent inducer of "cachectic-like" muscle wasting in mice. The mechanism of action of myostatin in promoting muscle wasting has been predominantly studied in murine models. Despite numerous reports linking elevated levels of myostatin to human skeletal muscle wasting conditions, little is currently known about the signaling mechanism(s) through which myostatin promotes human skeletal muscle wasting. Therefore, in this present study we describe in further detail the mechanisms behind myostatin regulation of human skeletal muscle wasting using an in vitro human primary myotube atrophy model. Treatment of human myotube populations with myostatin promoted dramatic myotubular atrophy. Mechanistically, myostatin-induced myotube atrophy resulted in reduced p-AKT concomitant with the accumulation of active dephosphorylated Forkhead Box-O (FOXO1) and FOXO3. We further show that addition of myostatin results in enhanced activation of atrogin-1 and muscle-specific RING finger protein 1 (MURF1) and reduced expression of both myosin light chain (MYL) and myosin heavy chain (MYH). In addition, we found that myostatin-induced loss of MYL and MYH proteins is dependent on the activity of the proteasome and mediated via SMAD3-dependent regulation of FOXO1 and atrogin-1. Therefore, these data suggest that the mechanism through which myostatin promotes muscle wasting is very well conserved between species, and that myostatin-induced human myotube atrophy is mediated through inhibition of insulin-like growth factor (IGF)/phosphoinositide 3-kinase (PI3-K)/AKT signaling and enhanced activation of the ubiquitin-proteasome pathway and elevated protein degradation.

  7. Atmospheric carbon mineralization in an industrial-scale chrysotile mining waste pile.

    PubMed

    Nowamooz, Ali; Dupuis, J Christian; Beaudoin, Georges; Molson, John; Lemieux, Jean-Michel; Horswill, Micha; Fortier, Richard; Larachi, Faïçal; Maldague, Xavier; Constantin, Marc; Duchesne, Josee; Therrien, René

    2018-06-12

    Magnesium rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial-scale. Although functioning passively under less than optimal conditions compared to lab-scale experiments, the 110Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Yearly, over 100 Mt of ultramafic mine waste suitable for mineral carbonation are generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.

  8. Numerical Investigation of Rockfall Impacts on Muckpiles for Underground Portals

    NASA Astrophysics Data System (ADS)

    Effeindzourou, Anna; Giacomini, Anna; Thoeni, Klaus; Sloan, Scott W.

    2017-06-01

    Small-scale waste rock piles or muckpiles are commonly used as energy absorption barriers in various surface mining applications. This paper numerically investigates the impact behaviour of blocks on muckpiles used as cushion layer on top of underground portal entries. A three-dimensional discrete element model is implemented into the open-source framework YADE and validated using full-scale experimental data. The model allows estimating the energy absorption capacity of the muckpile and the impact forces acting on the portal structure. It also provides valuable information on the rebound characteristics which are useful for the definition of the potential safety areas in the vicinity of an underground entry. In order to show its capabilities, the model is applied to a large number of cases representing potential design conditions. The influence of block mass, impact velocity and absorbing cushion thickness on the forces at the base of the muckpile and the rebound trajectories after impact are investigated.

  9. Estimation of aquifer radionuclide concentrations by postprocessing of conservative tracer model results

    NASA Astrophysics Data System (ADS)

    Gedeon, M.; Vandersteen, K.; Rogiers, B.

    2012-04-01

    Radionuclide concentrations in aquifers represent an important indicator in estimating the impact of a planned surface disposal for low and medium level short-lived radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS), who also coordinates and leads the corresponding research. Estimating aquifer concentrations for individual radionuclides represents a computational challenge because (a) different retardation values are applied to different hydrogeologic units and (b) sequential decay reactions with radionuclides of various sorption characteristics cause long computational times until a steady-state is reached. The presented work proposes a methodology reducing substantially the computational effort by postprocessing the results of a prior non-reactive tracer simulation. These advective transport results represent the steady-state concentration - source flux ratio and the break-through time at each modelling cell. These two variables are further used to estimate the individual radionuclide concentrations by (a) scaling the steady-state concentrations to the source fluxes of individual radionuclides; (b) applying the radioactive decay and ingrowth in a decay chain; (c) scaling the travel time by the retardation factor and (d) applying linear sorption. While all steps except (b) require solving simple linear equations, applying ingrowth of individual radionuclides in decay chains requires solving the differential Bateman equation. This equation needs to be solved once for a unit radionuclide activity at all arrival times found in the numerical grid. The ratios between the parent nuclide activity and the progeny activities are then used in the postprocessing. Results are presented for discrete points and examples of radioactive plume maps are given. These results compare well to the results achieved using a full numerical simulation including the respective chemical reaction processes. Although the proposed method represents a fast way to estimate the radionuclide concentrations without performing timely challenging simulations, its applicability has some limits. The radionuclide source needs to be assumed constant during the period of achieving a steady-state in the model. Otherwise, the source variability of individual radionuclides needs to be modelled using a numerical simulation. However, such a situation only occurs in cases of source variability in a period until steady-state is reached and such a simulation takes a relatively short time. The proposed method enables an effective estimation of individual radionuclide concentrations in the frame of performance assessment of a radioactive waste disposal. Reducing the calculation time to a minimum enables performing sensitivity and uncertainty analyses, testing alternative models, etc. thus enhancing the overall quality of the modelling analysis.

  10. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico

    NASA Astrophysics Data System (ADS)

    Sturchio, Neil C.; Kuhlman, Kristopher L.; Yokochi, Reika; Probst, Peter C.; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic 81Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured 81Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared 81Kr model ages with reverse particle-tracking results of well-calibrated flow models. The 81Kr model ages are ~ 130,000 and ~ 330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~ 32,000 yr), the 81Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards.

  11. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema

    Danuso, Francesco

    2017-12-22

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  12. Mechanical Parameters of Rubber-Sand Mixtures for Numerical Analysis of a Road Embankment

    NASA Astrophysics Data System (ADS)

    Kowalska, Magdalena; Chmielewski, Maciej

    2017-10-01

    Waste production is one of the greatest problems of the modern world. It is inevitably related to the increase of industrialization. One of the most difficult, and growing in amounts, waste is scrap tyres. The most common method of utilization of end-of-life tyres by their incineration raises much concern in terms of air pollution. More sustainable seems to reuse the tyre derived products - rubber in particular - in civil engineering, where the interesting properties of this material may be effectively utilized. This paper presents results of direct shear strength tests on sand-rubber mixtures, which were next applied to a numerical FEM (finite element method) model of a road embankment built on soft ground. The laboratory tests, conducted for two types of scrap tyre rubber granulates (0.5 - 2 mm and 1 - 5 mm in size) mixed with medium fluvial sand in various proportions (5, 10, 30 and 50% by weight), proved that the unit weight of the mixtures is distinctly smaller that the unit weight of sand alone and at 50% rubber content it drops by half. The internal angle of friction stays almost unchanged for the mixtures with up to 10% of rubber (33 - 37°), but decreases by about 10° when the rubber content increases to 50%. In most of the cases analysed, the cohesion intercept is higher in case of sand-rubber mixtures when compared to sand alone. The numerical model simulated a 4.5 m high embankment with a 3 m thick layer made of sand-rubber mixtures, containing 0%, 10% or 30% of the waste product, founded on a weak subsoil (with a 3 m layer of organic soil). The results showed that stability factor of the structure built with the layer containing 30% of the coarser rubber granulate has increased from 1.60 - for sand only, to 2.15. The embankment was also able to carry load increased from 32 kPa to 45.5 kPa and its base showed much smaller settlement. The results prove that the use of tyre derived aggregates in embankment construction is not only an effective way of utilization of this problematic waste, but can also improve behaviour of such a structure.

  13. A model for calculating effects of liquid waste disposal in deep saline aquifer

    USGS Publications Warehouse

    Intercomp Resource Development and Engineering, Inc.

    1976-01-01

    Injection of liquid industrial wastes into confined underground saline aquifers can offer a good disposal alternative from both environmental and economic considerations. One of the needs in choosing from among several disposal alternatives is a means of evaluating the influence such an injection will have on the aquifer system. This report describes a mathematical model to accomplish this purpose.The objective of the contract was to develop a three-dimensional transient mathematical model which would accurately simulate behavior of waste injection into deep saline aquifers. Fluid properties, density and viscosity are functions of pressure, temperature and composition to provide a comprehensive assessment tool. The model is a finite-difference numerical solution of the partial differential equations describingsingle phase flow in the aquifer,energy transport by convection and conduction, andcompositional changes in the aquifer fluid.The model is not restricted to examining waste disposal operations. It can be used effectively to evaluate fresh water storage in saline aquifers, hot water storage in underground aquifers, salt water intrusion into groundwater flow systems and other similar applications.The primary advantages of the present model can be summarized as:The model is user-oriented for easy application to full-scale evaluation needs.The model is fully three-dimensional and transient.The model is comprehensive accounting for density and viscosity variations in the aquifer due to temperature or compositional changes.The model includes the effects of hydrodynamic dispersion in both the temperature and compositional mixing between resident and injected fluids.The model energy balance includes the effects of pressure. This can be important in deep aquifer systems where the viscous pressure gradient is significant.The model uses second-order correct space and time approximations to the convective terms. This minimizes the numerical dispersion problem.The model is extremely flexible in providing a wide choice of boundary conditions. These include natural flow in the aquifer, aquifer influence functions around the perimeter of the grid in recognition that the gridded region does not have no-flow boundaries, heat losses into the overlying or underlying impermeable strata, and the wellbore heat and pressure drop calculations coupled to the aquifer flow equations.The limitations of the present techniques are:The use of the second-order correct finite-difference approximations introduces block size and time step restrictions. These restrictions, though considerably less stringent than explicit methods cause, depend upon the magnitude of the dispersivity.The comprehensive nature of the model makes the computer time and storage requirements significant.The model, because of its complexity, is not as efficient in reducing down to solve simpler problems as a specially written model would be.Included in the report are detailed descriptions of the approach used in the model, validation tests of the model, and a typical application of the model. A comparison volume documents the input data requirements, program structure, and an example problem for the model. '

  14. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff

    2011-05-15

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less

  15. MoMaS reactive transport benchmark using PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Park, H.

    2017-12-01

    MoMaS benchmark was developed to enhance numerical simulation capability for reactive transport modeling in porous media. The benchmark was published in late September of 2009; it is not taken from a real chemical system, but realistic and numerically challenging tests. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that is being used in multiple nuclear waste repository projects at Sandia National Laboratories including Waste Isolation Pilot Plant and Used Fuel Disposition. MoMaS benchmark has three independent tests with easy, medium, and hard chemical complexity. This paper demonstrates how PFLOTRAN is applied to this benchmark exercise and shows results of the easy benchmark test case which includes mixing of aqueous components and surface complexation. Surface complexations consist of monodentate and bidentate reactions which introduces difficulty in defining selectivity coefficient if the reaction applies to a bulk reference volume. The selectivity coefficient becomes porosity dependent for bidentate reaction in heterogeneous porous media. The benchmark is solved by PFLOTRAN with minimal modification to address the issue and unit conversions were made properly to suit PFLOTRAN.

  16. Benchmarking NNWSI flow and transport codes: COVE 1 results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, N.K.

    1985-06-01

    The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of themore » codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs.« less

  17. Coupled Multi-physical Simulations for the Assessment of Nuclear Waste Repository Concepts: Modeling, Software Development and Simulation

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Nagel, T.; Bilke, L.; Böttcher, N.; Heusermann, S.; Fischer, T.; Kumar, V.; Schäfers, A.; Shao, H.; Vogel, P.; Wang, W.; Watanabe, N.; Ziefle, G.; Kolditz, O.

    2016-12-01

    As part of the German site selection process for a high-level nuclear waste repository, different repository concepts in the geological candidate formations rock salt, clay stone and crystalline rock are being discussed. An open assessment of these concepts using numerical simulations requires physical models capturing the individual particularities of each rock type and associated geotechnical barrier concept to a comparable level of sophistication. In a joint work group of the Helmholtz Centre for Environmental Research (UFZ) and the German Federal Institute for Geosciences and Natural Resources (BGR), scientists of the UFZ are developing and implementing multiphysical process models while BGR scientists apply them to large scale analyses. The advances in simulation methods for waste repositories are incorporated into the open-source code OpenGeoSys. Here, recent application-driven progress in this context is highlighted. A robust implementation of visco-plasticity with temperature-dependent properties into a framework for the thermo-mechanical analysis of rock salt will be shown. The model enables the simulation of heat transport along with its consequences on the elastic response as well as on primary and secondary creep or the occurrence of dilatancy in the repository near field. Transverse isotropy, non-isothermal hydraulic processes and their coupling to mechanical stresses are taken into account for the analysis of repositories in clay stone. These processes are also considered in the near field analyses of engineered barrier systems, including the swelling/shrinkage of the bentonite material. The temperature-dependent saturation evolution around the heat-emitting waste container is described by different multiphase flow formulations. For all mentioned applications, we illustrate the workflow from model development and implementation, over verification and validation, to repository-scale application simulations using methods of high performance computing.

  18. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    NASA Astrophysics Data System (ADS)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  19. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola

    2016-11-01

    Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as ;glowing avalanches;, have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.

  20. Numerical Modeling of ROM Panel Closures at WIPP

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.

    2016-12-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is a U.S. DOE geologic repository for permanent disposal of defense-related transuranic (TRU) waste. Waste is emplaced in panels excavated in a bedded salt formation (Salado Fm.) at 655 m bgs. In 2014 the U.S. EPA approved the new Run-of-Mine Panel Closure System (ROMPCS) for WIPP. The closure system consists of 100 feet of run-of-mine (ROM) salt sandwiched between two barriers. Nuclear Waste Partnership LLC (the M&O contractor for WIPP) initiated construction of the ROMPCS. The design calls for three horizontal ROM salt layers at different compaction levels ranging from 70-85% intact salt density. Due to panel drift size constraints and equipment availability the design was modified. Three prototype panel closures were constructed: two having two layers of compacted ROM salt (one closure had 1% water added) and a third consisting of simply ROM salt with no layering or added water. Sampling of the prototype ROMPCS layers was conducted to determine the following ROM salt parameters: thickness, moisture content, emplaced density, and grain-size distribution. Previous modeling efforts were performed without knowledge of these ROM salt parameters. This modeling effort incorporates them. The program-accepted multimechanism deformation model is used to model intact salt room creep closure. An advanced crushed salt model is used to model the ROM salt. Comparison of the two models' results with the prototypes' behavior is given. Our goal is to develop a realistic, reliable model that can be used for ROM salt applications at WIPP. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy SAND2016-7259A

  1. Numerical simulation of filtration of mine water from coal slurry particles

    NASA Astrophysics Data System (ADS)

    Dyachenko, E. N.; Dyachenko, N. N.

    2017-11-01

    The discrete element method is applied to model a technology for clarification of industrial waste water containing fine-dispersed solid impurities. The process is analyzed at the level of discrete particles and pores. The effect of filter porosity on the volume fraction of particles has been shown. The degree of clarification of mine water was also calculated depending on the coal slurry particle size, taking into account the adhesion force.

  2. Open pit mining profit maximization considering selling stage and waste rehabilitation cost

    NASA Astrophysics Data System (ADS)

    Muttaqin, B. I. A.; Rosyidi, C. N.

    2017-11-01

    In open pit mining activities, determination of the cut-off grade becomes crucial for the company since the cut-off grade affects how much profit will be earned for the mining company. In this study, we developed a cut-off grade determination mode for the open pit mining industry considering the cost of mining, waste removal (rehabilitation) cost, processing cost, fixed cost, and selling stage cost. The main goal of this study is to develop a model of cut-off grade determination to get the maximum total profit. Secondly, this study is also developed to observe the model of sensitivity based on changes in the cost components. The optimization results show that the models can help mining company managers to determine the optimal cut-off grade and also estimate how much profit that can be earned by the mining company. To illustrate the application of the models, a numerical example and a set of sensitivity analysis are presented. From the results of sensitivity analysis, we conclude that the changes in the sales price greatly affects the optimal cut-off value and the total profit.

  3. Modeling the long-term durability of concrete barriers in the context of low-activity waste storage

    NASA Astrophysics Data System (ADS)

    Protière, Y.; Samson, E.; Henocq, P.

    2013-07-01

    The paper investigates the long-term durability of concrete barriers in contact with a cementitious wasteform designed to immobilize low-activity nuclear waste. The high-pH pore solution of the wasteform contains high concentration level of sulfate, nitrate, nitrite and alkalis. The multilayer concrete/wasteform system was modeled using a multiionic reactive transport model accounting for coupling between species, dissolution/ precipitation reactions, and feedback effect. One of the primary objectives was to investigate the risk associated with the presence of sulfate in the wasteform on the durability of concrete. Simulation results showed that formation of expansive phases, such as gypsum and ettringite, into the concrete barrier was not extensive. Based on those results, it was not possible to conclude that concrete would be severely damaged, even after 5,000 years. Lab work was performed to provide data to validate the modeling results. Paste samples were immersed in sulfate contact solutions and analyzed to measure the impact of the aggressive environment on the material. The results obtained so far tend to confirm the numerical simulations.

  4. On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff: 1. Simulation studies with explicit consideration of fracture effects

    NASA Astrophysics Data System (ADS)

    Pruess, K.; Wang, J. S. Y.; Tsang, Y. W.

    1990-06-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated, fractured porous rock. Formation parameters were chosen as representative of the potential nuclear waste repository site in the Topopah Spring unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects believed to be important in multiphase fluid and heat flow. It has provisions for handling the extreme nonlinearities that arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. Thermohydrologic conditions in the vicinity of the waste packages are found to depend strongly on relative permeability and capillary pressure characteristics of the fractures, which are unknown at the present time. If liquid held on the rough walls of drained fractures is assumed to be mobile, strong heat pipe effects are predicted. Under these conditions the host rock will remain in two-phase conditions right up to the emplacement hole, and formation temperatures will peak near 100°C. If it is assumed that liquid cannot move along drained fractures, the region surrounding the waste packages is predicted to dry up, and formation temperatures will rise beyond 200°C. A substantial fraction of waste heat can be removed if emplacement holes are left open and ventilated, as opposed to backfilled and sealed emplacement conditions. Comparing our model predictions with observations from in situ heater experiments reported by Zimmerman and coworkers, some intriguing similarities are noted. However, for a quantitative evaluation, additional carefully controlled laboratory and field experiments will be needed.

  5. Numerical modeling of perched water under Yucca Mountain, Nevada

    USGS Publications Warehouse

    Hinds, J.J.; Ge, S.; Fridrich, C.J.

    1999-01-01

    The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.

  6. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between EDTA and CaCl2-extracted metals (Kd-1). In the second approach we have calculated Kd from generic equations (literature), using soil organic carbon (SOC) and pH for Cd, and SOM, pH and DOC for Cu (Kd-2). Lysimeter data of Cu leaching were successfully reproduced by using first Kd-1 approach for three plots (model efficiency ESGW=0.97, EMSW=0.37; ECONT=0.95). Smaller agreement in MSW plot could be explained by the less stabile organic matter of MSW composts which increased its Cu mobile fraction after soil incorporation. The Cd leaching could be reproduced with the second Kd-2 approach for the two amended plots (ESGW=0.55, EMSW=0.80) while control plot simulations produced poorer fitting (ECONT=-0.57), probably due to an overestimation of the influence of the low pH of that plot on Kd-2(Cd). However, numerical modeling revealed interesting results in which, even with the high values of hydraulic conductivity in the interfurrow zones, the Cd and Cu showed low mobility. Although, the amended plots showed increased metal leaching below the tilled layer in both amended plots, their mobility in the tilled layer is reduced due to retention capacity of the applied composts. Acknowledgements: the involvement of INRA and Veolia members in the QualiAgro experiment and the financial support of Veolia are gratefully acknowledged Keywords: Compost amendments; Soil heterogeneity; Trace metals; Sorption; HYDRUS-2D

  7. Stress field sensitivity analysis within Mesozoic successions in the Swiss Alpine foreland using 3-D-geomechanical-numerical models

    NASA Astrophysics Data System (ADS)

    Reiter, Karsten; Hergert, Tobias; Heidbach, Oliver

    2016-04-01

    The in situ stress conditions are of key importance for the evaluation of radioactive waste repositories. In stage two of the Swiss site selection program, the three siting areas of high-level radioactive waste are located in the Alpine foreland in northern Switzerland. The sedimentary succession overlays the basement, consisting of variscan crystalline rocks as well as partly preserved Permo-Carboniferous deposits in graben structures. The Mesozoic sequence represents nearly the complete era and is covered by Cenozoic Molasse deposits as well as Quaternary sediments, mainly in the valleys. The target horizon (designated host rock) is an >100 m thick argillaceous Jurassic deposit (Opalinus Clay). To enlighten the impact of site-specific features on the state of stress within the sedimentary succession, 3-D-geomechanical-numerical models with elasto-plastic rock properties are set up for three potential siting areas. The lateral extent of the models ranges between 12 and 20 km, the vertical extent is up to a depth of 2.5 or 5 km below sea level. The sedimentary sequence plus the basement are separated into 10 to 14 rock mechanical units. The Mesozoic succession is intersected by regional fault zones; two or three of them are present in each model. The numerical problem is solved with the finite element method with a resolution of 100-150 m laterally and 10-30 m vertically. An initial stress state is established for all models taking into account the depth-dependent overconsolidation ratio in Opalinus Clay in northern Switzerland. The influence of topography, rock properties, friction on the faults as well as the impact of tectonic shortening on the state of stress is investigated. The tectonic stress is implemented with lateral displacement boundary conditions, calibrated on stress data that are compiled in Northern Switzerland. The model results indicate that the stress perturbation by the topography is significant to depths greater than the relief contrast. The impact of fault geometry and frictional properties is observed within a distance of <1 km. The major impact on the stress state is caused by the variability of the geomechanical stratigraphy. The stress anisotropy increases when tectonic shortening is applied to the models. Stress magnitudes and anisotropy are largest within the stiff formations such as limestone. These stiff formations carry the load due to far field tectonic forces, whereas weak formations, like the argillaceous target horizon for the waste disposal, exhibits smaller stress magnitudes. Using the fracture potential as a more unambiguous indicator, the stiff overburden rocks are closer to failure than the target horizon for the repository, whereas stiff formations below the target rocks are far from failure.

  8. Hazardous Waste Management System: Land Disposal Restrictions - Federal Register Notice, May 15, 1992

    EPA Pesticide Factsheets

    In response to the Proposed Rule on Land Disposal Restrictions (LDR) for Newly Listed Wastes and Hazardous Debris, EPA received numerous comments regarding the availability of treatment capacity for hazardous debris. EPA agrees with these comments.

  9. Alkaline Plume in the Aptian Sand Aquifer in the Context of Low-Level Radioactive Waste Surface Disposal

    NASA Astrophysics Data System (ADS)

    Cochepin, B.; Munier, I.; MADE, B.

    2017-12-01

    The storage vaults for low and intermediate-level short-lived radioactive waste in the East of France are settled on the Aptian sand layer. In the context of the periodic examination by the nuclear regulators, it has been recommended to assess more precisely the chemical conditions for a potential release of radionuclides in the underlying water table. In particular, this study aims at assessing the eventuality of spreading an alkaline plume in the Aptian sand pore water by the chemical degradation of the vault cementitious materials. The numerical approach developed for this purpose is supported by both experimental characterizations of tracers in the water table and results from preliminary numerical studies on the hydrology of the site and the hydraulic evolution of the storage. The results from these specific simulations were simplified in the reactive transport model to focus on the mechanistic description of the chemical processes taking place in the waste and vaults and on their consequences on the underlying water table. During the operating period of the disposal, the reactive transport modelling shows that the low water saturation in the vaults material and in the vadose zone prevents the aquifer from a significant increase of the water pH under the cement-based vaults. These results are in reasonable agreement with the pH regularly measured in the underlying water table. After storage closure, during the few hundred years of the monitoring period and furthermore beyond, the reactive transport modelling shows a noticeable release of hydroxyls and alkali ions under the disposal vaults and their spread downstream the storage site leading to pH values above 10. It is noteworthy that the pH is not buffered in the Aptian sands because of their low amount in clayey minerals. This effect is now considered for pH-sensitive radionuclide solutes in safety assessment calculations by weighting correspondingly their retention parameters.

  10. Variable thickness transient ground-water flow model. Volume 3. Program listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.« less

  11. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico.

    PubMed

    Sturchio, Neil C; Kuhlman, Kristopher L; Yokochi, Reika; Probst, Peter C; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic (81)Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured (81)Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared (81)Kr model ages with reverse particle-tracking results of well-calibrated flow models. The (81)Kr model ages are ~130,000 and ~330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~32,000 yr), the (81)Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Risk assessment associated to possible concrete degradation of a near surface disposal facility

    NASA Astrophysics Data System (ADS)

    Capra, B.; Billard, Y.; Wacquier, W.; Gens, R.

    2013-07-01

    This article outlines a risk analysis of possible concrete degradation performed in the framework of the preparation of the Safety Report of ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for the construction and operation of a near surface disposal facility of category A waste - short-lived low and intermediate level waste - in Dessel. The main degradation mechanism considered is the carbonation of different concrete components over different periods (from the building phase up to 2000 years), which induces corrosion of the rebars. A dedicated methodology mixing risk analysis and numerical modeling of concrete carbonation has been developed to assess the critical risks of the disposal facility at different periods. According to the results obtained, risk mapping was used to assess the impact of carbonation of concrete on the different components at the different stages. The most important risk is related to an extreme situation with complete removal of the earth cover and side embankment.

  13. FIELD EXPERIENCE IN SAMPLING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This paper is for presentation at the 77th annual meeting of the Air Pollution Control Association, June 24-29, 1984. The paper contains much useful, pragmatic information gained through numerous hazardous waste incinerator trial burn-type investigations performed for EPA by the ...

  14. Stock flow diagram analysis on solid waste management in Malaysia

    NASA Astrophysics Data System (ADS)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  15. Coupling Legacy and Contemporary Deterministic Codes to Goldsim for Probabilistic Assessments of Potential Low-Level Waste Repository Sites

    NASA Astrophysics Data System (ADS)

    Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.

    2006-12-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer project between Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research (INER) for the preliminary assessment of several candidate low-level waste repository sites. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.

  16. Hydrogen production by gasification of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robers, R.

    1994-05-06

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such an energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which is considered to be largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using Aspen Plus{sup {trademark}} flowsheeting software to simulate a process which produces hydrogen gas from MSW; the modelmore » will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design.« less

  17. A simple numerical model for predicting organic matter decomposition in a fed-batch composting operation.

    PubMed

    Nakasaki, Kiyohiko; Ohtaki, Akihito

    2002-01-01

    Using dog food as a model of the organic waste that comprises composting raw material, the degradation pattern of organic materials was examined by continuously measuring the quantity of CO2 evolved during the composting process in both batch and fed-batch operations. A simple numerical model was made on the basis of three suppositions for describing the organic matter decomposition in the batch operation. First, a certain quantity of carbon in the dog food was assumed to be recalcitrant to degradation in the composting reactor within the retention time allowed. Second, it was assumed that the decomposition rate of carbon is proportional to the quantity of easily degradable carbon, that is, the carbon recalcitrant to degradation was subtracted from the total carbon remaining in the dog food. Third, a certain lag time is assumed to occur before the start of active decomposition of organic matter in the dog food; this lag corresponds to the time required for microorganisms to proliferate and become active. It was then ascertained that the decomposition pattern for the organic matter in the dog food during the fed-batch operation could be predicted by the numerical model with the parameters obtained from the batch operation. This numerical model was modified so that the change in dry weight of composting materials could be obtained. The modified model was found suitable for describing the organic matter decomposition pattern in an actual fed-batch composting operation of the garbage obtained from a restaurant, approximately 10 kg d(-1) loading for 60 d.

  18. Confined wetting of FoCa clay powder/pellet mixtures: Experimentation and numerical modeling

    NASA Astrophysics Data System (ADS)

    Maugis, Pascal; Imbert, Christophe

    Potential geological nuclear waste disposals must be properly sealed to prevent contamination of the biosphere by radionuclides. In the framework of the RESEAL project, the performance of a bentonite shaft seal is currently studied at Mol (Belgium). This paper focuses on the hydro-mechanical physical behavior of centimetric, unsaturated samples of the backfilling material - a mixture of FoCa-clay powder and pellets - during oedometer tests. The hydro-mechanical response of the samples is observed experimentally, and then compared to numerical simulations performed by our Cast3M Finite Element code. The generalized Darcy’s law and the Barcelona Basic Model mechanical model formed the physical basis of the numerical model and the interpretation. They are widely used in engineered barriers modeling. Vertical swelling pressure and water intake were measured throughout the test. Although water income presents a monotonous increase, the swelling pressure evolution is marked by a peak, and then a local minimum before increasing again to an asymptotic value. This unexpected behavior is explained by yielding rather than by heterogeneity. It is satisfactorily reproduced by the model after parameter calibration. Several samples with different heights ranging from 5 to 12 cm show the same hydro-mechanical response, apart from a dilatation of the time scale. The interest of the characterization of centimetric samples to predicting the efficiency of a metric sealing is discussed.

  19. A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa

    2017-12-01

    In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.

  20. 40 CFR 194.24 - Waste characterization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other information and methods. (b) The Department shall submit in the compliance certification... proposed for disposal in the disposal system, WIPP complies with the numeric requirements of § 194.34 and... release. (2) Identify and describe the method(s) used to quantify the limits of waste components...

  1. FIELD APPLICATIONS OF ROBOTIC SYSTEMS IN HAZARDOUS WASTE SITE OPERATIONS

    EPA Science Inventory

    The cleanup of hazardous waste sites is a challenging and complex field that offers numerous opportunities for the application of robotic technology. he contamination problem, long in the making, will take decades to resolve. ur ingenuity in developing robotic tools to assist in ...

  2. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  3. Assessing the variables affecting on the rate of solid waste generation and recycling: An empirical analysis in Prespa Park.

    PubMed

    Grazhdani, Dorina

    2016-02-01

    Economic development, urbanization, and improved living standards increase the quantity and complexity of generated solid waste. Comprehensive study of the variables influencing household solid waste production and recycling rate is crucial and fundamental for exploring the generation mechanism and forecasting future dynamics of household solid waste. The present study is employed in the case study of Prespa Park. A model, based on the interrelationships of economic, demographic, housing structure and waste management policy variables influencing the rate of solid waste generation and recycling is developed and employed. The empirical analysis is based on the information derived from a field questionnaire survey conducted in Prespa Park villages for the year 2014. Another feature of this study is to test whether a household's waste generation can be decoupled from its population growth. Descriptive statistics, bivariate correlation analysis and F-tests are used to know the relationship between variables. One-way and two-way fixed effects models data analysis techniques are used to identify variables that determine the effectiveness of waste generation and recycling at household level in the study area. The results reveal that households with heterogeneous characteristics, such as education level, mean building age and income, present different challenges of waste reduction goals. Numerically, an increase of 1% in education level of population corresponds to a waste reduction of 3kg on the annual per capita basis. A village with older buildings, in the case of one year older of the median building age, corresponds to a waste generation increase of 12kg. Other economic and policy incentives such as the mean household income, pay-as-you-throw, percentage of population with access to curbside recycling, the number of drop-off recycling facilities available per 1000 persons and cumulative expenditures on recycling education per capita are also found to be effective measures in waste reduction. The mean expenditure for recycling education spent on a person for years 2010 and 2014 is 12 and 14 cents, respectively and it vary from 0 to €1. For years 2010 and 2014, the mean percentage of population with access to curbside recycling services is 38.6% and 40.3%, and the mean number of drop-off recycling centers per 1000 persons in the population is 0.29 and 0.32, respectively. Empirical evidence suggests that population growth did not necessarily result in increases in waste generation. The results provided are useful when planning, changing or implementing sustainable municipal solid waste management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Numerical Simulation of Hydrothermal Salt Separation Process and Analysis and Cost Estimating of Shipboard Liquid Waste Disposal

    DTIC Science & Technology

    2007-06-01

    possible means to improve a variety of processes: supercritical water in steam Rankine cycles (fossil-fuel powered plants), supercritical carbon ... dioxide and supercritical water in advanced nuclear power plants, and oxidation in supercritical water for use in destroying toxic military wastes and...destruction technologies are installed in a class of ship. Additionally, the properties of one waste water destruction medium, supercritical

  5. Trickling filter for urea and bio-waste processing - dynamic modelling of nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Zhukov, Anton; Hauslage, Jens; Tertilt, Gerin; Bornemann, Gerhild

    Mankind’s exploration of the solar system requires reliable Life Support Systems (LSS) enabling long duration manned space missions. In the absence of frequent resupply missions, closure of the LSS will play a very important role and its maximisation will to a large extent drive the selection of appropriate LSS architectures. One of the significant issues on the way to full closure is to effectively utilise biological wastes such as urine, inedible biomass etc. A very promising concept of biological waste reprocessing is the use of trickling filters which are currently being developed and investigated by DLR, Cologne, Germany. The concept is called Combined Regenerative Organic-Food Production (C.R.O.P.) and is based on the microbiological treatment of biological wastes and reprocessing them into aqueous fertilizer which can directly be used in a greenhouse for food production. Numerous experiments have been and are being conducted by DLR in order to fully understand and characterize the process. The human space exploration group of the Technical University of Munich (TUM) in cooperation with DLR has started to establish a dynamic model of the trickling filter system to be able to assess its performance on the LSS level. In the first development stage the model covers the nitrogen cycle enabling to simulate urine processing. This paper describes briefly the C.R.O.P. concept and the status of the trickling filter model development. The model is based on enzyme-catalyzed reaction kinetics for the fundamental microbiological reaction chain and is created in MATLAB. Verification and correlation of the developed model with experiment results has been performed. Several predictive studies for batch sequencing behavior have been performed, demonstrating a good capability of C.R.O.P. concept to be used in closed LSS. Achieved results are critically discussed and way forward is presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironenko, V.A.; Rumynin, V.G.; Konosavsky, P.K.

    Mathematical models of the flow and tracer tests in fractured aquifers are being developed for the further study of radioactive wastes migration in round water at the Lake Area, which is associated with one of the waste disposal site in Russia. The choice of testing methods, tracer types (chemical or thermal) and the appropriate models are determined by the nature of the ongoing ground-water pollution processes and the hydrogeological features of the site under consideration. Special importance is attached to the increased density of wastes as well as to the possible redistribution of solutes both in the liquid phase andmore » in the absorbed state (largely, on fracture surfaces). This allows for studying physical-and-chemical (hydrogeochemical) interaction parameters which are hard to obtain (considering a fractured structure of the rock mass) in laboratory. Moreover, a theoretical substantiation is being given to the field methods of studying the properties of a fractured stratum aimed at the further construction of the drainage system or the subsurface flow barrier (cutoff wall), as well as the monitoring system that will evaluate the reliability of these ground-water protection measures. The proposed mathematical models are based on a tight combination of analytical and numerical methods, the former being preferred in solving the principal (2D axisymmetrical) class of the problems. The choice of appropriate problems is based on the close feedback with subsequent field tests in the Lake Area. 63 refs.« less

  7. Use of a Dual-Structure Constitutive Model for Predicting the Long-Term Behavior of an Expansive Clay Buffer in a Nuclear Waste Repository

    DOE PAGES

    Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura; ...

    2015-12-31

    Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less

  8. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material.

    NASA Astrophysics Data System (ADS)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.

    2003-04-01

    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical elements mobilised by the water-minerals interaction processes. To validate our model we simulated the compacted bentonite (MX80) studied for engineered barriers for radioactive waste confinement and mainly composed of Na-Ca-montmorillonite. The study of particles morphology and reactive surfaces evolutions reveals that aqueous ions have a complex behaviour, especially when competitions between various mineral phases occur. In that case, our model predicts a preferential precipitation of finest particles, favouring smectites instead of zeolites. This work is a part of a PhD Thesis supported by Andra, the French Radioactive Waste Management Agency.

  9. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Huang, Shouyuan; Xu, Xianfan

    2016-10-01

    This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.

  10. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization waste management

    USDA-ARS?s Scientific Manuscript database

    Hydrothermal carbonization (HTC) is a relatively low temperature thermal conversion process that is gaining significant attention as a sustainable and environmentally beneficial approach for the transformation of biomass and waste streams to value-added products. Although there are numerous studies ...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reedlunn, Benjamin

    Room D was an in-situ, isothermal, underground experiment conducted at the Waste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under-predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under-predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reedlunn, Benjamin

    Room D was an in-situ, isothermal, underground experiment conducted at theWaste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less

  13. The current status of hazardous solid waste management.

    PubMed Central

    Kaufman, H B

    1978-01-01

    Growth of the population and of industrialization, and substandard disposal of the increased waste products thus generated, have resulted in numerous documented cases of harm to human, plant, and animal health. The Resource Conservation and Recovery Act (1976), its stated goals, and its intended means of implementation, are discussed relative to hazardous waste problems. Subtitle C of this Act, and the authority granted by it to the U.S. Environmental Protection Agency, are explained. Standards and regulations have been imposed upon those responsible for generating and transporting hazardous wastes, to ensure the ultimate safe disposal of such wastes in environmentally suitable, properly licensed facilities. PMID:738237

  14. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.

    2015-03-30

    Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is justmore » getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.« less

  15. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.

  16. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    PubMed

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.

  17. Latest research progress on food waste management: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Zhu, Shangzhen; Gao, Hetong; Duan, Lunbo

    2018-05-01

    Since a large amount of food supplying is provided as a basic line measuring increasing residents’ life standard, food waste has become progressively numeral considerable. Much attention has been drawn to this problem. This work gave an overview on latest researches about anaerobic digestion, composting, generalized management and other developments on management of food waste. Different technologies were introduced and evaluated. Further views on future research in such a field were proposed.

  18. A REVIEW OF ACID COPPER PLATING BATH LIFE EXTENSION AND COPPER RECOVERY FROM ACID COPPER BATHS

    EPA Science Inventory

    Large quantities of hazardous waste, most in aqueous solution or sludges, are being produced at numerous metal plating and processing facilities in the U.S. Regulatory pressures, future liability, and limited landfill space have driven the cost of metal waste disposal to level...

  19. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    PubMed

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  20. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock: FY17 Progress. Predecisional Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Rutqvist, Jonny; Xu, Hao

    The focus of research within the Spent Fuel and Waste Science and Technology (SFWST) (formerly called Used Fuel Disposal) Campaign is on repository-induced interactions that may affect the key safety characteristics of EBS bentonite and an argillaceous rock. These include thermal-hydrologicalmechanical- chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer materials and petrophysical characteristics, particularly the impacts of temperature rise caused by waste heat.more » This report documents the following research activities. Section 2 presents THM model developments and validation, including modeling of underground heater experiments at Mont Terri and Bure underground research laboratories (URLs). The heater experiments modeled are the Mont Terri FE (Full-scale Emplacement) Experiment, conducted as part of the Mont Terri Project, and the TED in heater test conducted in Callovo-Oxfordian claystone (COx) at the Meuse/Haute-Marne (MHM) underground research laboratory in France. The modeling of the TED heater test is one of the Tasks of the DEvelopment of COupled Models and their VAlidation against EXperiments (DECOVALEX)-2019 project. Section 3 presents the development and application of thermal-hydrological-mechanical-chemical (THMC) modeling to evaluate EBS bentonite and argillite rock responses under different temperatures (100 °C and 200 °C). Model results are presented to help to understand the impact of high temperatures on the properties and behavior of bentonite and argillite rock. Eventually the process model will support a robust GDSA model for repository performance assessments. Section 4 presents coupled THMC modeling for an in situ test conducted at Grimsel underground laboratory in Switzerland in the Full-Scale Engineered Barrier Experiment Dismantling Project (FEBEX-DP). The data collected in the test after almost two decades of heating and two dismantling events provide a unique opportunity of validating coupled THMC models and enhancing our understanding of coupled THMC process in EBS bentonite. Section 5 presents a planned large in-situ test, “HotBENT,” at Grimsel Test Site, Switzerland. In this test, bentonite backfilled EBS in granite will be heated up to 200 °C, where the most relevant features of future emplacement conditions can be adequately reproduced. Lawrence Berkeley National Laboratory (LBNL) has very actively participated in the project since the very beginning and have conducted scoping calculations in FY17 to facilitate the final design of the experiment. Section 6 presents present LBNL’s activities for modeling gas migration in clay related to Task A of the international DECOVALEX-2019 project. This is an international collaborative activity in which DOE and LBNL gain access to unique laboratory and field data of gas migration that are studied with numerical modeling to better understand the processes, to improve numerical models that could eventually be applied in the performance assessment for nuclear waste disposal in clay host rocks and bentonite backfill. Section 7 summarizes the main research accomplishments for FY17 and proposes future work activities.« less

  1. Enablers towards establishing and growing South Africa's waste to electricity industry.

    PubMed

    Amsterdam, Heinrich; Thopil, George Alex

    2017-10-01

    In South Africa the electricity generation mix is relatively un-diverse whereas globally the transformation of the sector is advancing rapidly. Coal remains the predominant fuel source and limited success has to date been achieved in the renewable energy sector. The electricity generation sector is therefore hindered from moving towards an electricity generation landscape where alternative fuel sources is utilised. This research is aimed at gaining insight into the enablers that led towards an increasing trend (observed globally) in exploiting waste as a fuel for electricity generation, and to outline the presence of obstacles that hinder separation of waste for electricity use in the South African context. Furthermore it is an attempt at informing what appropriate interventions (operational and policy) may be considered suitable for South Africa to overcome these barriers in order to enable a sustainable South African waste to electricity (WTE) Industry. Findings show that numerous barriers to a WTE exists in the South African context, however overcoming these barriers is not as simple as adopting the European model with the aim to modify the electricity generation mix and waste management landscape. Selected enablers deemed appropriate in the South African context are adapted from the European model, and are greatly influenced by the prevailing socio-economic status of South Africa. Primary enablers identified were, (i) government support is needed especially in the form of subsidisation for green energy, (ii) increase landfill costs through the implementation of a landfill tax, (iii) streamline the process for Independent Private Power Producers (IPPPs) to connect to the national grid with off-take guaranteed and the inclusion of WTE into an electricity roadmap (effectively government's strategy). The proposed enabling interventions would help in overcoming the barriers for a South African WTE industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of the clinical process in a critical care information system using the Lean method: a case study

    PubMed Central

    2012-01-01

    Background There are numerous applications for Health Information Systems (HIS) that support specific tasks in the clinical workflow. The Lean method has been used increasingly to optimize clinical workflows, by removing waste and shortening the delivery cycle time. There are a limited number of studies on Lean applications related to HIS. Therefore, we applied the Lean method to evaluate the clinical processes related to HIS, in order to evaluate its efficiency in removing waste and optimizing the process flow. This paper presents the evaluation findings of these clinical processes, with regards to a critical care information system (CCIS), known as IntelliVue Clinical Information Portfolio (ICIP), and recommends solutions to the problems that were identified during the study. Methods We conducted a case study under actual clinical settings, to investigate how the Lean method can be used to improve the clinical process. We used observations, interviews, and document analysis, to achieve our stated goal. We also applied two tools from the Lean methodology, namely the Value Stream Mapping and the A3 problem-solving tools. We used eVSM software to plot the Value Stream Map and A3 reports. Results We identified a number of problems related to inefficiency and waste in the clinical process, and proposed an improved process model. Conclusions The case study findings show that the Value Stream Mapping and the A3 reports can be used as tools to identify waste and integrate the process steps more efficiently. We also proposed a standardized and improved clinical process model and suggested an integrated information system that combines database and software applications to reduce waste and data redundancy. PMID:23259846

  3. Evaluation of the clinical process in a critical care information system using the Lean method: a case study.

    PubMed

    Yusof, Maryati Mohd; Khodambashi, Soudabeh; Mokhtar, Ariffin Marzuki

    2012-12-21

    There are numerous applications for Health Information Systems (HIS) that support specific tasks in the clinical workflow. The Lean method has been used increasingly to optimize clinical workflows, by removing waste and shortening the delivery cycle time. There are a limited number of studies on Lean applications related to HIS. Therefore, we applied the Lean method to evaluate the clinical processes related to HIS, in order to evaluate its efficiency in removing waste and optimizing the process flow. This paper presents the evaluation findings of these clinical processes, with regards to a critical care information system (CCIS), known as IntelliVue Clinical Information Portfolio (ICIP), and recommends solutions to the problems that were identified during the study. We conducted a case study under actual clinical settings, to investigate how the Lean method can be used to improve the clinical process. We used observations, interviews, and document analysis, to achieve our stated goal. We also applied two tools from the Lean methodology, namely the Value Stream Mapping and the A3 problem-solving tools. We used eVSM software to plot the Value Stream Map and A3 reports. We identified a number of problems related to inefficiency and waste in the clinical process, and proposed an improved process model. The case study findings show that the Value Stream Mapping and the A3 reports can be used as tools to identify waste and integrate the process steps more efficiently. We also proposed a standardized and improved clinical process model and suggested an integrated information system that combines database and software applications to reduce waste and data redundancy.

  4. Finite-element three-dimensional ground-water (FE3DGW) flow model - formulation, program listings and users' manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S.K.; Cole, C.R.; Bond, F.W.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow.« less

  5. Modelling river bank erosion processes and mass failure mechanisms using 2-D depth averaged numerical model

    NASA Astrophysics Data System (ADS)

    Die Moran, Andres; El kadi Abderrezzak, Kamal; Tassi, Pablo; Herouvet, Jean-Michel

    2014-05-01

    Bank erosion is a key process that may cause a large number of economic and environmental problems (e.g. land loss, damage to structures and aquatic habitat). Stream bank erosion (toe erosion and mass failure) represents an important form of channel morphology changes and a significant source of sediment. With the advances made in computational techniques, two-dimensional (2-D) numerical models have become valuable tools for investigating flow and sediment transport in open channels at large temporal and spatial scales. However, the implementation of mass failure process in 2D numerical models is still a challenging task. In this paper, a simple, innovative algorithm is implemented in the Telemac-Mascaret modeling platform to handle bank failure: failure occurs whether the actual slope of one given bed element is higher than the internal friction angle. The unstable bed elements are rotated around an appropriate axis, ensuring mass conservation. Mass failure of a bank due to slope instability is applied at the end of each sediment transport evolution iteration, once the bed evolution due to bed load (and/or suspended load) has been computed, but before the global sediment mass balance is verified. This bank failure algorithm is successfully tested using two laboratory experimental cases. Then, bank failure in a 1:40 scale physical model of the Rhine River composed of non-uniform material is simulated. The main features of the bank erosion and failure are correctly reproduced in the numerical simulations, namely the mass wasting at the bank toe, followed by failure at the bank head, and subsequent transport of the mobilised material in an aggradation front. Volumes of eroded material obtained are of the same order of magnitude as the volumes measured during the laboratory tests.

  6. Compacting biomass waste materials for use as fuel

    NASA Astrophysics Data System (ADS)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were conducted in a stoke boiler. A separate burning test was also carried out by burning biomass logs alone in an outdoor hot-water furnace for heating a building. Based on a previous coal compaction study, the process of biomass compaction was studied numerically by use of a non-linear finite element code. A constitutive model with sufficient generality was adapted for biomass material to deal with pore contraction during compaction. A contact node algorithm was applied to implement the effect of mold wall friction into the finite element program. Numerical analyses were made to investigate the pressure distribution in a die normal to the axis of compaction, and to investigate the density distribution in a biomass log after compaction. The results of the analyses gave generally good agreement with theoretical analysis of coal log compaction, although assumptions had to be made about the variation in the elastic modulus of the material and the Poisson's ratio during the compaction cycle.

  7. Waste reduction possibilities for manufacturing systems in the industry 4.0

    NASA Astrophysics Data System (ADS)

    Tamás, P.; Illés, B.; Dobos, P.

    2016-11-01

    The industry 4.0 creates some new possibilities for the manufacturing companies’ waste reduction for example by appearance of the cyber physical systems and the big data concept and spreading the „Internet of things (IoT)”. This paper presents in details the fourth industrial revolutions’ more important achievements and tools. In addition there will be also numerous new research directions in connection with the waste reduction possibilities of the manufacturing systems outlined.

  8. Numerical analysis of impurity separation from waste salt by investigating the change of concentration at the interface during zone refining process

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Gil; Shim, Moonsoo; Lee, Jong-Hyeon; Yi, Kyung-Woo

    2017-09-01

    The waste salt treatment process is required for the reuse of purified salts, and for the disposal of the fission products contained in waste salt during pyroprocessing. As an alternative to existing fission product separation methods, the horizontal zone refining process is used in this study for the purification of waste salt. In order to evaluate the purification ability of the process, three-dimensional simulation is conducted, considering heat transfer, melt flow, and mass transfer. Impurity distributions and decontamination factors are calculated as a function of the heater traverse rate, by applying a subroutine and the equilibrium segregation coefficient derived from the effective segregation coefficients. For multipass cases, 1d solutions and the effective segregation coefficient obtained from three-dimensional simulation are used. In the present study, the topic is not dealing with crystal growth, but the numerical technique used is nearly the same since the zone refining technique was just introduced in the treatment of waste salt from nuclear power industry because of its merit of simplicity and refining ability. So this study can show a new application of single crystal growth techniques to other fields, by taking advantage of the zone refining multipass possibility. The final goal is to achieve the same high degree of decontamination in the waste salt as in zone freezing (or reverse Bridgman) method.

  9. Municipal waste management in Sicily: practices and challenges.

    PubMed

    Messineo, Antonio; Panno, Domenico

    2008-01-01

    There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.

  10. Ecological sustainability of alternative biomass feedstock production for environmental benefits and bioenergy

    Treesearch

    Ronald S., Jr. Zalesny; Jill A. Zalesny; Edmund O. Bauer

    2007-01-01

    The incorporation of intensive forestry with waste management fills a much-needed niche throughout numerous phytotechnology applications. There is a growing opportunity to incorporate sustainable recycling of waste waters as irrigation and fertilization for alternative biomass feedstock production systems. However, the success of short rotation woody crops is largely...

  11. Evaluation of Point of Use Water Treatment Devices for Removal of Mine Wastes from Well Water

    EPA Science Inventory

    U.S. EPA Region VII and the Office of Research and Development (ORD) are conducting a large-scale study to identify the prevalence of lead (Pb) and other contaminants in drinking water at four mine waste areas in Washington County, Missouri. Numerous households in Potosi, Richwoo...

  12. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  13. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, R., E-mail: remi.clement@hmg.inpg.fr; Grenoble Universite, B.P. 53, 38041 Grenoble Cedex 9; Oxarango, L.

    2011-03-15

    Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequentlymore » applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.« less

  14. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review.

    PubMed

    Awasthi, Abhishek Kumar; Zlamparet, Gabriel Ionut; Zeng, Xianlai; Li, Jinhui

    2017-04-01

    Rapid generation of waste printed circuit boards has become a very serious issue worldwide. Numerous techniques have been developed in the last decade to resolve the pollution from waste printed circuit boards, and also recover valuable metals from the waste printed circuit boards stream on a large-scale. However, these techniques have their own certain specific drawbacks that need to be rectified properly. In this review article, these recycling technologies are evaluated based on a strength, weaknesses, opportunities and threats analysis. Furthermore, it is warranted that, the substantial research is required to improve the current technologies for waste printed circuit boards recycling in the outlook of large-scale applications.

  15. An evaluation of some special techniques for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Mackay, J. S.

    1973-01-01

    A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.

  16. Understanding the retention and fate prediction of copper ions in single and competitive system in two soils: An experimental and numerical investigation.

    PubMed

    Buragohain, Poly; Garg, Ankit; Feng, Song; Lin, Peng; Sreedeep, S

    2018-09-01

    The concept of sponge city has become very popular with major thrust on design of waste containment systems such as biofilter and green roofs. Factors that may influence pollutant ions retention in these systems will be soil type and also their interactions. The study investigated single and competitive interaction of copper in two soils and its influence on the fate prediction. Freundlich and Langmuir nonlinear isotherms were selected to quantify the retention results. Series of numerical simulations were conducted to model 1 D advection-dispersion transport for the two soils and analyse the role of isotherms. The results indicated that contaminant fate prediction of copper-soil interaction based on the two non-linear isotherms was different for both single and that in competition. Retardation factor obtained from Freundlich (R F ) isotherm predicts more than Langmuir (R La ). This observation is more explicit at the higher range of equilibrium concentration. Fate prediction based on retardation value obtained from retention isotherms exhibited some anomalous trends contradicting the experimental findings due to inherent assumptions in governing equations. The necessity to have an approximate assessment of contaminant concentration in the field to effectively use contaminant retention results for accurate fate prediction is highlighted here. The study is important for modellers in design or analysis of biolfilter system (sponge city), where multiple ions tend to exist in waste water. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura

    Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less

  18. Distinctions between intelligent manufactured and constructed systems and a new discipline for intelligent infrastructure hypersystems

    NASA Astrophysics Data System (ADS)

    Aktan, A. Emin

    2003-08-01

    Although the interconnected systems nature of the infrastructures, and the complexity of interactions between their engineered, socio-technical and natural constituents have been recognized for some time, the principles of effectively operating, protecting and preserving such systems by taking full advantage of "modeling, simulations, optimization, control and decision making" tools developed by the systems engineering and operations research community have not been adequately studied or discussed by many engineers including the writer. Differential and linear equation systems, numerical and finite element modeling techniques, statistical and probabilistic representations are universal, however, different disciplines have developed their distinct approaches to conceptualizing, idealizing and modeling the systems they commonly deal with. The challenge is in adapting and integrating deterministic and stochastic, geometric and numerical, physics-based and "soft (data-or-knowledge based)", macroscopic or microscopic models developed by various disciplines for simulating infrastructure systems. There is a lot to be learned by studying how different disciplines have studied, improved and optimized the systems relating to various processes and products in their domains. Operations research has become a fifty-year old discipline addressing complex systems problems. Its mathematical tools range from linear programming to decision processes and game theory. These tools are used extensively in management and finance, as well as by industrial engineers for optimizing and quality control. Progressive civil engineering academic programs have adopted "systems engineering" as a focal area. However, most of the civil engineering systems programs remain focused on constructing and analyzing highly idealized, often generic models relating to the planning or operation of transportation, water or waste systems, maintenance management, waste management or general infrastructure hazards risk management. We further note that in the last decade there have been efforts for "agent-based" modeling of synthetic infrastructure systems by taking advantage of supercomputers at various DOE Laboratories. However, whether there is any similitude between such synthetic and actual systems needs investigating further.

  19. Hydro-mechanical model for wetting/drying and fracture development in geomaterials

    DOE PAGES

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.; ...

    2013-12-28

    This study presents a modeling approach for studying hydro-mechanical coupled processes, including fracture development, within geological formations. This is accomplished through the novel linking of two codes: TOUGH2, which is a widely used simulator of subsurface multiphase flow based on the finite volume method; and an implementation of the Rigid-Body-Spring Network (RBSN) method, which provides a discrete (lattice) representation of material elasticity and fracture development. The modeling approach is facilitated by a Voronoi-based discretization technique, capable of representing discrete fracture networks. The TOUGH–RBSN simulator is intended to predict fracture evolution, as well as mass transport through permeable media, under dynamicallymore » changing hydrologic and mechanical conditions. Numerical results are compared with those of two independent studies involving hydro-mechanical coupling: (1) numerical modeling of swelling stress development in bentonite; and (2) experimental study of desiccation cracking in a mining waste. The comparisons show good agreement with respect to moisture content, stress development with changes in pore pressure, and time to crack initiation. Finally, the observed relationship between material thickness and crack patterns (e.g., mean spacing of cracks) is captured by the proposed modeling approach.« less

  20. Towards more sustainable management of European food waste: Methodological approach and numerical application.

    PubMed

    Manfredi, Simone; Cristobal, Jorge

    2016-09-01

    Trying to respond to the latest policy needs, the work presented in this article aims at developing a life-cycle based framework methodology to quantitatively evaluate the environmental and economic sustainability of European food waste management options. The methodology is structured into six steps aimed at defining boundaries and scope of the evaluation, evaluating environmental and economic impacts and identifying best performing options. The methodology is able to accommodate additional assessment criteria, for example the social dimension of sustainability, thus moving towards a comprehensive sustainability assessment framework. A numerical case study is also developed to provide an example of application of the proposed methodology to an average European context. Different options for food waste treatment are compared, including landfilling, composting, anaerobic digestion and incineration. The environmental dimension is evaluated with the software EASETECH, while the economic assessment is conducted based on different indicators expressing the costs associated with food waste management. Results show that the proposed methodology allows for a straightforward identification of the most sustainable options for food waste, thus can provide factual support to decision/policy making. However, it was also observed that results markedly depend on a number of user-defined assumptions, for example on the choice of the indicators to express the environmental and economic performance. © The Author(s) 2016.

  1. [Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].

    PubMed

    Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong

    2016-03-15

    Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.

  2. Mathematical modelling of particle mixing effect on the combustion of municipal solid wastes in a packed-bed furnace.

    PubMed

    Yang, Yao Bin; Swithenbank, Jim

    2008-01-01

    Packed bed combustion is still the most common way to burn municipal solid wastes. In this paper, a dispersion model for particle mixing, mainly caused by the movement of the grate in a moving-burning bed, has been proposed and transport equations for the continuity, momentum, species, and energy conservation are described. Particle-mixing coefficients obtained from model tests range from 2.0x10(-6) to 3.0x10(-5)m2/s. A numerical solution is sought to simulate the combustion behaviour of a full-scale 12-tonne-per-h waste incineration furnace at different levels of bed mixing. It is found that an increase in mixing causes a slight delay in the bed ignition but greatly enhances the combustion processes during the main combustion period in the bed. A medium-level mixing produces a combustion profile that is positioned more at the central part of the combustion chamber, and any leftover combustible gases (mainly CO) enter directly into the most intensive turbulence area created by the opposing secondary-air jets and thus are consumed quickly. Generally, the specific arrangement of the impinging secondary-air jets dumps most of the non-uniformity in temperature and CO into the gas flow coming from the bed-top, while medium-level mixing results in the lowest CO emission at the furnace exit and the highest combustion efficiency in the bed.

  3. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  4. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  5. Food waste prevention in Athens, Greece: The effect of family characteristics.

    PubMed

    Abeliotis, Konstadinos; Lasaridi, Katia; Chroni, Christina

    2016-12-01

    Food waste is a stream that becomes increasingly important in terms of its prevention potential. There is a large number of behaviours that can be associated with food waste generation and the efforts towards food waste prevention. A questionnaire study was carried in order to study consumer behaviour related to food provision and wastage in Greece. Proper practices of the respondents that can prevent the generation of food waste were investigated using nine behavioural scales, which were defined on the basis of similar studies in other countries. A structured questionnaire was utilised in order to test those behaviours against the socio-demographic characteristics of respondents. The results of the study indicate that in terms of inferential statistical analysis, among the numerous variables examined, those that enhance food waste prevention are the involvement of the respondent in cooking, the annoyance towards food waste generation and the education level. © The Author(s) 2016.

  6. Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery.

    NASA Astrophysics Data System (ADS)

    Guan, S.; Reuter, G. W.

    1996-08-01

    Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind conditions using an axisymmetric cloud model. The factor separation technique is applied to isolate the net contributions of waste heat, vapor, and CCN on the rainfall of a cumulus developing in the industrial plume. The mutual-interactive contributions of two or three of the factors are also computed.The simulations for midlatitude and tropical conditions indicate that the sensible heat provides the major stimulus for cloud development and rain formation. The pure contribution of the industrial CCN is to enhance the condensation, causing an increase in the mass of total cloud water. The simulation results indicate that mutual interactions between waste heat and industrial CCN are large for both cases considered.

  7. The study of the mobile compressor unit heat losses recovery system waste heat exchanger thermal insulation types influence on the operational efficiency

    NASA Astrophysics Data System (ADS)

    Yusha, V. L.; Chernov, G. I.; Kalashnikov, A. M.

    2017-08-01

    The paper examines the mobile compressor unit (MCU) heat losses recovery system waste heat exchanger prototype external thermal insulation types influence on the operational efficiency. The study is conducted by means of the numerical method through the modellingof the heat exchange processes carried out in the waste heat exchanger in ANSUS. Thermaflex, mineral wool, penofol, water and air were applied as the heat exchanger external insulation. The study results showed the waste heat exchanger external thermal insulationexistence or absence to have a significant impact on the heat exchanger operational efficiency.

  8. Groundwater Impact Assessment of Tailings Storage Facility, Western Turkey

    NASA Astrophysics Data System (ADS)

    Peksezer-Sayit, A.; Yazicigil, H.

    2015-12-01

    A tailings storage facility (TSF) is a fundamental part of the mining process and should be carefully designed and managed to prevent any adverse environmental effects. TSF is site-specific and its design criteria are determined by regulations. The new mine waste regulation for the deposition of hazardous waste in a tailings storage facility in Turkey enforces, from bottom to top, 0.5 m thick compacted clay layer with K less than or equal to 1X10-9 m/s , 2 mm thick HDPE geomembrane, and a protective natural material or geotextile. Although these criteria seem to be enough to prevent leakage from the base, in practice, manufacturing and application errors may cause leakage and subsequent contamination of groundwater. The purpose of this study is to assess potential impacts of leakage from the base of TSF on groundwater quality both in operational and post-closure period of a mine site in western Turkey. For this purpose, analytical and 2-D and 3-D numerical models are used together. The potential leakage rate of sulphate-bearing solution from the base of TSF is determined from analytical model. 2-D finite element models (SEEP/W and CTRAN/W) are used to simulate unsaturated flow conditions and advective-dispersive contaminant transport below the TSF under steady-state and transient conditions for the operating period. The long-term impacts of leakage from the base of TSF on groundwater resources are evaluated by 3-D numerical groundwater flow (MODFLOW) and contaminant transport models (MT3DMS). The model results suggest that sulphate-bearing solution leaking from the base of TSF can reach water table in about 290 years. Hence, during the operational period (i.e. 21 years), no interaction is expected between the solution and groundwater. Moreover, long-term simulation results show that about 500 years later, the sulphate concentration in groundwater will be below the maximum allowable limits (i.e. 250 mg/L).

  9. Computational modelling of a thermoforming process for thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.

    2007-05-01

    Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its finite element discretisation. This model depends on material parameters of the thermoplastic and details of tests undertaken to determine these and the results produced are given. Finally the computational model is applied for a thin sheet of commercially available thermoplastic starch material which is thermoformed into a specific mould. Numerical results of thickness and shape for this problem are given.

  10. Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers

    USGS Publications Warehouse

    Kwicklis, Edward M.; Wolfsberg, Andrew V.; Stauffer, Philip H.; Walvoord, Michelle Ann; Sully, Michael J.

    2006-01-01

    Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to characterize the uncertainty in moisture fluxes. ?? Soil Science Society of America.

  11. Pretest Predictions for Ventilation Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Sun; H. Yang; H.N. Kalia

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that canmore » be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only.« less

  12. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    PubMed

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize AMD, while controlling gas flow and oxygen supply. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparison of Weather Shows in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Najman, M.

    2009-09-01

    Comparison of Weather Shows in Eastern Europe Television weather shows in Eastern Europe have in most cases in the high graphical standard. There is though a wast difference in duration and information content in the weather shows. There are few signs and regularities by which we can see the character of the weather show. The main differences are mainly caused by the income structure of the TV station. Either it is a fully privately funded TV relying on the TV commercials income. Or it is a public service TV station funded mainly by the national budget or fixed fee structure/tax. There are wast differences in duration and even a graphical presentation of the weather. Next important aspect is a supplier of the weather information and /or the processor. Shortly we can say, that when the TV show is produced by the national met office, the TV show consists of more scientific terms, synoptic maps, satellite imagery, etc. If the supplier is the private meteorological company, the weather show is more user-friendly, laical with less scientific terms. We are experiencing a massive shift in public weather knowledge and demand for information. In the past, weather shows consisted only of maps with weather icons. In todaýs world, even the laic weather shows consist partly of numerical weather model outputs - they are of course designed to be understandable and graphically attractive. Outputs of the numerical weather models used to be only a part of daily life of a professional meteorologist, today they are common part of life of regular people. Video samples are a part of this presentation.

  14. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up tomore » 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.« less

  15. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  16. Economic analysis of gradual "social exhaustion" of waste management capacity.

    PubMed

    Koide, Hideo; Nakayama, Hirofumi

    2013-12-01

    This article proposes to analyze the quantitative effects of a gradual physical and "social" exhaustion of a landfill site on an equilibrium waste management service. A gradual social exhaustion of a landfill is defined here as an upward shift of a "subjective factor" associated with the amount of waste, based on the plausible hypothesis that an individual will not accept excessive presence of landfilled waste. Physical exhaustion occurs when the absolute capacity of a landfill site decreases. The paper shows some numerical examples using specific functions and parameters, and proposes appropriate directions for three policy objectives: to decrease the equilibrium waste disposal, to increase the economic surplus of the individual and/or the waste management firm, and to lower the equilibrium collection fee. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Surfactant-Enhanced Size-Excluded Transport of Bacteria Through Unsaturated Porous Media.

    NASA Astrophysics Data System (ADS)

    Zhu, J.

    2017-12-01

    US domestic waste water is rich in surfactants because of the intensive usage of surfactants-containing household product. It results in a surfactants presence environment when this untreated waste water released into subsurface. It was reported that surfactants enhance the colloidal transport in porous media, which have significant effect on issues such as subsurface pathogens contamination and biodegradation. In this study, soil column experiments were conducted. The soil column was remained unsaturated and with a steady flow passing through it. Escherichia coli K-12 transported in the soil column and its breakthrough data was collected in presence of surfactant anionic surfactant linear alkylbenzene sulfonate (LAS) concentration range over 0, 0.25, 0.5, 0.75, 1, and 2 times Critical Micelle Concentration (CMC). It was found that the increase in LAS concentration greatly increases breakthrough concentration C/C0 and decreases breakthrough time tb until LAS concentration reaches 1 xCMC. Numerical models were built simulating and investigating this phenomenon. The goodness of model fitting was greatly improved by adding exclusion factor into the model, which indicated that the presence of surfactant might enhance the exclusion effect. The relationships between LAS concentration and the two coefficients, deposition rate coefficient k and exclusion effect coefficient θim, were found can be fitted by a quasi-Langmuir equation. And the model validation with observed data showed that the model has an acceptable reliability.

  18. Numerical modelling of organic waste dispersion from fjord located fish farms

    NASA Astrophysics Data System (ADS)

    Ali, Alfatih; Thiem, Øyvind; Berntsen, Jarle

    2011-07-01

    In this study, a three-dimensional particle tracking model coupled to a terrain following ocean model is used to investigate the dispersion and the deposition of fish farm particulate matter (uneaten food and fish faeces) on the seabed due to tidal currents. The particle tracking model uses the computed local flow field for advection of the particles and random movement to simulate the turbulent diffusion. Each particle is given a settling velocity which may be drawn from a probability distribution according to settling velocity measurements of faecal and feed pellets. The results show that the maximum concentration of organic waste for fast sinking particles is found under the fish cage and continue monotonically decreasing away from the cage area. The maximum can split into two maximum peaks located at both sides of the centre of the fish cage area in the current direction. This process depends on the sinking time (time needed for a particle to settle at the bottom), the tidal velocity and the fish cage size. If the sinking time is close to a multiple of the tidal period, the maximum concentration point will be under the fish cage irrespective of the tide strength. This is due to the nature of the tidal current first propagating the particles away and then bringing them back when the tide reverses. Increasing the cage size increases the likelihood for a maximum waste accumulation beneath the fish farm, and larger farms usually means larger biomasses which can make the local pollution even more severe. The model is validated by using an analytical model which uses an exact harmonic representation of the tidal current, and the results show an excellent agreement. This study shows that the coupled ocean and particle model can be used in more realistic applications to help estimating the local environmental impact due to fish farms.

  19. Hydrogeochemistry and microbiology of mine drainage: An update

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Blowes, D.W; Ptacek, C.J.

    2015-01-01

    The extraction of mineral resources requires access through underground workings, or open pit operations, or through drillholes for solution mining. Additionally, mineral processing can generate large quantities of waste, including mill tailings, waste rock and refinery wastes, heap leach pads, and slag. Thus, through mining and mineral processing activities, large surface areas of sulfide minerals can be exposed to oxygen, water, and microbes, resulting in accelerated oxidation of sulfide and other minerals and the potential for the generation of low-quality drainage. The oxidation of sulfide minerals in mine wastes is accelerated by microbial catalysis of the oxidation of aqueous ferrous iron and sulfide. These reactions, particularly when combined with evaporation, can lead to extremely acidic drainage and very high concentrations of dissolved constituents. Although acid mine drainage is the most prevalent and damaging environmental concern associated with mining activities, generation of saline, basic and neutral drainage containing elevated concentrations of dissolved metals, non-metals, and metalloids has recently been recognized as a potential environmental concern. Acid neutralization reactions through the dissolution of carbonate, hydroxide, and silicate minerals and formation of secondary aluminum and ferric hydroxide phases can moderate the effects of acid generation and enhance the formation of secondary hydrated iron and aluminum minerals which may lessen the concentration of dissolved metals. Numerical models provide powerful tools for assessing impacts of these reactions on water quality.

  20. Characterization and recycling of cadmium from waste nickel-cadmium batteries.

    PubMed

    Huang, Kui; Li, Jia; Xu, Zhenming

    2010-11-01

    A severe threat was posed due to improper and inefficient recycling of waste batteries in China. The present work considered the fundamental aspects of the recycling of cadmium from waste nickel-cadmium batteries by means of vacuum metallurgy separation in scale-up. In the first stage of this work, the characterization of waste nickel-cadmium batteries was carried out. Five types of batteries from different brands and models were selected and their components were characterized in relation to their elemental chemical composition and main phase. In the second stage of this work, the parameters affecting the recycling of cadmium by means of vacuum metallurgy separation were investigated and a L(16) (4(4)) orthogonal design was applied to optimize the parameters. With the thermodynamics theory and numerical analysis, it can be seen that the orthogonal design is an effective tool for investigating the parameters affecting the recycling of cadmium. The optimum operating parameters for the recycling of cadmium obtained by orthogonal design and verification test were 1073 K (temperature), 2.5h (heating time), 2 wt.% (the addition of carbon powder), and 30 mm (the loaded height), respectively, with recycling efficiency approaching 99.98%. The XRD and ICP-AES analyzed results show that the condensed product was characterized as metallic cadmium, and cadmium purity was 99.99% under the optimum condition. Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  1. Modeling tritium transport through a deep unsaturated zone in an arid environment

    USGS Publications Warehouse

    Mayers, C.J.; Andraski, Brian J.; Cooper, C.A.; Wheatcraft, S.W.; Stonestrom, David A.; Michel, R.L.

    2005-01-01

    Understanding transport of tritium (3H) in unsaturated zones is critical to evaluating options for waste isolation. Tritium typically is a large component of low-level radioactive waste (LLRW). Studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in Nevada investigate 3H transport from a closed LLRW facility. Two boreholes are 100 and 160 m from the nearest waste trench and extend to the water table at 110 m. Soil-water vapor samples from the deep boreholes show elevated levels of 3H at all depths. The objectives of this study were to (i) test source thermal and gas-advection mechanisms driving 3H transport and (ii) evaluate model sensitivity to these mechanisms and to selected physical and hydraulic properties including porosity, tortuosity, and anisotropy. A two-dimensional numerical model incorporated a non-isothermal, heterogeneous domain of the unsaturated zone and instantaneous isotopic equilibrium. The TOUGH2 code was used; however, it required modification to account for temperature dependence of both the Henry's law equilibrium constant and isotopic fractionation with respect to tritiated water. Increases in source temperature, pressure, and porosity enhanced 3H migration, but failed to match measured 3H distributions. All anisotropic simulations with a source pressure component resembled, in shape, the upper portion of the 3H distribution of the nearest borehole. Isotopic equilibrium limited migration of 3H, while effects of radioactive decay were negligible. A 500 Pa pressure increase above ambient pressure in conjunction with a high degree of anisotropy (1:100) was necessary for simulated 3H transport to reach the nearest borehole.

  2. Utilizing waste activated sludge for animal feeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beszedits, S.

    1981-01-01

    Activated sludge has a high protein content and is a good source of B-group vitamins and generally also of minerals (Ca, Mg, Fe and K). Propionibacterium freudenreichii can be readily incorporated into the activated sludge to synthesize vitamin B12, particularly high vitamin yields being obtained with sewage mixed with dairy waste. Numerous examples of successful use of activated sludge in animal feeding are given.

  3. Preliminary Study of Radioactive Waste Package Made of High-Strength and Ultra Low-Permeability Concrete for Geological Disposal of TRU Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, T.; Kawasaki, T.; Sakamoto, H.

    2003-02-27

    We have been developing a radioactive waste package made of high-strength and ultra low-permeability concrete (HSULPC) for geological disposal of TRU wastes, which is expected to be much more impervious to water than conventional concrete. In this study, basic data for the HSULPC regarding its the impervious character and the thermodynamics during cement hydration were obtained through water permeability measurements using cold isostatic pressing (CIP) and adiabatic concrete hydration experiments, respectively. Then, a prediction tool to find concrete package construction conditions to avoid thermal cracking was developed, which could deal with coupled calculations of cement hydration, heat transfer, stress, andmore » cracking. The developed tool was applied to HSULPC hydration on a small-scale cylindrical model to examine whether there was any effect on cracking which depended on the ratio of concrete cylinder thickness to its inner diameter. The results were compared to experiments. For concrete with a compressive strength of 200MPa, the water permeability coefficient was 4 x 10{sup 19} m/s. Dependences of activation energy and frequency factor on degree of cement hydration had a sharp peaking due to the nucleation rate-determining step, and a gradual increase region due to the diffusion rate-determining step. From analyses of the small-scale cylindrical model, dependences of the maximum principal stress on the radius were obtained. When the ratio of the concrete thickness to the heater diameter was around 1, the risk of cracking was predicted to be minimized. These numerical predictions from the developed tool were verified by experiments.« less

  4. Linking slope stability and climate change: the Nordfjord region, western Norway, case study

    NASA Astrophysics Data System (ADS)

    Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.

    2009-12-01

    Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.

  5. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Daniel I.

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less

  6. Thermal-Hydraulic-Mechanical (THM) Coupled Simulation of a Generic Site for Disposal of High Level Nuclear Waste in Claystone in Germany: Exemplary Proof of the Integrity of the Geological Barrier

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Ziefle, G.; Jobmann, M.

    2016-12-01

    Claystone is investigated as a potential host rock for the disposal of high level nuclear waste (HLW). In Germany, DBE TECHNOLOGY GmbH, the BGR and the "Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)" are developing an integrated methodology for safety assessment within the R&D project "ANSICHT". One part herein is the demonstration of integrity of the geological barrier to ensure safe containment of radionuclides over 1 million years. The mechanical excavation of an underground repository, the ex­po­si­tion of claystone to at­mos­pheric air, the insertion of backfill, buffer, sealing and supporting material as well as the deposition of heat producing waste constitute a sig­nif­i­cant disturbance of the underground system. A complex interacting scheme of thermal, hydraulic and mechanical (THM) processes can be expected. In this work, the finite element software OpenGeoSys, main­ly de­vel­oped at the "Helmholtz Centre for Environmental Research GmbH (UFZ)", is used to simulate and evaluate several THM coupled effects in the repository surroundings up to the surface over a time span of 1 million years. The numerical setup is based on two generic geological models inspired by the representative geology of potentially suitable regions in North- and South Germany. The results give an insight into the evolution of temperature, pore pressure, stresses as well as deformation and enables statements concerning the extent of the significantly influenced area. One important effect among others is the temperature driven change in the densities of the solid and liquid phase and its influence on the stress field. In a further step, integrity criteria have been quantified, based on specifications of the German federal ministry of the environment. The exemplary numerical evaluation of these criteria demonstrates, how numerical simulations can be used to prove the integrity of the geological barrier and detect potential vulnerabilities. Fig.: Calculated zone of increased temperature (blue bubble) around a generic repository of HLW in a representative geological setting, 1000 years after emplacement of HLW

  7. Improvement of electrical resistivity tomography for leachate injection monitoring.

    PubMed

    Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P

    2010-03-01

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Improvement of electrical resistivity tomography for leachate injection monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, R., E-mail: remi.clement@hmg.inpg.f; Descloitres, M.; Guenther, T., E-mail: Thomas.Guenther@liag-hannover.d

    2010-03-15

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significantmore » increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.« less

  9. A model to minimize joint total costs for industrial waste producers and waste management companies.

    PubMed

    Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto

    2004-12-01

    The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.

  10. Waste reduction plan for The Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, R.M.

    1990-04-01

    The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associatedmore » with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.« less

  11. An analysis of household waste management policy using system dynamics modelling.

    PubMed

    Inghels, Dirk; Dullaert, Wout

    2011-04-01

    This paper analyses the Flemish household waste management policy. Based on historical data from the period 1991-2006, literature reviews and interviews, both mathematical and descriptive relationships are derived that describe Flemish waste collection, reuse, recycling and disposal behaviour. This provides insights into how gross domestic product (GDP), population and selective collection behaviour have influenced household waste production and collection over time. These relationships are used to model the dynamic relationships underlying household waste management in Flanders by using a system dynamics (SD) modelling approach. Where most SD models in literature are conceptual and descriptive, in the present study a real-life case with both correlational and descriptive relationships was modelled for Flanders, a European region with an outstanding waste management track record. This model was used to evaluate the current Flemish household waste management policy based on the principles of the waste hierarchy, also referred as the Lansink ranking. The results show that Flemish household waste targets up to 2015 can be achieved by the current waste policy measures. It also shows the sensitivity of some key policy parameters such as prevention and reuse. Given the general nature of the model and its limited data requirements, the authors believe that the approach implemented in this model can also assist waste policy makers in other regions or countries to meet their policy targets by simulating the effect of their current and potential household waste policy measures.

  12. Developing models for the prediction of hospital healthcare waste generation rate.

    PubMed

    Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe

    2016-01-01

    An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals. © The Author(s) 2015.

  13. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebersorger, S.; Beigl, P., E-mail: peter.beigl@boku.ac.at

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions aremore » met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).« less

  14. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    PubMed

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. On the importance of coupled THM processes to predict the long-term response of a generic salt repository for high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.

    2013-12-01

    Salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its ability to creep and heal fractures generated by excavation and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste (such as spent fuel) and we consider a generic salt repository with in-drift emplacement of waste packages and subsequent backfill of the drifts with run-of-mine crushed salt. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created. In order to evaluate the integrity of the natural and engineered barriers over the long-term, it is important to consider the coupled effects of the thermal, hydraulic and mechanical processes that take place. In particular, the results obtained so far show how the porosity reduction of the crushed salt affects the saturation and pore pressure evolution throughout the repository, both in time and space. Such compaction is induced by the stress and temperature regime within the natural salt. Also, transport properties of the host rock are modified not only by thermo-mechanically and hydraulically-induced damaged processes, but also by healing/sealing of existing fractures. In addition, the THM properties of the backfill evolve towards those of the natural salt during the compaction process. All these changes are based on dedicated laboratory experiments and on theoretical considerations [1-3]. Different scenarios are modeled and compared to evaluate the relevance of different processes from the perspective of effective nuclear waste repositories. The sensitivity of the results to some parameters, such as capillarity, is also addressed. The simulations are conducted using an updated version of the TOUGH2-FLAC3D simulator, which is based on a sequential explicit method to couple flow and geomechanics [4]. A new capability for large strains and creep has been introduced and validated. The time-dependent geomechanical response of salt is determined using the Lux/Wolters constitutive model, developed at Clausthal University of Technology (Germany). References: [1] R. Wolters, and K.-H. Lux. Evaluation of Rock Salt Barriers with Respect to Tightness: Influence of Thermomechanical Damage, Fluid Infiltration and Sealing/Healing. Proceedings of the 7th International Conference on the Mechanical Behavior of Salt (SaltMech7). Paris: Balkema, Rotterdam (2012). [2] W. Bechthold et al., Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS Project), European Atomic Energy Community, Report EUR19124 EN (1999). [3] J. Kim, E.L Sonnenthal and J. Rutqvist, 'Formulation and sequential numerical algorithms of coupled fluid/heat flow and geomechanics for multiple porosity materials', Int. J. Numer. Meth. Engng., 92, 425 (2012). [4] J. Rutqvist. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Computational Geosciences, 37, 739-750 (2011).

  16. Mountain-Scale Coupled Processes (TH/THC/THM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides themore » necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The Mountain-Scale THM Model focuses on evaluating the changes in 3-D UZ flow fields arising out of thermal stress and rock deformation during and after the thermal periods.« less

  17. Bond Graph Modeling and Validation of an Energy Regenerative System for Emulsion Pump Tests

    PubMed Central

    Li, Yilei; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS) for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests. PMID:24967428

  18. The Effects of Popping Popcorn Under Reduced Pressure

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Cooper, Amanda

    2008-03-01

    In our experiments, we model the popping of popcorn as an adiabatic process and develop a process for improving the efficiency of popcorn production. By lowering the pressure of the popcorn during the popping process, we induce an increase in popcorn size, while decreasing the number of remaining unpopped kernels. In this project we run numerous experiments using three of the most common popping devices, a movie popcorn maker, a stove pot, and a microwave. We specifically examine the effects of varying the pressure on total sample size, flake size and waste. An empirical relationship is found between these variables and the pressure.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Amy B.; Boukhalfa, Hakim; Caporuscio, Florie Andre

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  20. IN-PACKAGE CHEMISTRY ABSTRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less

  1. Latvian Waste Management Modelling in View of Environmental Impact Reduction / Latvijas Atkritumu SAIMNIECĪBAS ATTĪSTĪBA un TĀS RADĪTĀS Ietekmes UZ Vidi SAMAZINĀŠANAS MODELĒŠANA

    NASA Astrophysics Data System (ADS)

    Teibe, I.; Bendere, R.; Arina, D.

    2013-12-01

    In the work, the life-cycle assessment approach is applied to the planning of waste management development in a seaside region (Piejūra) using the Waste Management Planning System (WAMPS) program. In Latvia, the measures to be taken for the climate change mitigation are of utmost importance - especially as related to the WM performance, since a disposal of biodegradable waste presents the primary source of GHG emissions. To reduce the amount of such waste is therefore one of the most significant goals in the State WM plan for 2013-2020, whose adoption is the greatest challenge for municipalities. The authors analyse seven models which involve widely employed biomass processing methods, are based on experimental data and intended for minimising the direct disposal of organic mass at the solid waste landfills. The numerical results obtained evidence that the thermal or biotechnological treatment of organic waste substantially reduces the negative environmental impact of WM practices - by up to 6% as compared with the currently existing. Klimata pārmaiņu samazināšanas pasākumi Latvijā atkritumu saimniecības sektorā ir īpaši svarīgi. jo bioloģiski sadalāmo atkritumu apglabāšana ir viens no būtiskākajiem SEG emisiju avotiem valstī. Pētījumā modelēti virkne sadzīves atkritumu apsaimniekošanas modeļi. kas ietver plašāk izmantotās biomasas pārstrādes metodes un samazina tiešu organiskās masas apglabāšanu cieto sadzīves atkritumu poligonos. Atkritumu apsaimniekošanas modeļu radītās vides ietekmes novērtēšanai izmantota WAMPS (Waste Management Planning System) programma, kas balstīta uz atkritumu apsaimniekošanas procesu dzīves cikla novērtējumu vienā no desmit Latvijas atkritumu apsaimniekošanas reģioniem - Piejūra. Iegūtie kvantitatīvie rezultāti norāda. ka organiskās atkritumu masas pārstrāde un stabilizēšana, izmantojot biotehnoloģijas vai termisko pārstrādi, būtiski samazina atkritumu apsaimniekošanas radīto negatīvo vides ietekmi. līdz pat 6% attiecībā pret esošās atkritumu saimniecības vides ietekmi.

  2. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Combustion modeling and performance evaluation in a full-scale rotary kiln incinerator.

    PubMed

    Chen, K S; Hsu, W T; Lin, Y C; Ho, Y T; Wu, C H

    2001-06-01

    This work summarizes the results of numerical investigations and in situ measurements for turbulent combustion in a full-scale rotary kiln incinerator (RKI). The three-dimensional (3D) governing equations for mass, momentum, energy, and species, together with the kappa - epsilon turbulence model, are formulated and solved using a finite volume method. Volatile gases from solid waste were simulated by gaseous CH4 distributed nonuniformly along the kiln bed. The combustion process was considered to be a two-step stoichiometric reaction for primary air mixed with CH4 gas in the combustion chamber. The mixing-controlled eddy-dissipation model (EDM) was employed to predict the conversion rates of CH4, O2, CO2, and CO. The results of the prediction show that reverse flows occur near the entrance of the first combustion chamber (FCC) and the turning point at the entrance to the second combustion chamber (SCC). Temperature and species are nonuniform and are vertically stratified. Meanwhile, additional mixing in the SCC enhances postflame oxidation. A combustion efficiency of up to 99.96% can be achieved at approximately 150% excess air and 20-30% secondary air. Reasonable agreement is achieved between numerical predictions and in situ measurements.

  4. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling.

    PubMed

    Liu, Yili; Sun, Weixin; Du, Bing; Liu, Jianguo

    2018-02-12

    Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L -1 ) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10 -8 to 10 -9 m s -1 after 1-2 years of operation and perching significant leachate above it (0.6-0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China.

  5. Advances in the hydrogeochemistry and microbiology of acid mine waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2000-01-01

    The last decade has witnessed a plethora of research related to the hydrogeochemistry and microbiology of acid mine waters and associated tailings and waste-rock waters. Numerous books, reviews, technical papers, and proceedings have been published that examine the complex bio-geochemical process of sulfide mineral oxidation, develop and apply geochemical models to site characterization, and characterize the microbial ecology of these environments. This review summarizes many of these recent works, and provides references for those investigating this field. Comparisons of measured versus calculated Eh and measured versus calculated pH for water samples from several field sites demonstrate the reliability of some current geochemical models for aqueous speciation and mass balances. Geochemical models are not, however, used to predict accurately time-dependent processes but to improve our understanding of these systems and to constrain possible processes that contribute to actual or potential water quality issues. Microbiological studies are demonstrating that there is much we have yet to learn about the types of different microorganisms and their function and ecology in mine-waste environments. A broad diversity of green algae, bacteria, archaea, yeasts, and fungi are encountered in acid mine waters, and a better understanding of their ecology and function may potentially enhance remediation possibilities as well as our understanding of the evolution of life.

  6. Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository.

    PubMed

    Yang, Changbing; Samper, Javier; Molinero, Jorge; Bonilla, Mercedes

    2007-08-15

    Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Aspö underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.

  7. Three-dimensional modelling of leachate recirculation using vertical wells in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Chen, Zheng-Wei; Cao, Ben-Yi

    2016-12-01

    Bioreactor landfills use leachate recirculation to enhance the biodegradation of municipal solid waste and accelerate landfill stabilisation, which can provide significant environmental and economic benefits. Vertical wells are operated as a major method for leachate recirculation systems. The objectives of this article are to analyse the leachate migration in bioreactor landfills using vertical wells and to offer theoretical basis for the design of leachate recirculation systems. A three-dimensional numerical model was built using FLAC-3D, and this model can consider the saturated and unsaturated flow of leachate within anisotropic waste to reflect the actual conditions. First, main influence factors of leachate migration were analysed, including the vertical well height, hydraulic conductivity, and anisotropic coefficient, in a single-well recirculation system. Then, the effects of different configurations of a group-well system were studied and the optimal well spacing was obtained. Some key design parameters (e.g. the recirculation flow rate, volume of impact zone, radius of impact zone and time to reach steady state) were also evaluated. The results show that the hydraulic conductivity has a great impact on the optimal height of vertical wells and uniform configuration is the best option in terms of both volume of impact zone and time to reach steady state. © The Author(s) 2016.

  8. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Lean waste classification model to support the sustainable operational practice

    NASA Astrophysics Data System (ADS)

    Sutrisno, A.; Vanany, I.; Gunawan, I.; Asjad, M.

    2018-04-01

    Driven by growing pressure for a more sustainable operational practice, improvement on the classification of non-value added (waste) is one of the prerequisites to realize sustainability of a firm. While the use of the 7 (seven) types of the Ohno model now becoming a versatile tool to reveal the lean waste occurrence. In many recent investigations, the use of the Seven Waste model of Ohno is insufficient to cope with the types of waste occurred in industrial practices at various application levels. Intended to a narrowing down this limitation, this paper presented an improved waste classification model based on survey to recent studies discussing on waste at various operational stages. Implications on the waste classification model to the body of knowledge and industrial practices are provided.

  10. Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, W. M.

    2009-12-01

    For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository at Yucca Mountain, Nevada, USA. These results generally bracket repository conditions between natural and experimental systems providing confidence in the understanding of expected processes. Also, the conceptual bases and numerical techniques for modeling unsaturated zone contaminant transport over periods of thousands of years at Yucca Mountain were tested by modeling the observable record of metal transport from archaeological artifacts buried in Holocene tuff at Akrotiri, Greece. Geologically episodic mineral alteration and contaminant transport have been documented using radioisotope data in numerous analog systems providing insights for the interpretation and validity of predictive models for long term repository performance. The applicability and value of natural analog studies to understanding geologic disposal systems is a persistent question. As proposed disposal sites become increasingly well defined by site characterization and engineering design, the strengths and weaknesses of analogies can be assessed. Confidence in predictive models for complex geologic and engineered phenomena can be enhanced through multiple lines of investigation including studies of natural analog systems.

  11. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    PubMed

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  12. Moving from recycling to waste prevention: A review of barriers and enables.

    PubMed

    Bartl, Andreas

    2014-09-01

    Current European waste policy does not mainly aim to treat waste streams but rather place in the foreground of interest the complete supply chain of a product. Waste prevention and re-use do have the highest priority and they take effect before the end-of-life phase of a product or a material is reached. Recycling only takes the third place whereas recovery and disposal represent the least favourable options. Recycling can help to decrease the consumption of primary resources but it does not tackle the causes but only the symptoms. In principle, recycling processes require energy and will generate side streams (i.e. waste). Furthermore, there are insuperable barriers and the practice is far from 100% recycling. The philosophy of waste prevention and re-use is completely different since they really tackle the causes. It is self-evident that a decrease of waste will also decrease the consumption of resources, energy and money to process the waste. However, even if European legislation is proceeding in the right direction, a clear decrease in waste generation did not occur up to now. Unfortunately, waste generation represents a positive factor of economic growth. Basically, waste generation is a huge business and numerous stakeholders are not interested to reduce waste. More sophisticated incentives are required to decouple economic growth from waste generation. © The Author(s) 2014.

  13. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  14. Advanced CFD modelling of air and recycled flue gas staging in a waste wood-fired grate boiler for higher combustion efficiency and greater environmental benefits.

    PubMed

    Rajh, Boštjan; Yin, Chungen; Samec, Niko; Hriberšek, Matjaž; Kokalj, Filip; Zadravec, Matej

    2018-07-15

    Grate-fired boilers are commonly used to burn biomass/wastes for heat and power production. In spite of the recent breakthrough in integration of advanced secondary air systems in grate boilers, grate-firing technology needs to be advanced for higher efficiency and lower emissions. In this paper, innovative staging of combustion air and recycled flue gas in a 13 MW th waste wood-fired grate boiler is comprehensively studied based on a numerical model that has been previously validated. In particular, the effects of the jet momentum, position and orientation of the combustion air and recycled flue gas streams on in-furnace mixing, combustion and pollutant emissions from the boiler are examined. It is found that the optimized air and recycled flue gas jets remarkably enhance mixing and heat transfer, result in a more uniform temperature and velocity distribution, extend the residence time of the combustibles in the hot zone and improve burnout in the boiler. Optimizing the air and recycled flue gas jet configuration can reduce carbon monoxide emission from the boiler by up to 86%, from the current 41.0 ppm to 5.7 ppm. The findings of this study can serve as useful guidelines for novel design and optimization of the combustion air supply and flue gas recycling for grate boilers of this type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Stochastic approach for radionuclides quantification

    NASA Astrophysics Data System (ADS)

    Clement, A.; Saurel, N.; Perrin, G.

    2018-01-01

    Gamma spectrometry is a passive non-destructive assay used to quantify radionuclides present in more or less complex objects. Basic methods using empirical calibration with a standard in order to quantify the activity of nuclear materials by determining the calibration coefficient are useless on non-reproducible, complex and single nuclear objects such as waste packages. Package specifications as composition or geometry change from one package to another and involve a high variability of objects. Current quantification process uses numerical modelling of the measured scene with few available data such as geometry or composition. These data are density, material, screen, geometric shape, matrix composition, matrix and source distribution. Some of them are strongly dependent on package data knowledge and operator backgrounds. The French Commissariat à l'Energie Atomique (CEA) is developing a new methodology to quantify nuclear materials in waste packages and waste drums without operator adjustment and internal package configuration knowledge. This method suggests combining a global stochastic approach which uses, among others, surrogate models available to simulate the gamma attenuation behaviour, a Bayesian approach which considers conditional probability densities of problem inputs, and Markov Chains Monte Carlo algorithms (MCMC) which solve inverse problems, with gamma ray emission radionuclide spectrum, and outside dimensions of interest objects. The methodology is testing to quantify actinide activity in different kind of matrix, composition, and configuration of sources standard in terms of actinide masses, locations and distributions. Activity uncertainties are taken into account by this adjustment methodology.

  16. Numerical characterization under uncertainties of a piston expander for exhaust heat recovery on heavy commercial vehicles

    NASA Astrophysics Data System (ADS)

    Congedo, P. M.; Melis, J.; Daccord, R.

    2017-03-01

    While nearly 30 percent of the fuel energy is lost as waste heat in the form of hot exhaust gases, exhaust heat recovery promises one of the biggest fuel economy potential regarding the technologies available in the next decade. Applied to heavy commercial vehicles (HCVs), buses or off road vehicles, a bottoming Rankine Cycle (RC) on exhaust heat shows a great potential in recovering the exhaust gases energy, even for part loads. The objective of this paper is to illustrates the interest in assessing the uncertainty of this kind of systems for getting a robust prediction of the associated numerical model. In particular, the focus here is on the simulation of a piston expander for exhaust heat recovery. Uncertainties associated to the experimental measurements are propagated through the numerical code by means of uncertainty quantification techniques. Several sources of uncertainties are taken into account at the same time, thus yielding various indications concerning the most predominant parameters, and their influence on several quantities of interest, such as the mechanical power, the mass flow and the exhaust temperature.

  17. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, R; Becker, R; Rhee, M

    2004-09-24

    Lawrence Livermore National Laboratory participated in a U. S. Department of Energy/Office of Industrial Technology sponsored research project 'Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery', as a Cooperative Agreement TC-02028 with the Alcoa Technical Center (ATC). The objective of the joint project with Alcoa is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. Product lost in the rolling process and subsequent recycling, wastes resources consumed in the energy-intensive steps of remelting and reprocessing the ingot. The modeling capability developed by project partners willmore » be used to produce plate more efficiently and with reduced product loss.« less

  18. Development and validation of a building design waste reduction model.

    PubMed

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Numerical Approach to Wood Pyrolysis in Considerating Heat Transfer in Reactor Chamber

    NASA Astrophysics Data System (ADS)

    Idris, M.; Novalia, U.

    2017-03-01

    Pyrolysis is the decomposition process of solid biomass into gas, tar and charcoal through thermochemical methods. The composition of biomass consists of cellulose hemi cellulose and lignin, which each will decompose at different temperatures. Currently pyrolysis has again become an important topic to be discussed. Many researchers make and install the pyrolysis reactor to convert biomass waste into clean energy hardware that can be used to help supply energy that has a crisis. Additionally the clean energy derived from biomass waste is a renewable energy, in addition to abundant source also reduce exhaust emissions of fossil energy that causes global warming. Pyrolysis is a method that has long been known by humans, but until now little is known about the phenomenon of the pyrolysis process that occurs in the reactor. One of the Pyrolysis’s phenomena is the heat transfer process from the temperature of the heat source in the reactor and heat the solid waste of biomass. The solid waste of biomass question in this research is rubber wood obtained from one of the company’s home furnishings. Therefore, this study aimed to describe the process of heat transfer in the reactor during the process. ANSYS software was prepared to make the simulation of heat transfer phenomena at the pyrolysis reactor. That’s the numerical calculation carried out for 1200 seconds. Comparison of temperature performed at T1, T2 and T3 to ensure that thermal conductivity is calculated by numerical accordance with experimental data. The distribution of temperature in the reactor chamber specifies the picture that excellent heat conduction effect of the wood near or attached to wooden components, cellulose, hemicellulose and lignin down into gas.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.; Cole, C.R.; Arnett, R.C.

    The Hanford Pathline Calculational Program (HPCP) is a numerical model developed to predict the movement of fluid particles from one location to another within the Hanford or similar groundwater systems. As such it can be considered a simple transport model wherein only advective changes are considered. Application of the numerical HPCP to test cases for which semianalytical results are obtainable showed that with reasonable time steps and the grid spacing requirements HPCP give good agreement with the semianalytical solution. The accuracy of the HPCP results is most sensitive in areas near steep or rapidly changing potential gradients and may requiremore » finer grid spacing in those areas than for the groundwater system as a whole. Initial applications of HPCP to the Hanford groundwater flow regime show that significant differences (improvements) in the predictions of fluid particle movement are obtainable with the pathline approach (changing groundwater potential or water table surface) as opposed to the streamline approach (unchanging potential or water table surface) used in past Hanford groundwater analyses. This report documents capability developed for estimating groundwater travel times from the Hanford high-level waste areas to the Columbia River at different water table levels.« less

  1. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  2. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC ormore » state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.« less

  3. Hidden flows and waste processing--an analysis of illustrative futures.

    PubMed

    Schiller, F; Raffield, T; Angus, A; Herben, M; Young, P J; Longhurst, P J; Pollard, S J T

    2010-12-14

    An existing materials flow model is adapted (using Excel and AMBER model platforms) to account for waste and hidden material flows within a domestic environment. Supported by national waste data, the implications of legislative change, domestic resource depletion and waste technology advances are explored. The revised methodology offers additional functionality for economic parameters that influence waste generation and disposal. We explore this accounting system under hypothetical future waste and resource management scenarios, illustrating the utility of the model. A sensitivity analysis confirms that imports, domestic extraction and their associated hidden flows impact mostly on waste generation. The model offers enhanced utility for policy and decision makers with regard to economic mass balance and strategic waste flows, and may promote further discussion about waste technology choice in the context of reducing carbon budgets.

  4. NEAMS update quarterly report for January - March 2012.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, K.S.; Hayes, S.; Pointer, D.

    Quarterly highlights are: (1) The integration of Denovo and AMP was demonstrated in an AMP simulation of the thermo-mechanics of a complete fuel assembly; (2) Bison was enhanced with a mechanistic fuel cracking model; (3) Mechanistic algorithms were incorporated into various lower-length-scale models to represent fission gases and dislocations in UO2 fuels; (4) Marmot was improved to allow faster testing of mesoscale models using larger problem domains; (5) Component models of reactor piping were developed for use in Relap-7; (6) The mesh generator of Proteus was updated to accept a mesh specification from Moose and equations were formulated for themore » intermediate-fidelity Proteus-2D1D module; (7) A new pressure solver was implemented in Nek5000 and demonstrated to work 2.5 times faster than the previous solver; (8) Work continued on volume-holdup models for two fuel reprocessing operations: voloxidation and dissolution; (9) Progress was made on a pyroprocessing model and the characterization of pyroprocessing emission signatures; (10) A new 1D groundwater waste transport code was delivered to the used fuel disposition (UFD) campaign; (11) Efforts on waste form modeling included empirical simulation of sodium-borosilicate glass compositions; (12) The Waste team developed three prototypes for modeling hydride reorientation in fuel cladding during very long-term fuel storage; (13) A benchmark demonstration problem (fission gas bubble growth) was modeled to evaluate the capabilities of different meso-scale numerical methods; (14) Work continued on a hierarchical up-scaling framework to model structural materials by directly coupling dislocation dynamics and crystal plasticity; (15) New 'importance sampling' methods were developed and demonstrated to reduce the computational cost of rare-event inference; (16) The survey and evaluation of existing data and knowledge bases was updated for NE-KAMS; (17) The NEAMS Early User Program was launched; (18) The Nuclear Regulatory Commission (NRC) Office of Regulatory Research was introduced to the NEAMS program; (19) The NEAMS overall software quality assurance plan (SQAP) was revised to version 1.5; and (20) Work continued on NiCE and its plug-ins and other utilities, such as Cubit and VisIt.« less

  5. Fires in Operating or Abandoned Coal Mines or Heaps of Reactive Materials and the Governing Transport and Reaction Processes

    NASA Astrophysics Data System (ADS)

    Wuttke, M. W.; Kessels, W.; Wessling, S.; Han, J.

    2007-05-01

    Spontaneous combustion is a world wide problem for technical operations in mining, waste disposal and power plant facilities. The principle driving the combustion is every where the same independent of the different reactive materials: Fresh air with the common oxygen content is getting in contact with the reactive material by human operations. The following reaction process produces heat at a usually low but constant rate. The reactive material in operating or abandoned coal mines, heaps of coal, waste or reactive minerals is most times strongly broken or fractured, such that the atmospheric oxygen can deeply penetrate into the porous or fractured media. Because the strongly broken or fractured medium with air filled pores and fractures is often combined with a low thermal conductivity of the bulk material the produced heat accumulates and the temperature increases with time. If the reactivity strongly increases with temperature, the temperature rise accelerates up to the "combustion temperature". Once the temperature is high enough the combustion process is determined by the oxygen transport to the combustion center rather than the chemical reactivity. Spontaneous combustion is thus a self- amplifying process where an initial small variation in the parameters and the starting conditions can create exploding combustion hot spots in an apparently homogenous material. The phenomenon will be discussed by various examples in the context of the German - Sino coal fire project. A temperature monitoring in hot fracture systems documents the strong influence of the weather conditions on the combustion process. Numerical calculations show the sensitivity of the combustion to the model geometries, the boundary conditions and mainly the permeability. The most used fire fighting operations like covering and water injection are discussed. A new method of using saltwater for fire fighting is presented and discussed. References: Kessels, W., Wessling, S., Li, X., and Wuttke, M. W. Numerical element distinction for reactive transport modeling regarding reaction rate. In Proceedings of MODFLOW and MORE 2006: Managing Groundwater Systems, May 21 - 24, 2006, Golden, CO USA (2006). Kessels, W., Wuttke, M. W., Wessling, S., and Li, X. Coal fires between self ignition and fire fighting: Numerical modeling and basic geophysical measurements. In ERSEC Ecological Book Series - 4 on Coal Fire Research (2007). Wessling, S., Litschke, T., Wiegand, J., Schlömer, S., and Kessels, W. Simulating dynamic subsurface coal fires and its applications. In ERSEC Ecological Book Series - 4 on Coal Fire Reserach (2007). Wessling, S., Kessels, W., Schmidt, M., and Krause, U. Investigating dynamic underground coal fires by means of numerical simulation. Geophys. J. Int. (submitted).

  6. Inventory decision in a closed-loop supply chain with inspection, sorting, and waste disposal

    NASA Astrophysics Data System (ADS)

    Dwicahyani, A. R.; Jauhari, W. A.; Kurdhi, N. A.

    2016-02-01

    The study of returned item inventory management in a closed-loop supply chain system has become an important issue in recent years. So far, investigations about inventory decision making in a closed-loop supply chain system have been confined to traditional forward and reverse oriented material flow supply chain. In this study, we propose an integrated inventory model consisting a supplier, a manufacturer, and a retailer where the manufacturer inspects all of the returned items collected from the customers and classifies them as recoverable or waste. Returned items that recovered through the remanufacturing process and the newly manufactured products are then used to meet the demand of the retailer. However, some recovered items which are not comparable to the ones in quality, classified as refurbished items, are sold to a secondary market at a reduced price. This study also suggests that the flow of returned items is controlled by a decision variable, namely an acceptance quality level of recoverable item in the system. We apply multiple remanufacturing cycle and multiple production cycle policy to the proposed model and give the corresponding iterative procedure to determine the optimal solutions. Further, numerical examples are presented for illustrative purpose.

  7. E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries.

    PubMed

    Resmi, N G; Fasila, K A

    2017-10-01

    This paper proposes a novel algorithm for establishing a standard methodology to manage and refurbish e-waste called E-waste Management And Refurbishment Prediction (EMARP), which can be adapted by refurbishing industries in order to improve their performance. Waste management, particularly, e-waste management is a serious issue nowadays. Computerization has been into waste management in different ways. Much of the computerization has happened in planning the waste collection, recycling and disposal process and also managing documents and reports related to waste management. This paper proposes a computerized model to make predictions for e-waste refurbishment. All possibilities for reusing the common components among the collected e-waste samples are predicted, thus minimizing the wastage. Simulation of the model has been done to analyse the accuracy in the predictions made by the system. The model can be scaled to accommodate the real-world scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Research of Radionuclides Migrating in Porous Media Allowing for the "Solution-Rock" Interaction

    NASA Astrophysics Data System (ADS)

    Drozhko, E.; Aleksakhin, A. I.; Samsanova, L.; Kotchergina, N.; Zinin, A.

    2001-12-01

    Industrial solutions from the surface storage of liquid radioactive waste in Lake Karachay, near the Mayak Production Association in Russia, enter groundwaters through the reservoir loamy bed and have formed a contaminated groundwater plume. In order to predict radionuclide migration with the groundwater flow in porous unconsolidated rocks and to assess the protective mechanism of the natural environment, it is necessary to allow for the "solution-rock" physical and chemical interaction described by the distribution factor (Kd). In order to study radionuclide distribution in porous media, a numerical model was developed which models stontium-90 migration in a uniform unit of loams typical for the Karachay Lake bed. For the migration to be calculated, the results of the in situ and laboratory reasearch on strontium-90 sorption and desorption were used in the code, as well as strontium-90 dependance on sodium nitrate concentration in the solution. The code uses various models of the "solution-rock" interaction, taking into account both sorption/desorption and diffusion processes. Numerical research of strontium-90 migration resulted in data on strontium-90 distribution in solid and liquid phases of the porous loam unit over different time periods. Various models of the "solution-rock" interaction affecting strontium-90 migration are demonstrated.

  9. Design Study Conducted of a Stirred and Perfused Specimen Chamber for Culturing Suspended Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Kizito, John P.

    2003-01-01

    A tightly knit numerical/experimental collaboration among the NASA Ames Research Center, NASA Glenn Research Center, and Payload Systems, Inc., was formed to analyze cell culturing systems for the International Space Station. The Cell Culture Unit is a facility scheduled for deployment on the space station by the Cell Culture Unit team at Ames. The facility houses multiple cell specimen chambers (CSCs), all of which have inlets and outlets to allow for replenishment of nutrients and for waste removal. For improved uniformity of nutrient and waste concentrations, each chamber has a pair of counterrotating stir bars as well. Although the CSC can be used to grow a wide variety of organic cells, the current study uses yeast as a model cell. Previous work identified groundbased protocols for perfusion and stirring to achieve yeast growth within the CSC that is comparable to that for yeast cultures grown in a shaken Ehrlenmeyer flask.

  10. Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate.

    PubMed

    Alzate, Andrea; López, Maria Esperanza; Serna, Claudia

    2016-11-01

    This paper presents a novel methodology to recover gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate ((NH 4 ) 2 S 2 O 8 ). Gold was recovered as a fine coating using substrate oxidation without shredding or grinding process. The WEEE sample was characterized giving values of Au: 1.05g/kg, Fe: 86.00g/kg, Ni: 73.64g/kg, Cu: 26.65g/kg. The effect of (NH 4 ) 2 S 2 O 8 concentration (0.22-1.10M), oxygen (0.0-1.4L/min) and L/S ratio (10-30mL/g) on the main responses (substrate oxidation and Au recovery) was investigated implementing response surface methodology with numerical optimization. A quadratic model was developed and quantities greater than 98% of Au were recovered. The findings presented suggest that, optimized quantities of ammonium persulfate in aqueous highly oxygenated media could be used to extract superficial gold from WEEE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evaluation of modeling as a tool to determine the potential impacts related to drilling wastes in the Brazilian offshore.

    PubMed

    Pivel, María Alejandra Gómez; Dal Sasso Freitas, Carla Maria

    2010-08-01

    Numerical models that predict the fate of drilling discharges at sea constitute a valuable tool for both the oil industry and regulatory agencies. In order to provide reliable estimates, models must be validated through the comparison of predictions with field or laboratory observations. In this paper, we used the Offshore Operators Committee Model to simulate the discharges from two wells drilled at Campos Basin, offshore SE Brazil, and compared the results with field observations obtained 3 months after drilling. The comparison showed that the model provided reasonable predictions, considering that data about currents were reconstructed and theoretical data were used to characterize the classes of solids. The model proved to be a valuable tool to determine the degree of potential impact associated to drilling activities. However, since the accuracy of the model is directly dependent on the quality of input data, different possible scenarios should be considered when used for forecast modeling.

  12. Systematic Evaluation of Industrial, Commercial, and Institutional Food Waste Management Strategies in the United States.

    PubMed

    Hodge, Keith L; Levis, James W; DeCarolis, Joseph F; Barlaz, Morton A

    2016-08-16

    New regulations and targets limiting the disposal of food waste have been recently enacted in numerous jurisdictions. This analysis evaluated selected environmental implications of food waste management policies using life-cycle assessment. Scenarios were developed to evaluate management alternatives applicable to the waste discarded at facilities where food waste is a large component of the waste (e.g., restaurants, grocery stores, and food processors). Options considered include anaerobic digestion (AD), aerobic composting, waste-to-energy combustion (WTE), and landfilling, and multiple performance levels were considered for each option. The global warming impact ranged from approximately -350 to -45 kg CO2e Mg(-1) of waste for scenarios using AD, -190 to 62 kg CO2e Mg(-1) for those using composting, -350 to -28 kg CO2e Mg(-1) when all waste was managed by WTE, and -260 to 260 kg CO2e Mg(-1) when all waste was landfilled. Landfill diversion was found to reduce emissions, and diverting food waste from WTE generally increased emissions. The analysis further found that when a 20 year GWP was used instead of a 100 year GWP, every scenario including WTE was preferable to every scenario including landfill. Jurisdictions seeking to enact food waste disposal regulations should consider regional factors and material properties before duplicating existing statutes.

  13. Photochemical oxidation: A solution for the mixed waste dilemma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A.

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposedmore » of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.« less

  14. Assessment of application of selected waste for production of biogas

    NASA Astrophysics Data System (ADS)

    Pawlita-Posmyk, Monika; Wzorek, Małgorzata

    2017-10-01

    Recently, the idea of biogas production has become a popular topic in Poland. Biogas is a valuable source of renewable energy with a potential application in electricity and heat production. Numerous types of technological solutions of biogas production are closely linked to the availability of substrates in the area, as well as their quantity and their properties. The paper presents the assessment of application in biogas production selected wastes such as communal and household sewage sludge and waste from a paper production in Opole region (Poland). The annual productions of methane, biogas and electricity were estimated. Chosen physico-chemical properties important in fermentation process were taken into consideration in the assessment. The highest value of potential energy was obtained using waste from the paper industry but the most appropriate parameters for this process has sewage sludge from the municipal sewage treatment plant. The use of sewage sludge from domestic and municipal sewage and waste from the paper industry creates the opportunity to reduce the amount of waste materials.

  15. License restrictions at Barnwell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Autry, V.R.

    1991-12-31

    The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less

  16. Landslide Tsunami Hazard in Madeira Island, NE Atlantic - Numerical Simulation of the 4 March 1930 Tsunami

    NASA Astrophysics Data System (ADS)

    Omira, R.; Baptista, M. A.; Quartau, R.; Ramalho, M. I.

    2017-12-01

    Madeira, the main Island of the Madeira Archipelago with an area of 728 km2, is a North East Atlantic volcanic Island highly susceptible to cliff instability. Historical records contain accounts of a number of mass-wasting events along the Island, namely in 1969, 1804, 1929 and 1930. Collapses of cliffs are major hazards in oceanic Islands as they involve relatively large volumes of material, generating fast running debris avalanches, and even cause destructive tsunamis when entering the sea. On March 4th, 1930, a sector of the Cape Girão cliff, located in the southern shore of Madeira Island, collapsed into the sea and generated an 8 m tsunami wave height. The landslide-induced tsunami propagated along Madeirás south coast and flooded the Vigário beach, 200-300 m of inundation extent, causing 20 casualties. In this study, we investigate the 1930 subaerial landslide-induced tsunami and its impact on the nearest coasts using numerical modelling. We first reconstruct the pre-event morphology of the area, and then simulate the initial movement of the sliding mass, the propagation of the tsunami wave and the inundation of the coast. We use a multi-layer numerical model, in which the lower layer represents the deformable slide, assumed to be a visco-plastic fluid, and bounded above by air, in the subaerial motion phase, and by seawater governed by shallow water equations. The results of the simulation are compared with the historical descriptions of the event to calibrate the numerical model and evaluate the coastal impact of a similar event in present-day coastline configuration of the Island. This work is supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz and by TROYO project.

  17. Numerical and Experimental Study of an Ambient Air Vaporizer Coupled with a Compact Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Kimura, Randon

    The University of Washington was tasked with designing a "21st century engine" that will make use of the thermal energy available in cryogenic gasses due to their coldness. There are currently large quantities of cryogenic gases stored throughout the U.S. at industrial facilities whereupon the regasification process, the potential for the fluid to do work is wasted. The engine proposed by the University of Washington will try to capture some of that wasted energy. One technical challenge that must be overcome during the regasification process is providing frost free operation. This thesis presents the numerical analysis and experimental testing of a passive heat exchange system that uses ambient vaporizers coupled with compact heat exchangers to provide frost free operation while minimizing pressure drop.

  18. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez, Catherine L.; Funk, David John; Vigil-Holterman, Luciana R.

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide themore » basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.« less

  19. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  20. Estimating national landfill methane emissions: an application of the 2006 Intergovernmental Panel on Climate Change Waste Model in Panama.

    PubMed

    Weitz, Melissa; Coburn, Jeffrey B; Salinas, Edgar

    2008-05-01

    This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.

  1. Mathematical modeling to predict residential solid waste generation.

    PubMed

    Benítez, Sara Ojeda; Lozano-Olvera, Gabriela; Morelos, Raúl Adalberto; Vega, Carolina Armijo de

    2008-01-01

    One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R(2) were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total.

  2. Household hazardous waste management: a review.

    PubMed

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    NASA Astrophysics Data System (ADS)

    Pickett, Derek Kyle

    Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.

  4. Effect of moisture on disintegration kinetics during anaerobic digestion of complex organic substrates.

    PubMed

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2014-01-01

    The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.

  5. ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.

    1999-03-01

    ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less

  6. Development, testing, and numerical modeling of a foam sandwich biocomposite

    NASA Astrophysics Data System (ADS)

    Chachra, Ricky

    This study develops a novel sandwich composite material using plant based materials for potential use in nonstructural building applications. The face sheets comprise woven hemp fabric and a sap based epoxy, while the core comprises castor oil based foam with waste rice hulls as reinforcement. Mechanical properties of the individual materials are tested in uniaxial compression and tension for the foam and hemp, respectively. The sandwich composite is tested in 3 point bending. Flexural results are compared to a finite element model developed in the commercial software Abaqus, and the validated model is then used to investigate alternate sandwich geometries. Sandwich model responses are compared to existing standards for nonstructural building panels, showing that the novel material is roughly half the strength of equally thick drywall. When space limitations are not an issue, a double thickness sandwich biocomposite is found to be a structurally acceptable replacement for standard gypsum drywall.

  7. Adaptive Wavelet Modeling of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.

    2009-12-01

    Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  8. HANFORD WASTE MINERALOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  9. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  10. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills.

    PubMed

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-06-01

    Methane (CH₄) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required categories. In general, the single-phase model, LandGEM, significantly overestimated CH₄generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH₄potential (BMP) and CH₄generation rate constant (k-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH₄generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only the total disposed waste amount, but also various waste categories. By using laboratory-determined BMPs and k-values for shredder, sludge, mixed bulky waste, and street-cleaning waste, the Afvalzorg model was revised. The revised model estimated smaller cumulative CH₄generation results at the four Danish landfills (from the start of disposal until 2020 and until 2100). Through a CH₄mass balance approach, fugitive CH₄emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field measurements, indicating that the revised Afvalzorg model could provide practical and accurate estimation for Danish LFG emissions. This study is valuable for both researchers and engineers aiming to predict, control, and mitigate fugitive CH₄emissions from landfills receiving low-organic waste. Landfill operators use the first-order decay (FOD) models to estimate methane (CH₄) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in overestimation when handling a low-organic waste scenario. Site-specific data were important and capable of calibrating key parameter values in FOD models. The comparison study of the revised Afvalzorg model outcomes and field measurements at four Danish landfills provided a guideline for revising the Pollutants Release and Transfer Registers (PRTR) model, as well as indicating noteworthy waste fractions that could emit CH₄at modern landfills.

  11. Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.

    PubMed

    Bujak, J

    2015-08-01

    The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Coupling model of aerobic waste degradation considering temperature, initial moisture content and air injection volume.

    PubMed

    Ma, Jun; Liu, Lei; Ge, Sai; Xue, Qiang; Li, Jiangshan; Wan, Yong; Hui, Xinminnan

    2018-03-01

    A quantitative description of aerobic waste degradation is important in evaluating landfill waste stability and economic management. This research aimed to develop a coupling model to predict the degree of aerobic waste degradation. On the basis of the first-order kinetic equation and the law of conservation of mass, we first developed the coupling model of aerobic waste degradation that considered temperature, initial moisture content and air injection volume to simulate and predict the chemical oxygen demand in the leachate. Three different laboratory experiments on aerobic waste degradation were simulated to test the model applicability. Parameter sensitivity analyses were conducted to evaluate the reliability of parameters. The coupling model can simulate aerobic waste degradation, and the obtained simulation agreed with the corresponding results of the experiment. Comparison of the experiment and simulation demonstrated that the coupling model is a new approach to predict aerobic waste degradation and can be considered as the basis for selecting the economic air injection volume and appropriate management in the future.

  13. Investigating pyrolysis/incineration as a method of resource recovery from solid waste

    NASA Technical Reports Server (NTRS)

    Robertson, Bobby J.; Lemay, Christopher S.

    1993-01-01

    Pyrolysis/incineration (P/I) is a physicochemical method for the generation of recoverable resources from solid waste materials such as inedible plant biomass (IPB), paper, plastics, cardboard, etc. P/I permits the collection of numerous gases with a minimal amount of solid residue. Pyrolysis, also known as starved air incineration, is usually conducted at relatively high temperatures (greater than 500 deg C) in the absence of oxygen. Incineration is conducted at lower temperatures in the presence of oxygen. The primary purpose of this study was to design, construct, and test a model P/I. The system design includes safety requirements for temperature and pressure. The objectives of this study were: (1) to design and construct a P/I system for incorporation with the Hybrid Regenerative Water Recovery System; (2) to initiate testing of the P/I system; (3) to collect and analyze P/I system data; (4) to consider test variables; and (5) to determine the feasibility of P/I as an effective method of resource recovery. A P/I system for the recovery of reuseable resources from solid waste materials was designed, constructed, and tested. Since a large amount of inedible plant biomass (IPB) will be generated in a space-based habitat on the lunar surface and Mars, IPB was the primary waste material tested in the system. Analysis of the effluent gases was performed to determine which gases could be used in a life support system.

  14. Preliminary ECLSS waste water model

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  15. Modeling of urban solid waste management system: The case of Dhaka city

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sufian, M.A.; Bala, B.K.

    2007-07-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collectionmore » and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.« less

  16. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less

  17. Simulation of an integrated system for the production of methane and single cell protein from biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, M.V.

    1989-01-01

    A numerical model was developed to simulate the operation of an integrated system for the production of methane and single-cell algal protein from a variety of biomass energy crops or waste streams. Economic analysis was performed at the end of each simulation. The model was capable of assisting in the determination of design parameters by providing relative economic information for various strategies. Three configurations of anaerobic reactors were simulated. These included fed-bed reactors, conventional stirred tank reactors, and continuously expanding reactors. A generic anaerobic digestion process model, using lumped substrate parameters, was developed for use by type-specific reactor models. Themore » generic anaerobic digestion model provided a tool for the testing of conversion efficiencies and kinetic parameters for a wide range of substrate types and reactor designs. Dynamic growth models were used to model the growth of algae and Eichornia crassipes was modeled as a function of daily incident radiation and temperature. The growth of Eichornia crassipes was modeled for the production of biomass as a substrate for digestion. Computer simulations with the system model indicated that tropical or subtropical locations offered the most promise for a viable system. The availability of large quantities of digestible waste and low land prices were found to be desirable in order to take advantage of the economies of scale. Other simulations indicated that poultry and swine manure produced larger biogas yields than cattle manure. The model was created in a modular fashion to allow for testing of a wide variety of unit operations. Coding was performed in the Pascal language for use on personal computers.« less

  18. Investigating the Influence of Remedial Capping on the Hydrological, Geochemical, and Microbial Processes that Control Subsurface Contaminant Migration at WAG 5 on the Oak Ridge Reservation: Implications toward Long-Term Stewardship

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Mehlhorn, T. L.

    2006-05-01

    The following research investigated the effectiveness of an aggressive, large scale remedial action that is occurring to subsurface waste trenches containing radioactive and organic waste at the Oak Ridge National Laboratory. The site is being remediated as one of the top cleanup prioritization for the Oak Ridge Accelerated Remediation endeavor. Site landlords, Bechtel Jacobs Co., LLC (BJC) are installing a minimal RCRA cap with the primary objective of controlling the infiltration of storm water into the hundreds of unconfined waste trenches containing radioactive and organic waste. The site now offers a unique scientific opportunity to track the kinetic evolution of post-cap processes influencing contaminant migration and immobilization, because we have many years of pre-cap coupled processes information and knowledge. Since the cap is certain to disrupt the near steady-state contaminant discharge profiles that have existed for many years from the site, we have been quantifying the influence of post-cap hydrological, geochemical, and microbial processes on contaminant discharge as a function of scale and time in an effort to assess local-scale cap influences versus regional scale groundwater flow influences on contaminant discharge. We have been allowed to maintain numerous groundwater monitoring wells at a field site and these have a rich historical data set with regard to hydrology, geochemistry, microbiology, and contaminant flux. Our objectives are to investigate cap induced changes in (1) groundwater and surface hydrology and contaminant flux, (2) geochemistry and contaminant speciation, and (3) microbial community structure and organic contaminant degradation and inorganic contaminant immobilization. Our approach monitors coupled processes during base-flow and during storm events in both the groundwater and surface water discharge from the site and the surrounding watershed. Pre- and post-cap data will than be modeled with a multiprocess, multicomponent, transport model which is linked to pre- and post-cap surface water hydrograph analysis from the site and the surrounding watershed. Our goal is to provide an improved fundamental understanding of the long-term fate and transport of contaminants and an improved ability to predict system response to remedial actions. The experimental and numerical results from this investigation will provide knowledge and information in previously unexplored areas of cap performance with regard to coupled hydrology, geochemistry, microbiology, and contaminant flux in humid regimes. The products will support DOE's mission of long-term stewardship of contaminated environments and be transferable to other site where similar remediation exists or is planned.

  19. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less

  20. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    PubMed

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations.

  1. The influence of nitrate, nitrite, and dissolved oxygen on uranium oxidation in the presence of a sediment microbial community

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Bargar, J.; Dam, W. L.; Francis, C.

    2016-12-01

    The storage vaults for low and intermediate-level short-lived radioactive waste in the East of France are settled on the Aptian sand layer. In the context of the periodic examination by the nuclear regulators, it has been recommended to assess more precisely the chemical conditions for a potential release of radionuclides in the underlying water table. In particular, this study aims at assessing the eventuality of spreading an alkaline plume in the Aptian sand pore water by the chemical degradation of the vault cementitious materials. The numerical approach developed for this purpose is supported by both experimental characterizations of tracers in the water table and results from preliminary numerical studies on the hydrology of the site and the hydraulic evolution of the storage. The results from these specific simulations were simplified in the reactive transport model to focus on the mechanistic description of the chemical processes taking place in the waste and vaults and on their consequences on the underlying water table. During the operating period of the disposal, the reactive transport modelling shows that the low water saturation in the vaults material and in the vadose zone prevents the aquifer from a significant increase of the water pH under the cement-based vaults. These results are in reasonable agreement with the pH regularly measured in the underlying water table. After storage closure, during the few hundred years of the monitoring period and furthermore beyond, the reactive transport modelling shows a noticeable release of hydroxyls and alkali ions under the disposal vaults and their spread downstream the storage site leading to pH values above 10. It is noteworthy that the pH is not buffered in the Aptian sands because of their low amount in clayey minerals. This effect is now considered for pH-sensitive radionuclide solutes in safety assessment calculations by weighting correspondingly their retention parameters.

  2. Environmental modelling of use of treated organic waste on agricultural land: a comparison of existing models for life cycle assessment of waste systems.

    PubMed

    Hansen, Trine Lund; Christensen, Thomas Højlund; Schmidt, Sonia

    2006-04-01

    Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact assessment of environmental effects from land application of treated organic MSW: DST (Decision Support Tool, USA), IWM (Integrated Waste Management, U.K.), THE IFEU PROJECT (Germany), ORWARE (ORganic WAste REsearch, Sweden) and EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers. THE IFEU PROJECT, ORWARE and EASEWASTE are life cycle assessment (LCA) models containing more detailed land application modules. A case study estimating the environmental impacts from land application of 1 ton of composted source sorted organic household waste was performed to compare the results from the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts of the system. However, due to slightly different assumptions, quantification methods and environmental impact assessment, the obtained results varied clearly between the models. Furthermore, local conditions (e.g. soil type, farm type, climate and legal regulation) and waste composition strongly influenced the results of the environmental assessment.

  3. Hydrology of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Bodvarsson, G.S.; Fabryka-Martin, J. M.

    2001-01-01

    Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr-1 under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (~300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominately through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

  4. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    PubMed

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Solid waste forecasting using modified ANFIS modeling.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; K N A, Maulud

    2015-10-01

    Solid waste prediction is crucial for sustainable solid waste management. Usually, accurate waste generation record is challenge in developing countries which complicates the modelling process. Solid waste generation is related to demographic, economic, and social factors. However, these factors are highly varied due to population and economy growths. The objective of this research is to determine the most influencing demographic and economic factors that affect solid waste generation using systematic approach, and then develop a model to forecast solid waste generation using a modified Adaptive Neural Inference System (MANFIS). The model evaluation was performed using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the coefficient of determination (R²). The results show that the best input variables are people age groups 0-14, 15-64, and people above 65 years, and the best model structure is 3 triangular fuzzy membership functions and 27 fuzzy rules. The model has been validated using testing data and the resulted training RMSE, MAE and R² were 0.2678, 0.045 and 0.99, respectively, while for testing phase RMSE =3.986, MAE = 0.673 and R² = 0.98. To date, a few attempts have been made to predict the annual solid waste generation in developing countries. This paper presents modeling of annual solid waste generation using Modified ANFIS, it is a systematic approach to search for the most influencing factors and then modify the ANFIS structure to simplify the model. The proposed method can be used to forecast the waste generation in such developing countries where accurate reliable data is not always available. Moreover, annual solid waste prediction is essential for sustainable planning.

  6. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-06-01

    Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada ( Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.

  7. Model calibration and validation for OFMSW and sewage sludge co-digestion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, G., E-mail: giovanni.esposito@unicas.it; Frunzo, L., E-mail: luigi.frunzo@unina.it; Panico, A., E-mail: anpanico@unina.it

    2011-12-15

    Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Watermore » Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.« less

  8. Model selection and averaging in the assessment of the drivers of household food waste to reduce the probability of false positives.

    PubMed

    Grainger, Matthew James; Aramyan, Lusine; Piras, Simone; Quested, Thomas Edward; Righi, Simone; Setti, Marco; Vittuari, Matteo; Stewart, Gavin Bruce

    2018-01-01

    Food waste from households contributes the greatest proportion to total food waste in developed countries. Therefore, food waste reduction requires an understanding of the socio-economic (contextual and behavioural) factors that lead to its generation within the household. Addressing such a complex subject calls for sound methodological approaches that until now have been conditioned by the large number of factors involved in waste generation, by the lack of a recognised definition, and by limited available data. This work contributes to food waste generation literature by using one of the largest available datasets that includes data on the objective amount of avoidable household food waste, along with information on a series of socio-economic factors. In order to address one aspect of the complexity of the problem, machine learning algorithms (random forests and boruta) for variable selection integrated with linear modelling, model selection and averaging are implemented. Model selection addresses model structural uncertainty, which is not routinely considered in assessments of food waste in literature. The main drivers of food waste in the home selected in the most parsimonious models include household size, the presence of fussy eaters, employment status, home ownership status, and the local authority. Results, regardless of which variable set the models are run on, point toward large households as being a key target element for food waste reduction interventions.

  9. Model selection and averaging in the assessment of the drivers of household food waste to reduce the probability of false positives

    PubMed Central

    Aramyan, Lusine; Piras, Simone; Quested, Thomas Edward; Righi, Simone; Setti, Marco; Vittuari, Matteo; Stewart, Gavin Bruce

    2018-01-01

    Food waste from households contributes the greatest proportion to total food waste in developed countries. Therefore, food waste reduction requires an understanding of the socio-economic (contextual and behavioural) factors that lead to its generation within the household. Addressing such a complex subject calls for sound methodological approaches that until now have been conditioned by the large number of factors involved in waste generation, by the lack of a recognised definition, and by limited available data. This work contributes to food waste generation literature by using one of the largest available datasets that includes data on the objective amount of avoidable household food waste, along with information on a series of socio-economic factors. In order to address one aspect of the complexity of the problem, machine learning algorithms (random forests and boruta) for variable selection integrated with linear modelling, model selection and averaging are implemented. Model selection addresses model structural uncertainty, which is not routinely considered in assessments of food waste in literature. The main drivers of food waste in the home selected in the most parsimonious models include household size, the presence of fussy eaters, employment status, home ownership status, and the local authority. Results, regardless of which variable set the models are run on, point toward large households as being a key target element for food waste reduction interventions. PMID:29389949

  10. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    USGS Publications Warehouse

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.

  11. Earth reencounter probabilities for aborted space disposal of hazardous nuclear waste

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A quantitative assessment is made of the long-term risk of earth reencounter and reentry associated with aborted disposal of hazardous material in the space environment. Numerical results are presented for 10 candidate disposal options covering a broad spectrum of disposal destinations and deployment propulsion systems. Based on representative models of system failure, the probability that a single payload will return and collide with earth within a period of 250,000 years is found to lie in the range .0002-.006. Proportionately smaller risk attaches to shorter time intervals. Risk-critical factors related to trajectory geometry and system reliability are identified as possible mechanisms of hazard reduction.

  12. Translating landfill methane generation parameters among first-order decay models.

    PubMed

    Krause, Max J; Chickering, Giles W; Townsend, Timothy G

    2016-11-01

    Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.

  13. Capacitated vehicle-routing problem model for scheduled solid waste collection and route optimization using PSO algorithm.

    PubMed

    Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar

    2018-01-01

    Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less

  15. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  16. A Spanish model for quantification and management of construction waste.

    PubMed

    Solís-Guzmán, Jaime; Marrero, Madelyn; Montes-Delgado, Maria Victoria; Ramírez-de-Arellano, Antonio

    2009-09-01

    Currently, construction and demolition waste (C&D waste) is a worldwide issue that concerns not only governments but also the building actors involved in construction activity. In Spain, a new national decree has been regulating the production and management of C&D waste since February 2008. The present work describes the waste management model that has inspired this decree: the Alcores model implemented with good results in Los Alcores Community (Seville, Spain). A detailed model is also provided to estimate the volume of waste that is expected to be generated on the building site. The quantification of C&D waste volume, from the project stage, is essential for the building actors to properly plan and control its disposal. This quantification model has been developed by studying 100 dwelling projects, especially their bill of quantities, and defining three coefficients to estimate the demolished volume (CT), the wreckage volume (CR) and the packaging volume (CE). Finally, two case studies are included to illustrate the usefulness of the model to estimate C&D waste volume in both new construction and demolition projects.

  17. Use of recycled plastic in concrete: a review.

    PubMed

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  18. Modeling of the T S D E Heater Test to Investigate Crushed Salt Reconsolidation and Rock Salt Creep for the Underground Disposal of High-Level Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.; Wolters, R.; Lux, K. H.

    2014-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its water and gas tightness in the undisturbed state, its ability to heal induced fractures and its high thermal conductivity as compared to other shallow-crustal rocks. In addition, the run-of-mine, granular salt, may be used to backfill the mined open spaces. We present simulation results associated with coupled thermal, hydraulic and mechanical processes in the TSDE (Thermal Simulation for Drift Emplacement) experiment, conducted in the Asse salt mine in Germany [1]. During this unique test, conceived to simulate reference repository conditions for spent nuclear fuel, a significant amount of data (temperature, stress changes and displacements, among others) was measured at 20 cross-sections, distributed in two drifts in which a total of six electrical heaters were emplaced. The drifts were subsequently backfilled with crushed salt. This test has been modeled in three-dimensions, using two sequential simulators for flow (mass and heat) and geomechanics, TOUGH-FLAC and FLAC-TOUGH [2]. These simulators have recently been updated to accommodate large strains and time-dependent rheology. The numerical predictions obtained by the two simulators are compared within the framework of an international benchmark exercise, and also with experimental data. Subsequently, a re-calibration of some parameters has been performed. Modeling coupled processes in saliniferous media for nuclear waste disposal is a novel approach, and in this study it has led to the determination of some creep parameters that are very difficult to assess at the laboratory-scale because they require extremely low strain rates. Moreover, the results from the benchmark are very satisfactory and validate the capabilities of the two simulators used to study coupled thermal, mechanical and hydraulic (multi-component, multi-phase) processes relative to the underground disposal of high-level nuclear waste in rock salt. References: [1] Bechthold et al., 1999. BAMBUS-I Project. Euratom, Report EUR19124-EN. [2] Blanco Martín et al., 2014. Comparison of two sequential simulators to investigate thermal-hydraulic-mechanical processes related to nuclear waste isolation in saliniferous formations. In preparation.

  19. In-Package Chemistry Abstraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, amore » batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.« less

  20. CIRMIS Data system. Volume 2. Program listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required.The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the second of four volumes of the description of the CIRMIS Data System.« less

  1. Translating hydrologically-relevant variables from the ice sheet model SICOPOLIS to the Greenland Analog Project hydrologic modeling domain

    NASA Astrophysics Data System (ADS)

    Vallot, Dorothée; Applegate, Patrick; Pettersson, Rickard

    2013-04-01

    Projecting future climate and ice sheet development requires sophisticated models and extensive field observations. Given the present state of our knowledge, it is very difficult to say what will happen with certainty. Despite the ongoing increase in atmospheric greenhouse gas concentrations, the possibility that a new ice sheet might form over Scandinavia in the far distant future cannot be excluded. The growth of a new Scandinavian Ice Sheet would have important consequences for buried nuclear waste repositories. The Greenland Analogue Project, initiated by the Swedish Nuclear Fuel and Waste Management Company (SKB), is working to assess the effects of a possible future ice sheet on groundwater flow by studying a constrained domain in Western Greenland by field measurements (including deep bedrock drilling in front of the ice sheet) combined with numerical modeling. To address the needs of the GAP project, we interpolated results from an ensemble of ice sheet model runs to the smaller and more finely resolved modeling domain used in the GAP project's hydrologic modeling. Three runs have been chosen with three fairly different positive degree-day factors among those that reproduced the modern ice margin at the borehole position. The interpolated results describe changes in hydrologically-relevant variables over two time periods, 115 ka to 80 ka, and 20 ka to 1 ka. In the first of these time periods, the ice margin advances over the model domain; in the second time period, the ice margin retreats over the model domain. The spatially-and temporally dependent variables that we treated include the ice thickness, basal melting rate, surface mass balance, basal temperature, basal thermal regime (frozen or thawed), surface temperature, and basal water pressure. The melt flux is also calculated.

  2. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition modelsmore » were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.« less

  3. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    PubMed

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization.

    PubMed

    Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar

    2017-03-01

    Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    PubMed

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Model development for household waste prevention behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortoleto, Ana Paula, E-mail: a.bortoleto@sheffield.ac.uk; Kurisu, Kiyo H.; Hanaki, Keisuke

    Highlights: Black-Right-Pointing-Pointer We model waste prevention behaviour using structure equation modelling. Black-Right-Pointing-Pointer We merge attitude-behaviour theories with wider models from environmental psychology. Black-Right-Pointing-Pointer Personal norms and perceived behaviour control are the main behaviour predictors. Black-Right-Pointing-Pointer Environmental concern, moral obligation and inconvenience are the main influence on the behaviour. Black-Right-Pointing-Pointer Waste prevention and recycling are different dimensions of waste management behaviour. - Abstract: Understanding waste prevention behaviour (WPB) could enable local governments and decision makers to design more-effective policies for reducing the amount of waste that is generated. By merging well-known attitude-behaviour theories with elements from wider models from environmental psychology,more » an extensive cognitive framework that provides new and valuable insights is developed for understanding the involvement of individuals in waste prevention. The results confirm the usefulness of the theory of planned behaviour and of Schwartz's altruistic behaviour model as bases for modelling participation in waste prevention. A more elaborate integrated model of prevention was shown to be necessary for the complete analysis of attitudinal aspects associated with waste prevention. A postal survey of 158 respondents provided empirical support for eight of 12 hypotheses. The proposed structural equation indicates that personal norms and perceived behaviour control are the main predictors and that, unlike the case of recycling, subjective norms have a weak influence on WPB. It also suggests that, since social norms have not presented a direct influence, WPB is likely to be influenced by a concern for the environment and the community as well by perceptions of moral obligation and inconvenience. Results also proved that recycling and waste prevention represent different dimensions of waste management behaviour requiring particular approaches to increase individuals' engagement in future policies.« less

  7. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling

    PubMed Central

    Sun, Weixin; Liu, Jianguo

    2018-01-01

    Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L−1) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10−8 to 10−9 m s−1 after 1–2 years of operation and perching significant leachate above it (0.6–0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China. PMID:29439538

  8. 40 CFR 60.2994 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before... percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4) 100 percent mixture of only wood waste, clean lumber, and/or yard waste. Model Rule—Use of Model Rule ...

  9. Numerical simulation of waste tyres gasification.

    PubMed

    Janajreh, Isam; Raza, Syed Shabbar

    2015-05-01

    Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. © The Author(s) 2015.

  10. Itegrated Test and Evaluation of a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removtal System (CDRA), Mechanical Compressor Engineering Development Unit (EDU), and Sabitier Engineering Development Unit (EDU)

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank

    2005-01-01

    Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.

  11. The Fogo's Collapse-triggered Megatsunami: Evidence-calibrated Numerical Simulations of Tsunamigenic Potential and Coastal Impact

    NASA Astrophysics Data System (ADS)

    Omira, Rachid; Ramalho, Ricardo S.; Quartau, Rui; Ramalho, Inês; Madeira, José; Baptista, Maria Ana

    2017-04-01

    Volcanic Ocean Islands are very prominent and dynamic features involving several constructive and destructive phases during their life-cycles. Large-scale gravitational flank collapses are one of the most destructive processes and can present a major source of hazard, since it has been shown that these events are capable of triggering megatsunamis with significant coastal impact. The Fogo volcanic island, Cape Verde, presents evidence for giant edifice mass-wasting, as attested by both onshore and offshore evidence. A recent study by Ramalho et al. (2015) revealed the presence of tsunamigenic deposits that attest the generation of a megatsunami with devastating impact on the nearby Santiago Island, following Fogo's catastrophic collapse. Evidence from northern Santiago implies local minimum run-ups of 270 m, providing a unique physical framework to test collapse-triggered tsunami numerical simulations. In this study, we investigate the tsunamigenic potential associated with Fogo's flank collapse, and its impact on the Islands of the Cape Verde archipelago using field evidence-calibrated numerical simulations. We first reconstruct the pre-event island morphology, and then employ a multilayer numerical model to simulate the flank failure flow towards and under the sea, the ensuing tsunami generation, propagation and coastal impact. We use a digital elevation model that considers the coastline configuration and the sea level at the time of the event. Preliminary numerical modeling results suggest that collapsed volumes of 90-150 km3, in one single event, generate numerical solutions that are compatible with field evidence. Our simulations suggest that Fogo's collapse triggered a megatsunami that reached the coast of Santiago in 8 min, and with wave heights in excess of 250 m. The tsunami waves propagated with lower amplitudes towards the Cape Verde Islands located northward of Fogo. This study will contribute to more realistically assess the scale of risks associated with these extremely rare but very high impact natural disasters. This work is supported by the EU project ASTARTE -Grant 603839, 7th FP (ENV.2013, 6.4-3), the EU project TSUMAPS-NEAM -Agreement Number: ECHO/SUB/2015/718568/PREV26, and the IF/01641/2015 MEGAWAVE - FCT project.

  12. A New Concept: Use of Negotiations in the Hazardous Waste Facility Permitting Process in New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.J.; Rose, W.M.; Domenici, P.V.

    This paper describes a unique negotiation process leading to authorization of the U.S. Department of Energy (DOE) to manage and dispose remote-handled (RH) transuranic (TRU) mixed wastes at the Waste Isolation Pilot Plant (WIPP). The negotiation process involved multiple entities and individuals brought together under authority of the New Mexico Environment Department (NMED) to discuss and resolve technical and facility operational issues flowing from an NMED-issued hazardous waste facility Draft Permit. The novel negotiation process resulted in numerous substantive changes to the Draft Permit, which were ultimately memorialised in a 'Draft Permit as Changed'. This paper discusses various aspects ofmore » the negotiation process, including events leading to the negotiations, regulatory basis for the negotiations, negotiation participants, and benefits of the process. (authors)« less

  13. Flammable gas data evaluation. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, P.D.; Meyer, P.A.; Miller, N.E.

    1996-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Numerous safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate, retain, and periodically release flammable gases. This report documents some of the activities of the Flammable Gas Project Data Evaluation Task conducted for Westinghouse Hanford Company during fiscal year 1996. Described in this report are: (1) the results of examining the in-tank temperature measurements for insights into gas release behavior; (2) the preliminary results of examining the tank waste level measurements formore » insights into gas release behavior; and (3) an explanation for the observed hysteresis in the level/pressure measurements, a phenomenon observed earlier this year when high-frequency tank waste level measurements came on-line.« less

  14. Modeling Production Plant Forming Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, M; Becker, R; Couch, R

    2004-09-22

    Engineering has simulation tools and experience in modeling forming processes. Y-12 personnel have expressed interest in validating our tools and experience against their manufacturing process activities such as rolling, casting, and forging etc. We have demonstrated numerical capabilities in a collaborative DOE/OIT project with ALCOA that is nearing successful completion. The goal was to use ALE3D to model Alcoa's slab rolling process in order to demonstrate a computational tool that would allow Alcoa to define a rolling schedule that would minimize the probability of ingot fracture, thus reducing waste and energy consumption. It is intended to lead to long-term collaborationmore » with Y-12 and perhaps involvement with other components of the weapons production complex. Using simulations to aid in design of forming processes can: decrease time to production; reduce forming trials and associated expenses; and guide development of products with greater uniformity and less scrap.« less

  15. Numerical studies in geophysics

    NASA Astrophysics Data System (ADS)

    Hier Majumder, Catherine Anne

    2003-10-01

    This thesis focuses on the use of modern numerical techniques in the geo- and environmental sciences. Four topics are discussed in this thesis: finite Prandtl number convection, wavelet analysis, inverse methods and data assimilation, and nuclear waste tank mixing. The finite Prandtl number convection studies examine how convection behavior changes as Prandtl numbers are increased to as high as 2 x 104, on the order of Prandtl numbers expected in very hot magmas or mushy ice diapirs. I found that there are significant differences in the convection style between finite Prandtl number convection and the infinite Prandtl number approximation even for Prandtl numbers on the order of 104. This indicates that the infinite Prandtl convection approximation might not accurately model behavior in fluids with large, but finite Prandtl numbers. The section on inverse methods and data assimilation used the technique of four dimensional variational data assimilation (4D-VAR) developed by meteorologists to integrate observations into forecasts. It was useful in studying the predictability and dependence on initial conditions of finite Prandtl simulations. This technique promises to be useful in a wide range of geological and geophysical fields, including mantle convection, hydrogeology, and sedimentology. Wavelet analysis was used to help image and scrutinize at small-scales both temperature and vorticity fields from convection simulations and the geoid. It was found to be extremely helpful in both cases. It allowed us to separate the information in the data into various spatial scales without losing the locations of the signals in space. This proved to be essential in understanding the processes producing the total signal in the datasets. The nuclear waste study showed that techniques developed in geology and geophysics can be used to solve scientific problems in other fields. I applied state-of-the-art techniques currently employed in geochemistry, sedimentology, and mantle mixing to simulate dynamical processes occurring in the course of mixing nuclear waste tanks.

  16. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    PubMed

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. WastePlan model implementation for New York State. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visalli, J.R.; Blackman, D.A.

    1995-07-01

    WastePlan is a computer software tool that models solid waste quantities, costs, and other parameters on a regional basis. The software was developed by the Tellus Institute, a nonprofit research and consulting firm. The project`s objective was to provide local solid waste management planners in New York State responsible to develop and implement comprehensive solid waste management plans authorized by the Solid Waste Management Act of 1988, with a WastePlan model specifically tailored to fit the demographic and other characteristics of New York State and to provide training and technical support to the users. Two-day workshops were held in 1992more » to introduce planners to the existing versions; subsequently, extensive changes were made to the model and a second set of two-day workshops were held in 1993 to introduce planners to the enhanced version of WastePlan. Following user evaluations, WastePlan was further modified to allow users to model systems using a simplified version, and to incorporate report forms required by New York State. A post-project survey of trainees revealed limited regular use of software. Possible reasons include lack of synchronicity with NYSDEC planning process; lack of computer literacy and aptitude among trainees; hardware limitations; software user-friendliness; and the work environment of the trainees. A number of recommendations are made to encourage use of WastePlan by local solid waste management planners.« less

  18. BIOGEOCHEMICAL INDICATORS IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Loadings of excess organic wastes and associated nutrients to aquatic systems has numerous deleterious consequences with respect to the ecosystem services provided by these important ecosystems including perturbation of organic matter and nutrient cycling rates, reduction in diss...

  19. Tomographic inversion of time-domain resistivity and chargeability data for the investigation of landfills using a priori information.

    PubMed

    De Donno, Giorgio; Cardarelli, Ettore

    2017-01-01

    In this paper, we present a new code for the modelling and inversion of resistivity and chargeability data using a priori information to improve the accuracy of the reconstructed model for landfill. When a priori information is available in the study area, we can insert them by means of inequality constraints on the whole model or on a single layer or assigning weighting factors for enhancing anomalies elongated in the horizontal or vertical directions. However, when we have to face a multilayered scenario with numerous resistive to conductive transitions (the case of controlled landfills), the effective thickness of the layers can be biased. The presented code includes a model-tuning scheme, which is applied after the inversion of field data, where the inversion of the synthetic data is performed based on an initial guess, and the absolute difference between the field and synthetic inverted models is minimized. The reliability of the proposed approach has been supported in two real-world examples; we were able to identify an unauthorized landfill and to reconstruct the geometrical and physical layout of an old waste dump. The combined analysis of the resistivity and chargeability (normalised) models help us to remove ambiguity due to the presence of the waste mass. Nevertheless, the presence of certain layers can remain hidden without using a priori information, as demonstrated by a comparison of the constrained inversion with a standard inversion. The robustness of the above-cited method (using a priori information in combination with model tuning) has been validated with the cross-section from the construction plans, where the reconstructed model is in agreement with the original design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A novel kinetic modeling method for the stabilization phase of the composting process for biodegradation of solid wastes.

    PubMed

    Ebrahimzadeh, Reza; Ghazanfari Moghaddam, Ahmad; Sarcheshmehpour, Mehdi; Mortezapour, Hamid

    2017-12-01

    Biomass degradation kinetics of the composting process for kitchen waste, pruned elm tree branches and sheep manure were studied to model changes in volatile solids (VS) over time. Three experimental reactors containing raw mixtures with a carbon to nitrogen (C/N) ratio of 27:1 and a moisture content of 65% were prepared. During the composting process two of the reactors used forced air and the third used natural aeration. The composting stabilization phases in all reactors were completed in 30 days. During this period, composting indexes such as temperature, moisture content and VS changes were recorded. Elementary reactions were used for kinetics modeling of the degradation process. Results showed that the numerical values of rate constant ( k) for zero-order ranged from 0.86 to 1.03 VS×day -1 , for first-order models it ranged from 0.01 to 0.02 day -1 , for second-order the range was from 1.36×10 -5 to 1.78×10 -5 VS -1 ×day -1 and for n-order the rate constant ranged from 0.031 to 0.095 VS (1-n) ×day -1 . The resulting models were validated by comparing statistical parameters. Evaluation of the models showed that, in the aerated reactors, the n-order models (less than 1) successfully estimated the VS changes. In the non-aeration reactor, for the second-order model good agreement was achieved between the simulated and actual quantities of VS. Also, half-life time provided a useful criterion for the estimation of expected time for completion of different phases of composting.

  1. Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 4. Driller's logs, stratigraphic cross section and utility routines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the fourth of four volumes of the description of the CIRMIS Data System.« less

  2. Innovative mathematical modeling in environmental remediation.

    PubMed

    Yeh, Gour-Tsyh; Gwo, Jin-Ping; Siegel, Malcolm D; Li, Ming-Hsu; Fang, Yilin; Zhang, Fan; Luo, Wensui; Yabusaki, Steve B

    2013-05-01

    There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g., Ni, Cr, Co). The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Analyzing Human Behaviour Toward Food Waste in Qatar

    NASA Astrophysics Data System (ADS)

    A Hussain, Shaema Mohd Hassan

    Food waste is a major issue in many countries due to the impact of waste on the environment and the cost of producing food and water. Food waste not only constitutes a hazard to the environment through the emission of greenhouse gases, but billions of dollars are also lost as a result of production, distribution and waste management costs. In view of this, this study examined factors that have potential to influence intent to waste food and food waste behavior among consumers in Qatar. The main objective of the study was to find a suitable model that explains food waste behavior in Qatar and compare it to an international model in order to understand region specific factors and try to replicate a hypothesized model of the causal effects of some factors (i.e., subjective norm, perceived behavioral control, and personal attitude) on intent to waste food and food waste behavior. Three research questions were developed and answers were provided by random selection of 139 respondents from the Qatar Foundation and Georgetown University Qatar databases gathered through a survey with 139 complete questionnaires in order to test the hypothesized model, which was created based on literature. The Structural Equation Modelling (SEM) approach was the main statistical tool of the investigation and was used to carry out the path analysis. The findings of the study revealed that factors, including, planning routine, Ramadan, gender task, and personal norm were strong predictors of intention to waste food and food waste behavior.

  4. Basin-scale hydrogeologic modeling

    NASA Astrophysics Data System (ADS)

    Person, Mark; Raffensperger, Jeff P.; Ge, Shemin; Garven, Grant

    1996-02-01

    Mathematical modeling of coupled groundwater flow, heat transfer, and chemical mass transport at the sedimentary basin scale has been increasingly used by Earth scientists studying a wide range of geologic processes including the formation of excess pore pressures, infiltration-driven metamorphism, heat flow anomalies, nuclear waste isolation, hydrothermal ore genesis, sediment diagenesis, basin tectonics, and petroleum generation and migration. These models have provided important insights into the rates and pathways of groundwater migration through basins, the relative importance of different driving mechanisms for fluid flow, and the nature of coupling between the hydraulic, thermal, chemical, and stress regimes. The mathematical descriptions of basin transport processes, the analytical and numerical solution methods employed, and the application of modeling to sedimentary basins around the world are the subject of this review paper. The special considerations made to represent coupled transport processes at the basin scale are emphasized. Future modeling efforts will probably utilize three-dimensional descriptions of transport processes, incorporate greater information regarding natural geological heterogeneity, further explore coupled processes, and involve greater field applications.

  5. A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste.

    PubMed

    Yuan, Hongping; Chini, Abdol R; Lu, Yujie; Shen, Liyin

    2012-03-01

    During the past few decades, construction and demolition (C&D) waste has received increasing attention from construction practitioners and researchers worldwide. A plethora of research regarding C&D waste management has been published in various academic journals. However, it has been determined that existing studies with respect to C&D waste reduction are mainly carried out from a static perspective, without considering the dynamic and interdependent nature of the whole waste reduction system. This might lead to misunderstanding about the actual effect of implementing any waste reduction strategies. Therefore, this research proposes a model that can serve as a decision support tool for projecting C&D waste reduction in line with the waste management situation of a given construction project, and more importantly, as a platform for simulating effects of various management strategies on C&D waste reduction. The research is conducted using system dynamics methodology, which is a systematic approach that deals with the complexity - interrelationships and dynamics - of any social, economic and managerial system. The dynamic model integrates major variables that affect C&D waste reduction. In this paper, seven causal loop diagrams that can deepen understanding about the feedback relationships underlying C&D waste reduction system are firstly presented. Then a stock-flow diagram is formulated by using software for system dynamics modeling. Finally, a case study is used to illustrate the validation and application of the proposed model. Results of the case study not only built confidence in the model so that it can be used for quantitative analysis, but also assessed and compared the effect of three designed policy scenarios on C&D waste reduction. One major contribution of this study is the development of a dynamic model for evaluating C&D waste reduction strategies under various scenarios, so that best management strategies could be identified before being implemented in practice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Estimation of future outflows of e-waste in India.

    PubMed

    Dwivedy, Maheshwar; Mittal, R K

    2010-03-01

    The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planning for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Estimation of future outflows of e-waste in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedy, Maheshwar, E-mail: dwivedy_m@bits-pilani.ac.i; Mittal, R.K.

    2010-03-15

    The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planningmore » for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated.« less

  8. A system dynamics approach for hospital waste management in a city in a developing country: the case of Nablus, Palestine.

    PubMed

    Al-Khatib, Issam A; Eleyan, Derar; Garfield, Joy

    2016-09-01

    Hospitals and health centers provide a variety of healthcare services and normally generate hazardous waste as well as general waste. General waste has a similar nature to that of municipal solid waste and therefore could be disposed of in municipal landfills. However, hazardous waste poses risks to public health, unless it is properly managed. The hospital waste management system encompasses many factors, i.e., number of beds, number of employees, level of service, population, birth rate, fertility rate, and not in my back yard (NIMBY) syndrome. Therefore, this management system requires a comprehensive analysis to determine the role of each factor and its influence on the whole system. In this research, a hospital waste management simulation model is presented based on the system dynamics technique to determine the interaction among these factors in the system using a software package, ithink. This model is used to estimate waste segregation as this is important in the hospital waste management system to minimize risk to public health. Real data has been obtained from a case study of the city of Nablus, Palestine to validate the model. The model exhibits wastes generated from three types of hospitals (private, charitable, and government) by considering the number of both inpatients and outpatients depending on the population of the city under study. The model also offers the facility to compare the total waste generated among these different types of hospitals and anticipate and predict the future generated waste both infectious and non-infectious and the treatment cost incurred.

  9. Time-series-based hybrid mathematical modelling method adapted to forecast automotive and medical waste generation: Case study of Lithuania.

    PubMed

    Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras

    2018-05-01

    The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.

  10. Improving Site-Specific Radiological Performance Assessments - 13431

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauxe, John; Black, Paul; Catlett, Kate

    2013-07-01

    An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, butmore » at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus a Bayesian approach to probabilistic modeling and risk analysis, to guide improvements in PA. This decision-making approach, [4, 5, 6] provides a transparent formal framework for using a value- or objective-focused approach to decision-making. DA, as an analytical means to implement structured decision making, provides a context for both understanding how uncertainty affects decisions and for targeting uncertainty reduction. The proposed DA approach improves defensibility and transparency of decision-making. The DA approach is fully consistent with the need to perform realistic modeling (rather than conservative modeling), including evaluation of site-specific factors. Instead of using generic stylized scenarios for radionuclide fate and transport and for human exposures to radionuclides, site-specific scenarios better represent the advantages and disadvantages of alternative disposal sites or engineered designs, thus clarifying their differences as well as providing a sound basis for evaluation of site performance. The full DA approach to PA is described, from explicitly incorporating societal values through stakeholder involvement to model building. Model building involves scoping by considering features, events, processes, and exposure scenarios (FEPSs), development of a conceptual site model (CSM), translation into numerical models and subsequent computation, and model evaluation. These are implemented in a cycle of uncertainty analysis, sensitivity analysis and value of information analysis so that uncertainty can be reduced until sufficient confidence is gained in the decisions to be made. This includes the traditional focus on hydrogeological processes, but also places emphasis on other FEPSs such as biotically-induced transport and human exposure phenomena. The significance of human exposure scenarios is emphasized by modifying the traditional acronym 'FEPs' to include them, hence 'FEPSs'. The radioactive waste community is also recognizing that disposal sites are to be considered a national (or even global) resource. As such, there is a pressing need to optimize their utility within the constraints of protecting human health and the environment. Failing to do so will result in the need for additional sites or options for storing radioactive waste temporarily, assuming a continued need for radioactive waste disposal. Optimization should be performed using DA, including economic analysis, invoked if necessary through the ALARA process. The economic analysis must recognize the cost of implementation (disposal design, closure, maintenance, etc.), and intra- and inter-generational equity in order to ensure that the best possible radioactive waste management decisions are made for the protection of both current and future generations. In most cases this requires consideration of population or collective risk. (authors)« less

  11. Anthropogenic radioactivity in the Arctic Ocean--review of the results from the joint German project.

    PubMed

    Nies, H; Harms, I H; Karcher, M J; Dethleff, D; Bahe, C

    1999-09-30

    The paper presents the results of the joint project carried out in Germany in order to assess the consequences in the marine environment from the dumping of nuclear wastes in the Kara and Barents Seas. The project consisted of experimental work on measurements of radionuclides in samples from the Arctic marine environment and numerical modelling of the potential pathways and dispersion of contaminants in the Arctic Ocean. Water and sediment samples were collected for determination of radionuclide such as 137Cs, 90Sr, 239 + 240Pu, 238Pu, and 241Am and various organic micropollutants. In addition, a few water and numerous surface sediment samples collected in the Kara Sea and from the Kola peninsula were taken by Russian colleagues and analysed for artificial radionuclide by the BSH laboratory. The role of transport by sea ice from the Kara Sea into the Arctic Ocean was assessed by a small subgroup at GEOMAR. This transport process might be considered as a rapid contribution due to entrainment of contaminated sediments into sea ice, following export from the Kara Sea into the transpolar ice drift and subsequent release in the Atlantic Ocean in the area of the East Greenland Current. Numerical modelling of dispersion of pollutants from the Kara and Barents Seas was carried out both on a local scale for the Barents and Kara Seas and for long range dispersion into the Arctic and Atlantic Oceans. Three-dimensional baroclinic circulation models were applied to trace the transport of pollutants. Experimental results were used to validate the model results such as the discharges from the nuclear reprocessing plant at Sellafield and subsequent contamination of the North Sea up the Arctic Seas.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in themore » predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)« less

  13. Microbial keratinases: industrial enzymes with waste management potential.

    PubMed

    Verma, Amit; Singh, Hukum; Anwar, Shahbaz; Chattopadhyay, Anirudha; Tiwari, Kapil K; Kaur, Surinder; Dhilon, Gurpreet Singh

    2017-06-01

    Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze "hard to degrade" keratinous wastes. This new class of proteases is known as "keratinases". Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.

  14. Towards a new method for modeling multicomponent, multiphase flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Kong, X. Z.; Schaedle, P.; Leal, A. M. M.; Saar, M. O.

    2016-12-01

    The ability to computationally simulate multiphase-multicomponent fluid flow, coupled with geochemical reactions between fluid species and rock minerals, in porous and/or fractured subsurface systems is of major importance to a vast number of applications. These include (1) carbon dioxide storage in geologic formations, (2) geothermal energy extraction, (3) combinations of the latter two applications during CO2-Plume Geothermal energy extraction, (4) waste fluid and waste storage, as well as (5) groundwater and contaminant transport. Modeling these systems with such a wide variety of coupled physical and chemical processes is both challenging and computationally expensive. In this work we present a new approach to develop a simulator for multicomponent-multiphase flow and reactive transport in porous media by using state of the art numerical tools, namely FEniCS (fenicsproject.org) and Reaktoro (reaktoro.org). The governing partial differential equations for fluid flow and transport are solved using FEniCS, which enables fast and efficient implementation of computer codes for the simulation of complex physical phenomena using finite element methods on unstructured meshes. FEniCS supports a wide range of finite element schemes of special interest to porous media flow. In addition, FEniCS interfaces with many sparse linear solvers and provides convenient tools for adaptive mesh refinement and the capability of massively parallel calculations. A fundamental component of our contribution is the coupling of our FEniCS based flow and transport solver with our chemical reaction simulator, Reaktoro, which implements efficient, robust, and accurate methods for chemical equilibrium and kinetics calculations at every node of the mesh, at every time step. These numerical methods for reaction modeling have been especially developed for performance-critical applications such as reactive transport modeling. Furthermore, Reaktoro is also used for the calculation of thermodynamic properties of rock minerals and fluids. The proposed simulator can, however, be coupled with other back-ends for the calculation of both thermodynamic and thermophysical properties of rock minerals and fluids. We present several example applications of our new approach, demonstrating its capabilities and computation speed.

  15. VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern

    2009-08-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating “what if” scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intendedmore » as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., “reactor types” not individual reactors and “separation types” not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. We use Microsoft Excel 2003 and have not tested VISION with Microsoft Excel 2007. The VISION team uses both Powersim Studio 2005 and 2009 and it should work with either.« less

  16. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy

    PubMed Central

    McGreevy, Joe W.; Hakim, Chady H.; McIntosh, Mark A.; Duan, Dongsheng

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs. PMID:25740330

  17. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    NASA Astrophysics Data System (ADS)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  18. Decision analysis applied to the purchase of frozen premixed intravenous admixtures.

    PubMed

    Witte, K W; Eck, T A; Vogel, D P

    1985-04-01

    A structured decision-analysis model was used to evaluate frozen premixed cefazolin admixtures. Decision analysis is a process of stating the desired outcome, establishing and weighting evaluation criteria, identifying options for reaching the outcome, evaluating and numerically ranking each option for each criterion, multiplying the ranking by the weight for each criterion, and calculating total points for each option. It was used to compare objectively frozen premixed cefazolin admixtures with batch reconstitution from vials and reconstitution of lyophilized, ready-to-mix containers. In this institution the model numerically demonstrated a distinct preference for the premixed frozen admixture over these other alternatives. A comparison of these results with the total cost impact of each option resulted in a decision to purchase the frozen premixed solution. The advantages of the frozen premixed solution that contributed most to this decision were decreased waste and personnel time. The latter was especially important since it allowed for the reallocation of personnel resources to other potentially cost-reducing clinical functions. Decision analysis proved to be an effective tool for formalizing the process of selecting among various alternatives to reach a desired outcome in this hospital pharmacy.

  19. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to unit crack extension and the rock fracture toughness. It allows to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, which breadth is known a priori, the final breadth of a finger-like fracture is a result of the fracturing process in the fracture head. To resolve the breadth, we relax the local elasticity assumption in the fracture head by neglecting viscous pressure drop there. The resulting fracture head model is a 3D analog of the Weertman's hydrostatic pulse, and yields expressions for the terminal breadth, b = 0.34 (K / Delta rho g))^(2/3), and for the head volume, V = 10.4 K b^(5/2) / E'. We then combine the finger crack solution for the viscous tail with the 3-D pulse solution for the fracture head. The obtained closed-form solution is compared to numerical simulations. Based on this solution, we analyzed the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of the heavy waste injection technique and low viscosity magma diking.

  20. Modelling radionuclide transport in fractured media with a dynamic update of K d values

    DOE PAGES

    Trinchero, Paolo; Painter, Scott L.; Ebrahimi, Hedieh; ...

    2015-10-13

    Radionuclide transport in fractured crystalline rocks is a process of interest in evaluating long term safety of potential disposal systems for radioactive wastes. Given their numerical efficiency and the absence of numerical dispersion, Lagrangian methods (e.g. particle tracking algorithms) are appealing approaches that are often used in safety assessment (SA) analyses. In these approaches, many complex geochemical retention processes are typically lumped into a single parameter: the distribution coefficient (Kd). Usually, the distribution coefficient is assumed to be constant over the time frame of interest. However, this assumption could be critical under long-term geochemical changes as it is demonstrated thatmore » the distribution coefficient depends on the background chemical conditions (e.g. pH, Eh, and major chemistry). In this study, we provide a computational framework that combines the efficiency of Lagrangian methods with a sound and explicit description of the geochemical changes of the site and their influence on the radionuclide retention properties.« less

  1. The S-curve for forecasting waste generation in construction projects.

    PubMed

    Lu, Weisheng; Peng, Yi; Chen, Xi; Skitmore, Martin; Zhang, Xiaoling

    2016-10-01

    Forecasting construction waste generation is the yardstick of any effort by policy-makers, researchers, practitioners and the like to manage construction and demolition (C&D) waste. This paper develops and tests an S-curve model to indicate accumulative waste generation as a project progresses. Using 37,148 disposal records generated from 138 building projects in Hong Kong in four consecutive years from January 2011 to June 2015, a wide range of potential S-curve models are examined, and as a result, the formula that best fits the historical data set is found. The S-curve model is then further linked to project characteristics using artificial neural networks (ANNs) so that it can be used to forecast waste generation in future construction projects. It was found that, among the S-curve models, cumulative logistic distribution is the best formula to fit the historical data. Meanwhile, contract sum, location, public-private nature, and duration can be used to forecast construction waste generation. The study provides contractors with not only an S-curve model to forecast overall waste generation before a project commences, but also with a detailed baseline to benchmark and manage waste during the course of construction. The major contribution of this paper is to the body of knowledge in the field of construction waste generation forecasting. By examining it with an S-curve model, the study elevates construction waste management to a level equivalent to project cost management where the model has already been readily accepted as a standard tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less

  3. Preliminary study on enhancing waste management best practice model in Malaysia construction industry

    NASA Astrophysics Data System (ADS)

    Jamaludin, Amril Hadri; Karim, Nurulzatushima Abdul; Noor, Raja Nor Husna Raja Mohd; Othman, Nurulhidayah; Malik, Sulaiman Abdul

    2017-08-01

    Construction waste management (CWM) is the practice of minimizing and diverting construction waste, demolition debris, and land-clearing debris from disposal and redirecting recyclable resources back into the construction process. Best practice model means best choice from the collection of other practices that was built for purpose of construction waste management. The practice model can help the contractors in minimizing waste before the construction activities will be started. The importance of minimizing wastage will have direct impact on time, cost and quality of a construction project. This paper is focusing on the preliminary study to determine the factors of waste generation in the construction sites and identify the effectiveness of existing construction waste management practice conducted in Malaysia. The paper will also include the preliminary works of planned research location, data collection method, and analysis to be done by using the Analytical Hierarchy Process (AHP) to help in developing suitable waste management best practice model that can be used in the country.

  4. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    PubMed

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  5. Nondestructive determination of activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabalier, B.

    1996-08-01

    Characterization and appraisal tests include the measurement of activity in raw waste and waste packages. After conditioning, variations in density, matrix composition, and geometry make evaluation of the radionuclide activity in a package destined for storage nearly impossible without measurements and with a low uncertainty. Various nondestructive measuring techniques that use ionizing radiation are employed to characterize waste packages and raw waste. Gamma spectrometry is the most widely used technique because of its simple operation and low cost. This technique is used to quantify the beta-gamma and alpha activity of gamma-emitting radionuclides as well as to check the radioactive homogeneitymore » of the waste packages. Numerous systems for directly measuring waste packages have been developed. Two types of methods may be distinguished, depending on whether results that come from the measurements are weighted by an experimentally determined corrective term or by calculation. Through the MARCO and CARACO measuring systems, a method is described that allows one to quantify the activity of the beta-gamma and alpha radionuclides contained in either a waste package or raw waste whose geometries and material compositions are more or less accurately known. This method is based on (a) measurement by gamma spectrometry of the beta-gamma and alpha activity of the gamma-emitting radionuclides contained in the waste package and (b) the application of calculated corrections; thus, the limitations imposed by reference package geometry and matrix are avoided.« less

  6. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  7. A model for quantifying construction waste in projects according to the European waste list.

    PubMed

    Llatas, C

    2011-06-01

    The new EU challenge is to recover 70% by weight of C&D waste in 2020. Literature reveals that one major barrier is the lack of data. Therefore, this paper presents a model which allows technicians to estimate C&D waste during the design stage in order to promote prevention and recovery. The types and quantities of CW are estimated and managed according to EU guidelines, by building elements and specifically for each project. The model would allow detection of the source of the waste and to adopt other alternative procedures which delete hazardous waste and reduce CW. Likewise, it develops a systematic structure of the construction process, a waste classification system and some analytical expressions which are based on factors. These factors depend on technology and represent a standard on site. It would allow to develop a database of waste anywhere. A Spanish case study is covered. Factors were obtained by studying over 20 dwellings. The source and types of packaging waste, remains, soil and hazardous waste were estimated in detail and were compared with other studies. Results reveal that the model can be implemented in projects and the chances of reducing and recovery C&D waste could be increased, well above the EU challenge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste - 13187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Ivan; Aksyutina, Yuliya; Tietze-Jaensch, Holger

    2013-07-01

    Burn up calculations facilitate a determination of the composition and nuclear inventory of spent nuclear fuel, if operational history is known. In case this information is not available, the total nuclear inventory can be determined by means of destructive or, even on industrial scale, nondestructive measurement methods. For non-destructive measurements however only a few easy-to-measure, so-called key nuclides, are determined due to their characteristic gamma lines or neutron emission. From these measured activities the fuel burn up and cooling time are derived to facilitate the numerical inventory determination of spent fuel elements. Most regulatory bodies require an independent assessment ofmore » nuclear waste properties and their documentation. Prominent part of this assessment is a consistency check of inventory declaration. The waste packages often contain wastes from different types of spent fuels of different history and information about the secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn up and cooling time are determined. These values are obtained from a correlations involving key-nuclides with a certain bandwidth, thus with upper and lower limits. The bandwidth is strongly dependent on secondary reactor parameter such as initial enrichment, temperature and density of the fuel and moderator, hence the reactor type, fuel element geometry and plant operation history. The purpose of our investigation is to look into the scaling and correlation limitations, to define and verify the range of validity and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the real reactor Obrigheim in Germany for which sufficiently precise experimental reference data are available. (authors)« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, J.; Ijiri, Y.; Yamamoto, H.

    This paper presents the implementation of the Barcelona Basic Model (BBM) into the TOUGH-FLAC simulator analyzing the geomechanical behavior of unsaturated soils. We implemented the BBM into TOUGH-FLAC by (1) extending an existing FLAC{sup 3D} module for the Modified Cam-Clay (MCC) model in FLAC{sup 3D} and (2) adding computational routines for suction-dependent strain and net stress (i.e., total stress minus gas pressure) for unsaturated soils. We implemented a thermo-elasto-plastic version of the BBM, wherein the soil strength depends on both suction and temperature. The implementation of the BBM into TOUGH-FLAC was verified and tested against several published numerical model simulationsmore » and laboratory experiments involving the coupled thermal-hydrological-mechanical (THM) behavior of unsaturated soils. The simulation tests included modeling the mechanical behavior of bentonite-sand mixtures, which are being considered as back-fill and buffer materials for geological disposal of spent nuclear fuel. We also tested and demonstrated the use of the BBM and TOUGH-FLAC for a problem involving the coupled THM processes within a bentonite-backfilled nuclear waste emplacement tunnel. The simulation results indicated complex geomechanical behavior of the bentonite backfill, including a nonuniform distribution of buffer porosity and density that could not be captured in an alternative, simplified, linear-elastic swelling model. As a result of the work presented in this paper, TOUGH-FLAC with BBM is now fully operational and ready to be applied to problems associated with nuclear waste disposal in bentonite-backfilled tunnels, as well as other scientific and engineering problems related to the mechanical behavior of unsaturated soils.« less

  10. SOIL AND SEDIMENT SAMPLING METHODS

    EPA Science Inventory

    The EPA Office of Solid Waste and Emergency Response's (OSWER) Office of Superfund Remediation and Technology Innovation (OSRTI) needs innovative methods and techniques to solve new and difficult sampling and analytical problems found at the numerous Superfund sites throughout th...

  11. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  12. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  13. In situ modeling of PAH dynamics in agricultural soils amended with composts using the "VSOIL" platform

    NASA Astrophysics Data System (ADS)

    Brimo, Khaled; Ouvrard, Stéphanie; Houot, Sabine; Lafolie, François; Deschamps, Marjolaine; Benoit, Pierre; Garnier, Patricia

    2017-04-01

    Numerous studies have shown the presence of organic pollutants (OPs) in composts. Compost application in agricultural soil generates flux of OPs and among them polycyclic aromatic hydrocarbons (PAHs). A potential accumulation of PAHs in soils from successive compost applications could imply risks to environment. To explore and design scenarios that help land managers in their impact evaluations when composts are added in soils, there is a need to a new generation of models built from multi-modules that mimic the whole interactions between the different processes describing OP dynamic in soil. Our work is based on the implementation of an interdisciplinary global model for PAHs in soil by coupling modules describing the major physical, biochemical and biological processes influencing the fate of PAHs in soil, with modules that simulate water transfer, heat transfer, solute transport, and organic matter transformation under climatic conditions. The coupling is being facilitated by the «VSOIL» modeling platform. The steps of our modelling study are the following: 1) calibrate the field model using parameters previously estimated in laboratory completed with field data on a short period, 2) test the simulations using field experimental data, 3) build scenarios to explore the impact of PAHs accumulation in a long term (40 years). Our results show that the model can adequately predict the fate of PAHs in soil and can contribute to clarify some of unexplored aspects regarding the behavior of PAHs in soil like their mineralization and stabilization. Scenarios that predict the dynamic of PAHs in soil at long terms show a low PAH accumulation in soil after 40 years due to a high sequestration of the PAH in soils that is slightly higher for municipal solid waste composts than for green waste sludge composts.

  14. Three-dimensional geoelectric modelling with optimal work/accuracy rate using an adaptive wavelet algorithm

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.

    2010-08-01

    Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric modelling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with high spatial variability of electrical conductivities. The linear dependence of the modelling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been amore » limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.« less

  16. Bio-inspired organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Irimia-Vladu, Mihai; Troshin, Pavel A.; Schwabegger, Günther; Bodea, Marius; Schwödiauer, Reinhard; Fergus, Jeffrey W.; Razumov, Vladimir; Bauer, Siegfried; Sariciftci, Niyazi Serdar

    2010-08-01

    Two major concerns in the world nowadays are the plastic consumption and waste. Because to the economic growth and the incessant demand of plastics in developing countries, plastics consumption is projected to increase by a factor of two to three during the actual decade1. As an intuitive example, the amount of municipal solid waste (estimated per person per year) averages ~440 kg for China, ~550 kg for the European Union and ~790 kg for the United States, with almost 50% of the waste being electronic products and plastics1,2. Green technology based on biodegradable/compostable materials is perceived as an ultimate goal for solving waste problems. Currently there are numerous efforts for producing compostable plastic materials for applications in daily life products, such as plastic bags and disposable dishware. When such low-end products are fabricated with compostable materials, electronics included in such goods should be also based on materials that are easily compostable.

  17. Composite analysis E-area vaults and saltstone disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less

  18. Collection of low-grade waste heat for enhanced energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less

  19. Drug product immobilization in recycled polyethylene/polypropylene reclaimed from municipal solid waste: experimental and numerical assessment.

    PubMed

    Saad, Walid; Slika, Wael; Mawla, Zara; Saad, George

    2017-12-01

    Recently, there has been a growing interest in identifying suitable routes for the disposal of pharmaceutical wastes. This study investigates the potential of matrix materials composed of recycled polyethylene/polypropylene reclaimed from municipal solid wastes at immobilizing pharmaceutical solid wastes. Diclofenac (DF) drug product was embedded in boards of recycled plastic material, and leaching in water was assessed at various temperatures. DF concentrations were determined by high-performance liquid chromatography and revealed a maximum leachable fraction of 4% under accelerated conditions of 70°C, and less than 0.3% following 39 days of exposure at 20°C. The Ensemble Kalman Filter was employed to characterize the leaching behavior of DF. The filter verified the occurrence of leaching through diffusion, and was successful in predicting the leaching behavior of DF at 50°C and 70°C.

  20. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  1. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  2. HANFORD RIVER PROTECTION PROJECT ENHANCED MISSION PLANNING THROUGH INNOVATIVE TOOLS LIFECYCLE COST MODELING AND AQUEOUS THERMODYNAMIC MODELING - 12134

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PIERSON KL; MEINERT FL

    2012-01-26

    Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations ofmore » constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.« less

  3. Waste Reduction Model (WARM) Resources for State and Local Government/Solid Waste Planners

    EPA Pesticide Factsheets

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by state and local government/solid waste planners. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  4. Source term evaluation model for high-level radioactive waste repository with decay chain build-up.

    PubMed

    Chopra, Manish; Sunny, Faby; Oza, R B

    2016-09-18

    A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.

  5. Evidence for altered placental blood flow and vascularity in compromised pregnancies

    PubMed Central

    Reynolds, Lawrence P; Caton, Joel S; Redmer, Dale A; Grazul-Bilska, Anna T; Vonnahme, Kimberly A; Borowicz, Pawel P; Luther, Justin S; Wallace, Jacqueline M; Wu, Guoyao; Spencer, Thomas E

    2006-01-01

    The placenta is the organ that transports nutrients, respiratory gases, and wastes between the maternal and fetal systems. Consequently, placental blood flow and vascular development are essential components of normal placental function and are critical to fetal growth and development. Normal fetal growth and development are important to ensure optimum health of offspring throughout their subsequent life course. In numerous sheep models of compromised pregnancy, in which fetal or placental growth, or both, are impaired, utero-placental blood flows are reduced. In the models that have been evaluated, placental vascular development also is altered. Recent studies found that treatments designed to increase placental blood flow can ‘rescue’ fetal growth that was reduced due to low maternal dietary intake. Placental blood flow and vascular development are thus potential therapeutic targets in compromised pregnancies. PMID:16469783

  6. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  7. Elevated expression of activins promotes muscle wasting and cachexia.

    PubMed

    Chen, Justin L; Walton, Kelly L; Winbanks, Catherine E; Murphy, Kate T; Thomson, Rachel E; Makanji, Yogeshwar; Qian, Hongwei; Lynch, Gordon S; Harrison, Craig A; Gregorevic, Paul

    2014-04-01

    In models of cancer cachexia, inhibiting type IIB activin receptors (ActRIIBs) reverse muscle wasting and prolongs survival, even with continued tumor growth. ActRIIB mediates signaling of numerous TGF-β proteins; of these, we demonstrate that activins are the most potent negative regulators of muscle mass. To determine whether activin signaling in the absence of tumor-derived factors induces cachexia, we used recombinant serotype 6 adeno-associated virus (rAAV6) vectors to increase circulating activin A levels in C57BL/6 mice. While mice injected with control vector gained ~10% of their starting body mass (3.8±0.4 g) over 10 wk, mice injected with increasing doses of rAAV6:activin A exhibited weight loss in a dose-dependent manner, to a maximum of -12.4% (-4.2±1.1 g). These reductions in body mass in rAAV6:activin-injected mice correlated inversely with elevated serum activin A levels (7- to 24-fold). Mechanistically, we show that activin A reduces muscle mass and function by stimulating the ActRIIB pathway, leading to deleterious consequences, including increased transcription of atrophy-related ubiquitin ligases, decreased Akt/mTOR-mediated protein synthesis, and a profibrotic response. Critically, we demonstrate that the muscle wasting and fibrosis that ensues in response to excessive activin levels is fully reversible. These findings highlight the therapeutic potential of targeting activins in cachexia.

  8. Decision support models for solid waste management: Review and game-theoretic approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr; Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence; Aravossis, Konstantinos

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decisionmore » support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.« less

  9. Predicting floodplain boundary changes following the Cerro Grande wildfire

    NASA Astrophysics Data System (ADS)

    McLin, Stephen G.; Springer, Everett P.; Lane, Leonard J.

    2001-10-01

    A combined ArcView GIS-HEC modelling application for floodplain analysis of pre- and post-burned watersheds is described. The burned study area is located on Pajarito Plateau near Los Alamos National Laboratory (the Laboratory), where the Cerro Grande Wildfire burned 42 878 acres (17 352 ha) in May 2000. This area is dominated by rugged mountains that are dissected by numerous steep canyons having both ephemeral and perennial channel reaches. Vegetation consists of pinon-juniper woodlands located between 6000 and 7000 ft (1829-2134 m) above mean sea level (MSL), and Ponderosa pine stands between 7000 and 10000 ft MSL (2134-3048 m). Approximately 17% of the burned area is located within the Laboratory, and the remainder is located in upstream or adjacent watersheds. Pre-burn floodplains were previously mapped in 1990-91 using early HEC models as part of the hazardous waste site permitting process. Precipitation and stream gauge data provide essential information characterizing rainfall-runoff relationships before and after the fire. They also provide a means of monitoring spatial and temporal changes as forest recovery progresses. The 2000 summer monsoon began in late June and provided several significant runoff events for model calibration. HEC-HMS modelled responses were sequentially refined so that observed and predicted hydrograph peaks were matched at numerous channel locations. The 100 year, 6 h design storm was eventually used to predict peak hydrographs at critical sites. These results were compared with pre-fire simulations so that new flood-prone areas could be systematically identified. Stream channel cross-sectional geometries were extracted from a gridded 1 ft (0·3 m) digital elevation model (DEM) using ArcView GIS. Then floodpool topwidths, depths, and flow velocities were remapped using the HEC-RAS model. Finally, numerous surveyed channel sections were selectively made at crucial sites for DEM verification. These evaluations provided timely guidance that influenced the decision to construct several flood detention structures that were completed in September 2000. Published in 2001 John Wiley & Sons, Ltd.

  10. TOUGHREACT: a new code of the TOUGH Family for Non-Isothermal multiphase reactive geochemical transport in variably saturated geologic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.

  11. An inexact reverse logistics model for municipal solid waste management systems.

    PubMed

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Shu, Gequn; Tian, Hua; Zhu, Xiuping

    2018-06-01

    A stationary and a transient two-dimensional models, based on the universal conservation laws and coupled with electrochemical reactions, are firstly applied to describe a single thermally-regenerative ammonia-based flow battery (TR-AFB), and emphasis is placed on studying the effects of reactant concentrations, physical properties of the electrolyte, flow rates and geometric parameters of flow channels on the battery performance. The model includes several experimental parameters measured by cyclic voltammetry (CV), chronoamperometry (CA) and Tafel plot. The results indicate that increasing NH3 concentration has a decisive effect on the improvement of power production and is beneficial to use higher Cu2+ concentrations, but the endurance of membrane and self-discharge need to be considered at the same time. It is also suggested that appropriately reducing the initial Cu(NH3)42+ concentration can promote power and energy densities and mitigate cyclical fluctuation. The relation between the energy and power densities is given, and the models are validated by some experimental data.

  13. Numerical modeling of cracking pattern's influence on the dynamic response of thickened tailings disposals: a periodic approach

    NASA Astrophysics Data System (ADS)

    Ferrer, Gabriel; Sáez, Esteban; Ledezma, Christian

    2018-01-01

    Copper production is an essential component of the Chilean economy. During the extraction process of copper, large quantities of waste materials (tailings) are produced, which are typically stored in large tailing ponds. Thickened Tailings Disposal (TTD) is an alternative to conventional tailings ponds. In TTD, a considerable amount of water is extracted from the tailings before their deposition. Once a thickened tailings layer is deposited, it loses water and it shrinks, forming a relatively regular structure of tailings blocks with vertical cracks in between, which are then filled up with "fresh" tailings once the new upper layer is deposited. The dynamic response of a representative column of this complex structure made out of tailings blocks with softer material in between was analyzed using a periodic half-space finite element model. The tailings' behavior was modeled using an elasto-plastic multi-yielding constitutive model, and Chilean earthquake records were used for the seismic analyses. Special attention was given to the liquefaction potential evaluation of TTD.

  14. A GIS-based modeling system for petroleum waste management. Geographical information system.

    PubMed

    Chen, Z; Huang, G H; Li, J B

    2003-01-01

    With an urgent need for effective management of petroleum-contaminated sites, a GIS-aided simulation (GISSIM) system is presented in this study. The GISSIM contains two components: an advanced 3D numerical model and a geographical information system (GIS), which are integrated within a general framework. The modeling component undertakes simulation for the fate of contaminants in subsurface unsaturated and saturated zones. The GIS component is used in three areas throughout the system development and implementation process: (i) managing spatial and non-spatial databases; (ii) linking inputs, model, and outputs; and (iii) providing an interface between the GISSIM and its users. The developed system is applied to a North American case study. Concentrations of benzene, toluene, and xylenes in groundwater under a petroleum-contaminated site are dynamically simulated. Reasonable outputs have been obtained and presented graphically. They provide quantitative and scientific bases for further assessment of site-contamination impacts and risks, as well as decisions on practical remediation actions.

  15. Animal models of the cancer anorexia-cachexia syndrome.

    PubMed

    Bennani-Baiti, Nabila; Walsh, Declan

    2011-09-01

    Cancer cachexia, a complex wasting syndrome, is common in palliative medicine. Animal models expand our understanding of its mechanisms. A review of cancer cachexia and anorexia animal models will help investigators make an informed choice of the study model. Cancer-anorexia cachexia animal models are numerous. No one is ideal. The choice should depend on the research question. To investigate cancer-anorexia cachexia independent of pro-inflammatory cytokine effects, the MAC16 ADK and XK1 are useful. MAC16 ADK helps study the host's tumor metabolic effects, independent of any anorexia or inflammation. XK1 is both anorectic and cachectic, but data about it is limited. All other models induce a host inflammatory response. The Walker 256 ADK and MCG 101 are best avoided due to excessive tumor growth. Since individual models do not address all aspects of the syndrome, use of a combination seems wise. Suggested combinations: MAC16-ADK (non-inflammatory and non-anorectic) with YAH-130 (inflammatory, anorectic, and cachectic), Lewis lung carcinoma (slow onset anorexia) or prostate adenocarcinoma (inflammatory, anorectic but not cachectic) with YAH-130.

  16. Integrated Hydrogeological Model of the General Separations Area, Vol. 2, Rev. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FLACH, GREGORYK.

    1999-04-01

    The 15 mi2 General Separations Area (GSA) contains more than 35 RCRA and CERCLA waste units, and is the focus of numerous ongoing and anticipated contaminant migration and remedial alternatives studies. To meet the analysis needs of GSA remediation programs, a groundwater flow model of the area based on the FACT code was developed. The model is consistent with detailed characterization and monitoring data through 1996. Model preprocessing has been automated so that future updates and modifications can be performed quickly and efficiently. Most remedial action scenarios can be explicitly simulated, including vertical recirculation wells, vertical barriers, surface caps, pumpingmore » wells at arbitrary locations, specified drawdown within well casings (instead of flowrate), and wetland impacts of remedial actions. The model has a fine scale vertical mesh and heterogeneous conductivity field, and includes the vadose zone. Therefore, the model is well suited to support subsequent contaminant transport simulations. the model can provide a common framework for analyzing groundwater flow, contaminant migration, and remedial alternatives across Environmental Restoration programs within the GSA.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.G.; Patterson, A.L.; Wiginton, M.C.

    BWXT Y-12, L.L.C., the Maintenance and Operations (M and O) contractor at the Y-12 National Security Complex (Y-12), practices pollution prevention in daily operations because it recognizes that the implementation of pollution prevention (P2) projects impacting all waste types, discharges, and emissions at the complex saves resources across the board. Projects that reduce solid industrial waste save numerous resources, including valuable landfill space. At Y- 12, most of the solid industrial waste that is not reduced, reused, or recycled is transported to an industrial waste landfill located on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). While themore » current landfill still has capacity, in the past the industrial waste generation across the ORR was impacted when the new landfill was not available to receive waste, but the old landfill was reaching capacity. The potential of having waste with absolutely nowhere to go is simply not an option for a facility with ongoing operations. Avoiding this potential scenario in the memorable past has made Y-12 very aware of the importance of reducing all waste types. While Y-12 aggressively pursues pollution prevention implementation on all waste types, this paper will highlight the use of systems, people, and pollution prevention integration in projects used by Y-12 to holistically reduce the amount of industrial waste being sent to the on-site landfill. Specifically, the design and use of Y-12's Environmental Management System (EMS), the creation of a multi-disciplinary team, and the buy-in and creativity of the site project, Infrastructure Reduction (IR), that generates the largest volumes of waste will be discussed. (authors)« less

  18. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter Andrew

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomicmore » scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.« less

  19. A 3-Dimensional Numerical Modelling Study on the Effects of Different Stress Regimes on the Magnitude of Induced Seismic Events

    NASA Astrophysics Data System (ADS)

    Amini, A.; Eberhardt, E.

    2016-12-01

    Producing oil and gas from shale reservoirs requires permeability enhancement treatments. This is achieved by injecting fluid under pressure to either propagate cracks through the rock (hydraulic fracture) or to stimulate slip across pre-existing fractures (hydroshear), which allows gas or oil to flow more readily into the well bore. After treatment is performed, the fluid is disposed of by injecting it back into the ground. The injection of these fluids, whether related to permeability enhancement or waste water disposal , into deep formations serves to create localized increases in pore pressures and reductions in the effective normal stresses acting on critically stressed faults, resulting in induced earthquakes. There have been numerous reports of anomalous seismic events with high magnitudes felt on surface that have given rise to public concerns. However, it must be recognized that different producing fields in Canada and the U.S. are situated in different tectonic regimes that favour different fault slip mechanisms. This study will explore the importance of stress regime, comparing the generation of induced seismicity under thrust versus strike slip conditions, with focus on their respective magnitudes distributions. To do so, we will first study empirical data pertaining to recorded seismicity related to hydraulic fracture operations with respect to source mechanisms and magnitude distributions. These will be analyzed in parallel with a series of advanced 3-dimensional numerical models using the distinct element code 3DEC to simulate fault slip under different stress regimes.

  20. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  1. Modeling the energy content of combustible ship-scrapping waste at Alang-Sosiya, India, using multiple regression analysis.

    PubMed

    Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K

    2005-01-01

    Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.

  2. Gas production and migration in landfills and geological materials.

    PubMed

    Nastev, M; Therrien, R; Lefebvre, R; Gélinas, P

    2001-11-01

    Landfill gas, originating from the anaerobic biodegradation of the organic content of waste, consists mainly of methane and carbon dioxide, with traces of volatile organic compounds. Pressure, concentration and temperature gradients that develop within the landfill result in gas emissions to the atmosphere and in lateral migration through the surrounding soils. Environmental and safety issues associated with the landfill gas require control of off-site gas migration. The numerical model TOUGH2-LGM (Transport of Unsaturated Groundwater and Heat-Landfill Gas Migration) has been developed to simulate landfill gas production and migration processes within and beyond landfill boundaries. The model is derived from the general non-isothermal multiphase flow simulator TOUGH2, to which a new equation of state module is added. It simulates the migration of five components in partially saturated media: four fluid components (water, atmospheric air, methane and carbon dioxide) and one energy component (heat). The four fluid components are present in both the gas and liquid phases. The model incorporates gas-liquid partitioning of all fluid components by means of dissolution and volatilization. In addition to advection in the gas and liquid phase, multi-component diffusion is simulated in the gas phase. The landfill gas production rate is proportional to the organic substrate and is modeled as an exponentially decreasing function of time. The model is applied to the Montreal's CESM landfill site, which is located in a former limestone rock quarry. Existing data were used to characterize hydraulic properties of the waste and the limestone. Gas recovery data at the site were used to define the gas production model. Simulations in one and two dimensions are presented to investigate gas production and migration in the landfill, and in the surrounding limestone. The effects of a gas recovery well and landfill cover on gas migration are also discussed.

  3. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective

    PubMed Central

    2017-01-01

    Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent. PMID:28513150

  4. Methods of vitrifying waste with low melting high lithia glass compositions

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  5. Modelling of Two-Stage Methane Digestion With Pretreatment of Biomass

    NASA Astrophysics Data System (ADS)

    Dychko, A.; Remez, N.; Opolinskyi, I.; Kraychuk, S.; Ostapchuk, N.; Yevtieieva, L.

    2018-04-01

    Systems of anaerobic digestion should be used for processing of organic waste. Managing the process of anaerobic recycling of organic waste requires reliable predicting of biogas production. Development of mathematical model of process of organic waste digestion allows determining the rate of biogas output at the two-stage process of anaerobic digestion considering the first stage. Verification of Konto's model, based on the studied anaerobic processing of organic waste, is implemented. The dependencies of biogas output and its rate from time are set and may be used to predict the process of anaerobic processing of organic waste.

  6. A multi-objective model for sustainable recycling of municipal solid waste.

    PubMed

    Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz

    2017-04-01

    The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.

  7. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  8. An engineering assessment of the burning of the combustible fraction of construction and demolition wastes in a redundant brick kiln.

    PubMed

    Chang, N B; Lin, K S; Sun, Y P; Wang, H P

    2001-12-01

    This paper confirms both technical feasibility and economic potential via the use of redundant brick kilns as an alternative option for disposal of the combustible fractions of construction and demolition wastes by a three-stage analysis. To assess such an idea, one brick kiln was selected for performing an engineering feasibility study. First of all, field sampling and lab-analyses were carried out to gain a deeper understanding of the physical, chemical, and thermodynamic properties of the combustible fractions of construction and demolition wastes. Kinetic parameters for the oxidation of the combustible fractions of construction and demolition wastes were therefore numerically calculated from the weight loss data obtained through a practice of thermogravimetric analyzer (TGA). Secondly, an engineering assessment for retrofitting the redundant brick kiln was performed based on integrating several new and existing unit operations, consisting of waste storage, shredding, feeding, combustion, flue gas cleaning, and ash removal. Such changes were subject to the operational condition in accordance with the estimated mass and energy balances. Finally, addressing the economic value of energy recovery motivated a renewed interest to convert the combustible fractions of construction and demolition wastes into useful hot water for secondary uses.

  9. Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants

    NASA Astrophysics Data System (ADS)

    Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James

    2017-05-01

    Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.

  10. Mechanical and Physical Performance of Concrete Including Waste Electrical Cable Rubber

    NASA Astrophysics Data System (ADS)

    Taner Yildirim, Salih; Pelin Duygun, Nur

    2017-10-01

    Solid wastes are important environmental problem all over the World. Consumption of the plastic solid waste covers big portion within the total solid waste. Although a numerous plastic material is subjected to the recycling process, it is not easy to be destroyed by nature. One of the recommended way to prevent is to utilize as an aggregate in cement-based material. There are many researches on use of recycling rubber in concrete. However, studies on recycling of waste electrical cable rubber (WECR) in concrete is insufficient although there are many research on waste tyre rubbers in concrete. In this study, fine aggregate was replaced with WECR which were 5%, 10%, and 15 % of the total aggregate volume in the concrete and researched workability, unit weight, water absorption, compressive strength, flexural strength, ultrasonic pulse velocity, modulus of elasticity, and abrasion resistance of concrete. As a result of experimental studies, increase of WECR amount in concrete increases workability due to lack of adherence between cement paste and WECR, and hydrophobic structure of WECR while it influences negatively mechanical properties of concrete. It is possible to use WECR in concrete taking into account the reduction in mechanical properties.

  11. Minimization and management of wastes from biomedical research.

    PubMed Central

    Rau, E H; Alaimo, R J; Ashbrook, P C; Austin, S M; Borenstein, N; Evans, M R; French, H M; Gilpin, R W; Hughes, J; Hummel, S J; Jacobsohn, A P; Lee, C Y; Merkle, S; Radzinski, T; Sloane, R; Wagner, K D; Weaner, L E

    2000-01-01

    Several committees were established by the National Association of Physicians for the Environment to investigate and report on various topics at the National Leadership Conference on Biomedical Research and the Environment held at the 1--2 November 1999 at the National Institutes of Health in Bethesda, Maryland. This is the report of the Committee on Minimization and Management of Wastes from Biomedical Research. Biomedical research facilities contribute a small fraction of the total amount of wastes generated in the United States, and the rate of generation appears to be decreasing. Significant reductions in generation of hazardous, radioactive, and mixed wastes have recently been reported, even at facilities with rapidly expanding research programs. Changes in the focus of research, improvements in laboratory techniques, and greater emphasis on waste minimization (volume and toxicity reduction) explain the declining trend in generation. The potential for uncontrolled releases of wastes from biomedical research facilities and adverse impacts on the general environment from these wastes appears to be low. Wastes are subject to numerous regulatory requirements and are contained and managed in a manner protective of the environment. Most biohazardous agents, chemicals, and radionuclides that find significant use in research are not likely to be persistent, bioaccumulative, or toxic if they are released. Today, the primary motivations for the ongoing efforts by facilities to improve minimization and management of wastes are regulatory compliance and avoidance of the high disposal costs and liabilities associated with generation of regulated wastes. The committee concluded that there was no evidence suggesting that the anticipated increases in biomedical research will significantly increase generation of hazardous wastes or have adverse impacts on the general environment. This conclusion assumes the positive, countervailing trends of enhanced pollution prevention efforts by facilities and reductions in waste generation resulting from improvements in research methods will continue. PMID:11121362

  12. A novel methodology to estimate the evolution of construction waste in construction sites.

    PubMed

    Katz, Amnon; Baum, Hadassa

    2011-02-01

    This paper focuses on the accumulation of construction waste generated throughout the erection of new residential buildings. A special methodology was developed in order to provide a model that will predict the flow of construction waste. The amount of waste and its constituents, produced on 10 relatively large construction sites (7000-32,000 m(2) of built area) was monitored periodically for a limited time. A model that predicts the accumulation of construction waste was developed based on these field observations. According to the model, waste accumulates in an exponential manner, i.e. smaller amounts are generated during the early stages of construction and increasing amounts are generated towards the end of the project. The total amount of waste from these sites was estimated at 0.2m(3) per 1m(2) floor area. A good correlation was found between the model predictions and actual data from the field survey. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Analytical and Numerical Solutions of Generalized Fokker-Planck Equations - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prinja, Anil K.

    The overall goal of this project was to develop advanced theoretical and numerical techniques to quantitatively describe the spreading of a collimated beam of charged particles in space, in angle, and in energy, as a result of small deflection, small energy transfer Coulomb collisions with the target nuclei and electrons. Such beams arise in several applications of great interest in nuclear engineering, and include electron and ion radiotherapy, ion beam modification of materials, accelerator transmutation of waste, and accelerator production of tritium, to name some important candidates. These applications present unique and difficult modeling challenges, but from the outset aremore » amenable to the language of ''transport theory'', which is very familiar to nuclear engineers and considerably less-so to physicists and material scientists. Thus, our approach has been to adopt a fundamental description based on transport equations, but the forward peakedness associated with charged particle interactions precludes a direct application of solution methods developed for neutral particle transport. Unique problem formulations and solution techniques are necessary to describe the transport and interaction of charged particles. In particular, we have developed the Generalized Fokker-Planck (GFP) approach to describe the angular and radial spreading of a collimated beam and a renormalized transport model to describe the energy-loss straggling of an initially monoenergetic distribution. Both analytic and numerical solutions have been investigated and in particular novel finite element numerical methods have been developed. In the first phase of the project, asymptotic methods were used to develop closed form solutions to the GFP equation for different orders of expansion, and was described in a previous progress report. In this final report we present a detailed description of (i) a novel energy straggling model based on a Fokker-Planck approximation but which is adapted for a multigroup transport setting, and (ii) two unique families of discontinuous finite element schemes, one linear and the other nonlinear.« less

  14. A model based on feature objects aided strategy to evaluate the methane generation from food waste by anaerobic digestion.

    PubMed

    Yu, Meijuan; Zhao, Mingxing; Huang, Zhenxing; Xi, Kezhong; Shi, Wansheng; Ruan, Wenquan

    2018-02-01

    A model based on feature objects (FOs) aided strategy was used to evaluate the methane generation from food waste by anaerobic digestion. The kinetics of feature objects was tested by the modified Gompertz model and the first-order kinetic model, and the first-order kinetic hydrolysis constants were used to estimate the reaction rate of homemade and actual food waste. The results showed that the methane yields of four feature objects were significantly different. The anaerobic digestion of homemade food waste and actual food waste had various methane yields and kinetic constants due to the different contents of FOs in food waste. Combining the kinetic equations with the multiple linear regression equation could well express the methane yield of food waste, as the R 2 of food waste was more than 0.9. The predictive methane yields of the two actual food waste were 528.22 mL g -1  TS and 545.29 mL g -1  TS with the model, while the experimental values were 527.47 mL g -1  TS and 522.1 mL g -1  TS, respectively. The relative error between the experimental cumulative methane yields and the predicted cumulative methane yields were both less than 5%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Vadose Zone Transport Field Study: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets tomore » validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.« less

  16. Comparative lifecycle assessment of alternatives for waste management in Rio de Janeiro - Investigating the influence of an attributional or consequential approach.

    PubMed

    Bernstad Saraiva, A; Souza, R G; Valle, R A B

    2017-10-01

    The environmental impacts from three management alternatives for organic fraction of municipal solid waste were compared using lifecycle assessment methodology. The alternatives (sanitary landfill, selective collection of organic waste for anaerobic digestion and anaerobic digestion after post-separation of organic waste) were modelled applying an attributional as well as consequential approach, in parallel with the aim of identifying if and how these approaches can affect results and conclusions. The marginal processes identified in the consequential modelling were in general associated with higher environmental impacts than average processes modelled with an attributional approach. As all investigated waste management alternatives result in net-substitution of energy and in some cases also materials, the consequential modelling resulted in lower absolute environmental impacts in five of the seven environmental impact categories assessed in the study. In three of these, the chosen modelling approach can alter the hierarchy between compared waste management alternatives. This indicates a risk of underestimating potential benefits from efficient energy recovery from waste when applying attributional modelling in contexts in which electricity provision historically has been dominated by technologies presenting rather low environmental impacts, but where projections point at increasing impacts from electricity provision in coming years. Thus, in the present case study, the chosen approach affects both absolute and relative results from the comparison. However, results were largely related to the processes identified as affected by investigated changes, and not merely the chosen modelling approach. The processes actually affected by future choices between different waste management alternatives are intrinsically uncertain. The study demonstrates the benefits of applying different assumptions regarding the processes affected by investigated choices - both for provision of energy and materials substituted by waste management processes in consequential LCA modelling, in order to present outcomes that are relevant as decision support within the waste management sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, R.L.; Kalbus, J.S.; Howarth, S.M.

    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relativemore » permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties.« less

  18. SURVIVAL OF SALMONELLA IN WASTE EGG WASH WATER

    EPA Science Inventory

    The survival of salmonellae under various environmental conditions has been subject of numerous research studies. Due to low densities of these organisms in natural samples, laboratory or clinical cultures were used to ensure that the initial density of salmonellae was sufficien...

  19. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitrization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Dee, P. E.; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the US Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development towards establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill disposal. The emerging plasma environmental thermal treatment process has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: (1) pyrotechnic smoke assemblies, (2) thermal batteries, (3) proximity fuses, (4) cartridge actuated devices (CADs), and (5) propellant actuated devices (PADs). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilotscale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  20. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitarization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the U.S. Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development toward establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill (Class 1) disposal. The emerging pl asma environmental thermal treatment process, has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: pyrotechnic smoke assemblies, thermal batteries, proximity fuses, cartridge actuated devices (CAD's), and propellant actuated devices (PAD's). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilot-scale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  1. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.

    PubMed

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L

    2009-08-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  2. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-01-01

    Yucca Mountain is an arid site proposed for consideration as the United States’ first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500–1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5–4.5 mm/yr, or 2–3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada (Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.

  3. An incentive-based source separation model for sustainable municipal solid waste management in China.

    PubMed

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.

  4. Revolutionary advances in medical waste management. The Sanitec system.

    PubMed

    Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A

    2006-01-01

    It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the medical waste issue. The Sanitec system is the right choice for healthcare and medical waste professionals around the world.

  5. Developing a model for moisture in saltcake waste tanks: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, C.S.; Aimo, N.; Fayer, M.J.

    1997-07-01

    This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less

  6. Patterns of waste generation: A gradient boosting model for short-term waste prediction in New York City.

    PubMed

    Johnson, Nicholas E; Ianiuk, Olga; Cazap, Daniel; Liu, Linglan; Starobin, Daniel; Dobler, Gregory; Ghandehari, Masoud

    2017-04-01

    Historical municipal solid waste (MSW) collection data supplied by the New York City Department of Sanitation (DSNY) was used in conjunction with other datasets related to New York City to forecast municipal solid waste generation across the city. Spatiotemporal tonnage data from the DSNY was combined with external data sets, including the Longitudinal Employer Household Dynamics data, the American Community Survey, the New York City Department of Finance's Primary Land Use and Tax Lot Output data, and historical weather data to build a Gradient Boosting Regression Model. The model was trained on historical data from 2005 to 2011 and validation was performed both temporally and spatially. With this model, we are able to accurately (R2>0.88) forecast weekly MSW generation tonnages for each of the 232 geographic sections in NYC across three waste streams of refuse, paper and metal/glass/plastic. Importantly, the model identifies regularity of urban waste generation and is also able to capture very short timescale fluctuations associated to holidays, special events, seasonal variations, and weather related events. This research shows New York City's waste generation trends and the importance of comprehensive data collection (especially weather patterns) in order to accurately predict waste generation. Copyright © 2017. Published by Elsevier Ltd.

  7. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes.

    PubMed

    García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh; Lema, Juan M; Rodríguez, Jorge; Steyer, Jean-Philippe; Torrijos, Michel

    2015-01-01

    A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 gVS/Ld. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco

    2013-11-15

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less

  9. Race, Wealth, and Solid Waste Facilities in North Carolina

    PubMed Central

    Norton, Jennifer M.; Wing, Steve; Lipscomb, Hester J.; Kaufman, Jay S.; Marshall, Stephen W.; Cravey, Altha J.

    2007-01-01

    Background Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Objective Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. Methods We used census block groups to obtain racial and economic characteristics, and information on solid waste facilities was abstracted from solid waste facility permit records. We used logistic regression to compute prevalence odds ratios for 2003, and Cox regression to compute hazard ratios of facilities issued permits between 1990 and 2003. Results The adjusted prevalence odds of a solid waste facility was 2.8 times greater in block groups with ≥50% people of color compared with block groups with < 10% people of color, and 1.5 times greater in block groups with median house values < $60,000 compared with block groups with median house values ≥$100,000. Among block groups that did not have a previously permitted solid waste facility, the adjusted hazard of a new permitted facility was 2.7 times higher in block groups with ≥50% people of color compared with block groups with < 10% people of color. Conclusion Solid waste facilities present numerous public health concerns. In North Carolina solid waste facilities are disproportionately located in communities of color and low wealth. In the absence of action to promote environmental justice, the continued need for new facilities could exacerbate this environmental injustice. PMID:17805426

  10. Thermodynamic model for uranium release from hanford site tank residual waste.

    PubMed

    Cantrell, Kirk J; Deutsch, William J; Lindberg, Mike J

    2011-02-15

    A thermodynamic model of U solid-phase solubility and paragenesis was developed for Hanford Site tank residual waste that will remain in place after tank closure. The model was developed using a combination of waste composition data, waste leach test data, and thermodynamic modeling of the leach test data. The testing and analyses were conducted using actual Hanford Site tank residual waste. Positive identification of U phases by X-ray diffraction was generally not possible either because solids in the waste were amorphous or their concentrations were not detectable by XRD for both as-received and leached residual waste. Three leachant solutions were used in the studies: deionized water, CaCO3 saturated solution, and Ca(OH)2 saturated solution. Analysis of calculated saturation indices indicate that NaUO2PO4·xH2O and Na2U2O7(am) are present in the residual wastes initially. Leaching of the residual wastes with deionized water or CaCO3 saturated solution results in preferential dissolution Na2U2O7(am) and formation of schoepite. Leaching of the residual wastes with Ca(OH)2 saturated solution appears to result in transformation of both NaUO2PO4·xH2O and Na2U2O7(am) to CaUO4. Upon the basis of these results, the paragenetic sequence of secondary phases expected to occur as leaching of residual waste progresses for two tank closure scenarios was identified.

  11. Injectable barriers for waste isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persoff, P.; Finsterle, S.; Moridis, G.J.

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture themore » formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.« less

  12. A Numerical and Experimental Study of Ejector Internal Flow Structure and Geometry Modification for Maximized Performance

    NASA Astrophysics Data System (ADS)

    Falsafioon, Mehdi; Aidoun, Zine; Poirier, Michel

    2017-12-01

    A wide range of industrial refrigeration systems are good candidates to benefit from the cooling and refrigeration potential of supersonic ejectors. These are thermally activated and can use waste heat recovery from industrial processes where it is abundantly generated and rejected to the environment. In other circumstances low cost heat from biomass or solar energy may also be used in order to produce a cooling effect. Ejector performance is however typically modest and needs to be maximized in order to take full advantage of the simplicity and low cost of the technology. In the present work, the behavior of ejectors with different nozzle exit positions has been investigated using a prototype as well as a CFD model. The prototype was used in order to measure the performance advantages of refrigerant (R-134a) flowing inside the ejector. For the CFD model, it is assumed that the ejectors are axi-symmetric along x-axis, thus the generated model is in 2D. The preliminary CFD results are validated with experimental data over a wide range of conditions and are in good accordance in terms of entrainment and compression ratios. Next, the flow patterns of four different topologies are studied in order to discuss the optimum geometry in term of ejector entrainment improvement. Finally, The numerical simulations were used to find an optimum value corresponding to maximized entrainment ratio for fixed operating conditions.

  13. Research challenges in municipal solid waste logistics management.

    PubMed

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparison and Tensorial Formulation of Inelastic Constitutive Models of Salt Rock Behaviour and Efficient Numerical Implementatio

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Böttcher, N.; Görke, U. J.; Kolditz, O.

    2014-12-01

    The design process of geotechnical installations includes the application of numerical simulation tools for safety assessment, dimensioning and long term effectiveness estimations. Underground salt caverns can be used for the storage of natural gas, hydrogen, oil, waste or compressed air. For their design one has to take into account fluctuating internal pressures due to different levels of filling, the stresses imposed by the surrounding rock mass, irregular geometries and possibly heterogeneous material properties [3] in order to estimate long term cavern convergence as well as locally critical wall stresses. Constitutive models applied to rock salt are usually viscoplastic in nature and most often based on a Burgers-type rheological model extended by non-linear viscosity functions and/or plastic friction elements. Besides plastic dilatation, healing and damage are sometimes accounted for as well [2]. The scales of the geotechnical system to be simulated and the laboratory tests from which material parameters are determined are vastly different. The most common material testing modalities to determine material parameters in geoengineering are the uniaxial and the triaxial compression tests. Some constitutive formulations in widespread use are formulated based on equivalent rather than tensorial quantities valid under these specific test conditions and are subsequently applied to heterogeneous underground systems and complex 3D load cases. We show here that this procedure is inappropriate and can lead to erroneous results. We further propose alternative formulations of the constitutive models in question that restore their validity under arbitrary loading conditions. For an efficient numerical simulation, the discussed constitutive models are integrated locally with a Newton-Raphson algorithm that directly provides the algorithmically consistent tangent matrix for the global Newton iteration of the displacement based finite element formulation. Finally, the finite element implementations of the proposed constitutive formulations are employed to simulate an underground salt cavern used for compressed air energy storage with OpenGeoSys [1]. Transient convergence and stress fields are evaluated for typical fluctuating operation pressure regimes.

  15. Quantifying the transport impacts of domestic waste collection strategies.

    PubMed

    McLeod, Fraser; Cherrett, Tom

    2008-11-01

    This paper models the effects of three different options for domestic waste collection using data from three Hampshire authorities: (i) joint working between neighbouring waste collection authorities; (ii) basing vehicles at waste disposal sites; and (iii) alternate weekly collection of residual waste and dry recyclables. A vehicle mileage savings of 3% was modelled for joint working, where existing vehicle allocations to depots were maintained, which increased to 5.9% when vehicles were re-allocated to depots optimally. Vehicle mileage was reduced by 13.5% when the collection rounds were based out of the two waste disposal sites rather than out of the existing depots, suggesting that the former could be the most effective place to keep vehicles providing that travel arrangements for the crews could be made. Alternate weekly collection was modelled to reduce vehicle mileage by around 8% and time taken by 14%, when compared with a typical scenario of weekly collection of residual and fortnightly collection of recyclable waste. These results were based on an assumption that 20% of the residual waste would be directly diverted into the dry recyclables waste stream.

  16. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, G.; Yucel, V.; Desotell, L.

    2006-07-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less

  17. Plasma Processing of Model Residential Solid Waste

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  18. 40 CFR 60.2630 - What should I include in my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management.... Model Rule—Operator Training and Qualification ...

  19. 40 CFR 60.2630 - What should I include in my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management.... Model Rule—Operator Training and Qualification ...

  20. Applying multi-criteria decision-making to improve the waste reduction policy in Taiwan.

    PubMed

    Su, Jun-Pin; Hung, Ming-Lung; Chao, Chia-Wei; Ma, Hwong-wen

    2010-01-01

    Over the past two decades, the waste reduction problem has been a major issue in environmental protection. Both recycling and waste reduction policies have become increasingly important. As the complexity of decision-making has increased, it has become evident that more factors must be considered in the development and implementation of policies aimed at resource recycling and waste reduction. There are many studies focused on waste management excluding waste reduction. This study paid more attention to waste reduction. Social, economic, and management aspects of waste treatment policies were considered in this study. Further, a life-cycle assessment model was applied as an evaluation system for the environmental aspect. Results of both quantitative and qualitative analyses on the social, economic, and management aspects were integrated via the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method into the comprehensive decision-making support system of multi-criteria decision-making (MCDM). A case study evaluating the waste reduction policy in Taoyuan County is presented to demonstrate the feasibility of this model. In the case study, reinforcement of MSW sorting was shown to be the best practice. The model in this study can be applied to other cities faced with the waste reduction problems.

  1. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.

    PubMed

    Liang, Sai; Zhang, Tianzhu; Xu, Yijian

    2012-03-01

    Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.

    PubMed

    Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua

    2017-11-01

    In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6  t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3  t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.

  3. Analysis on 3RWB model (Reduce, reuse, recycle, and waste bank) in comprehensive waste management toward community-based zero waste

    NASA Astrophysics Data System (ADS)

    Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi

    2017-06-01

    Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.

  4. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    NASA Astrophysics Data System (ADS)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  5. A Model of Solid Waste Management Based Multilateral Co-Operation in Semi-Urban Community

    ERIC Educational Resources Information Center

    Kanchanabhandhu, Chanchai; Woraphong, Seree

    2016-01-01

    The purpose of this research was to construct a model of solid waste management based on multilateral cooperation in semi-urban community. Its specific objectives were to 1) study the solid waste situation and involvement of community in the solid waste management in Wangtaku Sub-district, Muang District, Nakhon Pathom Province; 2) construct a…

  6. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  7. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  8. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  9. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  10. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  11. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  12. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  13. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  14. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  15. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  16. Economic and environmental optimization of waste treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Münster, M.; Ravn, H.; Hedegaard, K.

    2015-04-15

    Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectivesmore » given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.« less

  17. COMPOSITE SAMPLING FOR SOIL VOC ANALYSIS

    EPA Science Inventory

    Data published by numerous researchers over the last decade demonstrate that there is a high degree of spatial variability in the measurement of volatile organic compounds (VOCs) in soil at contaminated waste sites. This phenomenon is confounded by the use of a small sample aliqu...

  18. Survival of Salmonella spp. In Waste Egg Wash Water

    EPA Science Inventory

    The survival of salmonellae under various environmental conditions has been subject of numerous research studies. Due to low densities of these organisms in natural samples, laboratory or clinical cultures were used to ensure that the initial density of salmonellae was sufficien...

  19. The use of fly ash in highway construction U.S. 84/98 Adams County.

    DOT National Transportation Integrated Search

    2000-05-01

    Much attention has been focused in recent years on conserving natural resources and energy. Numerous waste products and/or byproducts from various industrial and commercial processes, normally deposited in landfills, have been proposed for use as alt...

  20. Hazardous Waste Cleanup: Wyeth Holdings, L.L.C. in Bridgewater, New Jersey

    EPA Pesticide Factsheets

    Wyeth Holdings facility is located on East Main Street in Bridgewater, New Jersey. The site is approximately 435 acres and has been used for numerous chemical and pharmaceutical manufacturing operations for over 75 years. In 1994, American Home Products

  1. Leachate flow around a well in MSW landfill: Analysis of field tests using Richards model.

    PubMed

    Slimani, R; Oxarango, L; Sbartai, B; Tinet, A-J; Olivier, F; Dias, D

    2017-05-01

    During the lifespan of a Municipal Solid Waste landfill, its leachate drainage system may get clogged. Then, as a consequence of rainfall, leachate generation and possibly leachate injection, the moisture content in the landfill increases to the point that a leachate mound could be created. Therefore, pumping the leachate becomes a necessary solution. This paper presents an original analysis of leachate pumping and injection in an instrumented well. The water table level around the well is monitored by nine piezometers which allow the leachate flow behaviour to be captured. A numerical model based on Richards equation and an exponential relationship between saturated hydraulic conductivity and depth is used to analyze the landfill response to pumping and injection. Decreasing permeability with depth appears to have a major influence on the behaviour of the leachate flow. It could have a drastic negative impact on the pumping efficiency with a maximum quasi-stationary pumping rate limited to approximately 1m 3 /h for the tested well and the radius of influence is less than 20m. The numerical model provides a reasonable description of both pumping and injection tests. However, an anomalous behaviour observed at the transition between pumping and recovery phases is observed. This could be due to a limitation of the Richards model in that it neglects the gas phase behaviour and other double porosity heterogeneous effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowlymore » biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.« less

  3. Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.

    PubMed

    Yang, Yongxiang; Pijnenborg, Marc J A; Reuter, Markus A; Verwoerd, Joep

    2005-01-01

    Hazardous wastes have complex physical forms and chemical compositions and are normally incinerated in rotary kilns for safe disposal and energy recovery. In the rotary kiln, the multifeed stream and wide variation of thermal, physical, and chemical properties of the wastes cause the incineration system to be highly heterogeneous, with severe temperature fluctuations and unsteady combustion chemistry. Incomplete combustion is often the consequence, and the process is difficult to control. In this article, modeling of the waste combustion is described by using computational fluid dynamics (CFD). Through CFD simulation, gas flow and mixing, turbulent combustion, and heat transfer inside the incinerator were predicted and visualized. As the first step, the waste in various forms was modeled to a hydrocarbon-based virtual fuel mixture. The combustion of the simplified waste was then simulated with a seven-gas combustion model within a CFD framework. Comparison was made with previous global three-gas combustion model with which no chemical behavior can be derived. The distribution of temperature and chemical species has been investigated. The waste combustion model was validated with temperature measurements. Various operating conditions and the influence on the incineration performance were then simulated. Through this research, a better process understanding and potential optimization of the design were attained.

  4. A review and framework for understanding the potential impact of poor solid waste management on health in developing countries.

    PubMed

    Ziraba, Abdhalah K; Haregu, Tilahun Nigatu; Mberu, Blessing

    2016-01-01

    The increase in solid waste generated per capita in Africa has not been accompanied by a commensurate growth in the capacity and funding to manage it. It is reported that less than 30% of urban waste in developing countries is collected and disposed appropriately. The implications of poorly managed waste on health are numerous and depend on the nature of the waste, individuals exposed, duration of exposure and availability of interventions for those exposed. To present a framework for understanding the linkages between poor solid waste management, exposure and associated adverse health outcomes. The framework will aid understanding of the relationships, interlinkages and identification of the potential points for intervention. Development of the framework was informed by a review of literature on solid waste management policies, practices and its impact on health in developing countries. A configurative synthesis of literature was applied to develop the framework. Several iterations of the framework were reviewed by experts in the field. Each linkage and outcomes are described in detail as outputs of this study. The resulting framework identifies groups of people at a heightened risk of exposure and the potential health consequences. Using the iceberg metaphor, the framework illustrates the pathways and potential burden of ill-health related to solid waste that is hidden but rapidly unfolding with our inaction. The existing evidence on the linkage between poor solid waste management and adverse health outcomes calls to action by all stakeholders in understanding, prioritizing, and addressing the issue of solid waste in our midst to ensure that our environment and health are preserved. A resulting framework developed in this study presents a clearer picture of the linkages between poor solid waste management and could guide research, policy and action.

  5. Multiple system modelling of waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, Ola, E-mail: ola.eriksson@hig.se; Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle; Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se

    2011-12-15

    Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions havemore » developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.« less

  6. Constitutive Modeling of the Thermomechanical Behavior of Rock Salt

    NASA Astrophysics Data System (ADS)

    Hampel, A.

    2016-12-01

    For the safe disposal of heat-generating high-level radioactive waste in rock salt formations, highly reliable numerical simulations of the thermomechanical and hydraulic behavior of the host rock have to be performed. Today, the huge progress in computer technology has enabled experts to calculate large and detailed computer models of underground repositories. However, the big ad­van­ces in computer technology are only beneficial when the applied material models and modeling procedures also meet very high demands. They result from the fact that the evaluation of the long-term integrity of the geological barrier requires an extra­polation of a highly nonlinear deforma­tion behavior to up to 1 million years, while the underlying experimental investigations in the laboratory or in situ have a duration of only days, weeks or at most some years. Several advanced constitutive models were developed and continuously improved to describe the dependences of various deformation phenomena in rock salt on in-situ relevant boundary conditions: transient and steady-state creep, evolution of damage and dilatancy in the DRZ, failure, post-failure behavior, residual strength, damage and dilatancy reduction, and healing. In a joint project series between 2004 and 2016, fundamental features of the advanced models were investigated and compared in detail with benchmark calculations. The study included procedures for the determination of characteristic salt-type-specific model parameter values and for the performance of numerical calculations of underground structures. Based on the results of this work and on specific laboratory investigations, the rock mechanical modeling is currently developed further in a common research project of experts from Germany and the United States. In this presentation, an overview about the work and results of the project series is given and the current joint research project WEIMOS is introduced.

  7. On The Cusp of the New Spatial Challenges - The Thermal Waste Processing Plant as an Element of Urban Space

    NASA Astrophysics Data System (ADS)

    Wójtowicz-Wróbel, Agnieszka

    2017-10-01

    The goal of this paper is to answer the question about the current importance of structures associated with the thermal processing of waste within the space of Polish cities and what status can they have in the functional and spatial structure of Polish cities in the future. The construction of thermal waste processing plants in Poland is currently a new and important problem, with numerous structures of this type being built due to increasing care for the natural environment, with the introduction of legal regulations, as well as due to the possibility of obtaining large external funding for the purposes of undertaking pro-environmental spatial initiatives, etc. For this reason, the paper contains research on the increase in the number of thermal waste processing plants in Poland in recent years. The abovementioned data was compared with similar information from other European Union member states. In the group containing Polish thermal waste processing plants, research was performed regarding the stage of the construction of a plant (operating plant, plant under construction, design in a construction phase, etc.). The paper also contains a listing of the functions other than the basic form of use, which is the incineration of waste - similarly to numerous foreign examples - that the environmentally friendly waste incineration plants fulfil in Poland, dividing the additional forms of use into "hard" elements (at the design level, requiring the expansion of a building featuring new elements that are not directly associated with the basic purpose of waste processing) and soft (social, educational, promotional actions, as well as other endeavours that require human involvement, but that do not entail significant design work on the buildings itself, expanding its form of use, etc.) as well as mixed activity, which required design work, but on a relatively small scale. Research was also conducted regarding the placement of thermal waste processing plants within the spatial structures of cities (a city’s outer zone, central zone, etc.) and their placement in relation to the more important urban units, in addition to specifying what type of urban structure they are located in. On the basis of the research, we can observe that the construction of environmentally friendly thermal waste processing plants is a valid and new problem in Poland, and the potential that lies in the construction of a new environmentally friendly structure and the possibility of using it to improve the quality of an urban space is often left untapped, bringing the construction of such a structure down to nothing but its technological function. The research can serve as a comparative study for similar experiences in other countries, or for studies related to urban structures and their elements.

  8. Prediction of the amount of urban waste solids by applying a gray theoretical model.

    PubMed

    Li, Xiao-Ming; Zeng, Guang-Ming; Wang, Ming; Liu, Jin-Jin

    2003-01-01

    Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non-linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0, 0.21(2)), and the probability of the residual within the range ( -0.17, 0.19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.

  9. Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.

    2010-10-01

    Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less

  10. A system dynamics-based environmental performance simulation of construction waste reduction management in China.

    PubMed

    Ding, Zhikun; Yi, Guizhen; Tam, Vivian W Y; Huang, Tengyue

    2016-05-01

    A huge amount of construction waste has been generated from increasingly higher number of construction activities than in the past, which has significant negative impacts on the environment if they are not properly managed. Therefore, effective construction waste management is of primary importance for future sustainable development. Based on the theory of planned behaviors, this paper develops a system dynamic model of construction waste reduction management at the construction phase to simulate the environmental benefits of construction waste reduction management. The application of the proposed model is shown using a case study in Shenzhen, China. Vensim is applied to simulate and analyze the model. The simulation results indicate that source reduction is an effective waste reduction measure which can reduce 27.05% of the total waste generation. Sorting behaviors are a premise for improving the construction waste recycling and reuse rates which account for 15.49% of the total waste generated. The environmental benefits of source reduction outweigh those of sorting behaviors. Therefore, to achieve better environmental performance of the construction waste reduction management, attention should be paid to source reduction such as low waste technologies and on-site management performance. In the meantime, sorting behaviors encouragement such as improving stakeholders' waste awareness, refining regulations, strengthening government supervision and controlling illegal dumping should be emphasized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Modeling and simulation of large scale stirred tank

    NASA Astrophysics Data System (ADS)

    Neuville, John R.

    The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the agitation of the vessel is adequate to produce a homogenous mixture but not so high that it produces excessive erosion to internal components. The main findings reported by this study were: (1) Careful consideration of the fluid yield stress characteristic is required to make predictions of fluid flow behavior. Laminar Models can predict flow patterns and stagnant regions in the tank until full movement of the flow field occurs. Power Curves and flow patterns were developed for the full scale mixing model to show the differences in expected performance of the mixing process for a broad range of fluids that exhibit Herschel--Bulkley and Bingham Plastic flow behavior. (2) The impeller power demand is independent of the flow model selection for turbulent flow fields in the region of the impeller. The laminar models slightly over predicted the agitator impeller power demand produced by turbulent models. (3) The CFD results show that the power number produced by the mixing system is independent of size. The 40 gallon model produced the same power number results as the 9300 gallon model for the same process conditions. (4) CFD Results show that the Scale-Up of fluid motion in a 40 gallon tank should compare with fluid motion at full scale, 9300 gallons by maintaining constant impeller Tip Speed.

  12. Modified version of ADM1 model for agro-waste application.

    PubMed

    Galí, A; Benabdallah, T; Astals, S; Mata-Alvarez, J

    2009-06-01

    Agro-residues account for a large proportion of the wastes generated around the world. There is thus a need for a model to simulate the anaerobic digestion processes used in their treatment. We have developed model based on ADM1, to be applied to agro-wastes. We examined and tested the biodegradability of apple, pear, orange, rape, sunflower, pig manure and glycerol wastes to be used as the basis for feeding the model. Moreover, the fractions of particulate COD (X(c)) were calculated, and the disintegration constant was obtained from biodegradability profiles, considering disintegration to be the limiting process. The other kinetic and stoichiometric parameters were taken from the ADM1 model. The model operating under mono-substrate and co-substrate conditions was then validated with batch tests. At the same time the model was validated on a continuous anaerobic reactor operating with pig manure at lab scale. In both cases the correlation between the model and the experimental results was satisfactory. We conclude that the anaerobic digestion model is a reliable tool for the design and operation of plants in which agro-wastes are treated.

  13. Modelling municipal solid waste generation: a review.

    PubMed

    Beigl, Peter; Lebersorger, Sandra; Salhofer, Stefan

    2008-01-01

    The objective of this paper is to review previously published models of municipal solid waste generation and to propose an implementation guideline which will provide a compromise between information gain and cost-efficient model development. The 45 modelling approaches identified in a systematic literature review aim at explaining or estimating the present or future waste generation using economic, socio-demographic or management-orientated data. A classification was developed in order to categorise these highly heterogeneous models according to the following criteria--the regional scale, the modelled waste streams, the hypothesised independent variables and the modelling method. A procedural practice guideline was derived from a discussion of the underlying models in order to propose beneficial design options concerning regional sampling (i.e., number and size of observed areas), waste stream definition and investigation, selection of independent variables and model validation procedures. The practical application of the findings was demonstrated with two case studies performed on different regional scales, i.e., on a household and on a city level. The findings of this review are finally summarised in the form of a relevance tree for methodology selection.

  14. A BIM-based system for demolition and renovation waste estimation and planning.

    PubMed

    Cheng, Jack C P; Ma, Lauren Y H

    2013-06-01

    Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Multi-objective reverse logistics model for integrated computer waste management.

    PubMed

    Ahluwalia, Poonam Khanijo; Nema, Arvind K

    2006-12-01

    This study aimed to address the issues involved in the planning and design of a computer waste management system in an integrated manner. A decision-support tool is presented for selecting an optimum configuration of computer waste management facilities (segregation, storage, treatment/processing, reuse/recycle and disposal) and allocation of waste to these facilities. The model is based on an integer linear programming method with the objectives of minimizing environmental risk as well as cost. The issue of uncertainty in the estimated waste quantities from multiple sources is addressed using the Monte Carlo simulation technique. An illustrated example of computer waste management in Delhi, India is presented to demonstrate the usefulness of the proposed model and to study tradeoffs between cost and risk. The results of the example problem show that it is possible to reduce the environmental risk significantly by a marginal increase in the available cost. The proposed model can serve as a powerful tool to address the environmental problems associated with exponentially growing quantities of computer waste which are presently being managed using rudimentary methods of reuse, recovery and disposal by various small-scale vendors.

  16. Three-dimensional finite elements for the analysis of soil contamination using a multiple-porosity approach

    NASA Astrophysics Data System (ADS)

    El-Zein, Abbas; Carter, John P.; Airey, David W.

    2006-06-01

    A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.

  17. Pretest reference calculation for the Heated Axisymmetric Pillar (WIPP Room H in situ experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.

    A pretest reference calculation for the Heated Axisymmetric Pillar or Room H experiment is presented in this report. The Heated Axisymmetric Pillar is one of several large scale in situ experiments currently under construction near Carlsbad, New Mexico, at the site of the Waste Isolation Pilot Plant (WIPP). This test is an intermediate step in validating numerical techniques for design and performance calculations for radioactive waste repositories in salt. The test consists of a cylindrically shaped pillar, centrally located in an annular drift, which is uniformly heated by blanket heaters. These heaters produce a thermal output of 135 W/m/sup 2/.more » This load will be supplied for a period of three years. Room H is heavily instrumented for monitoring both temperature increases due to the thermal loading and deformations due to creep of the salt. Data from the experiment are not available at the present time, but the measurements for Room H will eventually be compared to the calculation presented in this report to assess and improve thermal and mechanical modeling capabilities for the WIPP. The thermal/structural model used in the calculation represents the state of the art at the present time. A large number of plots are included since an appropriate result is required for every Room H gauge location. 56 refs., 97 figs., 4 tabs.« less

  18. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    PubMed

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  19. Model development for household waste prevention behaviour.

    PubMed

    Bortoleto, Ana Paula; Kurisu, Kiyo H; Hanaki, Keisuke

    2012-12-01

    Understanding waste prevention behaviour (WPB) could enable local governments and decision makers to design more-effective policies for reducing the amount of waste that is generated. By merging well-known attitude-behaviour theories with elements from wider models from environmental psychology, an extensive cognitive framework that provides new and valuable insights is developed for understanding the involvement of individuals in waste prevention. The results confirm the usefulness of the theory of planned behaviour and of Schwartz's altruistic behaviour model as bases for modelling participation in waste prevention. A more elaborate integrated model of prevention was shown to be necessary for the complete analysis of attitudinal aspects associated with waste prevention. A postal survey of 158 respondents provided empirical support for eight of 12 hypotheses. The proposed structural equation indicates that personal norms and perceived behaviour control are the main predictors and that, unlike the case of recycling, subjective norms have a weak influence on WPB. It also suggests that, since social norms have not presented a direct influence, WPB is likely to be influenced by a concern for the environment and the community as well by perceptions of moral obligation and inconvenience. Results also proved that recycling and waste prevention represent different dimensions of waste management behaviour requiring particular approaches to increase individuals' engagement in future policies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Technical Support for Contaminated Sites | Science Inventory ...

    EPA Pesticide Factsheets

    In 1987, the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD), Office of Land and Emergency Management, and EPA Regional waste management offices established the Technical Support Project. The creation of the Technical Support Project enabled ORD to provide effective technical assistance by ensuring ORD scientists and engineers were accessible to the Agency’s Office and Regional decision makers, including Remedial Project Managers, On-Scene Coordinators, and corrective action staff. Five ORD Technical Support Centers (TSCs) were created to facilitate this technical assistance. Three of the five TSCs are supported by the Sustainable and Healthy Communities Research Program, and are summarized in the poster being presented:• Engineering Technical Support Center (ETSC) in Cincinnati, Ohio• Ground Water Technical Support Center (GWTSC) in Ada, Oklahoma• Site Characterization and Monitoring Technical Support Center (SCMTSC) in Atlanta, GeorgiaOver the past 29 years, the Technical Support Centers have provided numerous influential products to its internal Agency clients and to those at the State level (through the EPA Regions). These products include, but are not limited to the following: Annual TSC reports from the three Centers, a hard-rock mining conference every other year, PRO-UCL software development for site characterization statistics, groundwater modeling using state-of-the-art modeling software, numerical mo

  1. Composition and analysis of a model waste for a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1983-01-01

    A model waste based on a modest vegetarian diet is given, including composition and elemental analysis. Its use is recommended for evaluation of candidate waste treatment processes for a Controlled Ecological Life Support System (CELSS).

  2. Simulating settlement during waste placement at a landfill with waste lifts placed under frozen conditions.

    PubMed

    Van Geel, Paul J; Murray, Kathleen E

    2015-12-01

    Twelve instrument bundles were placed within two waste profiles as waste was placed in an operating landfill in Ste. Sophie, Quebec, Canada. The settlement data were simulated using a three-component model to account for primary or instantaneous compression, secondary compression or mechanical creep and biodegradation induced settlement. The regressed model parameters from the first waste layer were able to predict the settlement of the remaining four waste layers with good agreement. The model parameters were compared to values published in the literature. A MSW landfill scenario referenced in the literature was used to illustrate how the parameter values from the different studies predicted settlement. The parameters determined in this study and other studies with total waste heights between 15 and 60 m provided similar estimates of total settlement in the long term while the settlement rates and relative magnitudes of the three components varied. The parameters determined based on studies with total waste heights less than 15m resulted in larger secondary compression indices and lower biodegradation induced settlements. When these were applied to a MSW landfill scenario with a total waste height of 30 m, the settlement was overestimated and provided unrealistic values. This study concludes that more field studies are needed to measure waste settlement during the filling stage of landfill operations and more field data are needed to assess different settlement models and their respective parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Performance of green waste biocovers for enhancing methane oxidation.

    PubMed

    Mei, Changgen; Yazdani, Ramin; Han, Byunghyun; Mostafid, M Erfan; Chanton, Jeff; VanderGheynst, Jean; Imhoff, Paul

    2015-05-01

    Green waste aged 2 and 24months, labeled "fresh" and "aged" green waste, respectively, were placed in biocover test cells and evaluated for their ability to oxidize methane (CH4) under high landfill gas loading over a 15-month testing period. These materials are less costly to produce than green waste compost, yet satisfied recommended respiration requirements for landfill compost covers. In field tests employing a novel gas tracer to correct for leakage, both green wastes oxidized CH4 at high rates during the first few months of operation - 140 and 200g/m(2)/day for aged and fresh green waste, respectively. Biocover performance degraded during the winter and spring, with significant CH4 generated from anaerobic regions in the 60-80cm thick biocovers. Concurrently, CH4 oxidation rates decreased. Two previously developed empirical models for moisture and temperature dependency of CH4 oxidation in soils were used to test their applicability to green waste. Models accounted for 68% and 79% of the observed seasonal variations in CH4 oxidation rates for aged green waste. Neither model could describe similar seasonal changes for the less stable fresh green waste. This is the first field application and evaluation of these empirical models using media with high organic matter. Given the difficulty of preventing undesired CH4 generation, green waste may not be a viable biocover material for many climates and landfill conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Operational cooling tower model (CTTOOL V1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleman, S.; LocalDomainServers, L.; Garrett, A.

    2015-01-01

    Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translatemore » the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).« less

  5. 76 FR 34147 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... carbamate wastewaters to be treated using combustion, chemical oxidation, biodegradation or carbon..., biodegradation or carbon adsorption for wastewaters. The numeric treatment standard concentration limits were... in the table 40 CFR 268.42) for nonwastewaters; and, combustion, chemical oxidation, biodegradation...

  6. Material and energy recovery in integrated waste management system--an Italian case study on the quality of MSW data.

    PubMed

    Bianchini, A; Pellegrini, M; Saccani, C

    2011-01-01

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation was then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Municipal solid waste incineration in China and the issue of acidification: A review.

    PubMed

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. © The Author(s) 2016.

  8. Enhanced materials from nature: nanocellulose from citrus waste.

    PubMed

    Mariño, Mayra; Lopes da Silva, Lucimara; Durán, Nelson; Tasic, Ljubica

    2015-04-03

    Nanocellulose is a relatively inexpensive, highly versatile bio-based renewable material with advantageous properties, including biodegradability and nontoxicity. Numerous potential applications of nanocellulose, such as its use for the preparation of high-performance composites, have attracted much attention from industry. Owing to the low energy consumption and the addition of significant value, nanocellulose extraction from agricultural waste is one of the best alternatives for waste treatment. Different techniques for the isolation and purification of nanocellulose have been reported, and combining these techniques influences the morphology of the resultant fibers. Herein, some of the extraction routes for obtaining nanocellulose from citrus waste are addressed. The morphology of nanocellulose was determined by Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM), while cellulose crystallinity indexes (CI) from lyophilized samples were determined using solid-state Nuclear Magnetic Resonance (NMR) and X-Ray Diffraction (XRD) measurements. The resultant nanofibers had 55% crystallinity, an average diameter of 10 nm and a length of 458 nm.

  9. [Treatment of organic waste gas by adsorption rotor].

    PubMed

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  10. Characterisation of source-separated household waste intended for composting

    PubMed Central

    Sundberg, Cecilia; Franke-Whittle, Ingrid H.; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-01-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg−1. The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. PMID:21075618

  11. Characterisation of source-separated household waste intended for composting.

    PubMed

    Sundberg, Cecilia; Franke-Whittle, Ingrid H; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-02-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg(-1). The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Material and energy recovery in integrated waste management system - An Italian case study on the quality of MSW data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchini, A.; Pellegrini, M.; Saccani, C., E-mail: cesare.saccani@unibo.it

    2011-09-15

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation wasmore » then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it.« less

  13. Environmental cleanup: The challenge at the Hanford Site, Washington, USA

    NASA Astrophysics Data System (ADS)

    Gray, Robert H.; Becker, C. Dale

    1993-07-01

    Numerous challenges face those involved with developing a coordinated and consistent approach to cleaning up the US Department of Energy’s (DOE) Hanford Site in southeastern Washington. These challenges are much greater than those encountered when the site was selected and the world’s first nuclear complex was developed almost 50 years ago. This article reviews Hanford’s history, operations, waste storage/disposal activities, environmental monitoring, and today’s approach to characterize and clean up Hanford under a Federal Facility Agreement and Consent Order, signed by DOE, the Environmental Protection Agency, and the Washington Sate Department of Ecology. Although cleanup of defense-related waste at Hanford holds many positive benefits, negative features include high costs to the US taxpayer, numerous uncertainties concerning the technologies to be employed and the risks involved, and the high probability that special interest groups and activists at large will never be completely satisfied. Issues concerning future use of the site, whether to protect and preserve its natural features or open it to public exploitation, remain to be resolved.

  14. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.

    PubMed

    Yap, H Y; Nixon, J D

    2015-12-01

    Energy recovery from municipal solid waste plays a key role in sustainable waste management and energy security. However, there are numerous technologies that vary in suitability for different economic and social climates. This study sets out to develop and apply a multi-criteria decision making methodology that can be used to evaluate the trade-offs between the benefits, opportunities, costs and risks of alternative energy from waste technologies in both developed and developing countries. The technologies considered are mass burn incineration, refuse derived fuel incineration, gasification, anaerobic digestion and landfill gas recovery. By incorporating qualitative and quantitative assessments, a preference ranking of the alternative technologies is produced. The effect of variations in decision criteria weightings are analysed in a sensitivity analysis. The methodology is applied principally to compare and assess energy recovery from waste options in the UK and India. These two countries have been selected as they could both benefit from further development of their waste-to-energy strategies, but have different technical and socio-economic challenges to consider. It is concluded that gasification is the preferred technology for the UK, whereas anaerobic digestion is the preferred technology for India. We believe that the presented methodology will be of particular value for waste-to-energy decision-makers in both developed and developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Exposure to toxic waste containing high concentrations of hydrogen sulphide illegally dumped in Abidjan, Côte d'Ivoire.

    PubMed

    Dongo, Kouassi; Tiembré, Issiaka; Koné, Blaise Atioumonou; Zurbrügg, Christian; Odermatt, Peter; Tanner, Marcel; Zinsstag, Jakob; Cissé, Guéladio

    2012-09-01

    On August 2006, a cargo ship illegally dumped 500 t of toxic waste containing high concentrations of hydrogen sulphide in numerous sites across Abidjan. Thousands of people became ill. Seventeen deaths were associated with toxic waste exposure. This study reports on environmental and health problems associated with the incident. A cross-sectional transect study was conducted in five waste dumping site areas. Of the households, 62.1% (n = 502) were exposed to the effects of the pollutants and 51.1% of the interviewed people (n = 2,368) in these households showed signs of poisoning. Most important symptoms were cough (37.1%), asthenia (33.1%), pruritus (29.9%) and nausea (29.1%). The health effects showed different frequencies in the five waste impact sites. Among the poisoned persons, 21.1% (n = 532) presented symptoms on the survey day (i.e., 4 months after incident). Transect sampling allowed to determine a radius of vulnerability to exposure of up to 3 km from the point of toxic waste disposal. The area of higher vulnerability is influenced by various environmental factors, such as size and severity of pollution site, duration of toxic waste pollution on the impact site and locally climatic conditions. The surveillance of effects on environment and human health is warranted to monitor the development.

  16. Towards Zero Waste in emerging countries - A South African experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matete, Ntlibi; Trois, Cristina

    2008-07-01

    The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management , which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selectedmore » as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa.« less

  17. Investigating the determinants of contractor's construction and demolition waste management behavior in Mainland China.

    PubMed

    Wu, Zezhou; Yu, Ann T W; Shen, Liyin

    2017-02-01

    The abundant generation of construction and demolition (C&D) waste presents a significant challenge to the sustainable development of the construction industry in Mainland China. As the implementer of construction activities, the contractor's C&D waste management performance plays an important role in C&D waste minimization. This paper aims to investigate the determinants of the contractor's C&D waste management behavior in Mainland China. The Theory of Planned Behavior (TPB) was selected as the basis of the theoretical model. In addition, three contextual constructs (i.e., economic viability, governmental supervision, and project constraints) were introduced, formulating the initial model. Based on the initial model, eight constructs were identified and seven hypotheses were proposed. A questionnaire survey was conducted to collect data and a Structural Equation Modeling (SEM) analysis was employed to test the proposed hypotheses. Results showed that the C&D waste management intention is not a significant determinant of contractor's C&D waste management behavior. The most important determinant is economic viability, followed by governmental supervision as the second most important determinant. Nevertheless, the construct of project constraints is an insignificant determinant for contractor's adoption of C&D waste management behavior. The research findings imply that, in Mainland China, the government, at this stage, plays an important role in guiding and promoting the contractor to exhibit better C&D waste management behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    PubMed

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Cause-specific mortality in an area of Campania with numerous waste disposal sites].

    PubMed

    Altavista, Pierluigi; Belli, Stefano; Bianchi, Fabrizio; Binazzi, Alessandra; Comba, Pietro; Del Giudice, Raffaele; Fazzo, Lucia; Felli, Angelo; Mastrantonio, Marina; Menegozzo, Massimo; Musmeci, Loredana; Pizzuti, Renato; Savarese, Anna; Trinca, Stefania; Uccelli, Raffaella

    2004-01-01

    To investigate cause-specific mortality in an area of Campania region, in the surroundings of Naples, characterized by many toxic waste dumping grounds sites and by widespread burning of urban wastes. The study area was characterized by examining the spatial distribution of waste disposal sites and toxic waste dumping grounds, using a geographic information system (GIS). Mortality (1986-2000) was studied in the three municipalities of Giugliano in Campania, Qualiano and Villaricca, encompassing a population of about 150,000 inhabitants. Mortality rates of the population resident in the Campania region were used in order to generate expected figures. Causes of death of a priori interest where those previously associated to residence in the neighbourhood of (toxic) waste sites, including lung cancer, bladder cancer, leukemia and liver cancer. Overall 39 waste sites, 27 of which characterized by the likely presence of toxic wastes, were identified in the area of interest. A good agreement was found between two independent surveys of the Regional Environmental Protection Agency and of the environmentalist association Legambiente. Cancer mortality was significantly increased, with special reference to malignant neoplasm of lung, pleura, larynx, bladder, liver and brain. Circulatory diseases were also significantly in excess and diabetes showed some increases. Mortality statistics provide preliminary evidence of the disease load in the area. Mapping waste dumping grounds provides information for defining high risk areas. Improvements in exposure assessment together with the use of a range of health data (hospital discharge cards, malformation notifications, observations of general practitioners) will contribute to second generation studies aimed at inferring causal relationships.

  20. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...

Top