Sample records for waste oil samples

  1. [Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils].

    PubMed

    Mao, Lisha; Liu, Honghe; Kang, Li; Jiang, Jie; Liao, Shicheng; Liu, Guihua; Deng, Pingjian

    2014-07-01

    To evaluate the efficiency of capsaicinoids to discriminate bio-waste oil from edible vegetable oil. 14 raw vegetable oils, 24 fried waste oils, 34 kitchen-waste oils, 32 edible non-peanut vegetable oil, 32 edible peanuts oil, 16 edible oil add flavorand and 11 refined bio-waste oils were prepared and examined for capsaicinoids including capsaicin, dihydrocapsaicin and nonylic acid vanillylamide. The detection results of the above samples were statistically tested based on sample category to assessment identify the effectiveness of the bio-waste oils with capsaicinoids. As a indicator, capsaincin was possessed of high detection sensitivity and has the highest efficiency to discern kitchen-waste oils and refined bio-waste oils samples from edible non-peanut vegetable oil correctly. The accuracy rate of identification were 100% and 90.1% respectively. There is the background in peanut oil. CONCLUSION Capsaicin added in cooking process can be retained in the refining process and hardly be removed in the refining process. In the case of fully eliminating the background interference, capsaicinoids can effectively identify bio-waste oils and edible vegetable oil in combination.

  2. Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil.

    PubMed

    Sinağ, Ali; Gülbay, Selen; Uskan, Burçin; Uçar, Suat; Ozgürler, Sara Bilge

    2010-01-15

    The main objective of this work is to propose an alternative method for evaluation of the waste machinery oil which is an environmental problem in Turkey. For this purpose, pyrolysis of waste machinery oil was conducted in a tubular reactor. Effect of the experimental conditions (various temperatures, catalyst type) on the formation of pyrolytic oil, gas, and char was investigated. Nickel supported on silica and zeolite (HZSM-5) were used as catalysts. Properties of the pyrolytic oils were characterized by gas chromatograph equipped with a mass selective detector (GC-MS), gas chromatography with flame ionization detector (GC-FID for boiling point range distribution), nuclear magnetic resonance ((1)H NMR) spectroscopy, higher heating value measurement, and elemental analysis. The behavior of the metals in the waste machinery oil and the pyrolytic oil samples was also quantitatively detected by inductively coupled plasma (ICP) analysis. As, Cd and Cr contents of the all pyrolytic oils were found as <0.05 ppm, while Cu content of the pyrolytic oils varied between 0.3 ppm and 0.61 ppm. Only Vanadium contents of the pyrolytic oils obtained at 800 degrees C (0.342 ppm) and in the presence of HZSM5 (0.57 ppm) increased compared to that obtained by waste machinery oil (0.1 ppm). Lower metal contents of the pyrolytic oils reveal that pyrolysis of the waste machinery oils leads to the formation of environmental friendly pyrolytic oils with higher heating values.

  3. Bioremediation of cooking oil waste using lipases from wastes

    PubMed Central

    do Prado, Débora Zanoni; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases. PMID:29073166

  4. Bioremediation of cooking oil waste using lipases from wastes.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Prado, Débora Zanoni do; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando; Fleuri, Luciana Francisco

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  5. Waste Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  6. Processing of palm oil mill wastes based on zero waste technology

    NASA Astrophysics Data System (ADS)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  7. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    NASA Astrophysics Data System (ADS)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  8. Chemical Modification of Waste Cotton Linters for Oil Spill Cleanup Application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Debapriya; Umrigar, Keval

    2017-12-01

    The possibility of use of waste cotton linters as oil sorbents by chemical modification such as acetylation and cyanoethylation was studied. The acetylation process was carried out in presence of acetic anhydride using either H2SO4 or HClO4 as catalyst. The acetylation treatment time was 30, 60 and 120 min and treatment temperature was room temperature, 50 and 70 °C. For cyanoethylation, the waste cotton linters were pre-treated with 2, 5 and 10% NaOH. The treatment temperature for cyanoethylation was room temperature, 50 and 70 °C and treatment time was 30, 60 and 120 min. Both the chemical modification processes were optimized on the basis of oil absorption capacity of the chemically modified cotton fibre with the help of MATLAB software. The modified samples were tested for its oleophilicity in terms of oil absorption capacity, oil retention capacity, oil recovery capacity, reusability of sample and water uptake and buoyancy as oil sorbent. Chemically modified fibres were characterized by Fourier transform infra red spectrophotometer, scanning electron microscope and degree of substitutions.

  9. Combating oil spill problem using plastic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleem, Junaid, E-mail: junaidupm@gmail.com; Ning, Chao; Barford, John

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plasticmore » waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.« less

  10. Geochemical signature of NORM waste in Brazilian oil and gas industry.

    PubMed

    De-Paula-Costa, G T; Guerrante, I C; Costa-de-Moura, J; Amorim, F C

    2018-09-01

    The Brazilian Nuclear Energy Agency (CNEN) is responsible for any radioactive waste storage and disposal in the country. The storage of radioactive waste is carried out in the facilities under CNEN regulation and its disposal is operated, managed and controlled by the CNEN. Oil NORM (Naturally Occurring Radioactive Materials) in this article refers to waste coming from oil exploitation. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of a regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is the modeling of radioisotopes normally present in oil pipe contamination such as 228 Ac, 214 Bi and 214 Pb analyzed by gamma spectrometry. The specific activities of elements from different decay series are plotted in a scatter diagram. This method was successfully tested with gamma spectrometry analyses of oil sludge NORM samples from four different sources obtained from Petrobras reports for the Campos Basin/Brazil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator

    PubMed Central

    2011-01-01

    Polyhydroxyalkanoates (PHAs) are biopolymers, which can replace petrochemical plastics in many applications. However, these bioplastics are currently far more expensive than petrochemical plastics. Many researchers are investigating the use of inexpensive substrates derived from waste streams. Waste frying oil is abundant and can be used in PHA production without filtration. Cupriavidus necator (formerly known as Ralstonia eutropha) is a versatile organism for the production of PHAs. Small-scale batch fermentation studies have been set up, using different concentrations of pure vegetable oil, heated vegetable oil and waste frying oil. These oils are all rapeseed oils. It has been shown that Cupriavidus necator produced the homopolymer polyhydroxybutyrate (PHB) from the rapeseed oils. The achieved PHB concentration from waste frying oil was 1.2 g/l, which is similar to a concentration that can be obtained from glucose. The PHB harvest from pure oil and heated oil was 0.62 g/l and 0.9 g/l respectively. A feed of waste frying oil could thus achieve more biopolymer than pure vegetable oil. While the use of a waste product is beneficial from a life-cycle perspective, PHB is not the only product that can be made from waste oil. The collection of waste frying oil is becoming more widespread, making waste oil a good alternative to purified oil or glucose for PHB production. PMID:21906352

  12. Weathered Oil and Tar Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  13. Response of soil microorganisms to radioactive oil waste: results from a leaching experiment

    NASA Astrophysics Data System (ADS)

    Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Ratering, S.; Schnell, S.; Selivanovskaya, S.

    2015-06-01

    Oil wastes produced in large amounts in the processes of oil extraction, refining, and transportation are of great environmental concern because of their mutagenicity, toxicity, high fire hazardousness, and hydrophobicity. About 40% of these wastes contain radionuclides; however, the effects of oil products and radionuclides on soil microorganisms are frequently studied separately. The effects on various microbial parameters of raw waste containing 575 g of total petroleum hydrocarbons (TPH) kg-1 waste, 4.4 of 226Ra, 2.8 of 232Th, and 1.3 kBq kg-1 of 40K and its treated variant (1.6 g kg-1 of TPH, 7.9 of 226Ra, 3.9 of 232Th, and 183 kBq kg-1 of 40K) were examined in a leaching column experiment to separate the effects of hydrocarbons from those of radioactive elements. The raw waste sample (H) was collected from tanks during cleaning and maintenance, and a treated waste sample (R) was obtained from equipment for oil waste treatment. Thermal steam treatment is used in the production yard to reduce the oil content. The disposal of H waste samples on the soil surface led to an increase in the TPH content in soil: it became 3.5, 2.8, and 2.2 times higher in the upper (0-20 cm), middle (20-40 cm), and lower (40-60cm) layers, respectively. Activity concentrations of 226Ra and 232Th increased in soil sampled from both H- and R- columns in comparison to their concentrations in control soil. The activity concentrations of these two elements in samples taken from the upper and middle layers were much higher for the R-column compared to the H-column, despite the fact that the amount of waste added to the columns was equalized with respect to the activity concentrations of radionuclides. The H waste containing both TPH and radionuclides affected the functioning of the soil microbial community, and the effect was more pronounced in the upper layer of the column. Metabolic quotient and cellulase activity were the most sensitive microbial parameters as their levels were changed 5

  14. Combating oil spill problem using plastic waste.

    PubMed

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-01

    Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Distribution of heavy metals and hydrocarbon contents in an alfisol contaminated with waste-lubricating oil amended with organic wastes.

    PubMed

    Adesodun, J K; Mbagwu, J S C

    2008-05-01

    Contamination of soil and groundwater with mineral oil-based products is among the most common sources of pollution in Nigeria. This study evaluated the distribution of some heavy metals and hydrocarbon content in soil contaminated with waste-lubricating oil (spent oil), and the effectiveness of some abundantly available organic wastes from animal source as remediation alternative to the expensive chemical and physical methods. The main-plot treatments include control (C), cow dung (CD), poultry manure (PM) and pig waste (PW) applied at 10Mg/ha each; while the sub-plot treatments were control (0%), 0.5%, 2.5% and 5% spent oil (SP) applied at 10, 50 and 100 Mg/ha, respectively arranged in a split-plot in Randomized Complete Block Design (RCBD) with four replications. These treatments were applied once each year for two consecutive years. Soil samples (0-20 cm) were collected at 3, 6 and 12 months each year and analyzed for Cr, Ni, Pb and Zn, while the residual total hydrocarbon content (THC) was determined at the end of the 2 years study. Results show significant (p<0.05) accumulation of these metals with spent oil pollution following the sequence 5%SP>2.5%SP>0.5%SP, indicating higher metal pollution with increase in oil pollution. General distribution of Cr, Ni, Pb and Zn, relative to sampling periods, followed 3 months>6 months>12 months in the 1st year indicating reduction in metal levels with time. The trend for 2nd year indicated higher accumulation of Cr and Ni in 12 months, while Pb and Zn decreased with time of sampling. The results further showed higher accumulation of Cr followed by Zn, relative to other metals, with oil pollution. However, addition of organic wastes to the oil polluted soils significantly (p<0.05) led to reduction in the levels of the metals and THC following the order PM>PW>CD.

  16. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba).

    PubMed

    Albalat, Amaya; Nadler, Lauren E; Foo, Nicholas; Dick, James R; Watts, Andrew J R; Philp, Heather; Neil, Douglas M; Monroig, Oscar

    2016-12-01

    In the UK, the Norway lobster ( Nephrops norvegicus ) supports its most important shellfish fishery. Nephrops are sold either whole, or as "tails-only" for the scampi trade. In the "tailing" process, the "head" (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba , represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and changes

  17. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba)

    PubMed Central

    Albalat, Amaya; Nadler, Lauren E.; Foo, Nicholas; Dick, James R.; Watts, Andrew J. R.; Philp, Heather; Neil, Douglas M.; Monroig, Oscar

    2016-01-01

    In the UK, the Norway lobster (Nephrops norvegicus) supports its most important shellfish fishery. Nephrops are sold either whole, or as “tails-only” for the scampi trade. In the “tailing” process, the “head” (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba, represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and

  18. Biodiesel from waste cooking oil in Mexico City.

    PubMed

    Sheinbaum, Claudia; Balam, Marco V; Robles, Guillermo; Lelo de Larrea, Sebastian; Mendoza, Roberto

    2015-08-01

    The aim of this article is to evaluate the potential use of biodiesel produced from waste cooking oil in Mexico City. The study is divided in two main areas: the analysis of a waste cooking oil collection pilot project conducted in food markets of a Mexico City region; and the exhaust emissions performance of biodiesel blends measured in buses of the Mexico City public bus transportation network (RTP). Results from the waste cooking oil collection pilot project show that oil quantities disposed depend upon the type of food served and the operational practices in a cuisine establishment. Food markets' waste cooking oil disposal rate from fresh oil is around 10%, but with a very high standard deviation. Emission tests were conducted using the Ride-Along-Vehicle-Emissions-Measuring System in two different types of buses while travelling a regular route. Results shows that the use of biodiesel blends reduces emissions only for buses that have exhaust gas recirculation systems, as analysed by repeated measure analysis of variance. The potential use in Mexico City of waste cooking oil for biodiesel is estimated to cover 2175 buses using a B10 blend. © The Author(s) 2015.

  19. The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil

    NASA Astrophysics Data System (ADS)

    Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.

    2018-03-01

    Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.

  20. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    NASA Astrophysics Data System (ADS)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  1. EVALUATION OF THE EFFECTS OF WEATHERING ON A 50-YEAR OLD RETORTED OIL-SHALE WASTE PILE, RULISON EXPERIMENTAL RETORT, COLORADO.

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Dean, Walter E.; Ackerman, Daniel J.; ,

    1985-01-01

    An oil-shale mine and experimental retort were operated near Rulison, Colorado by the U. S. Bureau of Mines from 1926 to 1929. Samples from seven drill cores from a retorted oil-shale waste pile were analyzed to determine 1) the chemical and mineral composition of the retorted oil shale and 2) variations in the composition that could be attributed to weathering. Unweathered, freshly-mined samples of oil shale from the Mahogany zone of the Green River Formation and slope wash collected away from the waste pile were also analyzed for comparison. The waste pile is composed of oil shale retorted under either low-temperature (400-500 degree C) or high-temperature (750 degree C) conditions. The results of the analyses show that the spent shale within the waste pile contains higher concentrations of most elements relative to unretorted oil shale.

  2. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.

    PubMed

    Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul

    2018-01-01

    The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  3. Oil sorbents from plastic wastes and polymers: A review.

    PubMed

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Decoloration Kinetics of Waste Cooking Oil by 60Co γ-ray/H2O2

    NASA Astrophysics Data System (ADS)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng

    2016-03-01

    In order to decolorize, waste cooking oil, a dark red close to black solution from homes and restaurants, was subjected to 60Co γ-ray/H2O2 treatment. By virtue of UV/Vis spectrophotometric method, the influence of Gamma irradiation to decoloration kinetics and rate constants of the waste cooking oil in the presence of H2O2 was researched. In addition, the influence of different factors such as H2O2 concentration and irradiation dose on the decoloration rate of waste cooking oil was investigated. Results indicated that the decoloration kinetics of waste cooking oil conformed to the first-order reaction. The decoloration rate increased with the increase of irradiation dose and H2O2 concentration. Saponification analysis and sensory evaluation showed that the sample by 60Co γ-ray/H2O2 treatment presented better saponification performance and sensory score. Furthermore, according to cost estimate, the cost of the 60Co γ-ray/H2O2 was lower and more feasible than the H2O2 alone for decoloration of waste cooking oil.

  5. 25 CFR 226.37 - Waste of oil and gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... all operations in a manner that will prevent waste of oil and gas and shall not wastefully utilize oil... dissipation of reservoir energy which would reasonably reduce or diminish the quantity of oil or gas that...

  6. 25 CFR 226.37 - Waste of oil and gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... all operations in a manner that will prevent waste of oil and gas and shall not wastefully utilize oil... dissipation of reservoir energy which would reasonably reduce or diminish the quantity of oil or gas that...

  7. Rapid estimation of organic nitrogen in oil shale waste waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting themore » sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a« less

  8. Metabolism of waste engine oil by Pseudomonas species.

    PubMed

    Salam, Lateef B

    2016-06-01

    Two bacterial strains phylogenetically identified as Pseudomonas aeruginosa strains RM1 and SK1 displayed extensive degradation ability on waste engine oil (SAE 40W) in batch cultures. Spectrophotometric analysis revealed the presence of various heavy metals such as lead, chromium and nickel in the waste engine oil. The rate of degradation of waste engine oil by the isolates, for the first 12 days and the last 9 days were 66.3, 31.6 mg l -1  day -1   and 69.6, 40.0 mg l -1  day -1 for strains RM1 and SK1, respectively. Gas chromatographic (GC) analyses of residual waste engine oil, revealed that 66.58, 89.06 % and 63.40, 90.75 % of the initial concentration of the waste engine oil were degraded by strains RM1 and SK1 within 12 and 21 days. GC fingerprints of the waste engine oil after 12 days of incubation of strains RM1 and SK1 showed total disappearance of C 15 , C 23 , C 24 , C 25 and C 26 hydrocarbon fractions as well as drastic reductions of C 13 , C 14 , C 16 and PAHs fractions such as C 19 -anthracene and C 22 -pyrene. At the end of 21 days incubation, total disappearance of C 17 -pristane, C 22 -pyrene, one of the C 19 -anthracene and significant reduction of C 18 -phytane (97.2 %, strain RM1; 95.1 %, strain SK1) fractions were observed. In addition, <10 % of Day 0 values of medium fraction ranges C 13 , and C 16 were discernible after 21 days. This study has established the potentials of P. aeruginosa strains RM1 and SK1 in the degradation of aliphatic, aromatic and branched alkane components of waste engine oils.

  9. Biodiesel production using waste frying oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpe, Trupti W.; Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction tomore » select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.« less

  10. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    PubMed

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  11. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  12. Waste Oil Burn-Off in Coast Guard Powerplants : Waste Oil Filtering Systems and Diesel Engine Performance

    DOT National Transportation Integrated Search

    1976-06-01

    This report documents two tasks of a continuing study to determine the feasibility of burning waste lubricating oils in Coast Guard powerplants. The first task evaluated the effectiveness of two treatment devices for the clean-up of waste lubricating...

  13. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds.

    PubMed

    Kim, Yong Sang; Kim, Young Seok; Kim, Sung Hyun

    2010-07-01

    Thermal decomposition properties of plastic waste-waste lube oil compounds were investigated under nonisothermal conditions. Polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were selected as representative household plastic wastes. A plastic waste mixture (PWM) and waste lube oil (WLO) were mixed with mixing ratios of 33, 50, and 67 (w/w) % on a PWM weight basis, and thermogravimetric (TG) experiments were performed from 25 to 600 degrees C. The Flynn-Wall method and the Ozawa-Flynn-Wall method were used for analyses of thermodynamic parameters. In this study, activation energies of PWM/WLO compounds ranged from 73.4 to 229.6 kJ/mol between 0.2 and 0.8 of normalized mass conversions, and the 50% PWM/WLO compound had lower activation energies and enthalpies among the PWM/WLO samples at each mass conversion. At the point of maximum differential mass conversion, the analyzed activation energies, enthalpies, entropies, and Gibbs free energies indicated that mixing PWM and WLO has advantages in reducing energy to decrease the degree of disorder. However, no difference in overall energy that would require overcoming both thermal decomposition reactions and degree of disorder was observed among PWM/WLO compounds under these experimental conditions.

  14. Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions.

    PubMed

    Poppe, Jakeline Kathiele; Matte, Carla Roberta; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Ayub, Marco Antônio Záchia

    2018-04-21

    This work describes the use of an ultrasound system for the enzymatic transesterification of oils using combi-lipases as biocatalyst. The reactions were carried out evaluating the individual use of waste oil and fresh soybean oil, and the immobilized lipases CALB, TLL, and RML were used as biocatalysts. It was performed in a mixture design of three factors to obtain the ideal mixture of lipases according to the composition of fatty acids present in each oil, and the main reaction variables were optimized. After 18 h of reaction, ultrasound provided a biodiesel yield of about 90% when using soybean oil and 70% using the waste oil. The results showed that ultrasound technology, in combination with the application of enzyme mixtures, known as combi-lipases, and the use of waste oil, could be a promising route to reduce the overall process costs of enzymatic production of biodiesel.

  15. Study on Fired Clay Bricks by Replacing Clay with Palm Oil Waste: Effects on Physical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.

    2017-06-01

    Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.

  16. Biosurfactant production by Mucor circinelloides on waste frying oil and possible uses in crude oil remediation.

    PubMed

    Hasanizadeh, Parvin; Moghimi, Hamid; Hamedi, Javad

    2017-10-01

    Biosurfactants are biocompatible surface active agents which many microorganisms produce. This study investigated the production of biosurfactants by Mucor circinelloides. The effects of different factors on biosurfactant production, including carbon sources and concentrations, nitrogen sources, and iron (II) concentration, were studied and the optimum condition determined. Finally, the strain's ability to remove the crude oil and its relationship with biosurfactant production was evaluated. The results showed that M. circinelloides could reduce the surface tension of the culture medium to 26.6 mN/m and create a clear zone of 12.9 cm diameter in an oil-spreading test. The maximum surface tension reduction was recorded 3 days after incubation. The optimum condition for biosurfactant production was achieved in the presence of 8% waste frying oil as a carbon source, 2 g/L yeast extract as a nitrogen source, and 0.01 mM FeSO 4 . M. circinelloides could consume 8% waste frying oil in 5 days of incubation, and 87.6% crude oil in 12 days of incubation. A direct correlation was observed between oil degradation and surface tension reduction in the first 3 days of fungal growth. The results showed that the waste frying oil could be recommended as an inexpensive oily waste substance for biosurfactant production, and M. circinelloides could have the potential to treat waste frying oil. According to the results, the produced crude biosurfactant or fungal strain could be directly used for the mycoremediation of crude oil contamination in oil fields.

  17. Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production.

    PubMed

    Hilal, M A; Attallah, M F; Mohamed, Gehan Y; Fayez-Hassan, M

    2014-10-01

    In this study, a potential radiation hazard from TENORM sludge wastes generated during exploration and extraction processes of oil and gas was evaluated. The activity concentration of natural radionuclides (238)U, (226)Ra and (232)Th were determined in TENORM sludge waste. It was found that sludge waste from oil and gas industry is one of the major sources of (226)Ra in the environment. Therefore, some preliminary chemical treatment of sludge waste using Triton X-100 was also investigated to reduce the radioactivity content as well as the risk of radiation hazard from TENORM wastes. The activity concentrations of (226)Ra and (228)Ra in petroleum sludge materials before and after chemical treatment were measured using gamma-ray spectrometry. The average values of the activity concentrations of (226)Ra and (228)Ra measured in the original samples were found as 8908 Bq kg(-1) and 933 Bq kg(-1), respectively. After chemical treatment of TENORM samples, the average values of the activity concentrations of (226)Ra and (228)Ra measured in the samples were found as 7835 Bq kg(-1) and 574 Bq kg(-1), respectively. Activity concentration index, internal index, absorbed gamma dose rate and the corresponding effective dose rate were estimated for untreated and treated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Recycling of waste tyre rubber into oil absorbent.

    PubMed

    Wu, B; Zhou, M H

    2009-01-01

    The abundant and indiscriminant disposal of waste tyres has caused both health and environmental problems. In this work, we provide a new way to dispose off waste tyres by reusing the waste tyre rubber (WTR) for oil absorptive material production. To investigate this feasibility, a series of absorbents were prepared by graft copolymerization-blending method, using waste tyre rubber and 4-tert-butylstyrene (tBS) as monomers. Divinylbenzene (DVB) and benzoyl peroxide (BPO) were employed as crosslinker and initiator, respectively. The existence of graft-blends (WTR-g-tBS) was determined by FTIR spectrometry and verified using thin-layer chromatography (TLC). In addition, the thermal properties of WTR-g-tBS were confirmed by a thermogravimetric analyzer (TGA). Oil absorbency of the grafted-blends increased with increases in either feed ratio of WTR to tBS or DVB concentration. This absorbency reached a maximum of 24.0gg(-1) as the feed ratio and DVB concentration were 60/40 and 1wt%, respectively, after which it decreased. At other ratios and concentrations the absorbency decreased. The gel fraction of grafted-blends increased with increasing concentration of DVB. Oil-absorption processes in pure toluene and crude oil diluted with toluene were found to adhere to first-order absorption kinetics. Furthermore, the oil-absorption rate in diluted crude oil was observed to be lower than pure toluene.

  19. Enzymatic conversion of waste cooking oils into alternative fuel--biodiesel.

    PubMed

    Chen, Guanyi; Ying, Ming; Li, Weizhun

    2006-01-01

    Production of biodiesel from pure oils through chemical conversion may not be applicable to waste oils/fats. Therefore, enzymatic conversion using immobilized lipase based on Rhizopus orzyae is considered in this article. This article studies this technological process, focusing on optimization of several process parameters, including the molar ratio of methanol to waste oils, biocatalyst load, and adding method, reaction temperature, and water content. The results indicate that methanol/oils ratio of 4, immobilized lipase/oils of 30 wt% and 40 degrees C are suitable for waste oils under 1 atm. The irreversible inactivation of the lipase is presumed and a stepwise addition of methanol to reduce inactivation of immobilized lipases is proposed. Under the optimum conditions the yield of methyl esters is around 88-90%.

  20. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste.

    PubMed

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Jinhui

    2018-03-01

    Information on the anaerobic digestion (AD) of food waste (FW) with different waste cooking oil contents is limited in terms of the effect of the initial substrate concentrations. In this work, batch tests were performed to evaluate the combined effects of waste cooking oil content (33-53%) and feed/inoculum (F/I) ratios (0.5-1.2) on biogas/methane yield, process stability parameters and organics reduction during the FW AD. Both waste cooking oil and the inoculation ratios were found to affect digestion parameters during the AD process start-up and the F/I ratio was the predominant factor affecting AD after the start-up phase. The possible inhibition due to acidification caused by volatile fatty acids accumulation, low pH values and long-chain fatty acids was reversible. The characteristics of the final digestate indicated a stable anaerobic system, whereas samples with F/I ratios ranging from 0.8 to 1.2 display higher propionic and valeric acid contents and high amounts of total ammonia nitrogen and free ammonia nitrogen. Overall, F/I ratios higher than 0.70 caused inhibition and resulted in low biogas/methane yields from the FW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    PubMed

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.

    PubMed

    Miandad, R; Barakat, M A; Rehan, M; Aburiazaiza, A S; Ismail, I M I; Nizami, A S

    2017-11-01

    This study aims to examine the catalytic pyrolysis of various plastic wastes in the presence of natural and synthetic zeolite catalysts. A small pilot scale reactor was commissioned to carry out the catalytic pyrolysis of polystyrene (PS), polypropylene (PP), polyethylene (PE) and their mixtures in different ratios at 450°C and 75min. PS plastic waste resulted in the highest liquid oil yield of 54% using natural zeolite and 50% using synthetic zeolite catalysts. Mixing of PS with other plastic wastes lowered the liquid oil yield whereas all mixtures of PP and PE resulted in higher liquid oil yield than the individual plastic feedstocks using both catalysts. The GC-MS analysis revealed that the pyrolysis liquid oils from all samples mainly consisted of aromatic hydrocarbons with a few aliphatic hydrocarbon compounds. The types and amounts of different compounds present in liquid oils vary with some common compounds such as styrene, ethylbenzene, benzene, azulene, naphthalene, and toluene. The FT-IR data also confirmed that liquid oil contained mostly aromatic compounds with some alkanes, alkenes and small amounts of phenol group. The produced liquid oils have high heating values (HHV) of 40.2-45MJ/kg, which are similar to conventional diesel. The liquid oil has potential to be used as an alternative source of energy or fuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterization of seed oils from fresh Bokbunja (Rubus coreanus Miq.) and wine processing waste.

    PubMed

    Ku, C S; Mun, S P

    2008-05-01

    The physicochemical characteristics, fatty acid (FA) profile, and triacylglyceride (TAG) composition of seed oils from fresh Bokbunja (Rubus coreanus Miq.) fruits and traditional Bokbunja wine processing waste were determined in this study. Oil contents of the fresh seeds and the seeds from wine processing waste were similar, accounting for about 18% of dry weight. The free fatty acid (FFA) content between the two seed oils was significantly different (0.50% for fresh seed oil and 73.14% for wine seed oil). Iodine, conjugated diene, saponification values, and unsaponifiable matter were very similar in the oil samples, but the specific extinction coefficients at 232 and 270 nm of wine seed oil were higher than those of fresh seed oil. Linoleic (C18:2, 50.45-53.18%, L) and linolenic (C18:3, 29.36-33.25%, Ln) acids were the dominant FAs in the two seed oils, whereas oleic (C18:1, 7.32-8.04%, O), palmitic (C16:0, 1.55-1.65%, P), and stearic (C18:0, 0.65-0.68%, S) acids were the minor FAs. LLL, OLL, LLLn, OOL, LLnLn, and OOO were the abundant TAGs, representing >90% of the oils.

  4. Process for preparing lubricating oil from used waste lubricating oil

    DOEpatents

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  5. Detection of Adulterated Vegetable Oils Containing Waste Cooking Oils Based on the Contents and Ratios of Cholesterol, β-Sitosterol, and Campesterol by Gas Chromatography/Mass Spectrometry.

    PubMed

    Zhao, Haixiang; Wang, Yongli; Xu, Xiuli; Ren, Heling; Li, Li; Xiang, Li; Zhong, Weike

    2015-01-01

    A simple and accurate authentication method for the detection of adulterated vegetable oils that contain waste cooking oil (WCO) was developed. This method is based on the determination of cholesterol, β-sitosterol, and campesterol in vegetable oils and WCO by GC/MS without any derivatization. A total of 148 samples involving 12 types of vegetable oil and WCO were analyzed. According to the results, the contents and ratios of cholesterol, β-sitosterol, and campesterol were found to be criteria for detecting vegetable oils adulterated with WCO. This method could accurately detect adulterated vegetable oils containing 5% refined WCO. The developed method has been successfully applied to multilaboratory analysis of 81 oil samples. Seventy-five samples were analyzed correctly, and only six adulterated samples could not be detected. This method could not yet be used for detection of vegetable oils adulterated with WCO that are used for frying non-animal foods. It provides a quick method for detecting adulterated edible vegetable oils containing WCO.

  6. Utilization of waste cooking oil as an alternative fuel for Turkey.

    PubMed

    Arslan, Ridvan; Ulusoy, Yahya

    2017-04-03

    This study is based on three essential considerations concerning biodiesel obtained from waste cooking oil: diesel engine emissions of biodiesel produced from waste cooking oil, its potential in Turkey, and policies of the Turkish government about environmentally friendly alternative fuels. Emission tests have been realized with 35.8 kW, four-cylinder, four-stroke, direct injection diesel tractor engine. Test results are compared with Euro non-road emission standards for diesel fuel and five different blends of biodiesel production from waste cooking oil. The results of the experimental study show that the best blends are B10 and B20 as they show the lowest emission level. The other dimensions of the study include potential analysis of waste cooking oil as diesel fuels, referring to fuel price policies applied in the past, and proposed future policies about the same issues. It was also outlined some conclusions and recommendations in connection with recycling of waste oils as alternative fuels.

  7. Data on kinetic, energy and emission performance of biodiesel from waste frying oil.

    PubMed

    Silva Filho, Silverio Catureba da; Miranda, Amanda Carvalho; Silva, Thadeu Alfredo Farias; Calarge, Felipe Araújo; Souza, Roberto Rodrigo de; Santana, José Carlos Curvelo; Tambourgi, Elias Basile

    2018-06-01

    The data presented in this article are related to the research article "Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city" (Silva Filho et al., 2018) [1]. This article presents the variation of the concentration of waste frying oil (WFO) with the reaction time and temperature during the transesterification of WTOs collected in the residences and restaurants of the city of São Paulo. Then, the biodiesel samples were mixed with the S-10 diesel oil in order to obtain the B10, B20, B30, B40, B50, B75 and B100 blends, which were tested in a diesel engine and their power, fuel consumption and gas emissions (CO, CO 2 and SO 2 ) have been measured to verify their greenhouse effect and energy efficiency.

  8. A case study of pyrolysis of oil palm wastes in Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2013-05-01

    Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

  9. Recycling of waste engine oil for diesel production.

    PubMed

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Catalytic pyrolysis of waste furniture sawdust for bio-oil production.

    PubMed

    Uzun, Başak B; Kanmaz, Gülin

    2014-07-01

    In this study, the catalytic pyrolysis of waste furniture sawdust in the presence of ZSM-5, H-Y and MCM-41 (10 wt % of the biomass sample) was carried out in order to increase the quality of the liquid product at the various pyrolysis temperatures of 400, 450, 500 and 550(o)C. In the non-catalytic work, the maximum oil yield was obtained as 42% at 500(o)C in a fixed-bed reactor system. In the catalytic work, the maximum oil yield was decreased to 37.48, 30.04 and 29.23% in the presence of ZSM-5, H-Y and MCM-41, respectively. The obtained pyrolysis oils were analyzed by various spectroscopic and chromatographic techniques. It was determined that the use of a catalyst decreased acids and increased valuable organics found in the bio-oil. The removal of oxygen from bio-oil was confirmed with the results of the elemental analysis and gas chromatography-mass spectrometry. © The Author(s) 2014.

  11. The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030

    NASA Astrophysics Data System (ADS)

    Hambali, E.; Rivai, M.

    2017-05-01

    During replanting activity in oil palm plantation, biomass including palm frond and trunk are produced. In palm oil mills, during the conversion process of fresh fruit bunches (FFB) into crude palm oil (CPO), several kinds of waste including empty fruit bunch (EFB), mesocarp fiber (MF), palm kernel shell (PKS), palm kernel meal (PKM), and palm oil mills effluent (POME) are produced. The production of these wastes is abundant as oil palm plantation area, FFB production, and palm oil mills spread all over 22 provinces in Indonesia. These wastes are still economical as they can be utilized as sources of alternative fuel, fertilizer, chemical compounds, and biomaterials. Therefore, breakthrough studies need to be done in order to improve the added value of oil palm, minimize the waste, and make oil palm industry more sustainable.

  12. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  13. Distribution of radium in oil and gas industry wastes from Malaysia.

    PubMed

    Omar, M; Ali, H M; Abu, M P; Kontol, K M; Ahmad, Z; Ahmad, S H S S; Sulaiman, I; Hamzah, R

    2004-05-01

    Radium concentrations in 470 samples of the various types of waste from oil and gas industries were analysed using gamma spectrometers. The results showed that the radium concentration varied within a wide range. The highest mean 226Ra and 228Ra concentrations of 114,300 and 130,120 Bq/kg, respectively, were measured in scales. Overall, 75% of the waste, mostly sludge and extraction residue lies within the normal range of radium concentration in soils of Malaysia. However, some platform sludge can have radium concentration up to 560 Bq/kg.

  14. Co-pyrolysis of polypropylene waste with Brazilian heavy oil.

    PubMed

    Assumpção, Luiz C F N; Carbonell, Montserrat M; Marques, Mônica R C

    2011-01-01

    To evaluate the chemical recycling of plastic residues, co-pyrolysis of polypropylene (PP) waste with Brazilian crude oil was evaluated varying the temperature (400°C to 500°C) and the amount of PP fed to the reactor. The co-pyrolysis of plastic waste in an inert atmosphere provided around 80% of oil pyrolytic, and of these, half represent the fraction of diesel oil. This study can be used as a reference in chemical recycling of plastics, specially associated with plastics co-pyrolysis.

  15. Catalytic transformation of waste polymers to fuel oil.

    PubMed

    Keane, Mark A

    2009-01-01

    Waste not, want not: The increase in waste polymer generation, which continues to exceed recycle, represents a critical environmental burden. However, plastic waste may be viewed as a potential resource and, with the correct treatment, can serve as hydrocarbon raw material or as fuel oil, as described in this Minireview.Effective waste management must address waste reduction, reuse, recovery, and recycle. The consumption of plastics continues to grow, and, while plastic recycle has seen a significant increase since the early 1990s, consumption still far exceeds recycle. However, waste plastic can be viewed as a potential resource and can serve, with the correct treatment, as hydrocarbon raw material or as fuel oil. This Minireview considers the role of catalysis in waste polymer reprocessing and provides a critical overview of the existing waste plastic treatment technologies. Thermal pyrolysis results in a random scissioning of the polymer chains, generating products with varying molecular weights. Catalytic degradation provides control over the product composition/distribution and serves to lower significantly the degradation temperature. Incineration of waste PVC is very energy demanding and can result in the formation of toxic chloro emissions. The efficacy of a catalytic transformation of PVC is also discussed.

  16. Response of soil microorganisms to radioactive oil waste: results from a leaching experiment

    NASA Astrophysics Data System (ADS)

    Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Ratering, S.; Schnell, S.; Selivanovskaya, S.

    2015-01-01

    Oil wastes produced in large amounts in the processes of oil extraction, refining, and transportation are of great environmental concern because of their mutagenicity, toxicity, high fire hazardousness, and other properties. About 40% of these wastes contain radionuclides; however, the effects of oil products and radionuclides on soil microorganisms are frequently studied separately. The toxicity and effects on various microbial parameters of raw waste (H) containing 575 g of total petroleum hydrocarbons (TPH) kg-1 waste, 4.4 kBq kg-1 of 226Ra, 2.8 kBq kg-1 of 232Th, and 1.3 kBq kg-1 of 40K and its treated variant (R) (1.6 g kg-1 of TPH, 7.9 kBq kg-1 of 226Ra, 3.9 kBq kg-1 of 232Th, and 183 kBq kg-1 of 40K) were estimated in a leaching column experiment to separate the effects of hydrocarbons from those of radioactive elements. The disposal of H waste samples on the soil surface led to an increase of the TPH content in soil: it became 3.5, 2.8, and 2.2 times higher in the upper (0-20 cm), middle (20-40 cm), and lower (40-60 cm) layers respectively. Activity concentrations of 226Ra and 232Th increased in soil sampled from both H- and R-columns in comparison to their concentrations in control soil. The activity concentrations of these two elements in samples taken from the upper and middle layers were much higher for the R-column compared to the H-column, despite the fact that the amount of waste added to the columns was equalized with respect to the activity concentrations of radionuclides. The H waste containing both TPH and radionuclides affected the functioning of the soil microbial community, and the effect was more pronounced in the upper layer of the column. Metabolic quotient and cellulase activity were the most sensitive microbial parameters as their levels were changed 5-1.4 times in comparison to control ones. Changes of soil functional characteristics caused by the treated waste containing mainly radionuclides were not observed. PCR-SSCP (polymerase chain

  17. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showedmore » that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.« less

  18. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  19. Waste cooking oil as source for renewable fuel in Romania

    NASA Astrophysics Data System (ADS)

    Allah, F. Um Min; Alexandru, G.

    2016-08-01

    Biodiesel is non-toxic renewable fuel which has the potential to replace diesel fuel with little or no modifications in diesel engine. Waste cooking oil can be used as source to produce biodiesel. It has environmental and economic advantages over other alternative fuels. Biodiesel production from transesterification is affected by water content, type f alcohol, catalyst type and concentration, alcohol to oil ratio, temperature, reaction rate, pH, free fatty acid (FFA) and stirrer speed. These parameters and their effect on transesterification are discussed in this paper. Properties of biodiesel obtained from waste cooking oil are measured according to local standards by distributor and their comparison with European biodiesel standard is also given in this paper. Comparison has shown that these properties lie within the limits of the EN 14214 standard. Furthermore emission performance of diesel engine for biodiesel-diesel blends has resulted in reduction of greenhouse gas emissions. Romanian fuel market can ensure energy security by mixing fuel share with biodiesel produced from waste cooking oil. Life cycle assessment of biodiesel produced from waste cooking oil has shown its viability economically and environmentally.

  20. Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants

    NASA Astrophysics Data System (ADS)

    Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James

    2017-05-01

    Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.

  1. Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents.

    PubMed

    Yang, Ying; Xu, Jianfeng; Vail, Daniel; Weathers, Pamela

    2011-04-01

    The feasibility of growth and oil production by Ettlia oleoabundans fed with anaerobic digester effluents of three agriculture wastes from the Arkansas Delta, catfish processing waste, soybean field waste, and rice hulls, was studied. Compared to standard BBM medium, all three effluents were deficient in phosphate and nitrate, but rich in ammonia and urea. Best growth was on 2% (v/v) soy effluent, but scant oil was produced on any of the effluents. When the three effluents were mixed, growth did not substantially increase, but oil content increased up to sixfold, depending on age of the effluent. Similar to growth in BBM, the main fatty acids produced were palmitic, oleic, and linoleic. These results show that anaerobically digested agricultural wastes can potentially support both growth and high oil productivity in E. oleoabundans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    PubMed

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-01-01

    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  3. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  4. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  5. Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste

    NASA Astrophysics Data System (ADS)

    Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.

    2018-03-01

    This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.

  6. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    NASA Astrophysics Data System (ADS)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  7. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.

    PubMed

    George, S; Jayachandran, K

    2013-02-01

    To improve biosurfactant production economics by the utilization of potential low-cost materials. In an attempt to utilize cost-effective carbon sources in the fermentative production of biosurfactants, various pure and waste frying oils were screened by a standard biosurfactant producing strain. Considering the regional significance, easy availability and the economical advantages, waste frying coconut oil was selected as the substrate for further studies. On isolation of more competent strains that could use waste frying coconut oil efficiently as a carbon source, six bacterial strains were isolated on cetyltrimethyl ammonium bromide-methylene blue agar plate, from a soil sample collected from the premises of a coconut oil mill. Among these, Pseudomonas aeruginosa D was selected as the potential producer of rhamnolipid. Spectrophotometric method, TLC, methylene blue active substance assay, drop collapse technique, surface tension measurement by Du Nouy ring method and emulsifying test confirmed the rhamnolipid producing ability of the selected strain and various process parameters were optimized for the production of maximum amount of biosurfactant. Rhamnolipid components purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, HPLC and TLC were characterized by fast atom bombardment mass spectrometry as a mixture of dirhamnolipids and monorhamnolipids. The rhamnolipid homologues detected were Rha-Rha-C(10) -C(10) , Rha-C(12) -C(10) and Rha-C(10) -C(8) /Rha-C(8) -C(10) . These results indicated the possibility of waste frying coconut oil to be used as a very effective alternate substrate for the economic production of rhamnolipid by a newly isolated Ps. aeruginosa D. Results of this study throws light on the alternate use of already used cooking oil as high-energy source for producing a high value product like rhamnolipid. This would provide options for the food industry other than the recycling and reuse of waste frying

  8. Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste

    NASA Astrophysics Data System (ADS)

    Ishak, Aulia; Ali, Amir Yazid bin

    2017-12-01

    The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.

  9. Possibility of direct electricity production from waste canola oil

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Paweł P.; Włodarczyk, Barbara; Kalinichenko, Antonina

    2017-10-01

    Powering high-efficiency devices, such as fuel cells, with waste products will allow for a broader development of renewable energy sources and utilisation of by- products. This publication presents the possibility of electrooxidation of the emulsion of waste rapeseed oil, prepared on the basis of the detergent Syntanol DS-10. The process of electrooxidation was carried out on platinum electrode in alkaline (KOH) and acidic (H2SO4) electrolyte, in the temperature range of 293-333 K. In each analysed case the process of electrooxidation took place. The maximum current density obtained was 7 mA cm-2. Thus, it has been shown that it is possible to generate electricity directly from the emulsion of the waste rapeseed oil.

  10. Thermo-chemical extraction of fuel oil from waste lubricating grease.

    PubMed

    Pilusa, Tsietsi Jefrey; Muzenda, Edison; Shukla, Mukul

    2013-06-01

    This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80°C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45°C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil-toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80°C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Screening of biodiesel production from waste tuna oil (Thunnus sp.), seaweed Kappaphycus alvarezii and Gracilaria sp.

    NASA Astrophysics Data System (ADS)

    Alamsjah, Mochammad Amin; Abdillah, Annur Ahadi; Mustikawati, Hutami; Atari, Suci Dwi Purnawa

    2017-09-01

    Biodiesel has several advantages over solar. Compared to solar, biodiesel has more eco-friendly characteristic and produces lower greenhouse gas emissions. Biodiesel that is made from animal fats can be produced from fish oil, while other alternative sources from vegetable oils are seaweed Kappaphycus alvarezii and Gracilaria sp. Waste tuna oil (Thunnus sp.) in Indonesia is commonly a side product of tuna canning industries known as tuna precook oil; on the other hand, seaweed Gracilaria sp. and Kappaphycus alvarezii are commonly found in Indonesia's seas. Seaweed waste that was used in the present study was 100 kg and in wet condition, and the waste oil was 10 liter. The seaweed was extracted with soxhletation method that used n-hexane as the solvent. To produce biodiesel, trans esterification was performed on the seaweed oil that was obtained from the soxhletation process and waste tuna oil. Biodiesel manufactured from seaweed K. alvarezii obtained the best score in flash point, freezing point, and viscosity test. However, according to level of manufacturing efficiency, biodiesel from waste tuna oil is more efficient and relatively easier compared to biodiesel from waste K. alvarezii and Gracilaria sp.

  12. Production of sorbent from paper industry solid waste for oil spill cleanup.

    PubMed

    Demirel Bayık, G; Altın, A

    2017-12-15

    The aim of the study is to select a cellulosic waste material from paper industry solid wastes and process it for sorbent production. Four different solid wastes were collected from a local paper production facility and rejects were selected due to its sorption capacity and processability. Oil sorption experiments were conducted according to the ASTM F 726-12 method. Effect of sorbent dosage, contact and dripping time, recovery of the oil, reusability of the sorbent and sorption from the water surface were also determined. Maximum oil sorption capacity was determined as 9.67, 12.92 and 12.84g/g for diesel oil, 0W30 and 10W30 motor oils respectively for the static test and 8.27, 10.45 and 11.69g/g for the dynamic test. An efficient and low-cost sorbent was produced from paper industry rejects that can be used on land and on water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Production of high-calorie energy briquettes from bark waste, plastic and oil

    NASA Astrophysics Data System (ADS)

    Suwinarti, W.; Amirta, R.; Yuliansyah

    2018-04-01

    Bark is the waste generated from the utilization of plantation timber, while plastics and oil waste are produced from daily human activity. These waste has the potential to be used as energy briquettes raw materials, especially for fuel in power plants. It would be worth very strategic for the environment and the welfare of society, considering that at this time we are not yet fully capable of well managing all three waste types. On the other hands most of the power plants that operate today still use diesel and coal as fuel. Therefore, the best composition of mixing bark, plastic and oil will be studied as well as its influence on the physical and chemical quality of the briquettes produced. The results show that the addition of the oil waste (70%) and used plastic (30%) as additive give effect to the performance of the briquette formation with the highest calorific value of 33.56 MJ/kg.

  14. Multi-objective model of waste transportation management for crude palm oil industry

    NASA Astrophysics Data System (ADS)

    Silalahi, Meslin; Mawengkang, Herman; Irsa Syahputri, Nenna

    2018-02-01

    The crude palm oil industry is an agro-industrial commodity. The global market of this industry has experienced rapid growth in recent years, such that it has a strategic value to be developed for Indonesian economy. Despite these economic benefits there are a number of environmental problems at the factories, such as high water consumption, the generation of a large amount of wastewater with a high organic content, and the generation of a large quantity of solid wastes and air pollution. In terms of waste transportation, we propose a multiobjective programming model for managing business environmental risk in a crude palm oil manufacture which gives the best possible configuration of waste management facilities and allocates wastes to these facilities. Then we develop an interactive approach for tackling logistics and environmental risk production planning problem for the crude palm oil industry.

  15. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong

    2015-03-01

    In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

  16. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Characterization of essential oil recovered from fennel horticultural wastes.

    PubMed

    Cautela, Domenico; Vella, Filomena Monica; Castaldo, Domenico; Laratta, Bruna

    2018-05-30

    Fennel crop has been traditionally used as spice in cooking and fragrances, and in folk medicine for its spectrum of useful properties. Mediterranean is the elective natural cultivation area for this plant with Italy being a leader producer. A limit of this production is due to the high amount of wastes derived still rich of phytochemicals, which are usually underused. Hence, the extraction and characterization of essential oil from residues of fennel horticultural market was investigated to understand the potential profit of their recycling. Forty-eight compounds resulted for fennel oil waste, analysed by GC-FID-MS, with the most abundant among components was anethole. Other constituents contributing to fennel flavour were the monoterpenes limonene and nerol. The exploitation of this oil as a good source of bioactive compounds was assessed by means of its antioxidant power measured with DPPH test.

  18. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    PubMed

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  19. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.

    PubMed

    Partovi, Maryam; Lotfabad, Tayebe Bagheri; Roostaazad, Reza; Bahmaei, Manochehr; Tayyebi, Shokoufe

    2013-06-01

    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % < Ydeg|(wastes) and YP/S|(wastes) > YP/S|(Soybean oil) = 0.31 g g(-1), respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) =/~ 0.5 g g(-1)), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max = 0.26 ± 0.02 h(-1)), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l(-1), during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products.

  20. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer.

    PubMed

    Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo

    2017-11-01

    In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Preliminary economic assessment of the use of waste frying oils for biodiesel production in Beirut, Lebanon.

    PubMed

    Fawaz, Elyssa G; Salam, Darine A

    2018-05-15

    In this study, a method for assessing the costs of biodiesel production from waste frying oils in Beirut, Lebanon, was investigated with the aim of developing an economic evaluation of this alternative. A hundred restaurant and hotel enterprises in Beirut were surveyed for promoting them in participating in the biodiesel supply chain, and for data collection on waste frying oils generation, disposal methods and frequency, and acquisition cost. Also, waste frying oils were collected and converted into biodiesel using a one-step base catalyzed transesterification process. Physicochemical characteristics of the produced biodiesel were conforming to international standards. Data produced from laboratory scale conversion of waste frying oils to biodiesel, as well as data collected from the only biodiesel plant in Lebanon was used to determine the production cost of biodiesel. Geographic Information System was used to propose a real-time vehicle routing model to establish the logistics costs associated with waste frying oils collection. Comparing scenarios of the configuration collection network of waste frying oils, and using medium-duty commercial vehicles for collection, a logistics cost of US$/L 0.08 was optimally reached. For the calculation of the total cost of biodiesel production, the minimum, average, and maximum values for the non-fixed cost variables were considered emerging 81 scenarios for possible biodiesel costs. These were compared with information on the commercialization of diesel in Lebanon for the years 2011 through 2017. Although competitive with petroleum diesel for years 2011 to 2014, the total biodiesel cost presented less tolerance to declining diesel prices in the recent years. Sensitivity analysis demonstrated that the acquisition cost of waste frying oils is the key factor affecting the overall cost of biodiesel production. The results of this study validate the economic feasibility of waste frying oils' biodiesel production in the studied

  3. Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings.

    PubMed

    Gammoun, A; Tahiri, S; Albizane, A; Azzi, M; Moros, J; Garrigues, S; de la Guardia, M

    2007-06-25

    In this paper, the ability of chrome shavings to remove motor oils, oily wastes and hydrocarbons from water has been studied. To determine amount of hydrocarbons sorbed on tanned wastes, a FT-NIR methodology was used and a multivariate calibration based on partial least squares (PLS) was employed for data treatment. The light density, porous tanned waste granules float on the surface of water and remove hydrocarbons and oil films. Wastes fibers from tannery industry have high sorption capacity. These tanned solid wastes are capable of absorbing many times their weight in oil or hydrocarbons (6.5-7.6g of oil and 6.3g of hydrocarbons per gram of chrome shavings). The removal efficiency of the pollutants from water is complete. The sorption of pollutants is a quasi-instantaneous process.

  4. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste.

    PubMed

    Ismail, Salmah; Dadrasnia, Arezoo

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.

  5. Biotechnological Potential of Bacillus salmalaya 139SI: A Novel Strain for Remediating Water Polluted with Crude Oil Waste

    PubMed Central

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater. PMID:25875763

  6. Supercritical Fluid Chromatography with Photodiode Array Detection in the Determination of Fat-Soluble Vitamins in Hemp Seed Oil and Waste Fish Oil.

    PubMed

    Tyśkiewicz, Katarzyna; Gieysztor, Roman; Maziarczyk, Izabela; Hodurek, Paweł; Rój, Edward; Skalicka-Woźniak, Krystyna

    2018-05-10

    In the presented study for the first time a new, optimized, fast SFC (supercritical fluid chromatography) method was applied to separate in one run fat-soluble vitamins from waste fish oil, including cis -and tran s-retinyl palmitate, cis - and trans -retinyl acetate, retinol, α-tocopherol, β-tocopherol, γ‑tocopherol, δ-tocopherol, ergocalciferol (D₂), cholecalciferol (D₃), cis - and trans -phylloquinone (K₁) and menaquinone-4 (K₂-MK4). Vitamins were baseline separated on an Acquity UPC² (ultra performance convergence chromatography) HSS C18 SB (highly strength chemically modified silica) column within 13 min. The influence of the stationary phase, such as Torus 1-AA (1-aminoanthracene), Torus Diol (high density diol), Torus DEA (diethylamine), BEH (silica with no bonding), BEH-2EP (2-ethylpirydine), CSH Fluoro-Phenyl (silica with fluoro-phenyl groups), column temperature, flow rate and back pressure on the separation of the compounds was described. The application of the modified saponification procedure allowed us to increase concentration in the sample prepared for the analysis of γ‑tocopherol from less than 1% (wt %) to 14% for the first time. In addition, α‑tocopherol, γ‑tocopherol, δ‑tocopherol and retinol were identified in waste fish oil. Vitamin purification and analysis in waste fish oil are reported for the first time here. Due to the short time and effectiveness of the proposed method, it can be easily applied in industrial processes.

  7. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less

  8. Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Vlaskin, Mikhail; Borisova, Ludmila; Zherebker, Alexander; Perminova, Irina; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2018-02-01

    Recent research has revealed that more than 1.3 billion tons of food is wasted globally every year. The disposal of such huge biomass has become a challenge. In the present paper, we report the production of the bio-oil by hydrothermal liquefaction of three classes of food waste: meat, cheese and fruits. The highest yield of the bio-oil was observed for meat (∼60%) and cheese (∼75%), while for fruits, it was considerably low (∼10%). The molecular composition of the obtained bio-oil was investigated using ultrahigh resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry and was found to be similar to that obtained from algae. Several thousand heteroatom compounds (N, N 2 , ON 2 , etc. classes) were reliably identified from each sample. It was found that bio-oils produced from meat and cheese have many compounds (∼90%) with common molecular formulas, while bio-oil produced from fruits differs considerably (∼30% of compounds are unique).

  9. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    PubMed

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. Copyright © 2010 SETAC.

  10. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  11. Recovery of different waste vegetable oils for biodiesel production: a pilot experience in Bahia State, Brazil.

    PubMed

    Torres, Ednildo Andrade; Cerqueira, Gilberto S; Tiago, M Ferrer; Quintella, Cristina M; Raboni, Massimo; Torretta, Vincenzo; Urbini, Giordano

    2013-12-01

    In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH. The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  13. Biodegradation of oil refinery wastes under OPA and CERCLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamblin, W.W.; Banipal, B.S.; Myers, J.M.

    1995-12-31

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceededmore » under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).« less

  14. Biodiesel fuel production from waste cooking oil by the inclusion complex of heteropoly acid with bridged bis-cyclodextrin.

    PubMed

    Zou, Changjun; Zhao, Pinwen; Shi, Lihong; Huang, Shaobing; Luo, Pingya

    2013-10-01

    The inclusion complex of Cs2.5H0.5PW12O40 with bridged bis-cyclodextrin (CsPW/B) is prepared as a highly efficient catalyst for the direct production of biodiesel via the transesterification of waste cooking oil. CsPW/B is characterized by X-ray diffraction, and the biodiesel is analyzed by Gas Chromatography-Mass Spectrometer. The conversion rate of waste cooking oil is up to 94.2% under the optimum experimental conditions that are methanol/oil molar ratio of 9:1, catalyst dosage of 3 wt%, temperature of 65 °C and reaction time of 180 min. The physical properties of biodiesel sample satisfy the requirement of ASTM D6751 standards. The novel CsPW/B catalyst used for the transesterification can lead to 96.9% fatty acid methyl esters and 86.5% of the biodiesel product can serve as the ideal substitute for diesel fuel, indicating its excellent potential application in biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    PubMed

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  16. Catalytic upgrading of oil fractions separated from food waste leachate.

    PubMed

    Heo, Hyeon Su; Kim, Sang Guk; Jeong, Kwang-Eun; Jeon, Jong-Ki; Park, Sung Hoon; Kim, Ji Man; Kim, Seung-Soo; Park, Young-Kwon

    2011-02-01

    In this work, catalytic cracking of biomass waste oil fractions separated from food waste leachate was performed using microporous catalysts, such as HY, HZSM-5 and mesoporous Al-MCM-48. The experiments were carried out using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to allow the direct analysis of the pyrolytic products. Most acidic components, especially oleic acid, contained in the food waste oil fractions were converted to valuable products, such as oxygenates, hydrocarbons and aromatics. High yields of hydrocarbons within the gasoline-range were obtained when microporous catalysts were used; whereas, the use of Al-MCM-48, which exhibits relatively weak acidity, resulted in high yields of oxygenated and diesel-range hydrocarbons. The HZSM-5 catalyst produced a higher amount of valuable mono aromatics due to its strong acidity and shape selectivity. Especially, the addition of gallium (Ga) to HZSM-5 significantly increased the aromatics content. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    USDA-ARS?s Scientific Manuscript database

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  18. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    PubMed

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Process simulation and economic analysis of biodiesel production from waste cooking oil with membrane bioreactor

    NASA Astrophysics Data System (ADS)

    Abdurakhman, Yuanita Budiman; Putra, Zulfan Adi; Bilad, Muhammad Roil

    2017-10-01

    Pollution and shortage of clean energy supply are among major problems that are caused by rapid population growth. Due to this growth, waste cooking oil is one of the pollution sources. On the other hand, biodiesel appears to be one of the most promising and feasible energy sources as it emits less toxic pollutants and greenhouse gases than petroleum diesel. Thus, biodiesel production using waste cooking oil offers a two-in-one solution to cater pollution and energy issues. However, the conventional biodiesel production process using homogeneous base catalyst and stirred tank reactor is unable to produce high purity of biodiesel from waste cooking oil. It is due its sensitivity to free fatty acid (FFA) content in waste cooking oil and purification difficulties. Therefore, biodiesel production using heterogeneous acid catalyst in membrane reactor is suggested. The product of this process is fatty acid methyl esters (FAME) or biodiesel with glycerol as by-product. This project is aimed to study techno-economic feasibility of biodiesel production from waste cooking oil via heterogeneous acid catalyst in membrane reactor. Aspen HYSYS is used to accomplish this aim. Several cases, such as considering different residence times and the production of pharmaceutical (USP) grade glycerol, are evaluated and compared. Economic potential of these cases is calculated by considering capital expenditure, utilities cost, product and by-product sales, as well as raw material costs. Waste cooking oil, inorganic pressure-driven membrane and WAl is used as raw material, type of membrane and heterogeneous acid catalyst respectively. Based on literature data, FAME yield formulation is developed and used in the reactor simulation. Simulation results shows that economic potential increases by 30% if pharmaceutical (USP) grade glycerol is produced regardless the residence time of the reactor. In addition, there is no significant effect of residence time on the economic potential.

  20. Screening on oil-decomposing microorganisms and application in organic waste treatment machine.

    PubMed

    Lu, Yi-Tong; Chen, Xiao-Bin; Zhou, Pei; Li, Zhen-Hong

    2005-01-01

    As an oil-decomposable mixture of two bacteria strains (Bacillus sp. and Pseudomonas sp.), Y3 was isolated after 50 d domestication under the condition that oil was used as the limited carbon source. The decomposing rate by Y3 was higher than that by each separate individual strain, indicating a synergistic effect of the two bacteria. Under the conditions that T = 25-40 degrees C, pH = 6-8, HRT (Hydraulic retention time) = 36 h and the oil concentration at 0.1%, Y3 yielded the highest decomposing rate of 95.7%. Y3 was also applied in an organic waste treatment machine and a certain rate of activated bacteria was put into the stuffing. A series of tests including humidity, pH, temperature, C/N rate and oil percentage of the stuffing were carried out to check the efficacy of oil-decomposition. Results showed that the oil content of the stuffing with inoculums was only half of that of the control. Furthermore, the bacteria were also beneficial to maintain the stability of the machine operating. Therefore, the bacteria mixture as well as the machines in this study could be very useful for waste treatment.

  1. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    NASA Astrophysics Data System (ADS)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  2. Detecting waste-combustion emissions: several advanced methods are useful for sampling air contaminants from hazardous-waste-incinerator stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L.D.

    1986-01-01

    This paper is an overview of sampling methods being recommended to EPA regulatory programs, to EPA engineering research and development projects, and to interested parties in the industrial community. The methods discussed are generally applicable to both incineration and processes closely related to incineration (e.g., co-firing of waste in industrial boilers, and burning of contaminated heating oil). Although methods for inorganic hazardous compounds are very briefly outlined, the primary emphasis of the paper is on organic compounds that are likely to be chosen as principal organic hazardous constituents (POHCs) for a trial burn. Methods receiving major attention include: the Modifiedmore » Method 5 Train (MM5) which includes an XAD-2 sorbent module, the Source Assessment Sampling System (SASS), the recently developed Volatile Organic Sampling Train (VOST), and assorted containers such as glass bulbs and plastic bags.« less

  3. Transesterification of Waste Olive Oil by "Candida" Lipase

    ERIC Educational Resources Information Center

    Shen, Xiangping; Vasudevan, Palligarnai T.

    2008-01-01

    Biodiesel was produced by transesterification of waste olive oil with methanol and Novozym [R] 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, reaction temperature, and mixing speed on biodiesel yield was determined. The effect of different acyl acceptors and/or solvents on biodiesel yield was also evaluated.…

  4. Generation of shrimp waste-based dispersant for oil spill response.

    PubMed

    Zhang, Kedong; Zhang, Baiyu; Song, Xing; Liu, Bo; Jing, Liang; Chen, Bing

    2018-04-01

    In this study, shrimp waste was enzymatically hydrolyzed to generate a green dispersant and the product was tested for crude oil dispersion in seawater. The hydrolysis process was first optimized based on the dispersant effectiveness (DE) of the product. The functional properties of the product were identified including stability, critical micelle concentration, and emulsification activity. Water was confirmed as a good solvent for dispersant generation when compared with three chemical solvents. The effects of salinity, mixing energy, and temperature on the dispersion of the Alaska North Slope (ANS) crude oil were examined. Microtox acute toxicity test was also conducted to evaluate the toxicity of the produced dispersant. In addition, DE of the product on three different types of crude oil, including ANS crude oil, Prudhoe Bay crude oil (PBC), and Arabian Light crude oil (ALC) was compared with that of the Corexit 9500, respectively. The research output could lead to a promising green solution to the oil spill problem and might result in many other environmental applications.

  5. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  6. New strains of oil-degrading microorganisms for treating contaminated soils and wastes

    NASA Astrophysics Data System (ADS)

    Muratova, A. Yu; Panchenko, L. V.; Semina, D. V.; Golubev, S. N.; Turkovskaya, O. V.

    2018-01-01

    Two new strains Achromobacter marplatensis101n and Acinetobacter sp. S-33, capable of degrading 49 and 46% of oil within 7 days were isolated, identified, and characterized. The application of A. marplatensis 101n in combination with ammonium nitrate (100 mg·kg-1) for 30 days of cultivation resulted in the degradation of 49% of the initial total petroleum hydrocarbon content (274 g·kg-1) in the original highly acid (pH 4.9) oil-contaminated waste. Up to 30% of oil sludge added to a liquid mineral medium at a concentration of 15% was degraded after 10 days of cultivation of A. marplatensis 101n. Application of yellow alfalfa (Medicago falcata L.) plants with Acinetobacter sp. S-33 for bioremediation of oil-sludge-contaminated soil improved the quality of cleanup in comparison with the bacterium- or plant-only treatment. Inoculation of Acinetobacter sp. S-33 increased the growth of both roots and shoots by more than 40%, and positively influenced the soil microflora. We conclude that the new oil-degrading strains, Acinetobacter sp. S-33 and A. marplatensis 101n, can serve as the basis for new bioremediation agents for the treatment of oil contaminated soils and waste.

  7. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    PubMed

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO 2 -based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0 # diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nitrate Waste Treatment Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.; Martinez, Patrick Thomas; Garcia, Terrence Kerwin

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  9. Esterified sago waste for engine oil removal in aqueous environment.

    PubMed

    Ngaini, Zainab; Noh, Farid; Wahi, Rafeah

    2014-01-01

    Agro-waste from the bark of Metroxylon sagu (sago) was studied as a low cost and effective oil sorbent in dry and aqueous environments. Sorption study was conducted using untreated sago bark (SB) and esterified sago bark (ESB) in used engine oil. Characterization study showed that esterification has successfully improved the hydrophobicity, buoyancy, surface roughness and oil sorption capacity of ESB. Sorption study revealed that water uptake of SB is higher (30 min static: 2.46 g/g, dynamic: 2.67 g/g) compared with ESB (30 min static: 0.18 g/g, dynamic: 0.14 g/g). ESB, however, showed higher oil sorption capacity in aqueous environment (30 min static: 2.30 g/g, dynamic: 2.14) compared with SB (30 min static: 0 g/g, dynamic: 0 g/g). ESB has shown great poTENTial as effective oil sorbent in aqueous environment due to its high oil sorption capacity, low water uptake and high buoyancy.

  10. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

    PubMed

    Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  11. Waste-water characterization and hazardous-waste technical assistance survey, Bergstrom AFB tTxas. Final report, 6-15 March 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedgecock, N.S.

    1990-01-01

    At the request of 67 Combat Support Group/DEEV the Air Force Occupational and Environmental Health Laboratory conducted a waste-water characterization and hazardous-waste technical assistance survey at Bergstrom AFB (BAFB) from 6-15 Mar 89. The scope of the waste-water survey was to characterize the effluent exiting the base and the effluent from 23 industrial facilities and 10 food-serving facilities. The scope of the hazardous-waste survey was to address hazardous-waste-management practices and explore opportunities for hazardous waste minimization. Specific recommendations from the survey include: (1) Accompany City of Austin personnel during waste-water sampling procedures; (2) Sample at the manhole exiting the mainmore » lift station rather than at the lift station wet well; (3) Split waste-water samples with the City of Austin for comparison of results; (4) Ensure that oil/water separators and grease traps are functioning properly and are cleaned out regularly; (5) Limit the quantity of soaps and solvents discharged down the drain to the sanitary sewer; (6) Establish a waste disposal contract for the removal of wastes in the Petroleum Oils and Lubricants underground storage tanks. (7) Remove, analyze, and properly dispose of oil contaminated soil from accumulation sites. (8) Move indoors or secure, cover, and berm the aluminum sign reconditioning tank at 67 Civil Engineering Squadron Protective Coating. (9) Connect 67 Combat Repair Squadron Test Cell floor drains to the sanitary sewer.« less

  12. Hydrophobization potential of organic compounds deriving from olive oil production waste water

    NASA Astrophysics Data System (ADS)

    Egerer, Sina E.; Bandow, Nicole; Marschner, Bernd; Schaumann, Gabriele E.

    2010-05-01

    Olive oil production waste water (OPWW) is rich in dissolved organic carbon and nutrients (e.g. potassium). In order to use it as organic fertilizer, small-scale and family run olive oil production farms in Israel and Palestine often discharge it directly onto agricultural land without any previous treatment. One unwanted side effect that can be observed is the development of soil water repellency (SWR) which is probably induced by amphiphilic substances. Previous studies on the composition of OPWW have shown that it contains oil components such as phenols, fats and large-molecular organic compounds (e.g. Gonzalezvila et al., 1995), some of which have been reported to induce water repellency on soil mineral surfaces (e.g. Ma'shum et al., 1988; Leelamanie and Karube, 2007). For prioritization of compounds the individual hydrophobization potential of 16 common OPWW components was systematically evaluated using the sessile drop and the Wilhelmy plate method. Acid-washed sand was taken as model soil mineral material. In a batch experiment OPWW samples from Israel and Palestine were applied to sand and two different soils in order to investigate their hydrophobization potential under different temperature and humidity conditions. To facilitate the identification of the chemicals responsible for inducing SWR, a fractionation procedure was applied to fraction the OPWW samples using solvents of different polarity. The prioritized compounds were analyzed by GC-MS. First results of this identification will be presented as well.

  13. Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel.

    PubMed

    Peng, Chiung-Yu; Lan, Cheng-Hang; Dai, Yu-Tung

    2006-12-01

    This study characterizes the compositions of two biodiesel vapors, soy biodiesel and waste cooking oil biodiesel, to provide a comprehensive understanding of biodiesels. Vapor phases were sampled by purging oil vapors through thermal desorption tubes which were then analyzed by the thermal desorption/GC/MS system. The results show that the compounds of biodiesel vapors can be divided into four groups. They include methyl esters (the main biodiesel components), oxygenated chemicals, alkanes and alkenes, and aromatics. The first two chemical groups are only found in biodiesel vapors, not in the diesel vapor emissions. The percentages of mean concentrations for methyl esters, oxygenated chemicals, alkanes and alkenes, and aromatics are 66.1%, 22.8%, 4.8% and 6.4%, respectively for soy biodiesel, and 35.8%, 35.9%, 27.9% and 0.3%, respectively for waste cooking oil biodiesel at a temperature of 25+/-2 degrees C. These results show that biodiesels have fewer chemicals and lower concentrations in vapor phase than petroleum diesel, and the total emission rates are between one-sixteenth and one-sixth of that of diesel emission, corresponding to fuel evaporative emissions of loading losses of between 106 microg l(-1) and 283 microg l(-1). Although diesels generate more vapor phase emissions, biodiesels still generate considerable amount of vapor emissions, particularly the emissions from methyl esters and oxygenated chemicals. These two chemical groups are more reactive than alkanes and aromatics. Therefore, speciation and quantification of biodiesel vapor phases are important.

  14. Optimized Production of Biodiesel from Waste Cooking Oil by Lipase Immobilized on Magnetic Nanoparticles

    PubMed Central

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-01-01

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively. PMID:24336109

  15. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase...

  16. Single-step scalable conversion of waste natural oils to carbon nanowhiskers and their interaction with mammalian cells

    NASA Astrophysics Data System (ADS)

    Datta, Abheek; Dutta, Priyanka; Sadhu, Anustup; Maiti, Sankar; Bhattacharyya, Sayan

    2013-07-01

    Waste cooking oil has daily deliberate hazardous effects on human health due to consumption of re-cooked oil and on the environment from disposal of the waste oil. These hazards can be controlled if there are ways to economically convert the waste oils into industrially relevant materials. Large-scale controlled catalytic conversion of the waste natural oils to carbon nanowhiskers (CNWs; diameter: 98-191 nm, length: ≤2 μm) was achieved by a one-pot, environmentally friendly process. The no-cost CNWs consist of carbon spirals with spacing between two adjacent layers at 3.1 ± 0.2 nm and arranged perpendicular to the whisker axis. The reactions were performed inside a sealed container at 500-850 °C and autogenic pressure for 4-10 h. It was demonstrated that the gaseous pressure from the decomposition of the fatty acids was crucial for formation of the semi-graphitic filamentous structures. The dilute acid-washed catalyst free CNWs were found to be negligibly toxic to the mammalian cells and can be localized inside the cell nucleus. The cellular internalization studies of the fluorescent CNWs demonstrated their viability as potential delivery vehicles into the mammalian cells.

  17. Extraction of essential oil from baby Java orange (Citrus sinensis) solid waste using water and steam distillation

    NASA Astrophysics Data System (ADS)

    Dewi, I. A.; Prastyo, A. M.; Wijana, S.

    2018-03-01

    Baby java orange (Citrus sinensis) is commonly consumed as juice. Processing of baby java orange leaves organic waste which consist of the mesocarp, exocarp, seed, and wall of the orange. Therefore, it is necessary to process baby java orange waste to be valuable products. The purpose of this study was to provide added value to unutilized baby java orange waste, and to find out the pretreatment of time-delay process that maximize the yield of essential oil produced. Essential oil processing can be done by water and steam distillation. The study used randomized block design with one factor namely distillation time-delay process by air drying consisted of 4 levels i.e. the distillation delay for 2, 4, 6, and 8 days. The best treatment was determined based on the yield. The best essential oil from baby java orange waste was obtained from the treatment of distillation delay-process of 8 days. This pretreatment generated yield value of 0.63% with moisture content of 24.21%. By estimating the price of essential oil showed that this effort not only reduced the bulky organic waste but also provided potential economical value.

  18. Increased productivity through waste reduction effort in oil and gas company

    NASA Astrophysics Data System (ADS)

    Hidayati, J.; Silviana, NA; Matondang, RA

    2018-02-01

    National companies engaged in oil and gas activities in the upstream sector. In general, the on going operations include drilling, exploration, and production activities with the result being crude oil channelled for shipment. Production activities produce waste gas (flare) of 0.58 MMSCFD derived from 17.05% of natural gas produced. Gas flares are residual gases that have been burning through flare stacks to avoid toxic gases such as H2S and CO that are harmful to human health and the environment. Therefore, appropriate environmental management is needed; one of them is by doing waste reduction business. Through this approach, it is expected that waste reduction efforts can affect the improvement of environmental conditions while increasing the productivity of the company. In this research begins by identifying the existence of problems on the company related to the amount of waste that is excessive and potentially to be reduced. Alternative improvements are then formulated and selected by their feasibility to be implemented through financial analysis, and the estimation of alternative contributions to the level of productivity. The result of this research is an alternative solution to solve the problem of the company by doing technological based engineering by reusing gas flare into fuel for incinerator machine. This alternative contributes to the increased productivity of material use by 23.32%, humans 83.8%, capital 10.13 %, and waste decreased by 0.11%.

  19. Cost effective modular unit for cleaning oil and gas field waste water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinberg, M.B.; Nenasheva, M.N.; Gafarov, N.A.

    1996-12-31

    Problems of environmental control involving conservation of water resources are vital for the development of giant oil and gas condensate fields near Caspian Sea (Russia) characterized by water shortages. One of the urgent tasks of oil production industry is to use all field waste water consisting of underground, processing and rain water. It was necessary to construct a new highly effective equipment which could be used in local waste water treatment. Now we have at our disposal a technology and equipment to meet the requirements to the treated water quality. Thus we have installed a modular unit of 100 m{supmore » 3}/a day capacity to clean waste water from oil products, suspended matter and other organic pollutants at Orenburg oil and gas condensate field, Russia. The unit provides with a full treatment of produced water and comprises a settling tank with adhesive facility, the number of sorption filters, Trofactor bioreactors and a disinfecting facility. The equipment is fitted into three boxes measuring 9 x 3.2 x 2.7 in each. The equipment is simple in design that enables to save money, time and space. Sorption filters, bioreactors as well as the Trofactor process are a part of know-how. While working on the unit construction we applied well known methods of settling and sorption. The process of mechanic cleaning is undergoing in the following succession: (1) the gravitational separation in a settling tank where the floated film oil products are constantly gathered and the sediment is periodically taken away, (2) the settled water treatment in sorption Filters of a special kind.« less

  20. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    PubMed Central

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  1. Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst.

    PubMed

    Pukale, Dipak D; Maddikeri, Ganesh L; Gogate, Parag R; Pandit, Aniruddha B; Pratap, Amit P

    2015-01-01

    Transesterification based biodiesel production from waste cooking oil in the presence of heterogeneous solid catalyst has been investigated in the present work. The effect of different operating parameters such as type of catalyst, catalyst concentration, oil to methanol molar ratio and the reaction temperature on the progress of the reaction was studied. Some studies related to catalyst reusability have also been performed. The important physicochemical properties of the synthesized biodiesel have also been investigated. The results showed that tri-potassium phosphate exhibits high catalytic activity for the transesterification of waste cooking oil. Under the optimal conditions, viz. catalyst concentration of 3wt% K3PO4, oil to methanol molar ratio of 1:6 and temperature of 50°C, 92.0% of biodiesel yield was obtained in 90min of reaction time. Higher yield was obtained in the presence of ultrasound as compared to conventional approach under otherwise similar conditions, which can be attributed to the cavitational effects. Kinetic studies have been carried out to determine the rate constant at different operating temperatures. It was observed that the kinetic rate constant increased with an increase in the temperature and the activation energy was found to be 64.241kJ/mol. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Report: EPA Should Clarify and Strengthen Its Waste Management Oversight Role With Respect to Oil Spills of National Significance

    EPA Pesticide Factsheets

    Report #11-P-0706, September 26, 2011. As a support agency to the Coast Guard, EPA’s oversight of the Gulf Coast oil spill waste management activities provided assurance that oil-contaminated waste was disposed of properly.

  3. Fat, oil and grease waste from municipal wastewater: characterization, activation and sustainable conversion into biofuel.

    PubMed

    Pastore, Carlo; Pagano, Michele; Lopez, Antonio; Mininni, Giuseppe; Mascolo, Giuseppe

    2015-01-01

    Fat, oil and grease (FOG) recovered by the oil/water separator of a wastewater treatment plant (WWTP) were sampled, characterized, activated and converted into biofuel. Free acids (50-55%) and fatty soaps (26-32%) not only composed the main components, but they were also easily separable from the starting waste. The respective free fatty acid profiles were gas-chromatographically evaluated, interestingly verifying that free acids had a different profile (mainly oleic acid) with respect to the soapy fraction (saturated fatty acids were dominant). The inorganic composition was also determined for soaps, confirming that calcium is the most commonly present metal. The chemical activation of this fatty waste was made possible by converting the starting soaps into the respective free fatty acids by using formic acid as activator, coproducing the relevant formates. The activated fatty matter was then converted into biofuel through direct esterification under very mild conditions (345 K, atmospheric pressure) and obtaining thermodynamic conversion in less than 2 h. The process was easily scaled up, isolating at the end pure biodiesel (purity > 96%) through distillation under vacuum, providing a final product conformed to commercial purposes.

  4. Processing waste fats into a fuel oil substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudel, F.; Lengenfeld, P.

    1993-12-31

    Waste fats have a high energy potential. They also contain impurities. For example, fats used for deep-frying contain high contents of solids, water, and chlorides. The process described in this paper removes the impurities by simple processing such as screening, washing, separating, drying, and filtering. The final quality of processed fat allows its use as a fuel oil substitute, and also as a raw material for chemical production.

  5. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less

  6. Biodiesel production via the transesterification of soybean oil using waste starfish (Asterina pectinifera).

    PubMed

    Jo, Yong Beom; Park, Sung Hoon; Jeon, Jong-Ki; Ko, Chang Hyun; Ryu, Changkook; Park, Young-Kwon

    2013-07-01

    Calcined waste starfish was used as a base catalyst for the production of biodiesel from soybean oil for the first time. A batch reactor was used for the transesterification reaction. The thermal characteristics and crystal structures of the waste starfish were investigated by thermo-gravimetric analysis and X-ray diffraction. The biodiesel yield was determined by measuring the content of fatty acid methyl esters (FAME). The calcination temperature appeared to be a very important parameter affecting the catalytic activity. The starfish-derived catalyst calcined at 750 °C or higher exhibited high activity for the transesterification reaction. The FAME content increased with increasing catalyst dose and methanol-over-oil ratio.

  7. Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques

    NASA Astrophysics Data System (ADS)

    Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis

    2014-08-01

    Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.

  8. Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance.

    PubMed

    Arumugam, A; Ponnusami, V

    2017-12-01

    Waste sardine oil, a byproduct of fish industry, was employed as a low cost feedstock for biodiesel production. It has relatively high free fatty acid (FFA) content (32 mg KOH/g of oil). Lipase enzyme immobilized on activated carbon was used as the catalyst for the transesterification reaction. Process variables viz. reaction temperature, water content and oil to methanol molar ratio were optimized. Optimum methanol to oil molar ratio, water content and temperature were found to be 9:1, 10 v/v% and 30 °C respectively. Reusability of immobilized lipase was studied and it was found after 5 cycles of reuse there was about 13% drop in FAME yield. Engine performance of the produced biodiesel was studied in a Variable Compression Engine and the results confirm that waste sardine oil is a potential alternate and low-cost feedstock for biodiesel production.

  9. Green waste cooking oil-based rigid polyurethane foam

    NASA Astrophysics Data System (ADS)

    Enderus, N. F.; Tahir, S. M.

    2017-11-01

    Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.

  10. Improved biogas production from food waste by co-digestion with de-oiled grease trap waste.

    PubMed

    Wu, Li-Jie; Kobayashi, Takuro; Kuramochi, Hidetoshi; Li, Yu-You; Xu, Kai-Qin

    2016-02-01

    The objective of this study was to assess the feasibility of co-digesting food waste (FW) and de-oiled grease trap waste (GTW) to improve the biogas production. A lab-scale mesophilic digester (MD), a temperature-phased anaerobic digester (TPAD) and a TPAD with recycling (TPAD-R) were synchronously operated under mono-digestion (FW) and co-digestion (FW+de-oiled GTW). Co-digestion increased the biogas yield by 19% in the MD and TPAD-R, with a biogas yield of 0.60L/g VS added. Specific methanogenic activity in the TPAD-R was much higher than that in the MD. In addition to methane, hydrogen at a yield of approximately 1mol/mol hexose was produced in the TPAD-R. Alkalinity was consumed more in the co-digestion than in mono-digestion. Co-digestion resulted in more lipid accumulation in each digester. The MD favored the degradation of lipid and conversion of long-chain fatty acids more than the TPAD and TPAD-R. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES

    EPA Science Inventory

    This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...

  12. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.

    PubMed

    Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa

    2018-03-06

    Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.

  13. Green bio-oil extraction for oil crops

    NASA Astrophysics Data System (ADS)

    Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.

    2016-06-01

    The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.

  14. Natural wrapping paper from banana (Musa paradisiaca Linn) peel waste with additive essential oils

    NASA Astrophysics Data System (ADS)

    Widiastuti Agustina, E. S.; Elfi Susanti, V. H.

    2018-05-01

    The research aimed to produce natural wrapping paper from banana (Musa Paradisiaca Linn.) peel waste with additive essentials oils. The method used in this research was alkalization. The delignification process is done with the use of NaOH 4% at the temperature of 100°C for 1.5 hours. Additive materials in the form of essential oils are added as a preservative and aroma agent, namely cinnamon oil, lemon oil, clove oil and lime oil respectively 2% and 3%. Chemical and physical properties of the produced papers are tested included water content (dry-oven method SNI ISO 287:2010), pH (SNI ISO 6588-1.2010), grammage (SNI ISO 536:2010) and brightness (SNI ISO 2470:2010). Testing results of each paper were compared with commercial wrapping paper. The result shows that the natural paper from banana peel waste with additive essential oil meets the standard of ISO 6519:2016 about Basic Paper for Laminated Plastic Wrapping Paper within the parameter of pH and water content. The paper produced also meet the standard of ISO 8218:2015 about Food Paper and Cardboard within the grammage parameter (high-grade grammage), except the paper with 2% lemon oil. The paper which is closest to the characteristic of commercial wrapping paper is the paper with the additive of 2% cinnamon oil, with pH of 6.95, the water content of 7.14%, grammage of 347.6 gram/m2 and the brightness level of 24.68%.

  15. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  16. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  17. Compatibility tests between Jarytherm DBT synthetic oil and solid materials from wastes

    NASA Astrophysics Data System (ADS)

    Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Flamant, Gilles; Walker, Jérémie

    2016-05-01

    Direct thermocline thermal energy storage is the cheapest sensible thermal energy storage configuration. Indeed, a thermocline tank consists in one tank instead of two and reduces costs. Thermocline thermal energy storages are often filled with cheap solid materials which could react with the heat transfer fluid in the case of incompatibility. PROMES laboratory is building a pilot-scale parabolic trough solar loop including a direct thermocline thermal energy storage system. The working fluid will be a synthetic oil, the Jarytherm® DBT, and the thermal energy storage tank will be filled with stabilized solid materials elaborated from vitrified wastes. Compatibility tests have been conducted in order to check on one hand if the thermo-mechanical properties and life time of the energy storage medium are not affected by the contact with oil and, on the other hand, if the thermal oil performances are not degraded by the solid filler. These experiments consisted in putting in contact the oil and the solid materials in small tanks. In order to discriminate the solid materials tested in the shortest time, accelerating aging conditions at 330 °C for 500 hours were used. The measurements consisted in X-Ray Diffraction and Scanning Electron Microscopy for the solids, and thermo-physical and chemical properties measurements for the oil. Regarding the solid samples, their crystalline structure did not change during the test, but it is difficult to conclude about their elementary composition and they seem to absorb oil. While thermal properties still makes Jarytherm® DBT a good heat transfer fluid after the accelerated aging tests, this study results in differentiating most compatible materials. Thus according to our study, Jarytherm® DBT can be used in direct thermocline thermal energy storage applications when compatibility of the solid material has been demonstrated.

  18. Pilot-scale production of biodiesel from waste fats and oils using tetramethylammonium hydroxide.

    PubMed

    Šánek, Lubomír; Pecha, Jiří; Kolomazník, Karel; Bařinová, Michaela

    2016-02-01

    Annually, a great amount of waste fats and oils not suitable for human consumption or which cannot be further treated are produced around the world. A potential way of utilizing this low-cost feedstock is its conversion into biodiesel. The majority of biodiesel production processes today are based on the utilization of inorganic alkali catalysts. However, it has been proved that an organic base - tetramethylammonium hydroxide - can be used as a very efficient transesterification catalyst. Furthermore, it can be employed for the esterification of free fatty acids - reducing even high free fatty acid contents to the required level in just one step. The work presented herein, is focused on biodiesel production from waste frying oils and animal fats using tetramethylammonium hydroxide at the pilot-plant level. The results showed that the process performance in the pilot unit - using methanol and TMAH as a catalyst, is comparable to the laboratory procedure, even when the biodiesel is produced from waste vegetable oils or animal fats with high free fatty acid content. The reaction conditions were set at: 1.5% w/w of TMAH, reaction temperature 65°C, the feedstock to methanol molar ratio to 1:6, and the reaction time to 120min. The conversion of triglycerides to FAME was approximately 98%. The cloud point of the biodiesel obtained from waste animal fat was also determined. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A Survey on the Usage of Biomass Wastes from Palm Oil Mills on Sustainable Development of Oil Palm Plantations in Sarawak

    NASA Astrophysics Data System (ADS)

    Phang, K. Y.; Lau, S. W.

    2017-06-01

    As one of the world’s largest palm oil producers and exporters, Malaysia is committed to sustainable management of this industry to address the emerging environmental challenges. This descriptive study aims to evaluate the oil palm planters’ opinions regarding the usage of biomass wastes from palm oil mills and its impact on sustainable development of oil palm plantations in Sarawak. 253 planters across Sarawak were approached for their opinions about the usage of empty fruit bunch (EFB), palm oil mill effluent (POME), mesocarp fibre (MF), and palm kernel shell (PKS). This study revealed that the planters had generally higher agreement on the beneficial application of EFB and POME in oil palm plantations. This could be seen from the higher means of agreement rating of 3.64 - 4.22 for EFB and POME, compared with the rating of 3.19 - 3.41 for MF and PKS in the 5-point Likert scale (with 5 being the strongest agreement). Besides, 94.7 percent of the planters’ companies were found to comply with the Environmental Impact Assessment (EIA) requirements where nearly 38 percent carried out the EIA practice twice a year. Therefore high means of agreement were correlated to the compliance of environmental regulations, recording a Likert rating of 3.89 to 4.31. Lastly, the usage of EFB and POME also gained higher Likert scale point of 3.76 to 4.17 against MF and PKS of 3.34 to 3.49 in the evaluation of the impact of sustainability in oil palm plantations. The planters agreed that the usage of EFB and POME has reduced the environmental impact and improved the sustainable development, and its application has been improved and increased by research and development. However the planters were uncertain of the impact of usage of biomass wastes with respect to the contribution to social responsibility and company image in terms of transparency in waste management.

  20. IET control building (TAN620). equipment removed. Lube oil and waste ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). equipment removed. Lube oil and waste piping at upper right. Fire door on right. Rebar exposed in concrete of ceiling. INEEL negative no. HD-21-5-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Characteristics and treatability of oil-bearing wastes from aluminum alloy machining operations.

    PubMed

    Chen, Luke; Hsieh, Chueh-Chen; Wetherbee, John; Yang, Chen-Lu

    2008-04-15

    Enomoto Industry Co., exclusively uses water-based cutting fluids in its aluminum alloy machining operations. Since the cost of disposal can be much greater than the cost of purchase, the treatability of spent cutting fluids is becoming a major criterion for cutting fluid selection. Samples were collected from the machining lines at Enomoto's facility to determine their characteristics and evaluate their treatability with centrifugation, chemical coagulation and electrochemical coagulation. As expected, oil and grease (O&G) and total suspended solids (TSS) are the main reasons that spent cutting fluids are prohibited from being discharged into local swage systems. The average O&G found in the spent cutting fluids is 87,354 mg/L with TSS of more than 70,000 mg/L. Both O&G and TSS are the major contributors to the high turbidity of these waste effluents. A centrifuge with a relative centrifugal force of 1318 x g, was able to reduce 60% of the turbidity. By adding the coagulant aluminum chloride, the oil-water emulsion was destabilized, and the turbidity was reduced from 3249 Formazin Attenuation Units (FAU) to around 314 FAU. With freshly generated aluminum ions in the spent cutting fluid, the electrochemical process destabilized the oil-water emulsion system. The coalesced oil droplets were adsorbed onto the highly dispersed aluminum coagulant. The oil-rich sludge that was generated in the operation was then floated to the surface, forming a blanket that was removed by skimming. The electrochemical treatment was able to reduce the turbidity to less than 14 FAU, which is the detection limit of the Hach DR/4000 UV-vis spectrophotometer.

  2. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  3. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  4. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE PAGES

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; ...

    2017-08-30

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  5. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    PubMed Central

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; Gibson, Christopher T.; Sibley, Alexander; Slattery, Ashley D.; Campbell, Jonathan A.; Alboaiji, Salah F. K.; Muller, Katherine A.; Young, Jason; Adamson, Nick; Gascooke, Jason R.; Jampaiah, Deshetti; Sabri, Ylias M.; Bhargava, Suresh K.; Ippolito, Samuel J.; Lewis, David A.; Quinton, Jamie S.; Ellis, Amanda V.; Johs, Alexander; Bernardes, Gonçalo J. L.

    2017-01-01

    Abstract Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury‐rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low‐cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by‐product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury‐capturing polymers can be synthesised entirely from waste and supplied on multi‐kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. PMID:28763123

  6. Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties

    NASA Astrophysics Data System (ADS)

    Poh, Chia Chin; Hassan, Norhidayah Abdul; Raman, Noor Azah Abdul; Shukry, Nurul Athma Mohd; Warid, Muhammad Naqiuddin Mohd; Satar, Mohd Khairul Idham Mohd; Ros Ismail, Che; Asmah Hassan, Sitti; Mashros, Nordiana

    2018-04-01

    Bitumen shortage has triggered the exploration of another alternative waste material that can be blended with conventional bitumen. This study presents the performance of pyrolysis bio-oil from palm oil empty fruit bunch (EFB) as an alternative binder in modified bitumen mixtures. The palm oil EFB was first pyrolyzed using auger pyrolyzer to extract the bio-oil. Conventional bitumen 80/100 penetration grade was used as a control sample and compared with samples that were modified with different percentages, i.e., 5% and 10%, of pyrolysis EFB bio-oil. The physical and rheological properties of the control and modified bitumen samples were investigated using penetration, softening point, viscosity and dynamic shear rheometer (DSR) tests. Results showed that the addition of EFB bio-oil softened the bitumen with high penetration and a reduction in softening point, penetration index, and viscosity. However, the DSR results showed a comparable rutting resistance between the bitumen samples containing EFB bio-oil and virgin bitumen with a failure temperature achieved greater than 64°C.

  7. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  8. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    PubMed Central

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  9. The Effect of Acetone Amount Ratio as Co-Solvent to Methanol in Transesterification Reaction of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Julianto, T. S.; Nurlestari, R.

    2018-04-01

    The production of biodiesel from waste cooking oil by transesterification reaction using acetone as co-solvent has been carried out. This research studied the optimal amount ratio of acetone as co-solvent to methanol in the transesterification process using homogeneous alkaline catalyst KOH 1% (w/w) of waste cooking oil at room temperature for 15 minutes of reaction time. Mole ratio of waste cooking oil to methanol is 1:12. Acetone was added as co-solvent in varied amount ratio to methanol are 1:4, 1:2, and 1:1, respectively. The results of fatty acid methyl esters (FAME) were analysed using GC-MS instrument. The results showed that the optimal ratio is 1:4 with 99.93% of FAME yield.

  10. Synthesis of silica gel from waste glass bottles and its application for the reduction of free fatty acid (FFA) on waste cooking oil

    NASA Astrophysics Data System (ADS)

    Sudjarwo, Wisnu Arfian A.; Bee, Mei Magdayanti F.

    2017-06-01

    Synthesis of silica gel from waste glass bottles was conducted with aims to characterize the product and to analyze its application forthe reduction of free fatty acid (FFA) on waste cooking oil. Silica source taken from waste glass bottles was synthesized into silica gel by using the sol-gel method. Several types of silica gel were produced with three different weight ratios of waste glass and sodium hydroxide as an extractor. They were: 1:1, 1:2, and 1:3. The results indicated that synthesized silica possessed morphology innano-sizedranging from 85 nm to 459 nm. Adsorption performance was investigated by a batch system atthe temperature between 70°C and 110°C by a range of 10°C in an hour. Analysis of the adsorption characteristic showed that the highest efficiency value of FFA reduction of 91% was obtained by silica gel with ratiosof 1:1 (SG 1) and 1:3 (SG 3). Their performances were also followed by the decline of the refractive index and the density of waste cooking oil.

  11. Catalytic pyrolysis of oil fractions separated from food waste leachate over nanoporous acid catalysts.

    PubMed

    Kim, Seung-Soo; Heo, Hyeon Su; Kim, Sang Guk; Ryoo, Ryong; Kim, Jeongnam; Jeon, Jong-Ki; Park, Sung Hoon; Park, Young-Kwon

    2011-07-01

    Oil fractions, separated from food waste leachate, can be used as an energy source. Especially, high quality oil can be obtained by catalytic cracking. In this study, nanoporous catalysts such as Al-MCM-41 and mesoporous MFI type zeolite were applied to the catalytic cracking of oil fractions using the pyrolysis gas chromatography/mass spectrometry. Mesoporous MFI type zeolite showed better textural porosity than Al-MCM-41. In addition, mesoporous MFI type zeolite had strong Brönsted acidity while Al-MCM-41 had weak acidity. Significant amount of acid components in the food waste oil fractions were converted to mainly oxygenates and aromatics. As a result of its well-defined nanopores and strong acidity, the use of a mesoporous MFI type zeolite produced large amounts of gaseous and aromatic compounds. High yields of hydrocarbons within the gasoline range were also obtained in the case of mesoporous MFI type zeolite, whereas the use of Al-MCM-41, which exhibits relatively weak acidity, resulted in high yields of oxygenates and diesel range hydrocarbons.

  12. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  13. Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition.

    PubMed

    Wu, Angjian; Li, Xiaodong; Yang, Jian; Du, Changming; Shen, Wangjun; Yan, Jianhua

    2017-10-12

    Vertical graphene (VG) sheets were single-step synthesized via inductively coupled plasma (ICP)-enhanced chemical vapor deposition (PECVD) using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H₂, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper temperature and H₂ concentration was indispensable for the synthesis of VG sheets. Rich defects of VG were formed with a high I D / I G ratio (1.29), consistent with the dense edges structure observed in electron microscopy. Additionally, the morphologies, crystalline degree, and wettability of nanostructure carbon induced by PECVD and ICP separately were comparatively analyzed. The present work demonstrated the potential of our PECVD recipe to synthesize VG from abundant natural waste oil, which paved the way to upgrade the low-value hydrocarbons into advanced carbon material.

  14. Natural Zeolite Sample and Investigation Its Use in Oil Bleaching Sector

    NASA Astrophysics Data System (ADS)

    Bilgin, Oyku

    2017-12-01

    In the sector of oil bleaching, the stored raw oil is subjected to physical and chemical methods such as degumming, neutralization, bleaching, deodorization and winterization. In the process of oil bleaching, the selection of correct bleaching earth in accordance with oil characteristics matters so much. Bleaching earth is an inorganic product used in removing impurities being available within the structures of vegetable, animal oil (sunflower, soya, corn, palm, tallow, rapeseed, fish oils…etc.) and fatty acids, mineral oils (glycerine, paraffin, mineral motor oils. etc.) with the adsorption process. The factors such as low cost of oil bleaching earth, low ratio of oil retaining, high bleaching capacity in spite of using them in small amounts, filter’s delayed blocking by the earth and non-increase of the free acidity of the oil should be taken into consideration. Bleaching earths are processed with some acids in order to widen their surface areas. During this process, a certain amount of acid is left within oil bleaching earths even if it is very little. These acids also increase oil’s acidity by oxidizing oil in the course of bleaching process. In this study, zeolite sample taken from Manisa -Demirci region was used. Following the processes of crushing and sieving, zeolite sample was subjected to chemical analyses according to their grain thickness, microscopic examination, the analyses of XRD and cation exchange capacity and their ore characteristics were determined. Afterwards, it was searched whether zeolite sample has oil bleaching ability or not or whether it can be used as oil bleaching earth or not.

  15. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    NASA Astrophysics Data System (ADS)

    Ahmad, K. H.; Hossain, A. K.

    2017-11-01

    Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The

  16. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling liquid PCB remediation waste. 761.269 Section 761.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance...

  17. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling liquid PCB remediation waste. 761.269 Section 761.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance...

  18. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling liquid PCB remediation waste. 761.269 Section 761.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance...

  19. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling liquid PCB remediation waste. 761.269 Section 761.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance...

  20. Synthesis of biodiesel from waste cooking oil using sonochemical reactors.

    PubMed

    Hingu, Shishir M; Gogate, Parag R; Rathod, Virendra K

    2010-06-01

    Investigation into newer routes of biodiesel synthesis is a key research area especially due to the fluctuations in the conventional fuel prices and the environmental advantages of biodiesel. The present work illustrates the use of sonochemical reactors for the synthesis of biodiesel from waste cooking oil. Transesterification of used frying oil with methanol, in the presence of potassium hydroxide as a catalyst has been investigated using low frequency ultrasonic reactor (20 kHz). Effect of different operating parameters such as alcohol-oil molar ratio, catalyst concentration, temperature, power, pulse and horn position on the extent of conversion of oil have been investigated. The optimum conditions for the transesterification process have been obtained as molar ratio of alcohol to oil as 6:1, catalyst concentration of 1 wt.%, temperature as 45 degrees C and ultrasound power as 200 W with an irradiation time of 40 min. The efficacy of using ultrasound has been compared with the conventional stirring approach based on the use of a six blade turbine with diameter of 1.5 cm operating at 1000 rpm. Also the purification aspects of the final product have been investigated. (c) 2010 Elsevier B.V. All rights reserved.

  1. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature.

    PubMed

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 degrees C, 150 degrees C, and 160 degrees C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 degrees C. At 150 degrees C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 degrees C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil>waste engine oil>B-C heavy oil>waste cooking oil. The duration at 150 degrees C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight. Copyright 2010 Elsevier B.V. All rights reserved.

  2. BP Spill Sampling and Monitoring Data

    EPA Pesticide Factsheets

    This dataset analyzes waste from the the British Petroleum Deepwater Horizon Rig Explosion Emergency Response, providing opportunity to query data sets by metadata criteria and find resulting raw datasets in CSV format.The data query tool allows users to download EPA's air, water and sediment sampling and monitoring data that has been collected in response to the BP oil spill. All sampling and monitoring data that has been collected to date is available for download as raw structured data.The query tools enables CSV file creation to be refined based on the following search criteria: date range (between April 28, 2010 and 9/29/2010); location by zip, city, or county; media (solid waste, weathered oil, air, surface water, liquid waste, tar, sediment, water); substance categories (based on media selection) and substances (based on substance category selection).

  3. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils.

    PubMed

    Worthington, Max J H; Kucera, Renata L; Albuquerque, Inês S; Gibson, Christopher T; Sibley, Alexander; Slattery, Ashley D; Campbell, Jonathan A; Alboaiji, Salah F K; Muller, Katherine A; Young, Jason; Adamson, Nick; Gascooke, Jason R; Jampaiah, Deshetti; Sabri, Ylias M; Bhargava, Suresh K; Ippolito, Samuel J; Lewis, David A; Quinton, Jamie S; Ellis, Amanda V; Johs, Alexander; Bernardes, Gonçalo J L; Chalker, Justin M

    2017-11-16

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Conversion of solid organic wastes into oil via Boettcherisca peregrine (Diptera: Sarcophagidae) larvae and optimization of parameters for biodiesel production.

    PubMed

    Yang, Sen; Li, Qing; Zeng, Qinglan; Zhang, Jibin; Yu, Ziniu; Liu, Ziduo

    2012-01-01

    The feedstocks for biodiesel production are predominantly from edible oils and the high cost of the feedstocks prevents its large scale application. In this study, we evaluated the oil extracted from Boettcherisca peregrine larvae (BPL) grown on solid organic wastes for biodiesel production. The oil contents detected in the BPL converted from swine manure, fermentation residue and the degreased food waste, were 21.7%, 19.5% and 31.1%, respectively. The acid value of the oil is 19.02 mg KOH/g requiring a two-step transesterification process. The optimized process of 12∶1 methanol/oil (mol/mol) with 1.5% H(2)SO(4) reacted at 70°C for 120 min resulted in a 90.8% conversion rate of free fatty acid (FFA) by esterification, and a 92.3% conversion rate of triglycerides into esters by alkaline transesterification. Properties of the BPL oil-based biodiesel are within the specifications of ASTM D6751, suggesting that the solid organic waste-grown BPL could be a feasible non-food feedstock for biodiesel production.

  5. Conversion of Solid Organic Wastes into Oil via Boettcherisca peregrine (Diptera: Sarcophagidae) Larvae and Optimization of Parameters for Biodiesel Production

    PubMed Central

    Yang, Sen; Li, Qing; Zeng, Qinglan; Zhang, Jibin; Yu, Ziniu; Liu, Ziduo

    2012-01-01

    The feedstocks for biodiesel production are predominantly from edible oils and the high cost of the feedstocks prevents its large scale application. In this study, we evaluated the oil extracted from Boettcherisca peregrine larvae (BPL) grown on solid organic wastes for biodiesel production. The oil contents detected in the BPL converted from swine manure, fermentation residue and the degreased food waste, were 21.7%, 19.5% and 31.1%, respectively. The acid value of the oil is 19.02 mg KOH/g requiring a two-step transesterification process. The optimized process of 12∶1 methanol/oil (mol/mol) with 1.5% H2SO4 reacted at 70°C for 120 min resulted in a 90.8% conversion rate of free fatty acid (FFA) by esterification, and a 92.3% conversion rate of triglycerides into esters by alkaline transesterification. Properties of the BPL oil-based biodiesel are within the specifications of ASTM D6751, suggesting that the solid organic waste-grown BPL could be a feasible non-food feedstock for biodiesel production. PMID:23029331

  6. Biodiesel production from waste frying oils and its quality control.

    PubMed

    Sabudak, T; Yildiz, M

    2010-05-01

    The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price. In the present study waste frying oils collected from several McDonald's restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH(3)ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Effect of Warm Asphalt Additive on the Creep and Recovery Behaviour of Aged Binder Containing Waste Engine Oil

    NASA Astrophysics Data System (ADS)

    Hassan, Norhidayah Abdul; Kamaruddin, Nurul Hidayah Mohd; Rosli Hainin, Mohd; Ezree Abdullah, Mohd

    2017-08-01

    The use of waste engine oil as an additive in asphalt mixture has been reported to be able to offset the stiffening effect caused by the recycled asphalt mixture. Additionally, the fumes and odor of the waste engine oil has caused an uncomfortable condition for the workers during road construction particularly at higher production temperature. Therefore, this problem was addressed by integrating chemical warm asphalt additive into the mixture which functions to reduce the mixing and compaction temperature. This study was initiated by blending the additive in the asphalt binder of bitumen penetration grade 80/100 prior to the addition of pavement mixture. The effect of chemical warm asphalt additive, Rediset WMX was investigated by modifying the aged binder containing waste engine oil with 0%, 1%, 2% and 3% by weight of the binder. The samples were then tested for determining the rutting behaviour under different loading stress levels of 3Pa (low), 10Pa (medium) and 50Pa (high) using Dynamic Shear Rheometer (DSR). A reference temperature of 60 °C was fixed to reflect the maximum temperature of the pavement. The results found that the addition of Rediset did not affect the creep and recovery behavior of the modified binder under different loading. On the other hand, 2% Rediset resulted a slight decrease in its rutting resistance as shown by the reduction of non-recoverable compliance under high load stress. However, overall, the inclusion of chemical warm asphalt additive to the modified binder did not adversely affect the rutting resistance which could be beneficial in lowering the temperature of asphalt production and simultaneously not compromising the binder properties.

  8. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...

  9. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...

  10. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil.

    PubMed

    Song, Geum-Ju; Seo, Yong-Chil; Pudasainee, Deepak; Kim, In-Tae

    2010-07-01

    An attempt has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35-40%), acetylene (13-20%), ethylene (3-4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg(-1) and the concentrations of toxic gases, such as NO(x), HCl and HF, were below the regulatory emissions limit. Gas chromatography-mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 microm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  11. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    PubMed

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MELOY, R.T.

    2002-04-01

    This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.

  13. Novel utilization of waste marine sponge (Demospongiae) as a catalyst in ultrasound-assisted transesterification of waste cooking oil.

    PubMed

    Hindryawati, Noor; Maniam, Gaanty Pragas

    2015-01-01

    This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.345 Form of the waste to be sampled. PCB bulk product waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  15. Review of palm oil fuel ash and ceramic waste in the production of concrete

    NASA Astrophysics Data System (ADS)

    Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar

    2017-11-01

    High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.

  16. Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil.

    PubMed

    Li, Bo; Wang, Xubin; Wang, Hua; Wei, Yonggang; Hu, Jianhang

    2017-05-25

    To improve the recovery of copper, the viscosity of copper molten slag is decreased by the reduction of magnetic iron, which, in turn, accelerates the settling and separation of copper droplets from the slag. A new technology is proposed in which waste cooking oil is used as a reductant to reduce magnetic iron in the copper smelting slag and consequently reduce carbon emissions in the copper smelting process. A kinetic model of the reduction of magnetic iron in copper slag by waste cooking oil was built using experimental data, and the accuracy of the model was verified. The results indicated that the magnetic iron content in the copper slag decreased with increasing reduction time and an increase in temperature more efficiently reduced magnetic iron in the copper slag. The magnetic iron in the copper slag gradually transformed to fayalite, and the viscosity of the copper molten slag decreased as the magnetic iron content decreased during the reduction process. The reduction of magnetic iron in the copper molten slag using waste cooking oil was a first-order reaction, and the rate-limiting step was the mass transfer of Fe 3 O 4 through the liquid boundary layer.

  17. Regeneration of Waste Edible Oil by the Use of Virgin and Calcined Magnesium Hydroxide as Adsorbents.

    PubMed

    Ogata, Fumihiko; Kawasaki, Naohito

    2016-01-01

    In this study, we prepared virgin (S, L) and calcined (S-380, S-1000, L-380, L-1000) magnesium hydroxide for regeneration of waste edible oil. Deterioration of soybean oil, rapeseed oil, and olive oil was achieved by heat and aeration treatment. The properties of the different adsorbents were investigated using specific surface area measurements, scanning electron microscopy, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, and surface pH measurement. Moreover, the relationship between the changes in acid value (AV) and carbonyl value (CV) and the adsorbent properties were evaluated. The specific surface areas of S-380 and L-380 were greater than that of other adsorbents. In addition, the XRD results show that S-380 and L-380 contain both magnesium hydroxide and magnesium oxide structures. The decreases in AV and CV using S-380 and L-380 were greater than achieved using other adsorbents. The correlation coefficients between the decrease in AV and CV and specific surface area were 0.947 for soybean oil, 0.649 for rapeseed oil, and 0.773 for olive oil, respectively. The results obtained in this study suggest that a physical property of the adsorbent, namely specific surface area, was primarily responsible for the observed decreases in AV and CV. Overall, the results suggest that S-380 and L-380 are useful for the regeneration of waste edible oil.

  18. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.

    PubMed

    Yano, Junya; Aoki, Tatsuki; Nakamura, Kazuo; Yamada, Kazuo; Sakai, Shin-ichi

    2015-04-01

    There is a worldwide trend towards stricter control of diesel exhaust emissions, however presently, there are technical impediments to the use of FAME (fatty acid methyl esters)-type biodiesel fuel (BDF). Although hydrogenated biodiesel (HBD) is anticipated as a new diesel fuel, the environmental performance of HBD and its utilization system have not been adequately clarified. Especially when waste cooking oil is used as feedstock, not only biofuel production but also the treatment of waste cooking oil is an important function for society. A life cycle assessment (LCA), including uncertainty analysis, was conducted to determine the environmental benefits (global warming, fossil fuel consumption, urban air pollution, and acidification) of HBD produced from waste cooking oil via catalytic cracking and hydrogenation, compared with fossil-derived diesel fuel or FAME-type BDF. Combined functional unit including "treatment of waste cooking oil" and "running diesel vehicle for household waste collection" was established in the context of Kyoto city, Japan. The calculation utilized characterization, damage, and integration factors identified by LIME2, which was based on an endpoint modeling method. The results show that if diesel vehicles that comply with the new Japanese long-term emissions gas standard are commonly used in the future, the benefit of FAME-type BDF will be relatively limited. Furthermore, the scenario that introduced HBD was most effective in reducing total environmental impact, meaning that a shift from FAME-type BDF to HBD would be more beneficial. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils.

    PubMed

    Preczeski, Karina P; Kamanski, Angela B; Scapini, Thamarys; Camargo, Aline F; Modkoski, Tatiani A; Rossetto, Vanusa; Venturin, Bruno; Mulinari, Jéssica; Golunski, Simone M; Mossi, Altemir J; Treichel, Helen

    2018-06-01

    In this study, we evaluated the concentration of lipases from Aspergillus niger using efficient and low-cost methods aiming at application in the treatment of waste cooking oils. The change in ionic strength of the medium by the addition of salt and precipitation with ethanol increased the specific activity from 2.90 to 28.50 U/mg, resulting in a purification factor of 9.82-fold. The use of acetone resulted in a specific activity of 33.63 U/mg, resulting in a purification factor of 11.60-fold. After that, the concentrated lipase was used in the hydrolysis of waste cooking oil and 753.07 and 421.60 µmol/mL of free fatty acids were obtained for the enzyme precipitated with ethanol and acetone, respectively. The hydrolysis of waste cooking oil catalyzed by homemade purified lipase in ultrasonic media can be considered a pretreatment of oil by converting a significant amount of triglycerides into free fatty acids.

  20. Hazardous Waste Cleanup: Industrial Oil Tank Services, Inc. in Verona, New York

    EPA Pesticide Factsheets

    Industrial Oil Tank Services, Inc. operated as a petroleum recovery facility in the town of Verona in Oneida County from mid-1970’s through 1992. The site stored hazardous wastes in 23 steel tanks of various sizes with a total combined capacity of

  1. Performance Test on Compression Ignition Engine by Blending Ethanol and Waste Plastic Pyrolysis Oil with Cetane Additive

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Ganesan, S.; Jeswin Arputhabalan, J.; Chithrala, Varun; Ganesh Bairavan, P.

    2017-05-01

    The demand for diesel fuel is higher than that of petrol throughout the world hence seeking alternative to mineral diesel is a natural choice. Alternative fuels should be easily available at lower cost, environment friendly and fulfill energy needs without modifying engine’s operational parameters. Waste to energy is the trend in the selection of alternate fuels. In this work, Waste Plastic Pyrolysis oil (WPPO), Ethanol, Diesel blend with Cetane additive has been attempted as an alternative fuel. A Twin cylinder, Direct Injection engine was used to assess the engine performance and emission characteristics of waste plastic pyrolysis oil with cetane additive. Experimental results of blended plastic fuel and diesel fuel were compared.

  2. NEARBY LAKE SEDIMENT QUALITY AND SEEDLING TREE SURVIVAL ON ERODED OILY WASTE/BRINE CONTAMINATED SOIL

    EPA Science Inventory

    An ecosystem restoration study is being conducted at an old oil production area in Northeast Oklahoma. Surface soil samples from areas impacted by discarded crude oil and brine wastes have been chemically characterized. Surface erosion has occurred in areas impacted by waste disc...

  3. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.

    PubMed

    Joo, Hung-Soo; Ndegwa, Pius M; Shoda, Makoto; Phae, Chae-Gun

    2008-12-01

    Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.

  4. Enzyme-assisted hydrothermal treatment of food waste for co-production of hydrochar and bio-oil.

    PubMed

    Kaushik, Rajni; Parshetti, Ganesh K; Liu, Zhengang; Balasubramanian, Rajasekhar

    2014-09-01

    Food waste was subjected to enzymatic hydrolysis prior to hydrothermal treatment to produce hydrochars and bio-oil. Pre-treatment of food waste with an enzyme ratio of 1:2:1 (carbohydrase:protease:lipase) proved to be effective in converting food waste to the two products with improved yields. The carbon contents and calorific values ranged from 43.7% to 65.4% and 17.4 to 26.9 MJ/kg for the hydrochars obtained with the enzyme-assisted pre-treatment, respectively while they varied from 38.2% to 53.5% and 15.0 to 21.7 MJ/kg, respectively for the hydrochars obtained with no pre-treatment. Moreover, the formation of carbonaceous microspheres with low concentrations of inorganic elements and diverse surface functional groups was observed in the case of enzyme-assisted food waste hydrochars. The enzymatic pre-treatment also facilitated the formation of the bio-oil with a narrow distribution of organic compounds and with the highest yield obtained at 350 °C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fixed bed pyrolysis of biomass solid waste for bio-oil

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Nurul; Ali, Mohamed Hairol Md; Haziq, Miftah

    2017-08-01

    Biomass solid waste in the form of rice husk particle is pyrolyzed in a fixed bed stainless steel pyrolysis reactor of 50 mm diameter and 50 cm length. The biomass solid feedstock is prepared prior to pyrolysis. The reactor bed is heated by means of a cylindrical heater of biomass source. A temperature of 500°C is maintained with an apperent vapor residence time of 3-5 sec. The products obtained are liquid bio-oil, solid char and gases. The liquid product yield is found to be 30% by weight of solid biomass feedstock while the solid product yield is found to be 35% by weight of solid biomass feedtock, the rest is gas. The bio-oil is a single-phase brownish color liquid of acrid smell. The heating value of the oil is determined to be 25 MJ/kg. The density and pH value are found to be 1.125 kg/m3 and 3.78 respectively.

  6. Non-woven Textile Materials from Waste Fibers for Cleanup of Waters Polluted with Petroleum and Oil Products

    NASA Astrophysics Data System (ADS)

    Neznakomova, Margarita; Boteva, Silvena; Tzankov, Luben; Elhag, Mohamed

    2018-04-01

    The aim of this work was to investigate the possibility of using non-woven materials (NWM) from waste fibers for oil spill cleanup and their subsequent recovery. Manufacture of textile and readymade products generates a significant amount of solid waste. A major part of it is deposited in landfills or disposed of uncontrollably. This slowly degradable waste causes environmental problems. In the present study are used two types of NWM obtained by methods where waste fibers are utilized. Thus, real textile products are produced (blankets) with which spills are covered and removed by adsorption. These products are produced by two methods: the strengthening of the covering from recovered fibers is made by entanglement when needles of special design pass through layers (needle-punching) or by stitching with thread (technology Maliwatt). Regardless of the random nature of the fiber mixture, the investigated products are good adsorbents of petroleum products. The nature of their structure (a significant void volume and developed surface) leads to a rapid recovery of the spilled petroleum products without sinking of the fiber layer for the sampled times. The used NWM can be burned under special conditions.

  7. WIPP waste characterization program sampling and analysis guidance manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Waste Characterization Program Sampling and Analysis Guidance Manual (Guidance Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Quality Assurance Program Plan (QAPP) for the WIPP Experimental-Waste Characterization Program (the Program). This Guidance Manual includes all of the sampling and testing methodologies accepted by the WIPP Project Office (DOE/WPO) for use in implementing the Program requirements specified in the QAPP. This includes methods for characterizing representative samples of transuranic (TRU) wastesmore » at DOE generator sites with respect to the gas generation controlling variables defined in the WIPP bin-scale and alcove test plans, as well as waste container headspace gas sampling and analytical procedures to support waste characterization requirements under the WIPP test program and the Resource Conservation and Recovery Act (RCRA). The procedures in this Guidance Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site specific procedures. The use of these procedures is intended to provide the necessary sensitivity, specificity, precision, and comparability of analyses and test results. The solutions to achieving specific program objectives will depend upon facility constraints, compliance with DOE Orders and DOE facilities' operating contractor requirements, and the knowledge and experience of the TRU waste handlers and analysts. With some analytical methods, such as gas chromatography/mass spectrometry, the Guidance Manual procedures may be used directly. With other methods, such as nondestructive/destructive characterization, the Guidance Manual provides guidance rather than a step-by-step procedure.« less

  8. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions basedmore » on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.« less

  9. Mineral oil metal working fluids (MWFs)-development of practical criteria for mist sampling.

    PubMed

    Simpson, A T; Groves, J A; Unwin, J; Piney, M

    2000-05-01

    Not all mineral oil metalworking fluids (MWFs) in common use form stable airborne mists which can be sampled quantitatively onto a filter. This much has been known for some time but no simple method of identifying oils too volatile for customary filter sampling has been developed. Past work was reviewed and experiments were done to select simple criteria which would enable such oils to be identified. The sampling efficiency for a range of commercial mineral oil MWF were assessed by drawing clean air through spiked filters at 2 l. min(-1) for periods up to 6 h before analysis. The physical properties of MWF are governed by their composition and kinematic viscosity was found to be the most practical and easily available index of the potential for sample loss from the filter. Oils with viscosities greater that 18 cSt (at 40 degrees C) lost less than 5% of their weight, whereas those with viscosities less than 18 cSt gave losses up to 71%. The losses from the MWF were mostly aliphatic hydrocarbons (C(10)-C(18)), but additives such as alkyl benzenes, esters, phenols and terpene odorants were also lost. The main recommendation to arise from the work is that filter sampling can be performed on mineral oils with viscosities of 18 cSt (at 40 degrees C) or more with little evaporative losses from the filter. However, sampling oils with viscosities less than 18 cSt will produce results which may significantly underestimate the true value. Over a quarter of UK mineral oil MWFs are formulated from mineral oils with viscosities less than 18 cSt (at 40 degrees C). The problem of exposure under-estimation and inappropriate exposure sampling could be widespread. Further work is being done on measurement of mixed phase mineral oil mist exposure.

  10. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels.

    PubMed

    Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E

    2016-01-01

    Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc.

    PubMed

    Park, Sung-Woo; Lee, Jae-Young; Yang, Jung-Seok; Kim, Kyoung-Jo; Baek, Kitae

    2009-09-30

    The feasibility of electrokinetic technology on the remediation of mixed-waste-contaminated railroad soil, contaminated by lubricant oil and zinc, was investigated. To enhance the removal efficiency, catholyte purging with 0.1M HNO(3) and a supply of non-ionic surfactant, secondary alcohol ethoxylate, was applied to the anode to remove Zn and to solubilize the lubricant oil. The catholyte purging maintained the soil pH as acidic and enhanced desorption of zinc from the soil, where the zeta potential of the acidic soil became positive. Thereafter, the direction of electro-osmotic flow was changed from the cathode to anode and the flow rate was reduced. The lesser in magnitude reverse electro-osmotic flow inhibited the migration of zinc and the lubricant oil was removed by the electro-osmotic flow. The removal of zinc and lubricant oil was enhanced with an increase in voltage gradient; however, a higher voltage gradient resulted in higher energy expenditure. After electrokinetic operation over 17 days, the removal efficiency of zinc was 22.1-24.3%, and that of lubricant oil was 45.1-55.0%. Although the removal of lubricant oil was quite high, the residual concentration did not meet Korean regulation levels.

  12. Water Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  13. Air Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  14. Sediment Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  15. A Model Study to Unravel the Complexity of Bio-Oil from Organic Wastes.

    PubMed

    Croce, Annamaria; Battistel, Ezio; Chiaberge, Stefano; Spera, Silvia; De Angelis, Francesco; Reale, Samantha

    2017-01-10

    Binary and ternary mixtures of cellulose, bovine serum albumin (BSA) and tripalmitin, as biomass reference compounds for carbohydrates, proteins and triglycerides, respectively, were treated under hydrothermal liquefaction (HTL) conditions to describe the main reaction pathways involved in the process of bio-oil production from municipal organic wastes. Several analytical techniques (elemental analysis, GC-MS, atmospheric-pressure photo-ionisation high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and 13 C cross-polarisation magic-angle spinning NMR spectroscopy) were used for the molecular-level characterisation of the resulting aqueous phase, solid residue and bio-oil, in particular. The main reaction pathways led to free fatty acids, fatty acid amides, 2,5-diketopiperazines and Maillard-type compounds as the main components of the bio-oil. The relationship of such compounds to the original components of the biomass was thus determined, which highlights the fate of the heteroatom-containing molecules in particular. Finally, the molecular composition of the bio-oils from our reference compounds was matched with that of the bio-oil from municipal organic waste biomass by comparing their high-resolution Fourier transform ion cyclotron resonance mass spectra, and we obtained a surprisingly high similarity. Hence, the ternary mixture acts as a reliable biomass model and is a powerful tool to clarify the degradation mechanisms that occur in the biomass under HTL treatment, with the ultimate goal to improve the HTL process itself by modulating the input of the organic starting matter and then the upgrading steps to bio-fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling bulk PCB remediation waste..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.265 Sampling bulk PCB remediation waste and porous surfaces...

  17. Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios D.; Sarris, Apostolos; Papadopoulos, Nikos; Soupios, Pantelis; Doula, Maria; Cavvadias, Victor

    2014-08-01

    The olive-oil industry is one of the most important sectors of agricultural production in Greece, which is the third in olive-oil production country worldwide. Olive oil mill wastes (OOMW) constitute a major factor in pollution in olivegrowing regions and an important problem to be solved for the agricultural industry. The olive-oil mill wastes are normally deposited at tanks, or directly in the soil or even on adjacent torrents, rivers and lakes posing a high risk to the environmental pollution and the community health. GEODIAMETRIS project aspires to develop integrated geoinformatic methodologies for performing monitoring of land pollution from the disposal of OOMW in the island of Crete -Greece. These methodologies integrate GPS surveys, satellite remote sensing and risk assessment analysis in GIS environment, application of in situ and laboratory geophysical methodologies as well as soil and water physicochemical analysis. Concerning project's preliminary results, all the operating OOMW areas located in Crete have been already registered through extensive GPS field campaigns. Their spatial and attribute information has been stored in an integrated GIS database and an overall OOMW spectral signature database has been constructed through the analysis of multi-temporal Landsat-8 OLI satellite images. In addition, a specific OOMW area located in Alikianos village (Chania-Crete) has been selected as one of the main case study areas. Various geophysical methodologies, such as Electrical Resistivity Tomography, Induced Polarization, multifrequency electromagnetic, Self Potential measurements and Ground Penetrating Radar have been already implemented. Soil as well as liquid samples have been collected for performing physico-chemical analysis. The preliminary results have already contributed to the gradual development of an integrated environmental monitoring tool for studying and understanding environmental degradation from the disposal of OOMW.

  18. Bio Gas Oil Production from Waste Lard

    PubMed Central

    Hancsók, Jenő; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al2O3 catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280–380°C, P = 20–80 bar, LHSV = 0.75–3.0 h−1 and H2/lard ratio: 600 Nm3/m3). In case of the isomerization at the favourable process parameters (T = 360–370°C, P = 40 –50 bar, LHSV = 1.0 h−1 and H2/hydrocarbon ratio: 400 Nm3/m3) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms. PMID:21403875

  19. Bio gas oil production from waste lard.

    PubMed

    Hancsók, Jeno; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al(2)O(3) catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280-380°C, P = 20-80 bar, LHSV = 0.75-3.0  h(-1) and H(2)/lard ratio: 600  Nm(3)/m(3)). In case of the isomerization at the favourable process parameters (T = 360-370°C, P = 40-50 bar, LHSV = 1.0  h(-1) and H(2)/hydrocarbon ratio: 400  Nm(3)/m(3)) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms.

  20. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    PubMed

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  1. Sequential injection titration method using second-order signals: determination of acidity in plant oils and biodiesel samples.

    PubMed

    del Río, Vanessa; Larrechi, M Soledad; Callao, M Pilar

    2010-06-15

    A new concept of flow titration is proposed and demonstrated for the determination of total acidity in plant oils and biodiesel. We use sequential injection analysis (SIA) with a diode array spectrophotometric detector linked to chemometric tools such as multivariate curve resolution-alternating least squares (MCR-ALS). This system is based on the evolution of the basic specie of an acid-base indicator, alizarine, when it comes into contact with a sample that contains free fatty acids. The gradual pH change in the reactor coil due to diffusion and reaction phenomenona allows the sequential appearance of both species of the indicator in the detector coil, recording a data matrix for each sample. The SIA-MCR-ALS method helps to reduce the amounts of sample, the reagents and the time consumed. Each determination consumes 0.413ml of sample, 0.250ml of indicator and 3ml of carrier (ethanol) and generates 3.333ml of waste. The frequency of the analysis is high (12 samples h(-1) including all steps, i.e., cleaning, preparing and analysing). The utilized reagents are of common use in the laboratory and it is not necessary to use the reagents of perfect known concentration. The method was applied to determine acidity in plant oil and biodiesel samples. Results obtained by the proposed method compare well with those obtained by the official European Community method that is time consuming and uses large amounts of organic solvents.

  2. Co-composting of rose oil processing waste with caged layer manure and straw or sawdust: effects of carbon source and C/N ratio on decomposition.

    PubMed

    Onursal, Emrah; Ekinci, Kamil

    2015-04-01

    Rose oil is a specific essential oil that is produced mainly for the cosmetics industry in a few selected locations around the world. Rose oil production is a water distillation process from petals of Rosa damascena Mill. Since the oil content of the rose petals of this variety is between 0.3-0.4% (w/w), almost 4000 to 3000 kg of rose petals are needed to produce 1 kg of rose oil. Rose oil production is a seasonal activity and takes place during the relatively short period where the roses are blooming. As a result, large quantities of solid waste are produced over a limited time interval. This research aims: (i) to determine the possibilities of aerobic co-composting as a waste management option for rose oil processing waste with caged layer manure; (ii) to identify effects of different carbon sources - straw or sawdust on co-composting of rose oil processing waste and caged layer manure, which are both readily available in Isparta, where significant rose oil production also takes place; (iii) to determine the effects of different C/N ratios on co-composting by the means of organic matter decomposition and dry matter loss. Composting experiments were carried out by 12 identical laboratory-scale composting reactors (60 L) simultaneously. The results of the study showed that the best results were obtained with a mixture consisting of 50% rose oil processing waste, 64% caged layer manure and 15% straw wet weight in terms of organic matter loss (66%) and dry matter loss (38%). © The Author(s) 2015.

  3. Marine biodegradation of crude oil in temperate and Arctic water samples.

    PubMed

    Kristensen, Mette; Johnsen, Anders R; Christensen, Jan H

    2015-12-30

    Despite increased interest in marine oil exploration in the Arctic, little is known about the fate of Arctic offshore oil pollution. Therefore, in the present study, we examine the oil degradation potential for an Arctic site (Disko Bay, Greenland) and discuss this in relation to a temperate site (North Sea, Denmark). Biodegradation was assessed following exposure to Oseberg Blend crude oil (100 mg L(-1)) in microcosms. Changes in oil hydrocarbon fingerprints of polycyclic aromatic hydrocarbons (PAHs), alkyl-substituted PAHs, dibenzothiophenes, n-alkanes and alkyltoluenes were measured by gas chromatography-mass spectrometry (GC-MS). In the Disko Bay sample, the degradation order was n-alkanes>alkyltoluenes (para->meta->ortho-isomers)>PAHs and dibenzothiophenes, whereas, the degradation order in the North Sea samples was PAHs and dibenzothiophenes>alkyltoluenes>n-alkanes. These differences in degradation patterns significantly affect the environmental risk of oil spills and emphasise the need to consider the specific environmental conditions when conducting risk assessments of Arctic oil pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, Μ; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    PubMed Central

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  6. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  7. Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst.

    PubMed

    Gurunathan, Baskar; Ravi, Aiswarya

    2015-01-01

    A novel CZO nanocomposite was synthesized and used as heterogeneous catalyst for transesterification of waste cooking oil into biodiesel using methanol as acyl acceptor. The synthesized CZO nanocomposite was characterized in FESEM with an average size of 80 nm as nanorods. The XRD patterns indicated the substitution of ZnO in the hexagonal lattice of Cu nanoparticles. The 12% (w/w) nanocatalyst concentration, 1:8 (v:v) O:M ratio, 55 °C temperature and 50 min of reaction time were found as optimum for maximum biodiesel yield of 97.71% (w/w). Hence, the use of CZO nanocomposite can be used as heterogeneous catalyst for biodiesel production from waste cooking oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.

    PubMed

    Diwan, Batul; Parkhey, Piyush; Gupta, Pratima

    2018-04-23

    The reserves of fossil-based fuels, which currently seem sufficient to meet the global demands, is inevitably on the verge of exhaustion. Contemporary raw material for alternate fuel like biodiesel is usually edible plant commodity oils, whose increasing public consumption rate raises the need of finding a non-edible and fungible alternate oil source. In this quest, single cell oils (SCO) from oleaginous yeasts and fungi can provide a sustainable alternate of not only functional but also valuable (polyunsaturated fatty acids (PUFA)-rich) lipids. Researches are been increasingly driven towards increasing the SCO yield in order to realize its commercial importance. However, bulk requirement of expensive synthetic carbon substrate, which inflates the overall SCO production cost, is the major limitation towards complete acceptance of this technology. Even though substrate cost minimization could make the SCO production profitable is uncertain, it is still essential to identify suitable cheap and abundant substrates in an attempt to potentially reduce the overall process economy. One of the most sought-after in-expensive carbon reservoirs, agro-industrial wastes, can be an attractive replacement to expensive synthetic carbon substrates in this regard. The present review assess these possibilities referring to the current experimental investigations on oleaginous yeasts, and fungi reported for conversion of agro-industrial feedstocks into triacylglycerols (TAGs) and PUFA-rich lipids. Multiple associated factors regulating lipid accumulation utilizing such substrates and impeding challenges has been analyzed. The review infers that production of bulk oil in combination to high-value fatty acids, co-production strategies for SCO and different microbial metabolites, and reutilization and value addition to spent wastes could possibly leverage the high operating costs and help in commencing a successful biorefinery. Rigorous research is nevertheless required whether it is

  9. Waste Oil Burn-Off in Coast Guard Power Plants - Diesel Piston Ring Wear Study by Radioactive Tracer Techniques

    DOT National Transportation Integrated Search

    1976-07-01

    This report covers the results of a study utilizing a radioactive tracer technique to determine wear effects on the upper compression rings of a two-stroke cycle diesel engine burning mixtures of waste lube oil in fuel oil. The radioactive tracer tec...

  10. Surface Water Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  11. XAFS SPECTROSCOPY RESULTS FOR PM SAMPLES FROM RESIDUAL FUEL OIL

    EPA Science Inventory

    X-ray absorption fine structure (XAFS spectroscopy data were obtained from particulate samples produced by the combustion of residual fuel oil in a 732-kW fire-tube boiler at EPA's National Risk Management Research Laboratory in North Carolina. Residual oil flyash (ROFA) from fo...

  12. Comparative metagenomics reveals different hydrocarbon degradative abilities from enriched oil-drilling waste.

    PubMed

    Napp, Amanda P; Pereira, José Evandro S; Oliveira, Jorge S; Silva-Portela, Rita C B; Agnez-Lima, Lucymara F; Peralba, Maria C R; Bento, Fátima M; Passaglia, Luciane M P; Thompson, Claudia E; Vainstein, Marilene H

    2018-06-11

    The oil drilling process generates large volumes of waste with inadequate treatments. Here, oil drilling waste (ODW) microbial communities demonstrate different hydrocarbon degradative abilities when exposed to distinct nutrient enrichments as revealed by comparative metagenomics. The ODW was enriched in Luria Broth (LBE) and Potato Dextrose (PDE) media to examine the structure and functional variations of microbial consortia. Two metagenomes were sequenced on Ion Torrent platform and analyzed using MG-RAST. The STAMP software was used to analyze statistically significant differences amongst different attributes of metagenomes. The microbial diversity presented in the different enrichments was distinct and heterogeneous. The metabolic pathways and enzymes were mainly related to the aerobic hydrocarbons degradation. Moreover, our results showed efficient biodegradation after 15 days of treatment for aliphatic hydrocarbons (C8-C33) and polycyclic aromatic hydrocarbons (PAHs), with a total of about 50.5% and 46.4% for LBE and 44.6% and 37.9% for PDE, respectively. The results obtained suggest the idea that the enzymatic apparatus have the potential to degrade petroleum compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil.

    PubMed

    Neves, L; Oliveira, R; Alves, M M

    2009-12-01

    Different concentrations of oily waste were added in a discontinuous mode and recurrently to anaerobic continuous stirred tank reactors fed with cow manure and food waste. Four continuous stirred tank reactors were run in parallel. A control reactor (R1) received no additional oil and R2, R3 and R4 received increasing concentrations of oil in two different experimental approaches. First, the lipids composition was forced to change suddenly, in three moments, without changing the total chemical oxygen demand (COD) fed to the reactors. The only long chain fatty acid (LCFA) detected onto the R1 solid matrix was palmitic acid (C16:0). Nevertheless in the solid matrix of R2, R3 and R4C16:0 and stearic acid were detected. For occasional increase in the oil concentration up to 7.7gCOD(oil)/L(reactor) (55% Oil(COD)/Total(COD)) no statistical differences were detected between the reactors, in terms of methane production, effluent soluble COD, effluent volatile fatty acids and total and volatile solids removal. Therefore this experiment allowed to conclude that cow manure-food waste co-digestion presents sufficient buffer capacity to endure solid-associated LCFA concentration up to 20-25gCOD-LCFA/kgTS. In a second experiment higher concentrations of oil were added, raising occasionally the concentration in the reactors to 9, 12, 15 and 18gCOD(oil)/L(reactor). All pulses had a positive effect in methane production, with the exception of the highest oil pulse concentration, that persistently impaired the reactor performance. This experiment demonstrates that threshold values for LCFA and C16:0 accumulation onto the solid matrix, of about 180-220gCOD-LCFA/kgTS and 120-150gCOD-C16:0/kgTS, should not be surpassed in order to prevent persistent reactor failure, as occurs in some full scale co-digestion plants.

  14. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source.

    PubMed

    Wadekar, S D; Kale, S B; Lali, A M; Bhowmick, D N; Pratap, A P

    2012-01-01

    Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10-30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-MS), and (1)H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source.

  15. Biodiesel From waste cooking oil for heating, lighting, or running diesel engines

    Treesearch

    Rico O. Cruz

    2009-01-01

    Biodiesel and its byproducts and blends can be used as alternative fuel in diesel engines and for heating, cooking, and lighting. A simple process of biodiesel production can utilize waste cooking oil as the main feedstock to the transesterification and cruzesterification processes. I currently make my own biodiesel for applications related to my nursery and greenhouse...

  16. A data-driven approach for the study of coagulation phenomena in waste lubricant oils and its relevance in alkaline regeneration treatments.

    PubMed

    Pinheiro, C T; Ascensão, V R; Reis, M S; Quina, M J; Gando-Ferreira, L M

    2017-12-01

    Coagulation phenomena can occur in certain types of waste lubricant oils (WLO) during regeneration processes involving alkaline treatments, causing plant shutdowns. In this context, this study addresses the nature of the compounds responsible for the coagulation phenomena after the alkaline treatment. For such, an empirical test was developed to assess the coagulation behaviour of WLO, consisting in the addition of KOH to the WLO followed by heating under stirring conditions. This test was performed on 133 samples and four coagulation classes were identified: A; B1; B2 and C. Moreover, a physicochemical characterization of WLO was carried out regarding viscosity at 40°C, saponification number (SN), total acid number (TAN), surface tension, water content, elemental analysis and functional groups (FTIR). 56 samples of fresh lubricant oils for different applications were also characterized and their properties assessed and compared. Multivariate methods were applied to WLO to discriminate among coagulation classes based on FTIR spectra. It was found that coagulation classes A and B1 exhibit statistically similar patterns for all properties determined. Spectral discriminating analysis did not reveal discriminant peaks for class B1 samples, and the presence of specific additives was pointed as the possible factor underlying the increase in viscosity in this oils. Class B2 presents the absence of additives and oxidation products as differentiating features. In addition, B2 samples showed lower TAN SN, and lower concentration of some elements. Lubricants from gear or hydraulic applications can give rise to this class of WLO. Oils of Class C are mainly composed by synthetic ester type base oils, which hamper regeneration processes using alkaline pretreatments. In future studies, WLO type A and B1 can be classified as a single class. The coagulation phenomena classification becomes A - negative, B - precipitate formation and C - positive. Copyright © 2017 Elsevier B

  17. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE PAGES

    Roth, Elliot; Bank, Tracy; Howard, Bret; ...

    2017-04-05

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  18. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Elliot; Bank, Tracy; Howard, Bret

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  19. [Determination of capsaicinoids and eugenol in waste-edible-oil by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry].

    PubMed

    Zhang, Zhong; Ren, Fei; Zhang, Pan

    2012-11-01

    A method was developed for the determination of capsaicinoids (capsaicin, dihydrocapsaicin and synthetic capsaicin) and eugenol in waste-edible-oil extracted by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The capsaicinoids and eugenol in waste-edible-oil were extracted by methanol, and then separated by a SUPEL COSIL ABZ + Plus dC18 column (150 mm x4.6 mm, 5 microm). The analysis was performed by MS/MS with electrospray ionization in positive and negative ion modes with multiple reaction monitoring (MRM). The limits of detection for capsaicin, dihydrocapsaicin, synthetic capsaicin and eugenol were 0.02, 0.03, 0.03 and 0.6 microg/L, respectively. The good linear relationships were obtained in certain concentration ranges of capsaicinoids and eugenol. The relative standard deviations (RSDs, n=5) of same-worker and different-worker were less than 5%. The method is exclusive, sensitive and accurate, and can be used in waste-edible-oil determination.

  20. Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.

    PubMed

    Gan, Suyin; Ng, Hoon Kiat; Ooi, Chun Weng; Motala, Nafisa Osman; Ismail, Mohd Anas Farhan

    2010-10-01

    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq). Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: a long-term field study.

    PubMed

    Jefimova, Jekaterina; Irha, Natalya; Reinik, Janek; Kirso, Uuve; Steinnes, Eiliv

    2014-05-15

    The leaching behavior of selected polycyclic aromatic hydrocarbons (PAHs) from an oil shale processing waste deposit was monitored during 2005-2009. Samples were collected from the deposit using a special device for leachate sampling at field conditions without disturbance of the upper layers. Contents of 16 priority PAHs in leachate samples collected from aged and fresh parts of the deposit were determined by GC-MS. The sum of the detected PAHs in leachates varied significantly throughout the study period: 19-315 μg/l from aged spent shale, and 36-151 μg/l from fresh spent shale. Among the studied PAHs the low-molecular weight compounds phenanthrene, naphthalene, acenaphthylene, and anthracene predominated. Among the high-molecular weight PAHs benzo[a]anthracene and pyrene leached in the highest concentrations. A spent shale deposit is a source of PAHs that could infiltrate into the surrounding environment for a long period of time. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Glycerin purification using asymmetric nano-structured ceramic membranes from production of waste fish oil biodiesel

    NASA Astrophysics Data System (ADS)

    Maghami, M.; Sadrameli, S. M.; Shamloo, M.

    2018-02-01

    Biodiesel is an environmental friendly alternative liquid transportation fuel that can be used in diesel engines without major modifications. The scope of this research work is to produce biodiesel from waste fish oil and its purification from the byproducts using a ceramic membrane. Transesterification of waste fish oil was applied for the biodiesel production using methanol in the presence of KOH as a catalyst. Effect of catalyst weight percent, temperature and methanol to oil molar ratio (MR) on the biodiesel yield have been studied and the results show that highest methyl ester yield of 79.2% has been obtained at 60 °C, MR: 6 and 1% KOH. The produced biodiesel purified by a ceramic membrane. Membrane flux and glycerin removal at different operating conditions such as temperature, trans-membrane pressures and cross flow velocities have been measured. Glycerin purity by membrane method is 99.97% by weight at the optimum condition. The highest membrane flux occurred at 50 °C temperature, 1 bar pressure and 3 m/s velocity.

  3. Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst

    NASA Astrophysics Data System (ADS)

    Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin

    2017-12-01

    This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.

  4. Refrigeration system oil measurement and sampling device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.A.

    1989-09-19

    This patent describes a sampling device for use with a refrigeration system having a refrigerant and oil entrained therein. It comprises: an elongated reservoir having a stepped bore therein for receiving refrigerant and oil carried thereby. The reservoir comprising a large bore diameter upper section having an index marking the fill level of the reservoir and a small bore diameter lower section having graduation marks for oil level measurement. The upper and lower sections comprising transparent material to allow observation of the contents, first valve means for coupling the reservoir to the refrigeration system to admit liquid refrigerant to themore » reservoir, second valve means for selectively coupling the reservoir to the low pressure side of the refrigeration system or to a vacuum line to evacuate vaporized refrigerant from the reservoir, and means for supplying heat to the refrigerant in the bore to facilitate vaporization of the refrigerant.« less

  5. THE GENERATION, USE AND DISPOSAL OF WASTE CRANKCASE OIL IN DEVELOPING COUNTRIES: A CASE FOR KAMPALA DISTRICT, UGANDA

    PubMed Central

    Ssempebwa, John C.; Carpenter, David O.

    2008-01-01

    Waste Crankcase Oil (WCO), the oil that is removed from motor engines during an oil change, is frequently discarded into the environment, resulting in pollution of both aquatic and terrestrial ecosystems. In some developing countries, this common hazardous material is not properly managed. In Uganda little is known about its generation, utilization, and disposal. These factors were investigated using in-depth interviews of a sample of mechanics from 379 motor repair garages and 109 fuel stations in the Kampala district. Most garages (94%) and fuel stations (96%) in the study area offered oil-changing services. On average, each garage produced 62 litres, and each fuel station produced 134 litres of WCO per week. In garages 35% was sold, 16% poured on the ground, 18% taken by vehicle owners and 31% given away for free. At fuel stations, 49% was picked by private collectors, 27% sold, 4% poured on the ground, 2% burnt, 13% taken by vehicle owners, and 6% given away for free. Uses of WCO included coating roofing timber and fencing posts, use in timber cutting, marking play grounds, and pest control in animals. Its disposal involved burning, and pouring in the environment. Lack of policy and information for proper handling of WCO contributed to the poor management of WCO exhibited. PMID:18513868

  6. Analysis of the essential oil components from different Carum copticum L. samples from Iran.

    PubMed

    Zarshenas, Mohammad M; Samani, Soliman Mohammadi; Petramfar, Peyman; Moein, Mahmoodreza

    2014-01-01

    The family Apiaceae is defined with the diversity of essential oil. Fruits of Ajwain (Carum copticum), a famous herb of Apiaceae, accumulate up to 5% essential oil which is remarked as important natural product for food and flavoring industry, as well as pharmacological approaches. It is believed that differences in essential oil profile in a certain plant are resulted from various cultivation situations and locations, time of cultivation and also different extracting method. Present study aimed to evaluate major components of ten different collected Ajwain samples from random cultivation locations of Iran. Samples were individually subjected to hydrodistillation using a Clevenger-type apparatus for the extraction of essential oil. GC/MS analysis for samples was carried out using Agilent technologies model 7890A gas chromatograph with a mass detector. The yield of extracted essential oil was calculated as 2.2 to 4.8% (v/w) for ten samples. Major oil components were thymol, para-cymene and gamma-terpinene. Five of ten samples have thymol as the main component with amount of 35.04 to 63.31%. On the other hand, for four samples, para-cymene was major with amount of 40.20 to 57.31% and one sample had gamma-terpinene as main constituent containing 37.43% of total oil. Accordingly, three different chemotypes, thymol, para-cymene and gamma-terpinene can be speculated from collected samples. While these components possess pharmacological effect, screening of different chemotypes not only represent the effect of cultivation situations and locations but also can be beneficial in further investigation.

  7. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  8. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  9. Essential oil from waste leaves of Curcuma longa L. alleviates skin inflammation.

    PubMed

    Kumar, Anant; Agarwal, Karishma; Singh, Monika; Saxena, Archana; Yadav, Pankaj; Maurya, Anil Kumar; Yadav, Anju; Tandon, Sudeep; Chanda, Debabrata; Bawankule, Dnyaneshwar U

    2018-02-10

    Curcuma longa L. is an important industrial crop used by medicinal and cosmetic industries in the world. Its leaves are a waste material after harvesting rhizomes. The aim of the study was to evaluate the chemical and pharmacological profile of essential oil from waste leaves of Curcuma longa (EOCl) against skin inflammation. EOCl was subjected to gas chromatography (GC) analysis for identification of essential oil constituents and its anti-inflammatory evaluation through in vitro and in vivo models. Chemical fingerprinting using GC and GC-MS analysis of EOCl revealed the presence of 11 compounds, representing 90.29% of the oil, in which terpinolene (52.88%) and α-phellandrene (21.13%) are the major components. In the in vitro testing EOCl inhibited the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in lipopolysaccharide (LPS) and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in the human keratinocyte cell line (HaCaT). Topical application of EOCl produced anti-inflammatory effects by reducing ear thickness, ear weight and ameliorating the level of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) at protein and mRNA levels as well as regulating the overproduction of oxidative markers and restoring the histopathological damage in a TPA-induced mouse model of inflammation. These findings of topical anti-inflammatory properties of EOCl provide a scientific basis for medicinal use of this plant material against inflammatory disorders.

  10. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  11. Oil uptake by plant-based sorbents and its biodegradation by their naturally associated microorganisms.

    PubMed

    Dashti, Narjes; Ali, Nedaa; Khanafer, Majida; Radwan, Samir S

    2017-08-01

    The plant waste-products, wheat straw, corn-cobs and sugarcane bagasse took up respectively, 190, 110 and 250% of their own weights crude oil. The same materials harbored respectively, 3.6 × 10 5 , 8.5 × 10 3 and 2.3 × 10 6  g -1  cells of hydrocarbonoclastic microorganisms, as determined by a culture-dependent method. The molecular, culture-independent analysis revealed that the three materials were associated with microbial communities comprising genera known for their hydrocarbonoclastic activity. In bench-scale experiments, inoculating oily media with samples of the individual waste products led to the biodegradation of 34.0-44.9% of the available oil after 8 months. Also plant-product samples, which had been used as oil sorbents lost 24.3-47.7% of their oil via their associated microorganisms, when kept moist for 8 months. In this way, it is easy to see that those waste products are capable of remediating spilled oil physically, and that their associated microbial communities can degrade it biologically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  13. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation... a cone; that is, having a circular base with PCB bulk product waste or PCB remediation waste... one pile. If the PCB bulk product waste or PCB remediation waste consists of more than one pile or...

  14. Hydrologic-information needs for oil-shale development, northwestern Colorado

    USGS Publications Warehouse

    Taylor, O.J.

    1982-01-01

    Hydrologic information is not adequate for proper development of the large oil-shale reserves of Piceance basin in northwestern Colorado. Exploratory drilling and aquifer testing are needed to define the hydrologic system, to provide wells for aquifer testing, to design mine-drainage techniques, and to explore for additional water supplies. Sampling networks are needed to supply hydrologic data on the quantity and quality of surface water, ground water, and springs. A detailed sampling network is proposed for the White River basin because of expected impacts related to water supplies and waste disposal. Emissions from oil-shale retorts to the atmosphere need additional study because of possible resulting corrosion problems and the destruction of fisheries. Studies of the leachate materials and the stability of disposed retorted shale piles are needed to insure that these materials will not cause problems. Hazards related to in-situ retorts, and the wastes related to oil-shale development in general also need further investigation. (USGS)

  15. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry.

    PubMed

    Kanadasan, Jegathish; Fauzi, Auni Filzah Ahmad; Razak, Hashim Abdul; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-09-22

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.

  16. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry

    PubMed Central

    Kanadasan, Jegathish; Ahmad Fauzi, Auni Filzah; Abdul Razak, Hashim; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-01-01

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC. PMID:28793579

  17. Waste-water characterization and hazardous-waste technical assistance survey, Mather AFB California. Final report, 28 November-9 December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.P.; Hedgecock, N.S.

    1989-10-01

    Personnel from the AFOEHL conducted a waste-water characterization and hazardous-waste technical assistance survey at MAFB from 28 Nov to 9 Dec 1988. The scope of this survey was to characterize the waste-water, address hazardous-waste-management practices, and explore opportunities for hazardous waste minimization. The waste water survey team analyzed the base's industrial effluent, effluent from oil/water separators, and storm water. The team performed a shop-by-shop evaluation of chemical-waste-management practices. Survey results showed that MAFB needs to improve its hazardous-waste-management program. Recommendations for improvement include: (1) Collecting two additional grab samples on separate days from the hospital discharge. Analyze for EPA Methodmore » 601 to determine if the grab sample from the survey gives a true indication of what is being discharged. (2) Locate the source and prevent mercury from the hospital from discharging into the sanitary sewer. (3) Dilute the soaps used for cleaning at the Fuels Lab, Building 7060. (4) Investigate the source of chromium from the Photo Lab. (5) Clean out the sewer system manhole directly downgradient from the Photo Lab. (6) Locate the source of contamination in the West Ditch Outfall. (7) Reconnect the two oil/water separators that discharge into the storm sewerage system. (8) Investigate the source of methylene chloride coming on the base. (9) Investigate the source of mercury at Fuel Cell Repair, building 7005.« less

  18. SAMPLING AND ANALYSIS OF MERCURY IN CRUDE OIL

    EPA Science Inventory

    Sampling and analytical procedures used to determine total mercury content in crude oils were examined. Three analytical methods were compared with respect to accuracy, precision and detection limit. The combustion method and a commercial extraction method were found adequate to...

  19. Variance in State Protection from Exposure to NORM and TENORM Wastes Generated During Unconventional Oil and Gas Operations: Where We Are and Where We Need to Go.

    PubMed

    Ann Glass Geltman, Elizabeth; LeClair, Nichole

    2018-01-01

    Radioactive materials for the medical, technological, and industrial sectors have been effectively regulated in the United States since as early as 1962. The steady increase in the exploration and production of shale gas in recent years has led to concerns about exposures to Naturally Occurring Radioactive Materials (NORM) and Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) in oil and gas waste streams. This study applied policy surveillance methods to conduct a cross-sectional fifty-state survey of law and regulations of NORM and TENORM waste from oil and gas operations. Results indicated that seventeen states drafted express regulations to reduce exposure to oil and gas NORM and TENORM waste. States with active oil and gas drilling that lack regulations controlling exposure to NORM and TENORM may leave the public and workers susceptible to adverse health effects from radiation. The study concludes with recommendations in regard to regulating oil and gas NORM and TENORM waste.

  20. Organic petrology of selected oil shale samples from lower Carboniferous Albert Formation, New Brunswick, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalkreuth, W.; Macauley, G.

    1984-04-01

    Incident light microscopy was used to describe maturation and composition of organic material in oil shale samples from the Lower Carboniferous Albert Formation of New Brunswick. The maturation level was determined in normal (white) light by measuring vitrinite reflectance and in fluorescent light by measuring fluorescence spectral of alginite B. Results indicate low to intermediate maturation for all of the samples. Composition was determined by maceral analysis. Alginite B is the major organic component in all samples having significant oil potential. Oil yields obtained from the Fischer Assay process, and oil and gas potentials from Rock-Eval analyses correlate to themore » amounts of alginite B and bituminite determined in the samples. In some of the samples characterized by similar high concentrations of alginite B, decrease in Fischer Assay yields and oil and gas potentials is related to an increase in maturation, as expected by increase in the fluorescence parameter lambda/sub max/ and red/green quotient of alginite B. Incident light microscopy, particularly with fluorescent light, offers a valuable tool for the identification of the organic matter in oil shales and for the evaluation of their oil and gas potentials.« less

  1. Quality improvement of pyrolysis oil from waste rubber by adding sawdust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wen-liang; Chang, Jian-min, E-mail: cjianmin@bjfu.edu.cn; Cai, Li-ping

    Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during themore » pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.« less

  2. Diesel fuel blending components from mixture of waste animal fat and light cycle oil from fluid catalytic cracking.

    PubMed

    Hancsók, Jenő; Sági, Dániel; Valyon, József

    2018-06-11

    Sustainable production of renewable fuels has become an imperative goal but also remains a huge challenge faced by the chemical industry. A variety of low-value, renewable sources of carbon such as wastes and by-products must be evaluated for their potential as feedstock to achieve this goal. Hydrogenation of blends comprising waste animal fat (≤70 wt%) and low-value fluid catalytic cracking light cycle oil (≥30 wt%), with a total aromatic content of 87.2 wt%, was studied on a commercial sulfided NiMo/Al 2 O 3 catalyst. The fuel fraction in the diesel boiling range was separated by fractional distillation from the organic liquid product obtained from the catalytic conversion of the blend of 70 wt% waste animal fat and 30 wt% light cycle oil. Diesel fuel of the best quality was obtained under the following reaction conditions: T = 615-635 K, P = 6 MPa, LHSV = 1.0 h -1 , H 2 /feedstock ratio = 600 Nm 3 /m 3 . The presence of fat in the feedstock was found to promote the conversion of light cycle oil to a paraffinic blending component for diesel fuel. Thus, a value-added alternative fuel with high biocontent can be obtained from low-value refinery stream and waste animal fat. The resultant disposal of waste animal fat, and the use of fuel containing less fossil carbon for combustion helps reduce the emission of pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.

    PubMed

    Chen, Guanyi; Liu, Cong; Ma, Wenchao; Zhang, Xiaoxiong; Li, Yanbin; Yan, Beibei; Zhou, Weihong

    2014-08-01

    Corn cob (CC) and waste cooking oil (WCO) were co-pyrolyzed in a fixed bed. The effects of various temperatures of 500 °C, 550 °C, 600 °C and CC/WCO mass ratios of 1:0, 1:0.1, 1:0.5, 1:1 and 0:1 were investigated, respectively. Results show that co-pyrolysis of CC/WCO produce more liquid and less bio-char than pyrolysis of CC individually. Bio-oil and bio-char yields were found to be largely dependent on temperature and CC/WCO ratios. GC/MS of bio-oil show it consists of different classes and amounts of organic compounds other than that from CC pyrolysis. Temperature of 550 °C and CC/WCO ratio of 1:1 seem to be the optimum considering high bio-oil yields (68.6 wt.%) and good bio-oil properties (HHV of 32.78 MJ/kg). In this case, bio-char of 24.96 MJ/kg appears attractive as a renewable source, while gas with LHV of 16.06 MJ/Nm(3) can be directly used in boilers as fuel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Lipases Immobilization for Effective Synthesis of Biodiesel Starting from Coffee Waste Oils

    PubMed Central

    Ferrario, Valerio; Veny, Harumi; De Angelis, Elisabetta; Navarini, Luciano; Ebert, Cynthia; Gardossi, Lucia

    2013-01-01

    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required. PMID:24970178

  5. Lipases immobilization for effective synthesis of biodiesel starting from coffee waste oils.

    PubMed

    Ferrario, Valerio; Veny, Harumi; De Angelis, Elisabetta; Navarini, Luciano; Ebert, Cynthia; Gardossi, Lucia

    2013-08-13

    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required.

  6. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  7. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  8. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  9. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998

    PubMed Central

    Souza, Adriana Ferreira; Rodriguez, Dayana M.; Ribeaux, Daylin R.; Luna, Marcos A. C.; Lima e Silva, Thayse A.; Andrade, Rosileide F. Silva; Gusmão, Norma B.; Campos-Takaki, Galba M.

    2016-01-01

    Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 22 experimental designs with 1% inoculums (107 cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2–5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm2 of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. PMID:27669227

  10. Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds.

    PubMed

    Fernández-Bolaños, Juan; Rodríguez, Guillermo; Gómez, Esther; Guillén, Rafael; Jiménez, Ana; Heredia, Antonia; Rodríguez, Rocío

    2004-09-22

    A process for the value addition of solid waste from two-phase olive oil extraction or "alperujo" that includes a hydrothermal treatment has been suggested. In this treatment an autohydrolysis process occurs and the solid olive byproduct is partially solubilized. From this water-soluble fraction can be obtained besides the antioxidant hydroxytyrosol several other compounds of high added value. In this paper three different samples of alperujo were characterized and subjected to a hydrothermal treatment with and without acid catalyst. The main soluble compounds after the hydrolysis were represented by monosaccharides xylose, arabinose, and glucose; oligosaccharides, mannitol and products of sugar destruction. Oligosaccharides were separated by size exclusion chromatography. It was possible to get highly purified mannitol by applying a simple purification method.

  11. Thermophilic and hyper-thermophilic co-digestion of waste activated sludge and fat, oil and grease: Evaluating and modeling methane production.

    PubMed

    Alqaralleh, Rania Mona; Kennedy, Kevin; Delatolla, Robert; Sartaj, Majid

    2016-12-01

    Renewable energy and clean environment are two crucial requirements for our modern world. Low cost, energy production and limited environmental impact make anaerobic digestion (AD) a promising technology for stabilizing organic waste and in particular, sewage waste. The anaerobic co-digestion of thickened waste activated sludge (TWAS) and sewage treatment plant trapped fat, oil and grease (FOG) using different FOG-TWAS mixtures (20, 40, 60 and 80% of FOG based on total volatile solids (TVS)) were investigated in this study using both thermophilic (55 ± 1 °C) and two stages hyper-thermophilic/thermophilic (70 ± 1 °C and 55 ± 1 °C) anaerobic co-digestion. The hyper-thermophilic co-digestion approach as a part of the co-digestion process has been shown to be very useful in improving the methane production. During hyper-thermophilic biochemical methane potential (BMP) assay testing the sample with 60% FOG (based on TVS) has been shown to significantly increase the maximum methane production to 673.1 ± 14.0 ml of methane as compared to 316.4 ± 14.3 ml of methane for the control sample. This represents a 112.7% increase in methane production compared to the control sample considered in this paper. These results signify the importance of hyper-thermophilic digestion to the co-digestion of TWAS-FOG field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    PubMed Central

    Ismail, Samir Abd-elmonem A; Ali, Rehab Farouk M

    2015-01-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44–0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel. PMID:27877789

  13. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    NASA Astrophysics Data System (ADS)

    Ismail, Samir Abd-elmonem A.; Ali, Rehab Farouk M.

    2015-06-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44-0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel.

  14. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.

    PubMed

    Zaafouri, Kaouther; Ben Hassen Trabelsi, Aida; Krichah, Samah; Ouerghi, Aymen; Aydi, Abdelkarim; Claumann, Carlos Alberto; André Wüst, Zibetti; Naoui, Silm; Bergaoui, Latifa; Hamdi, Moktar

    2016-05-01

    Energy recovery from lignocellulosic solid marine wastes, Posidonia oceanica wastes (POW) with slow pyrolysis responds to the growing trend of alternative energies as well as waste management. Physicochemical, thermogravimetric (TG/DTG) and spectroscopic (FTIR) characterizations of POW were performed. POW were first converted by pyrolysis at different temperatures (450°C, 500°C, 550°C and 600°C) using a fixed-bed reactor. The obtained products (bio-oil, syngas and bio char) were analyzed. Since the bio-oil yield obtained from POW pyrolysis is low (2wt.%), waste frying oil (WFO) was added as a co-substrate in order to improve of biofuels production. The co-pyrolysis gave a better yield of liquid organic fraction (37wt.%) as well as syngas (CH4,H2…) with a calorific value around 20MJ/kg. The stoichiometric models of both pyrolysis and co-pyrolysis reactions were performed according to the biomass formula: CαHβOγNδSε. The thermal kinetic decomposition of solids was validated through linearized Arrhenius model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Statistical optimization for lipase production from solid waste of vegetable oil industry.

    PubMed

    Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara

    2018-04-21

    The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.

  16. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water

    PubMed Central

    Maphutha, Selby; Moothi, Kapil; Meyyappan, M.; Iyuke, Sunny E.

    2013-01-01

    A carbon nanotube (CNT) integrated polymer composite membrane with a polyvinyl alcohol barrier layer has been prepared to separate oil from water for treatment of oil-containing waste water. The CNTs were synthesised using chemical vapour deposition, and a phase inversion method was employed for the blending of the CNTs in the polymer composite solution for casting of the membrane. Relative to the baseline polymer, an increase of 119% in the tensile strength, 77% in the Young's modulus and 258% in the toughness is seen for a concentration of 7.5% CNTs in the polymer composite. The permeate through the membrane shows oil concentrations below the acceptable 10 mg/L limit with an excellent throughput and oil rejection of over 95%. PMID:23518875

  17. Influence of Biopreparations on the Bacterial Community of Oily Waste

    NASA Astrophysics Data System (ADS)

    Biktasheva, L. R.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Oil pollution is reported to be one the most serious environmental problems nowadays. Therefore, methods of remediation of oily polluted soils and oily wastes are of great importance. Bioremediation being a perspective method of sanitation of oil pollutions, includes biostimulation of the polluted sites’ indigenous microflora, and in some cases additional introduction of active strains able to decompose hydrocarbon. The efficacy of introducing such biopreparations depends on the interactions between the introduced microbes and the indigenous ones. In this study, the influence of bacterial consortium (Rhodococcus jialingiae, Stenotrophomonas rhizophila and Pseudomonas gessardii) introduction on the bioremediation of an oily waste sampled from a refinery situated in the Mari El region (Russia) was estimated. Single and multiple inoculations of the consortium in addition to moistening and aeration were compared with a control sample, which included only aeration and moistening of the waste. It was shown, that two of the three introduced strains (Rh. jialingiae and Ps.gessardii) gene copy numbers were higher in the inoculated variants than in the control sample and with their initial counts, which meant that these strains survived and included into the bacterial community of the wastes. At the same time, bacterial counts were significantly lower, and the physiological profile of waste microflora slightly altered in the inoculated remediation variants as compared with the control sample. Interestingly, no difference in the degradation rates of hydrocarbons was revealed in the inoculated remediation variants and the control sample.

  18. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  19. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  20. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  1. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  2. Investigation on environmental factors of waste plastics into oil and its emulsion to control the emission in DI diesel engine.

    PubMed

    Kumar, P Senthil; Sankaranarayanan, G

    2016-12-01

    Rapid depletion of conventional fossil fuel resources, their rising prices and environmental issues are the major concern of alternative fuels. On the other hand waste plastics cause a very serious environmental dispute because of their disposal problems. Waste plastics are one of the promising factors for fuel production because of their high heat of combustion and their increasing availability in local communities. In this study, waste plastic oil (WPO) is tested in DI diesel engine to evaluate its performance and emission characteristics. Results showed that oxides of nitrogen (NO x ) emission get increased with WPO when compared to diesel oil. Further, the three phase (O/W/O) plastic oil emulsion is prepared with an aid of ultrasonicater according to the %v (10, 20 & 30). Results expose that brake thermal efficiency (BTE) is found to be increased. NO x and smoke emissions were reduced up to 247ppm and 41% respectively, when compared to diesel at full load condition with use of 30% emulsified WPO. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    PubMed

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Organic compound emissions from a landfarm used for oil and gas solid waste disposal.

    PubMed

    Lyman, Seth N; Mansfield, Marc L

    2018-07-01

    Solid or sludgy hydrocarbon waste is a by-product of oil and gas exploration and production. One commonly used method of disposing of this waste is landfarming. Landfarming involves spreading hydrocarbon waste on soils, tilling it into the soil, and allowing it to biodegrade. We used a dynamic flux chamber to measure fluxes of methane, a suite of 54 nonmethane hydrocarbons, and light alcohols from an active and a remediated landfarm in eastern Utah. Fluxes from the remediated landfarm were not different from a polytetrafluoroethylene (PTFE) sheet or from undisturbed soils in the region. Fluxes of methane, total nonmethane hydrocarbons, and alcohols from the landfarm in active use were 1.41 (0.37, 4.19) (mean and 95% confidence limits), 197.90 (114.72, 370.46), and 4.17 (0.03, 15.89) mg m -2  hr -1 , respectively. Hydrocarbon fluxes were dominated by alkanes, especially those with six or more carbons. A 2-ha landfarm with fluxes of the magnitude we observed in this study would emit 95.3 (54.3, 179.7) kg day -1 of total hydrocarbons, including 11.2 (4.3, 33.9) kg day -1 of BTEX (benzene, toluene, ethylbenzene, and xylenes). Solid and sludgy hydrocarbon waste from the oil and gas industry is often disposed of by landfarming, in which wastes are tilled into soil and allowed to decompose. We show that a land farm in Utah emitted a variety of organic compounds into the atmosphere, including hazardous air pollutants and compounds that form ozone. We calculate that a 2-ha landfarm facility would emit 95.0 ± 66.0 kg day -1 of total hydrocarbons, including 11.1 ± 1.5 kg day -1 of BTEX (benzene, toluene, ethylbenzene, and xylenes).

  5. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fresh and mechanical properties of self-compacting concrete with coarse aggregate replacement using Waste of Oil Palm Shell

    NASA Astrophysics Data System (ADS)

    Prayuda, Hakas; Saleh, Fadillawaty; Ilham Maulana, Taufiq; Monika, Fanny

    2018-05-01

    Self-compacting Concrete (SCC) is a real innovation that can solidify itself without the help of tools to ease field practice. In its implementation, SCC can use alternative materials to reduce waste, such as Oil Palm Shell (OPS). In this research, OPS used as a replacement of crushed stone as the main coarse aggregate. The concrete mixture used consists of cement, sand, crushed stone, OPS as a variation of aggregate substitutes, palm oil fuel ash, and superplasticizer. OPS used were variated with 0%, 5%, 10%, 25% and 50% of crushed stone aggregate weight with age up to 28 days. Tests were conducted on fresh and mechanical properties. From the results, it is known that replacement of aggregate using OPS meets fresh properties criteria and although the compressive strength of OPS concrete mixture is lower than normal SCC, OPS still can be an alternative in making SCC and reducing palm oil industrial waste.

  7. Families of miocene monterey crude oil, seep, and tarball samples, coastal California

    USGS Publications Warehouse

    Peters, K.E.; Hostettler, F.D.; Lorenson, T.D.; Rosenbauer, R.J.

    2008-01-01

    Biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs to better assess their origins and distributions in coastal California. These samples were used to construct a chemometric (multivariate statistical) decision tree to classify 288 additional samples. The results identify three tribes of 13C-rich oil samples inferred to originate from thermally mature equivalents of the clayey-siliceous, carbonaceous marl and lower calcareous-siliceous members of the Monterey Formation at Naples Beach near Santa Barbara. An attempt to correlate these families to rock extracts from these members in the nearby COST (continental offshore stratigraphic test) (OCS-Cal 78-164) well failed, at least in part because the rocks are thermally immature. Geochemical similarities among the oil tribes and their widespread distribution support the prograding margin model or the banktop-slope-basin model instead of the ridge-and-basin model for the deposition of the Monterey Formation. Tribe 1 contains four oil families having geochemical traits of clay-rich marine shale source rock deposited under suboxic conditions with substantial higher plant input. Tribe 2 contains four oil families with traits intermediate between tribes 1 and 3, except for abundant 28,30-bisnorhopane, indicating suboxic to anoxic marine marl source rock with hemipelagic input. Tribe 3 contains five oil families with traits of distal marine carbonate source rock deposited under anoxic conditions with pelagic but little or no higher plant input. Tribes 1 and 2 occur mainly south of Point Conception in paleogeographic settings where deep burial of the Monterey source rock favored petroleum generation from all three members or their equivalents. In this area, oil from the clayey-siliceous and carbonaceous marl members (tribes 1 and 2) may overwhelm that from the lower

  8. Influence of olive oil mill waste amendment on fate of oxyfluorfen in Southern Spain soils

    USDA-ARS?s Scientific Manuscript database

    The influence of olive oil mill waste (OOMW) amendment on soil processes affecting the herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl-3-ethoxy-4-nitrophenyl ether) in two soils (P2 and SJ) was assessed under laboratory conditions. The soils used were from two diverse locations in Guadalqui...

  9. CASE STUDY: IN-SITU SOLIDIFICATION/STABILIZATION OF HAZARDOUS ACID WASTE OIL SLUDGE AND LESSONS LEARNED

    EPA Science Inventory

    The South 8th Street site contained a 2.5 acre oily sludge pit with very low pH waste produced by oil recycling activities. This sludge was treated using in-situ solidification/stabilization technology applied by deep soil mixing augers. The problems encountered, solutions develo...

  10. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.

    PubMed

    Papanikolaou, S; Dimou, A; Fakas, S; Diamantopoulou, P; Philippoussis, A; Galiotou-Panayotou, M; Aggelis, G

    2011-05-01

    In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid-rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Carbon-limited cultures were performed on waste oil, added in the growth medium at 15g l(-1) , and high biomass quantities were produced (up to c.18g l(-1) , conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml(-1) being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l(-1) . Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high-added-value products.   Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added-value compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.

    PubMed

    Silveira, Erick A; Tardioli, Paulo W; Farinas, Cristiane S

    2016-06-01

    The use of residues from the industrial processing of palm oil as carbon source and inducer for microbial lipase production can be a way to add value to such residues and to contribute to reduced enzyme costs. The aim of this work was to investigate the feasibility of using palm oil industrial waste as feedstock for lipase production in different cultivation systems. Evaluation was made of lipase production by a selected strain of Aspergillus niger cultivated under solid-state (SSF) and submerged fermentation (SmF). Lipase activity levels up to 15.41 IU/mL were achieved under SSF. The effects of pH and temperature on the lipase activity of the SSF extract were evaluated using statistical design methodology, and maximum activities were obtained between pH 4.0 and 6.5 and at temperatures between 37 and 55 °C. This lipase presented good thermal stability up to 60 °C and higher specificity towards long carbon chain substrates. The results demonstrate the potential application of palm oil industrial residues for lipase production and contribute to the technological advances needed to develop processes for industrial enzymes production.

  12. Utilization of eggshell waste as low-cost solid base catalyst for biodiesel production from used cooking oil

    NASA Astrophysics Data System (ADS)

    Asri, N. P.; Podjojono, B.; Fujiani, R.; Nuraini

    2017-05-01

    A solid CaO-based catalyst of waste eggshell was developed for biodiesel production from used cooking oil. The waste eggshell powder was calcined in air at 90° C for 4 h to convert calcium species in the eggshells into active CaO catalysts. The characterization of CaO catalyst was done by XRD and BET analysis. The CaO catalyst was then introduced for transesterification of used cooking oil (UCO) for testing of its catalytic activity. The experiment was conducted in batch type reactor that consists of three-neck glass equipped by reflux condenser and magnetic stirrer. Before tranesterification process, the UCO was treated by coconut coir powder in order to reduce the free fatty acid content. The result showed that the catalyst was potentially use for transesterification of used cooking oil into biodiesel with relatively high yield of 75.92% was achieved at reaction temperature, reaction time, molar ratio UCO to methanol and catalyst amount of 65° C, 7 h, 1:15 and 6%, respectively.

  13. Production and application of biodiesel from waste cooking oil

    NASA Astrophysics Data System (ADS)

    Tuly, S. S.; Saha, M.; Mustafi, N. N.; Sarker, M. R. I.

    2017-06-01

    Biodiesel has been identified as an alternative and promising fuel source to reduce the dependency on conventional fossil fuel in particular diesel. In this work, waste cooking oil (WCO) of restaurants is considered to produce biodiesel. A well-established transesterification reaction by sodium hydroxide (NaOH) catalytic and supercritical methanol (CH3OH) methods are applied to obtain biodiesel. In the catalytic transesterification process, biodiesel and glycerine are simultaneously produced. The impact of temperature, methanol/WCO molar ratio and sodium hydroxide concentration on the biodiesel formation were analysed and presented. It was found that the optimum 95% of biodiesel was obtained when methanol/WCO molar ratio was 1:6 under 873 K temperature with the presence of 0.2% NaOH as a catalyst. The waste cooking oil blend proportions were 10%, 15%, 20% and 25% and named as bio-diesel blends B-10, B-15, B-20, and B-25, respectively. Quality of biodiesel was examined according to ASTM 6751: biodiesel standards and testing methods. Important fuel properties of biodiesel, such as heating value, cetane index, viscosity, and others were also investigated. A four-stroke single cylinder naturally aspirated DI diesel engine was operated using in both pure form and as a diesel blend to evaluate the combustion and emission characteristics of biodiesel. Engine performance is examined by measuring brake specific fuel consumption and fuel conversion efficiency. The emission of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and others were measured. It was measured that the amount of CO2 increases and CO decreases both for pure diesel and biodiesel blends with increasing engine load. However, for same load, a higher emission of CO2 from biodiesel blends was recorded than pure diesel.

  14. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.

    PubMed

    Benesova, P; Kucera, D; Marova, I; Obruca, S

    2017-08-01

    The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l -1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator. © 2017 The Society for Applied Microbiology.

  15. BP Spill Sampling and Monitoring Data April-September 2010 - Data Download Tool

    EPA Pesticide Factsheets

    This dataset analyzes waste from the the British Petroleum Deepwater Horizon Rig Explosion Emergency Response, providing opportunity to query data sets by metadata criteria and find resulting raw datasets in CSV format.The data query tool allows users to download air, water and sediment sampling and monitoring data that has been collected in response to the BP oil spill. All sampling and monitoring data that has been collected to date is available for download as raw structured data.The query tools enables CSV file creation to be refined based on the following search criteria: date range (between April 28, 2010 and 9/29/2010); location by zip, city, or county; media (solid waste, weathered oil, air, surface water, liquid waste, tar, sediment, water); substance categories (based on media selection) and substances (based on substance category selection).

  16. Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils.

    PubMed

    Talens Peiró, Laura; Villalba Méndez, Gara; Gabarrell i Durany, Xavier

    2008-07-01

    Used cooking oil (UCO) is a domestic waste generated daily by food industries, restaurants, and households. It is estimated that in Europe 5 kg of UCO are generated per inhabitant, totalling 2.5 million metric tons per year. Recovering UCO for the production of biodiesel offers a way of minimizing and avoiding this waste and related pollution. An exergy analysis of the integrated waste management (IWM) scheme for UCO is used to evaluate such a possibility by accounting for inputs and outputs in each stage, calculating the exergy loss and the resource input and quantifying the possible improvements. The IWM includes the collection, pretreatment, and delivery of UCO and the production of biodiesel. The results show that the greatest exergy loss occurs during the transport stages (57%). Such exergy loss can be minimized to 20% by exploiting the full capacity of collecting vans and using biodiesel in the transport stages. Further, the cumulative exergy consumption helps study how the exergy consumption of biodiesel can be further reduced by using methanol obtained from biogas in the transesterification stage. Finally, the paper discusses how increasing the collection of UCO helps minimize uncontrolled used oil disposal and consequently provides a sustainable process for biodiesel production.

  17. Hazardous Waste Minimization Assessment: Fort Campbell, Kentucky

    DTIC Science & Technology

    1991-03-01

    Used Oii - Better Operating Practices . Selective Segregation 97 Used Oil - Process Change - Fast Lube Oil Change System (FLOCS) 98 Caustic Wastes...Product Substitution 98 Caustic Wastes - Process Change - Hot Tank (Equipment) Modifications 98 Aqueous or Caustic Wastes - Process Change - Dry Ovens...Aqueous or Caustic Wastes - Equipment Leasiag 102 Dirty Rags/Uniforms • Onsite/Offsite Recycling - Laundry Service 103 Treatment 103 Used Oil - Onsite

  18. Optimization of squalene produced from crude palm oil waste

    NASA Astrophysics Data System (ADS)

    Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.

    2017-01-01

    Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.

  19. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING DL

    2010-08-03

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.« less

  20. Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Zhang, Bo; Ding, Kuan; Xue, Zeyu; Deng, Aidong; Ruan, Roger

    2017-02-01

    Catalytic fast co-pyrolysis (co-CFP) offers a concise and effective process to achieve an upgraded bio-oil production. In this paper, co-CFP experiments of waste cooking oil (WCO) and tea residual (TR) with HZSM-5 zeolites were carried out. The influences of pyrolysis reaction temperature and H/C ratio on pyrolytic products distribution and selectivities of aromatics were performed. Furthermore, the prevailing synergetic effect of target products during co-CFP process was investigated. Experimental results indicated that H/C ratio played a pivotal role in carbon yields of aromatics and olefins, and with H/C ratio increasing, the synergetic coefficient tended to increase, thus led to a dramatic growth of aromatics and olefins yields. Besides, the pyrolysis temperature made a significant contribution to carbon yields, and the yields of aromatics and olefins increased at first and then decreased at the researched temperature region. Note that 600°C was an optimum temperature as the maximum yields of aromatics and olefins could be achieved. Concerning the transportation fuel dependence and security on fossil fuels, co-CFP of WCO and TR provides a novel way to improve the quality and quantity of pyrolysis bio-oil, and thus contributes bioenergy accepted as a cost-competitive and promising alternative energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Strategy for Nonmigrating Plasticized PVC Modified with Mannich base of Waste Cooking Oil Methyl Ester.

    PubMed

    Jia, Puyou; Zhang, Meng; Hu, Lihong; Song, Fei; Feng, Guodong; Zhou, Yonghong

    2018-01-25

    The waste cooking oil (WCO) production from the catering industry and food processing industry causes serious environmental, economic and social problems. However, WCO can be used for the preparation of fine chemicals such as internal plasticizer. With this aim, this work is focused on preparing internal plasticizer by using WCO and determining technical viability of non-migration poly (vinyl chloride) (PVC) materials. The mannich base of waste cooking oil methyl ester (WCOME) was synthesized from WCO via esterification, interesterification and mannich reaction, which was used to produce self-plasticization PVC materials as an internal plasticizer. The results showed that the PVC was plasticized effectively. Self-plasticization PVC films showed no migration in n-hexane, but 15.7% of dioctyl phthalate (DOP) leached from DOP/PVC(50/50) system into n-hexane. These findings transformed the traditional plastic processing technology and obtained cleaner production of no migration plasticizer from WCO.

  2. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING DL

    2011-02-11

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less

  3. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production.

    PubMed

    Zhang, Honglei; Ding, Jincheng; Zhao, Zengdian

    2012-11-01

    The traditional heating and microwave assisted method for biodiesel production using cation ion-exchange resin particles (CERP)/PES catalytic membrane were comparatively studied to achieve economic and effective method for utilization of free fatty acids (FFAs) from waste cooking oil (WCO). The optimal esterification conditions of the two methods were investigated and the experimental results showed that microwave irradiation exhibited a remarkable enhanced effect for esterification compared with that of traditional heating method. The FFAs conversion of microwave assisted esterification reached 97.4% under the optimal conditions of reaction temperature 60°C, methanol/acidified oil mass ratio 2.0:1, catalytic membrane (annealed at 120°C) loading 3g, microwave power 360W and reaction time 90min. The study results showed that it is a fast, easy and green way to produce biodiesel applying microwave irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: an engineering approach to separation of hydrophilic impurities.

    PubMed

    Hama, Shinji; Yoshida, Ayumi; Tamadani, Naoki; Noda, Hideo; Kondo, Akihiko

    2013-05-01

    An engineering approach was applied to an efficient biodiesel production from waste cooking oil. In this work, an enzymatic packed-bed reactor (PBR) was integrated with a glycerol-separating system and used successfully for methanolysis, yielding a methyl ester content of 94.3% and glycerol removal of 99.7%. In the glycerol-separating system with enhanced retention time, the effluent contained lesser amounts of glycerol and methanol than those in the unmodified system, suggesting its promising ability to remove hydrophilic impurities from the oil layer. The PBR system was also applied to oils with high acid values, in which fatty acids could be esterified and the large amount of water was extracted using the glycerol-separating system. The long-term operation demonstrated the high lipase stability affording less than 0.2% residual triglyceride in 22 batches. Therefore, the PBR system, which facilitates the separation of hydrophilic impurities, is applicable to the enzymatic biodiesel production from waste cooking oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Conversion of Small Algal Oil Sample to JP-8

    DTIC Science & Technology

    2012-01-01

    cracking of Algal Oil to SPK Hydroprocessing Lab Plant uop Nitrogen Hydrogen Product ., __ Small Scale Lab Hydprocessing plant - Down flow trickle ... bed configuration - Capable of retaining 25 cc of catalyst bed Meter UOP ·CONFIDENTIAL File Number The catalytic deoxygenation stage of the...content which combined with the samples acidity, is a challenge to reactor metallurgy. None the less, an attempt was made to convert this sample to

  6. Preliminary evaluation of physical and chemical characterization of waste palm oil shell as cool material replaced in asphaltic concrete as fine aggregate

    NASA Astrophysics Data System (ADS)

    Anuar, M. A. M.; Anting, N.; Shahidan, S.; Lee, Y. Y.; Din, M. F. Md; Khalid, F. S.; Nazri, W. M. H. W.

    2017-11-01

    Malaysia is one of the biggest producer of palm oil product and currently as main source of economy for the country. During the production of crude palm oil, a large amount of waste material is generated, such as palm oil fibres, palm oil shells and empty fruit bunches. Palm oil shell aggregate (POSA) is identified as a material that shows good potential to be used as a fine aggregate replacement in asphaltic concrete. On other hand, the chemical compound that exist in the Palm Oil Shell (POS) have shown a good potential as reflective component in cool-material. The purpose of this study is to obtain the physical and chemical properties of palm oil shell. The result shows the apparent particle density of Palm Oil Shell is 1.6 mg/m3. The specific gravity of palm oil shell was obtained with the value 1.6 and the water absorption amount of palm oil shell recorded from this study was 25.1%. The X-Ray Fluorescence study shows that palm oil shell contains the highest amount of SiO2 (46.412 wt%) and the second highest amount of Fe2O3 (34.016 wt%), both is the main output of relectivity compound. As a conclusion, waste palm oil shell has a potential to be used as alternative material for fine aggregate replacement. Besides that, the amount of chemical element that consist in palm oil shell which high in SiO2 and Fe2O3, promising the benefit to mitigate urban heat island as a cooling material agent.

  7. Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme.

    PubMed

    Razack, Sirajunnisa Abdul; Duraiarasan, Surendhiran

    2016-01-01

    In the recent scenario, consumption of petroleum fuels has increased to greater height which has led to deforestation and decline in fossil fuels. In order to tackle the perilous situation, alternative fuel has to be generated. Biofuels play a vital role in substituting the diesel fuels as they are renewable and ecofriendly. Biodiesel, often referred to as green fuel, could be a potential replacement as it could be synthesized from varied substrates, advantageous being the microalgae in several ways. The present investigation was dealt with the interesterification of waste cooking oil using immobilised lipase from mixed cultures for biodiesel production. In order to standardize the production for a scale up process, the parameters necessary for interesterification had been optimized using the statistical tool, Central Composite Design - Response Surface Methodology. The optimal conditions required to generate biodiesel were 2 g enzyme load, 1:12 oil to methyl acetate ratio, 60 h reaction time and 35 °C temperature, yielding a maximum of 93.61% biodiesel. The immobilised lipase beads remain stable without any changes in their function and structure even after 20 cycles which made this study, less cost intensive. In conclusion, the study revealed that the cooking oil, a residue of many dining centers, left as waste product, can be used as a potential raw material for the production of ecofriendly and cost effective biofuel, the biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Study on analysis of waste edible oil with deterioration and removal of acid value, carbonyl value, and free fatty acid by a food additive (calcium silicate).

    PubMed

    Ogata, Fumihiko; Tanaka, Yuko; Tominaga, Hisato; Kangawa, Moe; Inoue, Kenji; Ueda, Ayaka; Iwata, Yuka; Kawasaki, Naohito

    2013-01-01

    This study investigated the regeneration of waste edible oil using a food additive (calcium silicate, CAS). Waste edible oil was prepared by combined heat and aeration treatment. Moreover, the deterioration of edible oil by combined heat and aeration treatment was greater than that by heat treatment alone. The acid value (AV) and carbonyl value (CV) increased with increasing deterioration; conversely, the tocopherol concentration decreased with increasing deterioration. The specific surface area, pore volume, and mean pore diameter of the 3 CAS formulations used (CAS30, CAS60, and CAS90) were evaluated, and scanning electron microscopic images were taken. The specific surface area increased in the order of CAS30 (115.54 m(2)/g) < CAS60 (163.93 m(2)/g) < CAS90 (187.47 m(2)/g). The mean pore diameter increased in the order of CAS90 (170.59 Å) < CAS60 (211.60 Å) < CAS30 (249.70 Å). The regeneration of waste edible oil was possible with CAS treatment. The AV reduced by 15.2%, 10.8%, and 23.1% by CAS30, CAS60, and CAS90 treatment, respectively, and the CV was reduced by 35.6%, 29.8%, and 31.3% by these 3 treatments, respectively. Moreover, the concentrations of tocopherol and free fatty acids did not change with CAS treatment. The characteristics of CAS were not related to the degree of change of AV and CV. However, the adsorption mechanism of polar and non-polar compounds generated in waste edible oil by CAS was related with the presence of silica gel molecules in CAS. The findings indicated that CAS was useful for the regeneration of waste edible oil.

  9. A dilute-and-shoot sample preparation strategy for new and used lubricating oils for Ca, P, S and Zn determination by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Mota, Mariana F. B.; Gama, Ednilton M.; Rodrigues, Gabrielle de C.; Rodrigues, Guilherme D.; Nascentes, Clésia C.; Costa, Letícia M.

    2018-01-01

    In this work, a dilute-and-shoot method was developed for Ca, P, S and Zn determination in new and used lubricating oil samples by total reflection X-ray fluorescence (TXRF). The oil samples were diluted with organic solvents followed by addition of yttrium as internal standard and the TXRF measurements were performed after solvent evaporation. The method was optimized using an interlaboratorial reference material. The experimental parameters evaluated were sample volume (50 or 100 μL), measurement time (250 or 500 s) and volume deposited on the quartz glass sample carrier (5 or 10 μL). All of them were evaluated and optimized using xylene, kerosene and hexane. Analytical figures of merit (accuracy, precision, limit of detection and quantification) were used to evaluate the performance of the analytical method for all solvents. The recovery rates varied from 99 to 111% and the relative standard deviation remained between 1.7% and 10% (n = 8). For all elements, the results obtained by applying the new method were in agreement with the certified value. After the validation step, the method was applied for Ca, P, S and Zn quantification in eight new and four used lubricating oil samples, for all solvents. The concentration of the elements in the samples varied in the ranges of 1620-3711 mg L- 1 for Ca, 704-1277 mg L- 1 for P, 2027-9147 mg L- 1 for S, and 898-1593 mg L- 1 for Zn. The association of TXRF with a dilute-and-shoot sample preparation strategy was efficient for Ca, P, S and Zn determination in lubricating oils, presenting accurate results. Additionally, the time required for analysis is short, the reagent volumes are low minimizing waste generation, and the technique does not require calibration curves.

  10. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.

    PubMed

    Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K

    2017-11-01

    The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, 1 H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Household hazardous waste data for the UK by direct sampling.

    PubMed

    Slack, Rebecca J; Bonin, Michael; Gronow, Jan R; Van Santen, Anton; Voulvoulis, Nikolaos

    2007-04-01

    The amount of household hazardous waste (HHW) disposed of in the United Kingdom (UK) requires assessment. This paper describes a direct analysis study carried out in three areas in southeast England involving over 500 households. Each participating householder was provided with a special bin in which to place items corresponding to a list of HHW. The amount of waste collected was split into nine broad categories: batteries, home maintenance (DIY), vehicle upkeep, pesticides, pet care, pharmaceuticals, photographic chemicals, household cleaners, and printer cartridges. Over 1 T of waste was collected from the sample households over a 32-week period, which would correspond to an estimated 51,000 T if extrapolated to the UK population for the same period or over 7,000 T per month. Details of likely disposal routes adopted by householders were also sought, demonstrating the different pathways selected for different waste categories. Co-disposal with residual household waste dominated for waste batteries and veterinary medicines, hence avoiding classification as hazardous waste under new UK waste regulations. The information can be used to set a baseline for the management of HHW and provides information for an environmental risk assessment of the disposal of such wastes to landfill.

  12. Production and characterization of rhamnolipid using palm oil agricultural refinery waste.

    PubMed

    Radzuan, Mohd Nazren; Banat, Ibrahim M; Winterburn, James

    2017-02-01

    In this research we assess the feasibility of using palm oil agricultural refinery waste as a carbon source for the production of rhamnolipid biosurfactant through fermentation. The production and characterization of rhamnolipid produced by Pseudomonas aeruginosa PAO1 grown on palm fatty acid distillate (PFAD) under batch fermentation were investigated. Results show that P. aeruginosa PAO1 can grow and produce 0.43gL -1 of rhamnolipid using PFAD as the sole carbon source. Identification of the biosurfactant product using mass spectrometry confirmed the presence of monorhamnolipid and dirhamnolipid. The rhamnolipid produced from PFAD were able to reduce surface tension to 29mNm -1 with a critical micelle concentration (CMC) 420mgL -1 and emulsify kerosene and sunflower oil, with an emulsion index up to 30%. Results demonstrate that PFAD could be used as a low-cost substrate for rhamnolipid production, utilizing and transforming it into a value added biosurfactant product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sampling protocol for post-landfall Deepwater Horizon oil release, Gulf of Mexico, 2010

    USGS Publications Warehouse

    Wilde, F.D.; Skrobialowski, S.C.; Hart, J.S.

    2010-01-01

    The protocols and procedures described in this report are designed to be used by U.S. Geological Survey (USGS) field teams for the collection of environmental data and samples in coastal areas affected by the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. This sampling protocol focuses specifically on sampling for water, sediments, benthic invertebrates, and microorganisms (ambient bacterial populations) after shoreline arrival of petroleum-associated product on beach, barrier island, and wetland environments of the Gulf of Mexico coastal states. Deployment to sampling sites, site setup, and sample collection in these environments necessitates modifications to standard USGS sampling procedures in order to address the regulatory, logistical, and legal requirements associated with samples collected in oil-impacted coastal areas. This document, therefore, has been written as an addendum to the USGS National Field Manual for the Collection of Water-Quality Data (NFM) (http://pubs.water.usgs.gov/twri9A/), which provides the basis for training personnel in the use of standard USGS sampling protocols. The topics covered in this Gulf of Mexico oil-spill sampling protocol augment NFM protocols for field-deployment preparations, health and safety precautions, sampling and quality-assurance procedures, and decontamination requirements under potentially hazardous environmental conditions. Documentation procedures and maintenance of sample integrity by use of chain-of-custody procedures also are described in this protocol.

  14. Re-Os dating of maltenes and asphaltenes within single samples of crude oil

    NASA Astrophysics Data System (ADS)

    Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Galimberti, Roberto; Nali, Micaela; Yang, Gang; Zimmerman, Aaron

    2016-04-01

    Re-Os geochronology of oil may constrain the timing of oil formation and improve oil-source and oil-oil correlations. Typically, asphaltene (ASPH), the heaviest and most Re-Os rich oil fraction, from multiple oils within an oil field or a larger petroleum system are analyzed to obtain sufficient spread in Re-Os isotopic ratios, a mathematical necessity for precise Re-Os isochrons. Here we offer a new approach for Re-Os geochronology of oil based on isotopic analyses of different fractions within a single sample of crude oil. We studied three oils from the Gela oil field, southern Sicily, Italy, recovered from Triassic-Jurassic stratigraphic intervals (Streppenosa, Noto, and Sciacca Formations) within the Gela-1 well. ASPH (insoluble in n-alkane) and maltene (MALT, soluble in n-alkane) fractions of oil were separated using n-pentane, n-hexane, n-heptane and n-decane solvents. The ASPH contents of the Sciacca and Noto oils (26-33 wt%) are notably higher compared to the Streppenosa oil (7-12 wt% ASPH). We present an optimized Re-Os procedure with sample digestion in a high-pressure asher, followed by isotopic measurements using negative thermal ionization mass spectrometry. Very high metal contents of Gela oils allowed acquisition of precise Re-Os data. Systematic variations between the type of solvent used for ASPH precipitation and the ASPH content of the oil (also known from the literature) and the Re-Os contents of the ASPH and MALT fractions (first observed in this study) provide important practical applications for Re-Os analyses of oil. Most Re and Os (∼96-98%) in the Noto oil are hosted in the ASPH fraction. In contrast, a significant portion of Re and Os (∼33-34%) is stored in the MALT fraction of the lighter, but heavily biodegraded Streppenosa oil. Collectively, our new data on alkane distribution, hopane and sterane biomarkers, major and trace element contents, and Re-Os concentrations and isotopic ratios of the oils and their fractions support the

  15. Concept for Underground Disposal of Nuclear Waste

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  16. Quality improvement of pyrolysis oil from waste rubber by adding sawdust.

    PubMed

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q

    2014-12-01

    This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG-FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis-gas chromatography (GC)-mass spectrometry (Py-GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Application of Fenton process to remove organic matter and PCBs from waste (fuller's earth) contaminated with insulating oil.

    PubMed

    da Silva, Milady Renata Apolinário; Rodrigues, Eduardo de Oliveira; Espanhol-Soares, Melina; Silva, Flavio Soares; Kondo, Márcia Matiko; Gimenes, Rossano

    2018-01-09

    Polychlorinated biphenyls (PCBs) are carcinogenic to humans and can be found in fuller's earth used for the treatment of used transformer oil. This work describes an optimization of the Fenton process for the removal of contaminants from fuller's earth. The effects of pH (2.5 and 4.0), [H 2 O 2 ] (1.47 and 2.07 mol L -1 ), and [Fe 2+ ] (1.7 and 40 mmol L -1 ) were studied. The Fenton process efficiency was monitored using the decreases in the chemical oxygen demand (COD) and the concentrations of oil and grease, total carbon (TC), PCBs, and H 2 O 2 . The fuller's earth contaminated with insulating oil presented 35% (w/w) of TC, 34% (w/w) of oil and grease, 297.0 g L -1 COD, and 64 mg of PCBs per kg. The material could therefore be considered a dangerous waste. After Fenton treatment, using a slurry mode, there was a removal of 55% of COD, 20% of oil and grease, and 20% of TC, achieved at pH 2.5 using 2.07 mol L -1 of H 2 O 2 and 40.0 mmol L -1 of Fe 2+ . No PCBs were detected in the samples after the Fenton treatment, even using smaller amounts of Fenton reagents (1.47 mol L -1 of H 2 O 2 , 1.7 mmol L -1 of Fe 2+ , pH 2.5). The results indicated that the treated fuller's earth was free from PCB residues and could be disposed of in a simple landfill, in accordance with Brazilian PCB regulations.

  18. An exergy based assessment of the production and conversion of switchgrass, equine waste and forest residue to bio-oil using fast pyrolysis

    USDA-ARS?s Scientific Manuscript database

    The resource efficiency of biofuel production via biomass pyrolysis is evaluated using exergy as an assessment metric. Three feedstocks, important to various sectors of US agriculture, switchgrass, forest residue and equine waste are considered for conversion to bio-oil (pyrolysis oil) via fast pyro...

  19. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    PubMed Central

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199

  20. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    PubMed

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  1. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    NASA Astrophysics Data System (ADS)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  2. Synthesis and Characterization of C-Cinnamal Calix [4] Resorsinarena from Cinnamon Oil Waste West Sumatra

    NASA Astrophysics Data System (ADS)

    Etika, S. B.; Nasra, E.; Rilaztika, I.

    2018-04-01

    Synthesis and characterization of compound C-Cinnamal Calix [4] Resorsinarena (CCCR) of cinnamon oil waste have been done. This study was aimed to synthesis and characterize C-Cinnamal Calix [4] Resorsinarena from cinnamaldehyde violated cinnamon oil waste. C-Cinnamal Calix [4] Resorsinarena was synthesized by electrophilic substitution reaction of cinnamaldehyde isolated by the acid and resorcinol at 77oC temperature for 2 hour. The data analysis spectrum UV-VIS and FT-IR showed that the compound isolated cinnamaldehyde same as pure cinnamaldehyde compound. The characterization of C-Cinnamal Calix [4] Resorsinarena in the form of reddish-colored solids with melting point 3580C by using UV-VIS showed the presence of double bond, FT-IR showed the absorption at the wave number 3323,94 cm-1 indicating the ‑OH group, the wave number 1610,94 cm-1 showed the vibration C=C, the strong region absorption of 1500,86 cm-1 indicating the presence of an aromatic ring, the at 1442,88 cm-1 wave number indicating the presence of CH3.

  3. Synthesis of Carbon Nano Materials Originated from Waste Cooking Oil Using a Nebulized Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Arie, A. A.; Hadisaputra, L.; Susanti, R. F.; Devianto, H.; Halim, M.; Enggar, R.; Lee, J. K.

    2017-07-01

    Synthesis of nanocarbon on snake fruit-peel’s activated carbon from waste cooking oil palm was conducted by a nebulized spray pyrolysis process (NSP) by varying the processing temperature from 650 to 750 °C. Ferrocene was used as a catalyst with constant concentration of 0.015 g/ml of carbon source. The structure of nanocarbon was studied by using scanning electron microscope (SEM),x-ray diffraction (XRD), surface area analyzer and Raman spectroscopy. SEM results showed that the structures of carbon products was in the the form of carbon nanopsheres (CNS). XRD and Raman analysis confirmed the CNS structure. The carbon producs were then tested as electrode’s materials for lithium ion capacitors (LIC) by cyclic voltammetry (CV) instruments. From the CV results the specific capacitance was estimated as 79.57 F / g at a scan rate of 0.1 mV / s and voltage range from 2.5 - 4 V. This study shows that the nano carbons synthesized from the waste cooking oil can be used as prospective electrode materials for LIC.

  4. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    PubMed

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  5. Determination of platinum in waste platinum-loaded carbon catalyst samples using microwave-assisted sample digestion and ICP-OES

    NASA Astrophysics Data System (ADS)

    Ma, Yinbiao; Wei, Xiaojuan

    2017-04-01

    A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the linear range of calibration graph for Pt was 0 ˜ 200.00 mg L-1, and the recovery was 95.67% ˜ 104.29%. The relative standard deviation (RSDs) for Pt was 1.78 %. The proposed method was applied to determine the same samples with atomic absorption spectrometry with the results consistently, which is suitable for the determination of platinum in waste platinum-loaded carbon catalyst samples.

  6. Influence of sintering temperature on the characteristics of shale brick containing oil well-derived drilling waste.

    PubMed

    Li, Xiang-Guo; Lv, Yang; Ma, Bao-Guo; Jian, Shou-Wei; Tan, Hong-Bo

    2011-11-01

    The influence of sintering temperature on the physico-mechanical characteristics (such as water absorption, apparent porosity, bulk density, weight loss on ignition, firing shrinkage, and compressive strength), leachability, and microstructure of shale brick containing oil well-derived drilling waste (DW) was investigated. The experiments were conducted at a temperature ranging from 950°C to 1,050°C with 30% DW addition. The results indicate that increasing the sintering temperature decreases the water absorption and apparent porosity and increases the shrinkage, density, and compressive strength of sintered specimens. Moreover, the physico-mechanical properties of samples sintered at 1,050°C meet the requirements of the MU20 according to GB/T 5101-2003 (in China). The heavy metal concentrations of the leachate are much lower than the current regulatory limits according to GB16889-2008. The results from XRD and SEM show that increasing sintering temperature results in an increase of the high temperature liquid phase, which may have a significant effect on the densification process of the samples.

  7. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.

    PubMed

    Breyer, Sacha; Mekhitarian, Loucine; Rimez, Bart; Haut, B

    2017-02-01

    This work is a preliminary study for the development of a co-pyrolysis process of plastic wastes excavated from a landfill and used lubrication oils, with the aim to produce an alternative liquid fuel for industrial use. First, thermogravimetric experiments were carried out with pure plastics (HDPE, LDPE, PP and PS) and oils (a motor oil and a mixture of used lubrication oils) in order to highlight the interactions occurring between a plastic and an oil during their co-pyrolysis. It appears that the main decomposition event of each component takes place at higher temperatures when the components are mixed than when they are alone, possibly because the two components stabilize each other during their co-pyrolysis. These interactions depend on the nature of the plastic and the oil. In addition, co-pyrolysis experiments were led in a lab-scale reactor using a mixture of excavated plastic wastes and used lubrication oils. On the one hand, the influence of some key operating parameters on the outcome of the process was analyzed. It was possible to produce an alternative fuel for industrial use whose viscosity is lower than 1Pas at 90°C, from a plastic/oil mixture with an initial plastic mass fraction between 40% and 60%, by proceeding at a maximum temperature included in the range 350-400°C. On the other hand, the amount of energy required to successfully co-pyrolyze, in lab conditions, 1kg of plastic/oil mixture with an initial plastic mass fraction of 60% was estimated at about 8MJ. That amount of energy is largely used for the thermal cracking of the molecules. It is also shown that, per kg of mixture introduced in the lab reactor, 29MJ can be recovered from the combustion of the liquid resulting from the co-pyrolysis. Hence, this co-pyrolysis process could be economically viable, provided heat losses are addressed carefully when designing an industrial reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ferrographic and spectrographic analysis of oil sampled before and after failure of a jet engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1980-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph as well as plasma, atomic absorption, and emission spectrometers. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism, nor a high level of wear debris was detected in the oil sample from the engine just prior to the test in which the failure occurred. However, low concentrations of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure.

  9. Economic assessment of biodiesel production from waste frying oils.

    PubMed

    Araujo, Victor Kraemer Wermelinger Sancho; Hamacher, Silvio; Scavarda, Luiz Felipe

    2010-06-01

    Waste frying oils (WFO) can be a good source for the production of biodiesel because this raw material is not part of the food chain, is low cost and can be used in a way that resolves environmental problems (i.e. WFO is no longer thrown into the sewage network). The goal of this article is to propose a method to evaluate the costs of biodiesel production from WFO to develop an economic assessment of this alternative. This method embraces a logistics perspective, as the cost of collection of oil from commercial producers and its delivery to biodiesel depots or plants can be relevant and is an issue that has been little explored in the academic literature. To determine the logistics cost, a mathematical programming model is proposed to solve the vehicle routing problem (VRP), which was applied in an important urban center in Brazil (Rio de Janeiro), a relevant and potential center for biodiesel production and consumption. Eighty-one biodiesel cost scenarios were compared with information on the commercialization of biodiesel in Brazil. The results obtained demonstrate the economic viability of biodiesel production from WFO in the urban center studied and the relevance of logistics in the total biodiesel production cost. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp.

    PubMed

    Koma, D; Hasumi, F; Yamamoto, E; Ohta, T; Chung, S Y; Kubo, M

    2001-01-01

    Microorganisms that degrade long-chain n-paraffins from used car engine oil were isolated from soil. For the screening, a fraction of n-paraffin prepared from car engine oil was applied as the sole carbon source. The strain was identified as Acinetobacter sp. The ability of the strain to assimilate long-chain n-paraffins was assessed and characterized. The strain mineralized long-chain n-paraffins (0.1% w/v) in the minimal medium after cultivation for 96 h and also reduced the weight of the waste oil added (1% w/v) by 20% after 72 h without an extracellular biosurfactant. When n-hexadecane was fed as substrate, 1-hexadecanol and 1-hexadecanoic acid were detected as the intermediates by gas chromatography/mass spectrometry. This indicates that the long-chain n-paraffins were metabolized via the terminal oxidation pathway of n-alkane.

  11. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples.

    PubMed

    Wang, Zhendi; Yang, C; Parrott, J L; Frank, R A; Yang, Z; Brown, C E; Hollebone, B P; Landriault, M; Fieldhouse, B; Liu, Y; Zhang, G; Hewitt, L M

    2014-04-30

    To facilitate monitoring efforts, a forensic chemical fingerprinting methodology has been applied to characterize and differentiate pyrogenic (combustion derived) and biogenic (organism derived) hydrocarbons from petrogenic (petroleum derived) hydrocarbons in environmental samples from the Canadian oil sands region. Between 2009 and 2012, hundreds of oil sands environmental samples including water (snowmelt water, river water, and tailings pond water) and sediments (from river beds and tailings ponds) have been analyzed. These samples were taken from sites where assessments of wild fish health, invertebrate communities, toxicology and detailed chemistry are being conducted as part of the Canada-Alberta Joint Oil Sands Monitoring Plan (JOSMP). This study describes the distribution patterns and potential sources of PAHs from these integrated JOSMP study sites, and findings will be linked to responses in laboratory bioassays and in wild organisms collected from these same sites. It was determined that hydrocarbons in Athabasca River sediments and waters were most likely from four sources: (1) petrogenic heavy oil sands bitumen; (2) biogenic compounds; (3) petrogenic hydrocarbons of other lighter fuel oils; and (4) pyrogenic PAHs. PAHs and biomarkers detected in snowmelt water samples collected near mining operations imply that these materials are derived from oil sands particulates (from open pit mines, stacks and coke piles). Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  12. Biodiesel production from palm oil using calcined waste animal bone as catalyst.

    PubMed

    Obadiah, Asir; Swaroopa, Gnanadurai Ajji; Kumar, Samuel Vasanth; Jeganathan, Kenthorai Raman; Ramasubbu, Alagunambi

    2012-07-01

    Waste animal bones was employed as a cost effective catalyst for the transesterification of palm oil. The catalyst was calcined at different temperatures to transform the calcium phosphate in the bones to hydroxyapatite and 800 °C was found to give the best yield of biodiesel. The catalyst was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and Fourier transform infrared spectrometry (FT-IR). Under the optimal reaction conditions of 20 wt.% of catalyst, 1:18 oil to methanol molar ratio, 200 rpm of stirring of reactants and at a temperature of 65 °C, the methyl ester conversion was 96.78% and it was achieved in 4h. The catalyst performed equally well as the laboratory-grade CaO. Animal bone is therefore a useful raw material for the production of a cheap catalyst for transesterification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Performance evaluation of integrated solid-liquid wastes treatment technology in palm oil industry

    NASA Astrophysics Data System (ADS)

    Amelia, J. R.; Suprihatin, S.; Indrasti, N. S.; Hasanudin, U.; Fujie, K.

    2017-05-01

    The oil palm industry significantly contributes to environmental degradation if without waste management properly. The newest alternative waste management that might be developed is by utilizing the effluent of POME anaerobic digestion with EFB through integrated anaerobic decomposition process. The aim of this research was to examine and evaluate the integrated solid-liquid waste treatment technology in the view point of greenhouse gasses emission, compost, and biogas production. POME was treated in anaerobic digester with loading rate about 1.65 gCOD/L/day. Treated POME with dosis of 15 and 20 L/day was sprayed to the anaerobic digester that was filled of 25 kg of EFB. The results of research showed that after 60 days, the C/N ratio of EFB decreased to 12.67 and 10.96 for dosis of treated POME 15 and 20 L/day, respectively. In case of 60 day decomposition, the integrated waste treatment technology could produce 51.01 and 34.34 m3/Ton FFB which was equivalent with 636,44 and 466,58 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively. The results of research also showed that integrated solid-liquid wastes treatment technology could reduce GHG emission about 421.20 and 251.34 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively.

  14. Method for reclaiming waste lubricating oils

    DOEpatents

    Whisman, Marvin L.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

  15. Simultaneous production of oil enriched in ω-3 polyunsaturated fatty acids and biodiesel from fish wastes.

    PubMed

    Enascuta, Cristina Emanuela; Stepan, Emil; Bolocan, Ion; Bombos, Dorin; Calin, Catalina; Oprescu, Elena-Emilia; Lavric, Vasile

    2018-05-01

    The waste resulted from fish processing industries are discarded into the environment around the world, causing environmental pollution. The main problem of fish oil extracted from waste is the high content in free fatty acids (FFA) which decrease the yield in fatty acids esters during transesterification reactions. Therefore, to correct the fish-oil properties, a new environmentally friendly heterogeneous superacid catalyst (SO 4 2- /SnO 2 -ZrO 2 ) was tested in the esterification reaction of FFA with ethanol. The catalyst was characterized by different techniques (XRD, FT-IR, FT-IR of adsorbed pyridine, BET, SEM-EDX, TGA and acidity measurements). The reaction was found to follow a Langmuir-Hinshelwood (L-H) dual-site mechanism with the novelty that both Brönsted and Lewis acid centers participate equally in the esterification reaction. The pre-treated oil was subjected to transesterification reaction with ethanol over a heterogeneous base catalyst and then, the saturated and unsaturated fractions of fatty acid ethyl esters (FAEE) were separated using a vacuum rectification unit with falling film. The saturated content can be used as biofuel, while the unsaturated FAEE are further transesterified with glycerol in order to obtain oil with high content in polyunsaturated fatty acids (PUFA). A detailed study of the intrinsic kinetic process at the surface of the superacid catalyst and a thorough mathematical model of the fixed bed reactor were written and validated by an experimental program, designed according to the D-optimal methodology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [Preparation of biodiesel from waste edible oils and performance and exhaust emissions of engines fueled with blends of the biodiesel].

    PubMed

    Ge, Yun-shan; Lu, Xiao-ming; Gao, Li-ping; Han, Xiu-kun; Ji, Xing

    2005-05-01

    The purpose of this study is to evaluate the effect of biodiesel on environment and to investigate the effect of the biodiesel made of waste edible oils on the performance and emissions of engines. Life cycle assessment (LCA) of biodiesel and diesel was introduced and the results of the LCA of both the fuels were given. The technological process of biodiesel production from waste edible oils, which is called transesterification of waste oils and methanol catalyzed with NaOH, was presented. Two turbocharged DI engines fueled with different proportions of biodiesel and diesel, namely, B50 (50% biodiesel + 50% diesel) and B20 (20% biodiesel + 80% diesel), were chosen to conduct performance and emission tests on a dynamometer. The results of the study indicate that there was a slight increase in fuel consumption by 8% and a drop in power by 3% with the blends of biodiesel, compared with diesel, and that the best improvements in emissions of smoke, HC, CO and PM were 65%, 11%, 33% and 13% respectively, but NOx emission was increased. The study also shows that it is satisfied to fuel engines with the low proportion blends of the biodiesel, without modifying engines, in performance and emissions.

  17. Experiment on the Effects of Storage Duration of Biodiesel produced from Crude Palm Oil, Waste Cooking oil and Jatropha

    NASA Astrophysics Data System (ADS)

    Nanihar, Nadiarulah; Khalid, Amir; Mustaffa, Norrizal; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Sunar, Norshuhaila Mohamed

    2017-10-01

    Biodiesel based on vegetable oil is an alternative that had various advantage in term of sustainability and environmental attractive compare to others conventional diesel. Biodiesel is product of any fat or oil that derived from any organic sources through a refinery process called transesterification process. This research investigates the effects of storage duration and variant ambient condition on the biodiesel properties and characteristics. In this study, there are three types of blending which is 5vol% blends ( 5vol% plant oil 95vol% diesel), 10vol% blending (10vol% plant oil and 90vol% diesel) and 15vol% blending (15vol% plant oil and 85vol% diesel) each called CPO5 (crude palm oil 5vol%), CPO10 (crude palm oil 10vol%),CPO15 (crude palm oil 15vol%), JO5 (jatropha oil 5vol%), JO10 (jatropha oil 10vol%),and JO15 (jatropha oil 15vol%) respectively. Biodiesel samples were stored at indoor condition and outdoor condition for a 3 months period. The fuel properties such as acid value, viscosity, density, water content and flash point are observed with the laboratory instrument. Flash point value and water content increased under both of indoor and outdoor condition and a steady data for viscosity and density. However, acid value at indoor condition nearly constant but increased dramatically for outdoor condition over the time.

  18. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management.

    PubMed

    Basu, Kingshuk; Nandi, Nibedita; Mondal, Biplab; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2017-12-06

    A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g. n -hexane, n -octane, petroleum ether, petrol, diesel, aromatic solvents like chlorobenzene, toluene, benzene, o -xylene and even aqueous phosphate buffer of pH 7.5. These gels have been thoroughly characterized using various techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, small angle X-ray scattering and rheological experiments. Interestingly, hydrogel obtained from the gelator molecule has been found to absorb toxic organic dyes (both cationic and anionic dyes) from dye-contaminated water. The gelator molecule can be reused for several cycles, indicating its possible future use in waste water management. Moreover, this gelator can selectively gel petrol, diesel, pump oil from an oil-water mixture in the presence of a carrier solvent, ethyl acetate, suggesting its efficient application for oil spill recovery. These results indicate that the peptide-based ambidextrous gelator produces soft materials (gels) with dual function: (i) removal of toxic organic dyes in waste water treatment and (ii) oil spill recovery.

  19. Technical Proposal for Loading 3000 Gallon Crude Oil Samples from Field Terminal to Sandia Pressurized Tanker to Support US DOE/DOT Crude Oil Characterization Research Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, David L.; Allen, Raymond

    Sandia National Laboratories is seeking access to crude oil samples for a research project evaluating crude oil combustion properties in large-scale tests at Sandia National Laboratories in Albuquerque, NM. Samples must be collected from a source location and transported to Albuquerque in a tanker that complies with all applicable regulations for transportation of crude oil over public roadways. Moreover, the samples must not gain or lose any components, to include dissolved gases, from the point of loading through the time of combustion at the Sandia testing facility. In order to achieve this, Sandia designed and is currently procuring a custommore » tanker that utilizes water displacement in order to achieve these performance requirements. The water displacement procedure is modeled after the GPA 2174 standard “Obtaining Liquid Hydrocarbons Samples for Analysis by Gas Chromatography” (GPA 2014) that is used routinely by crude oil analytical laboratories for capturing and testing condensates and “live” crude oils, though it is practiced at the liter scale in most applications. The Sandia testing requires 3,000 gallons of crude. As such, the water displacement method will be upscaled and implemented in a custom tanker. This report describes the loading process for acquiring a ~3,000 gallon crude oil sample from commercial process piping containing single phase liquid crude oil at nominally 50-100 psig. This document contains a general description of the process (Section 2), detailed loading procedure (Section 3) and associated oil testing protocols (Section 4).« less

  20. Oil-shale data, cores, and samples collected by the U.S. geological survey through 1989

    USGS Publications Warehouse

    Dyni, John R.; Gay, Frances; Michalski, Thomas C.; ,

    1990-01-01

    The U.S. Geological Survey has acquired a large collection of geotechnical data, drill cores, and crushed samples of oil shale from the Eocene Green River Formation in Colorado, Wyoming, and Utah. The data include about 250,000 shale-oil analyses from about 600 core holes. Most of the data is from Colorado where the thickest and highest-grade oil shales of the Green River Formation are found in the Piceance Creek basin. Other data on file but not yet in the computer database include hundreds of lithologic core descriptions, geophysical well logs, and mineralogical and geochemical analyses. The shale-oil analyses are being prepared for release on floppy disks for use on microcomputers. About 173,000 lineal feet of drill core of oil shale and associated rocks, as well as 100,000 crushed samples of oil shale, are stored at the Core Research Center, U.S. Geological Survey, Lakewood, Colo. These materials are available to the public for research.

  1. Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil.

    PubMed

    Ocak, Buğra

    2012-06-15

    In the world, approximately 600,000 metric tonnes of chromium-containing solid wastes are generated by the leather industry each year. Environmental concerns and escalating landfill costs are becoming increasingly serious problems to the leather industry and seeking solutions to these problems is a prime concern in much research today. In this study, solid collagen-based protein hydrolysate was isolated from chromium-tanned leather wastes and its chemical properties were determined. Microcapsules of collagen hydrolysate (CH) - chitosan (C) crosslinked with glutaraldehyde (GA) containing Lavender oil (LO) were prepared by complex coacervation method. The effects of various processing parameters, including the CH to C ratio, LO content, and GA, on the oil load (%), oil content (%), encapsulation efficiency (%) and release rate of LO from microcapsules were investigated. As the ratio of C present in the CH/C mixture and crosslinking density increased, the release rate of LO from microcapsules slowed down. Optical and scanning electron microscopy images illustrated that the LO microcapsules were spherical in shape. Fourier transform infrared spectroscopy (FTIR) studies confirmed that there was no significant interaction between CH/C complex and LO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Feasibility study on utilization of palm fibre waste into fired clay brick

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Sarani, N. A.; Zaman, N. N.; Abdullah, Mohd Mustafa Al Bakri

    2017-04-01

    Malaysia is the second largest of palm oil producer after Indonesia, which contribute to 50 % of palm oil production. With this demand, the increasing of palm oil plantation over the years has led to the large production of agricultural waste, for example palm fibre waste. This study investigates different percentages of palm fibre (0 %, 1 %, 5 % and 10 %) to be incorporated into fired clay brick. Manufactured bricks were fired at 1 °C/min heating rate up to 1050 °C. The effects of manufacture bricks on the physical and mechanical properties of manufactured brick were also determined. All brick samples were tested due to the physical and mechanical properties which include dry density, firing shrinkage, initial rate of suction (IRS), water absorption, porosity and compressive strength. Findings show that increasing palm fibre waste affected the properties of brick, which decreased their density, besides increased firing shrinkage, IRS, water absorption, porosity and compressive strength. However, all the manufactured brick still followed the requirement.

  3. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.358 Determining the PCB... samples of waste. 761.358 Section 761.358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...

  4. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.358 Determining the PCB... samples of waste. 761.358 Section 761.358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...

  5. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.358 Determining the PCB... samples of waste. 761.358 Section 761.358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...

  6. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.358 Determining the PCB... samples of waste. 761.358 Section 761.358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...

  7. Improving oil classification quality from oil spill fingerprint beyond six sigma approach.

    PubMed

    Juahir, Hafizan; Ismail, Azimah; Mohamed, Saiful Bahri; Toriman, Mohd Ekhwan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wah, Wong Kok; Zali, Munirah Abdul; Retnam, Ananthy; Taib, Mohd Zaki Mohd; Mokhtar, Mazlin

    2017-07-15

    This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving F stat >F critical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited. Copyright © 2017. Published by Elsevier Ltd.

  8. Utilization of Cacao Pod Husk (Theobroma cacao l.) as Activated Carbon and Catalyst in Biodiesel Production Process from Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Rachmat, Devita; Johar Mawarani, Lizda; Dewi Risanti, Doty

    2018-01-01

    Cocoa pod husk (Theobroma cacao l.) is a waste from cocoa beans processing. In this research we employ cocoa pod husk as activated carbon to decrease the value of FFA (Free Fatty Acid) in waste cooking oil and as K2CO3 catalyst in biodiesel production process from waste cooking oil. Cocoa pod husk was crusched and grounded into powder that passed thorugh 60 mesh-screen. As activated carbon, cocoa pod husk was firstly carbonized at three variant temperatures i.e 250°C, 300°C and 350°C. The activation process was done using HCl 2M as activator. Based on the results of XRD and FTIR, the carbonization at all variant temperatures does not cause a significant changes in terms of crystallite structure and water content. The pore of activated carbon started to form in sample that was carbonized at 350°C resulting in pore diameter of 5.14644 nm. This result was supported by the fact that the ability of this activated carbon in reducing the FFA of waste cooking oil was the most pronounced one, i.e. up to 86.7% of FFA. It was found that the performance of cocoa pod husk’s activated carbon in reducing FFA is more effective than esterification using H2SO4 which can only decrease 80.8%. On the other hand, the utilization as K2CO3 catalyst was carried out by carbonization at temperature 650°C and extraction using aquadest solvent. The extraction of cocoa pod husk produced 7.067% K2CO3 catalyst. According to RD results the fraction of K2CO3 compound from the green catalysts is the same as the commercial (SAP, 99%) that is ≥ 60%. From the obtained results, the best yield percentage was obtained using K2CO3 catalyst from cacao pod husk extract, i.e. 73-85%. To cope with biodiesel conversion efficiency, a two-step process consisting pretreatment with activated carbon carbonized at 350°C and esterification with K2CO3 from cocoa pod husk catalyst was developed. This two-step process could reach a high conversion of 85%. From the results it was clear that the produced

  9. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64%more » of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.« less

  10. Analysis of the Effect of Injection Pressure on Ignition Delay and Combustion Process of Biodiesel from Palm Oil, Algae and Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Irham Anas, Mohd; Khalid, Amir; Hakim Zulkifli, Fathul; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin

    2017-10-01

    Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant grease for use in diesel engines. The objective of this research is investigation the effects of the variant injection pressure on ignition delay and emission for different biodiesel using rapid compression machine. Rapid Compression Machine (RCM) is used to simulate a single compression stroke of an internal combustion engine as a real engine. Four types of biodiesel which are waste cooking oil, crude palm oil, algae and jatropha were tested at injection pressure of 80 MPa, 90 MPa and 130 MPa under constant ambient temperature at 950 K. Increased in injection pressure resulted shorter ignition delay proven by WCO5 which decreased from 1.3 ms at 80 MPa to 0.7 ms at 130 MPa. Meanwhile, emission for CO2 increased due to better fuel atomization for fuel-air mixture formation lead to completed combustion.

  11. Embryotoxic and biochemical effects of waste crankcase oil on birds' eggs

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C.; Gay, M.L.

    1982-01-01

    Waste crankcase oil (WCO) is a major source of oil pollution in both the aquatic and terrestrial environment and has been implicated in the poisoning of mammals and fish. It is also mutagenic. Since birds' eggs are highly sensitive to external microliter applications of environmentally polluting oils, we examined the developmental effects of external applications of WCO on eggs of the mallard duck (Anas platyrhynchos) and the bobwhite quail (Colinus virginianus). At 48 hr of development, mallard eggs were exposed externally to 2, 5, or 15 :l of WCO or 15 :l of clean crankcase oil (CCO) while bobwhite eggs received proportional doses of 0.5, 1, or 3 :l of WCO and 3 :l of CCO in a similar manner. WCO was highly embryotoxic to both species compared to CCO and resulted in dose-dependent mortality, reduced growth, and abnormal survivors. Application of 15 :l WCO resulted in 84% mortality in mallards and 3 :l WCO resulted in 88% mortality in bobwhites. Abnormal survivors included embryos with subcutaneous edema, incomplete ossification, and eye and brain defects. Red blood cell *-aminolevulinic acid dehydratase (ALAD) activity, liver ALAD activity, and hemoglobin concentration were significantly lower after treatment with WCO in embryos and hatchlings of both species. Plasma uric acid, plasma alanine aminotransferase (ALT), and plasma aspartate aminotransferese (AST) were significantly elevated in WCO-treated mallards after hatching. Biochemical effects, growth retardation, and mortality at proportionally lower dose levels were more pronounced in mallards than in bobwhites. Chemical analysis of the WCO and CCO revealed a considerably higher content of aromatic hydrocarbons in WCO than in CCO. Lead levels were highly elevated in WCO (4600 ppm) compared to CCO (2 ppm).

  12. CO2 mineral sequestration in oil-shale wastes from Estonian power production.

    PubMed

    Uibu, Mai; Uus, Mati; Kuusik, Rein

    2009-02-01

    In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.

  13. Culture-independent analysis of hydrocarbonoclastic bacterial communities in environmental samples during oil-bioremediation.

    PubMed

    Dashti, Narjes; Ali, Nedaa; Salamah, Samar; Khanafer, Majida; Al-Shamy, Ghada; Al-Awadhi, Husain; Radwan, Samir S

    2018-04-15

    To analyze microbial communities in environmental samples, this study combined Denaturing Gradient Gel Electrophoresis of amplified 16S rRNA-genes in total genomic DNA extracts from those samples with gene sequencing. The environmental samples studied were oily seawater and soil samples, that had been bioaugmented with natural materials rich in hydrocarbonoclastic bacteria. This molecular approach revealed much more diverse bacterial taxa than the culture-dependent method we had used in an earlier study for the analysis of the same samples. The study described the dynamics of bacterial communities during bioremediation. The main limitation associated with this molecular approach, namely of not distinguishing hydrocarbonoclastic taxa from others, was overcome by consulting the literature for the hydrocarbonoclastic potential of taxa related to those identified in this study. By doing so, it was concluded that the hydrocarbonoclastic bacterial taxa were much more diverse than those captured by the culture-dependent approach. The molecular analysis also revealed the frequent occurrence of nifH-genes in the total genomic DNA extracts of all the studied environmental samples, which reflects a nitrogen-fixation potential. Nitrogen fertilization is long known to enhance microbial oil-bioremediation. The study revealed that bioaugmentation using plant rhizospheres or soil with long history of oil-pollution was more effective in oil-removal in the desert soil than in seawater microcosms. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  15. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing...

  16. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing...

  17. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing...

  18. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing...

  19. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing...

  20. Laboratory Validation and Field Assessment of Petroleum Laboratory Technicians' Dermal Exposure to Crude Oil Using a Wipe Sampling Method.

    PubMed

    Galea, Karen S; Mueller, Will; Arfaj, Ayman M; Llamas, Jose L; Buick, Jennifer; Todd, David; McGonagle, Carolyn

    2018-05-21

    Crude oil may cause adverse dermal effects therefore dermal exposure is an exposure route of concern. Galea et al. (2014b) reported on a study comparing recovery (wipe) and interception (cotton glove) dermal sampling methods. The authors concluded that both methods were suitable for assessing dermal exposure to oil-based drilling fluids and crude oil but that glove samplers may overestimate the amount of fluid transferred to the skin. We describe a study which aimed to further evaluate the wipe sampling method to assess dermal exposure to crude oil, with this assessment including extended sample storage periods and sampling efficiency tests being undertaken at environmental conditions to mimic those typical of outdoor conditions in Saudi Arabia. The wipe sampling method was then used to assess the laboratory technicians' actual exposure to crude oil during typical petroleum laboratory tasks. Overall, acceptable storage efficiencies up to 54 days were reported with results suggesting storage stability over time. Sampling efficiencies were also reported to be satisfactory at both ambient and elevated temperature and relative humidity environmental conditions for surrogate skin spiked with known masses of crude oil and left up to 4 h prior to wiping, though there was an indication of reduced sampling efficiency over time. Nineteen petroleum laboratory technicians provided a total of 35 pre- and 35 post-activity paired hand wipe samples. Ninety-three percent of the pre-exposure paired hand wipes were less than the analytical limit of detection (LOD), whereas 46% of the post-activity paired hand wipes were less than the LOD. The geometric mean paired post-activity wipe sample measurement was 3.09 µg cm-2 (range 1.76-35.4 µg cm-2). It was considered that dermal exposure most frequently occurred through direct contact with the crude oil (emission) or via deposition. The findings of this study suggest that the wipe sampling method is satisfactory in quantifying

  1. Design and Characterization of Renewable Bioasphalt Containing Damar Resin, Fly Ash, Wasted Cooking Oil and Latex

    NASA Astrophysics Data System (ADS)

    Setyawan, A.; Djumari; Legowo, S. J.; Widiharjo, B.; Zai, A. K. S.; Pradana, A. A. W.; Rusadi, I. P.; Permana, A.

    2017-02-01

    Dasphalt is one alternative of bioasphalt, made from materials that can be renewed as a substitute for conventional asphalt. Dasphalt inspired from jabung made of damar resin, brick powder and wasted cooking oil. Jabung have the same character with conventional asphalt. Research has been conducted by the characteristics of jabung but there are still many shortcomings, softening point and ductility values are not qualify. In this research the brick powder will be replaced by fly ash, as fly ash has a finer grain so that it can become a better absorbent. The resin will act as a natural resin for dasphalt, wasted cooking oil will be a mixed solvent. Use of additional polymers latex, is expected to improve the elasticity of dasphalt in ductility test. The purpose of this study was to determine the nature of the modification dasphalt properties in accordance with the specifications of asphalt penetration test and find the optimal composition of dasphalt. This research method is done by direct testing in the laboratory. In the present study that became the basic composition of the resin is resin (100g pure resin+ 350g resin packaging or powder), fly ash (150g) and wasted cooking oil (205g) and latex were mixed at temperatures below 150°C. While variations of latex starting from 0%, 2%, 4%, 6%, 8% and 10%. Several asphalt characterization are performed include penetration tests, test softening point, ductility test, flash point test, specific gravity test, affinity test and solubility test. Dasphalt modification achieved optimum composition of resin (100g pure resin or resin chunk + 350Gr packaging), Fly Ash powder (150g), cooking oil (205g), and latex 4%, ductility increased from 63.5 cm to 119.5 cm, the value of the flash point was originally at temperature of 240°C to 260°C, dasphalt penetration from 68.2 dmm to 43 dmm, and the value of density decreases to 1.01 g/cm3 to 0.99 g/cm3. Dasphalt modifications meet some of the specifications and could be categorized as

  2. Optimization and kinetic modeling of esterification of the oil obtained from waste plum stones as a pretreatment step in biodiesel production.

    PubMed

    Kostić, Milan D; Veličković, Ana V; Joković, Nataša M; Stamenković, Olivera S; Veljković, Vlada B

    2016-02-01

    This study reports on the use of oil obtained from waste plum stones as a low-cost feedstock for biodiesel production. Because of high free fatty acid (FFA) level (15.8%), the oil was processed through the two-step process including esterification of FFA and methanolysis of the esterified oil catalyzed by H2SO4 and CaO, respectively. Esterification was optimized by response surface methodology combined with a central composite design. The second-order polynomial equation predicted the lowest acid value of 0.53mgKOH/g under the following optimal reaction conditions: the methanol:oil molar ratio of 8.5:1, the catalyst amount of 2% and the reaction temperature of 45°C. The predicted acid value agreed with the experimental acid value (0.47mgKOH/g). The kinetics of FFA esterification was described by the irreversible pseudo first-order reaction rate law. The apparent kinetic constant was correlated with the initial methanol and catalyst concentrations and reaction temperature. The activation energy of the esterification reaction slightly decreased from 13.23 to 11.55kJ/mol with increasing the catalyst concentration from 0.049 to 0.172mol/dm(3). In the second step, the esterified oil reacted with methanol (methanol:oil molar ratio of 9:1) in the presence of CaO (5% to the oil mass) at 60°C. The properties of the obtained biodiesel were within the EN 14214 standard limits. Hence, waste plum stones might be valuable raw material for obtaining fatty oil for the use as alternative feedstock in biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Microwave irradiation biodiesel processing of waste cooking oil

    NASA Astrophysics Data System (ADS)

    Motasemi, Farough; Ani, Farid Nasir

    2012-06-01

    Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.

  4. Influence of the processed sunflower oil on the cement properties

    NASA Astrophysics Data System (ADS)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  5. Geochemical Variability and the Potential for Beneficial Use of Waste Water Coproduced with Oil from Permian Basin of the Southwest USA

    NASA Astrophysics Data System (ADS)

    Khan, N. A.; Holguin, F. O.; Xu, P.; Engle, M.; Dungan, B.; Hunter, B.; Carroll, K. C.

    2014-12-01

    The U.S. generates 21 billion barrels/year of coproduced water from oil and gas exploration, which is generally considered waste water. Growth in unconventional oil and gas production has spurred interest in beneficial uses of produced water, especially in arid regions such as the Permian Basin of Texas and New Mexico, the largest U.S. tight oil producer. Produced waters have variable chemistries, but generally contain high levels of organics and salts. In order to evaluate the environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of produced water. In the present study, produced water samples were collected from 12 wells across the Permian Basin. Compositional analyses including coupled gas chromatography-time of flight-mass spectrometry and inductively coupled plasma-optical emission spectroscopy were conducted. The samples show elevated benzene, ethylbenzene, toluene, xylene, alkyl benzenes, propyl-benzene, and naphthalene compared to other heteroaromatics; they also contain complex hydrocarbon compounds containing oxygen, nitrogen, and sulfur. Van Krevelen diagrams show an increase in the concentration of heteroaromatic hydrocarbons with increasing well depth. The salinity, dominated by sodium-chloride, also increases with depth, ranging from 37-150 g/L TDS. Depth of wells (or producing formation) is a primary control on predicting water quality for treatment and beneficial use. Our results suggest that partial treatment by removing suspended solids and organic contaminants would support some beneficial uses such as onsite reuse, bioenergy production, and other industrial uses. Due to the high salinity, conventional desalination processes are not applicable or very costly, making beneficial uses requiring low salinity not feasible.

  6. Liquid fuels from food waste: An alternative process to co-digestion

    NASA Astrophysics Data System (ADS)

    Sim, Yoke-Leng; Ch'ng, Boon-Juok; Mok, Yau-Cheng; Goh, Sok-Yee; Hilaire, Dickens Saint; Pinnock, Travis; Adams, Shemlyn; Cassis, Islande; Ibrahim, Zainab; Johnson, Camille; Johnson, Chantel; Khatim, Fatima; McCormack, Andrece; Okotiuero, Mary; Owens, Charity; Place, Meoak; Remy, Cristine; Strothers, Joel; Waithe, Shannon; Blaszczak-Boxe, Christopher; Pratt, Lawrence M.

    2017-04-01

    Waste from uneaten, spoiled, or otherwise unusable food is an untapped source of material for biofuels. A process is described to recover the oil from mixed food waste, together with a solid residue. This process includes grinding the food waste to an aqueous slurry, skimming off the oil, a combined steam treatment of the remaining solids concurrent with extrusion through a porous cylinder to release the remaining oil, a second oil skimming step, and centrifuging the solids to obtain a moist solid cake for fermentation. The water, together with any resulting oil from the centrifuging step, is recycled back to the grinding step, and the cycle is repeated. The efficiency of oil extraction increases with the oil content of the waste, and greater than 90% of the oil was collected from waste containing at least 3% oil based on the wet mass. Fermentation was performed on the solid cake to obtain ethanol, and the dried solid fermentation residue was a nearly odorless material with potential uses of biochar, gasification, or compost production. This technology has the potential to enable large producers of food waste to comply with new laws which require this material to be diverted from landfills.

  7. Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill.

    PubMed

    Wang, Zhendi; Yang, C; Yang, Z; Sun, J; Hollebone, B; Brown, C; Landriault, M

    2011-11-01

    (#3, from the vessel engine room bilge pump). (4) From the n-alkane and PAH analysis, it appears that the oil in the spill sample 1460 is slightly more weathered in comparison with sample 1462. The minor differences in fingerprints of two samples were most likely caused by weathering effects. (5) Sample 1461 (#2, from the vessel engine room bilge) and sample 1463 (#4, from the vessel bilge waste collection tank) demonstrated significantly different fingerprints and diagnostic ratios of target compounds from that of spill sample 1460. This was caused most likely by percentages of diesel to lube oil in these two samples different from that in spill sample 1460.

  8. Utilization of Palm Oil Clinker as Cement Replacement Material

    PubMed Central

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-01-01

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized. PMID:28793748

  9. Utilization of Palm Oil Clinker as Cement Replacement Material.

    PubMed

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-12-16

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  10. Robust optimization on sustainable biodiesel supply chain produced from waste cooking oil under price uncertainty.

    PubMed

    Zhang, Yong; Jiang, Yunjian

    2017-02-01

    Waste cooking oil (WCO)-for-biodiesel conversion is regarded as the "waste-to-wealthy" industry. This paper addresses the design of a WCO-for-biodiesel supply chain at both strategic and tactical levels. The supply chain of this problem is studied, which is based on a typical mode of the waste collection (from restaurants' kitchen) and conversion in the cities. The supply chain comprises three stakeholders: WCO supplier, integrated bio-refinery and demand zone. Three key problems should be addressed for the optimal design of the supply chain: (1) the number, sizes and locations of bio-refinery; (2) the sites and amount of WCO collected; (3) the transportation plans of WCO and biodiesel. A robust mixed integer linear model with muti-objective (economic, environmental and social objectives) is proposed for these problems. Finally, a large-scale practical case study is adopted based on Suzhou, a city in the east of China, to verify the proposed models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Methods of sampling airborne fungi in working environments of waste treatment facilities.

    PubMed

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2016-01-01

    The objective of the present study was to evaluate and compare the efficiency of a filter based sampling method and a high volume sampling method for sampling airborne culturable fungi present in waste sorting facilities. Membrane filters method was compared with surface air system method. The selected sampling methods were modified and tested in 2 plastic waste sorting facilities. The total number of colony-forming units (CFU)/m3 of airborne fungi was dependent on the type of sampling device, on the time of sampling, which was carried out every hour from the beginning of the work shift, and on the type of cultivation medium (p < 0.001). Detected concentrations of airborne fungi ranged 2×102-1.7×106 CFU/m3 when using the membrane filters (MF) method, and 3×102-6.4×104 CFU/m3 when using the surface air system (SAS) method. Both methods showed comparable sensitivity to the fluctuations of the concentrations of airborne fungi during the work shifts. The SAS method is adequate for a fast indicative determination of concentration of airborne fungi. The MF method is suitable for thorough assessment of working environment contamination by airborne fungi. Therefore we recommend the MF method for the implementation of a uniform standard methodology of airborne fungi sampling in working environments of waste treatment facilities. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Test plan: the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, D.J.; Lombard, K.H.; Hazen, T.C.

    1997-03-31

    The remediation strategies that will be applied at the Czechowice Oil Refinery waste lagoon in Czechowice, Poland are designed, managed, and implemented under the direction of the Westinghouse Savannah River Company (WSRC) for the United States Department of Energy (DOE). WSRC will be assisted in the demonstration by The Institute for Ecology of Industrial Areas (IETU). This collaboration between IETU and DOE will provide the basis for international technology transfer of new and innovative remediation technologies that can be applied in Poland and the Eastern European Region as well.

  13. Validation and Comparison of Two Sampling Methods to Assess Dermal Exposure to Drilling Fluids and Crude Oil

    PubMed Central

    Galea, Karen S.; McGonagle, Carolyn; Sleeuwenhoek, Anne; Todd, David; Jiménez, Araceli Sánchez

    2014-01-01

    Dermal exposure to drilling fluids and crude oil is an exposure route of concern. However, there have been no published studies describing sampling methods or reporting dermal exposure measurements. We describe a study that aimed to evaluate a wipe sampling method to assess dermal exposure to an oil-based drilling fluid and crude oil, as well as to investigate the feasibility of using an interception cotton glove sampler for exposure on the hands/wrists. A direct comparison of the wipe and interception methods was also completed using pigs’ trotters as a surrogate for human skin and a direct surface contact exposure scenario. Overall, acceptable recovery and sampling efficiencies were reported for both methods, and both methods had satisfactory storage stability at 1 and 7 days, although there appeared to be some loss over 14 days. The methods’ comparison study revealed significantly higher removal of both fluids from the metal surface with the glove samples compared with the wipe samples (on average 2.5 times higher). Both evaluated sampling methods were found to be suitable for assessing dermal exposure to oil-based drilling fluids and crude oil; however, the comparison study clearly illustrates that glove samplers may overestimate the amount of fluid transferred to the skin. Further comparison of the two dermal sampling methods using additional exposure situations such as immersion or deposition, as well as a field evaluation, is warranted to confirm their appropriateness and suitability in the working environment. PMID:24598941

  14. Process Waste Assessment, Mechanics Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-05-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags andmore » spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.« less

  15. Improved sample extraction and clean-up for the GC-MS determination of BADGE and BFDGE in vegetable oil.

    PubMed

    Brede, C; Skjevrak, I; Herikstad, H; Anensen, E; Austvoll, R; Hemmingsen, T

    2002-05-01

    A straightforward method was established for the determination of migration contaminants in olive oil with a special focus on the two can-coating migration compounds bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE). The preferred sample preparation was a single liquid-liquid extraction of compounds from the oil into 20% (v/v) methanol in acetonitrile, followed by clean-up with solid-phase extraction on aminopropyl bonded to silica. This purification procedure selectively removed all free fatty acids from the extracts without removing phenolic compounds of interest. The solid-phase extraction columns were used many times by implementing a procedure of washing out the strongly retained fatty acids with 2% acetic acid in methanol. Gas chromatography coupled with full scan (m/z 33-700) electron ionization mass spectrometry was used for the determination of several model compounds in olive oil samples. BADGE and BFDGE could be determined in the 0.05-2 mg kg(-1) range in oil samples with a relative SD of <6% (six replicates). The method was used in an enforcement campaign for the Norwegian Food Control Authority to analyse vegetable oil samples from canned fish-in-oil.

  16. M3FT-17OR0301070211 - Preparation of Hot Isostatically Pressed AgZ Waste Form Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The production of radioactive iodine-bearing waste forms that exhibit long-term stability and are suitable for permanent geologic disposal has been the subject of substantial research interest. One potential method of iodine waste form production is hot isostatic pressing (HIP). Recent studies at Oak Ridge National Laboratory (ORNL) have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by HIP. ORNL has performed HIP with a variety of sample compositions and pressing conditions. The base mineral has varied among AgZ (in pure and engineered forms), silver-exchanged faujasite, and silverexchanged zeolite A. Two iodine loading methods, occlusion andmore » chemisorption, have been explored. Additionally, the effects of variations in temperature and pressure of the process have been examined, with temperature ranges of 525°C–1,100°C and pressure ranges of 100–300 MPa. All of these samples remain available to collaborators upon request. The sample preparation detailed in this document is an extension of that work. In addition to previously prepared samples, this report documents the preparation of additional samples to support stability testing. These samples include chemisorbed I-AgZ and pure AgI. Following sample preparation, each sample was processed by HIP by American Isostatic Presses Inc. and returned to ORNL for storage. ORNL will store the samples until they are requested by collaborators for durability testing. The sample set reported here will support waste form durability testing across the national laboratories and will provide insight into the effects of varied iodine content on iodine retention by the produced waste form and on potential improvements in waste form durability provided by the zeolite matrix.« less

  17. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.; King, W. D.; Coleman, C. J.

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulkmore » waste removal campaign).« less

  18. On-Line Analyzer For Monitoring Trace Amounts Of Oil In Turbid Waters

    NASA Astrophysics Data System (ADS)

    Niemela, P.; Jaatinen, J.

    1986-05-01

    This report presents an automated analyzer which continuously monitors oil content of a sample water stream that flows through the analyzer. The measuring principle is based on the absorption of infrared radiation by oil molecules contained in the sample water. The wavelength band that is used in the measurement is at 3.4 μm, where different types of oils show nearly equal absorption. Another wavelength band of 3.6 μm, where oil has no absorption, is used to compensate the effect of turbidity, which is due to solid particles and oil droplets contained in the sample water. Before entering the analyzer the sample water flow is properly homogenized. To compensate the strong absorption by water molecules in these wavelength bands the sample water is compared with reference water. This is done by directing them alternately through the same measuring cell. The reference water is obtained from the sample water by ultrafiltration and it determines the base line for the contaminated sample water. To ensure the stability of the base line, temperature and pressure differences of the two waters are kept within adequate ranges. Areas of application of the analyzer are wide ranging i.a. from ships' discharge waters to waste waters of industrial processes. The first application of the analyzer is on board oil tankers to control the discharge process of bilge and ballast waters. The analyzer is the first that fully corresponds to the stringent regulations for oil content monitors by the International Maritime Organization (IMO). Pilot installations of the analyzer are made on industrial plants.

  19. Insights into biomethane production and microbial community succession during semi-continuous anaerobic digestion of waste cooking oil under different organic loading rates.

    PubMed

    He, Jing; Wang, Xing; Yin, Xiao-Bo; Li, Qiang; Li, Xia; Zhang, Yun-Fei; Deng, Yu

    2018-06-01

    High content of lipids in food waste could restrict digestion rate and give rise to the accumulation of long chain fatty acids in anaerobic digester. In the present study, using waste cooking oil skimmed from food waste as the sole carbon source, the effect of organic loading rate (OLR) on the methane production and microbial community dynamics were well investigated. Results showed that stable biomethane production was obtained at an organic loading rate of 0.5-1.5 g VS L -1  days -1 . The specific biogas/methane yield values at OLR of 1.0 were 1.44 ± 0.15 and 0.98 ± 0.11 L g VS -1 , respectively. The amplicon pyrosequencing revealed the distinct microbial succession in waste cooking oil AD reactors. Acetoclastic methanogens belonging to the genus Methanosaeta were the most dominant archaea, while the genera Syntrophomona, Anaerovibrio and Synergistaceae were the most common bacteria during AD process. Furthermore, redundancy analysis indicated that OLR showed more significant effect on the bacterial communities than that of archaeal communities. Additionally, whether the OLR of lipids increased had slight influence on the acetate fermentation pathway.

  20. Biodegradation of waste lubricants by a newly isolated Ochrobactrum sp. C1.

    PubMed

    Bhattacharya, Munna; Biswas, Dipa; Sana, Santanu; Datta, Sriparna

    2015-10-01

    A potential degrader of paraffinic and aromatic hydrocarbons was isolated from oil-contaminated soil from steel plant effluent area in Burnpur, India. The strain was investigated for degradation of waste lubricants (waste engine oil and waste transformer oil) that often contain EPA (Environmental Protection Agency, USA) classified priority pollutants and was identified as Ochrobactrum sp. C1 by 16S rRNA gene sequencing. The strain C1 was found to tolerate unusually high waste lubricant concentration along with emulsification capability of the culture broth, and its degradation efficiency was 48.5 ± 0.5 % for waste engine oil and 30.47 ± 0.25 % for waste transformer oil during 7 days incubation period. In order to get optimal degradation efficiency, a three level Box-Behnken design was employed to optimize the physical parameters namely pH, temperature and waste oil concentration. The results indicate that at temperature 36.4 °C, pH 7.3 and with 4.6 % (v/v) oil concentration, the percentage degradation of waste engine oil will be 57 % within 7 days. At this optimized condition, the experimental values (56.7 ± 0.25 %) are in a good agreement with the predicted values with a calculated R 2 to be 0.998 and significant correlation between biodegradation and emulsification activity (E 24  = 69.42 ± 0.32 %) of the culture broth toward engine oil was found with a correlation coefficient of 0.972. This is the first study showing that an Ochrobactrum sp. strain is capable of degrading waste lubricants, which might contribute to the bioremediation of waste lubricating oil-contaminated soil.

  1. Electrical process in the breaking of dilute oil-in-water emulsions. Completion report, 1 July 1973-30 June 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orr, C. Jr.; Keng, E.Y.H.

    1974-06-01

    Oils, greases, and waxes frequently occur in industrial waste waters. Simultaneously, soaps and detergents enter most waste waters from domestic and other sources. When the mixtures of waste particles in water, known as emulsions, come in contact with the soaps and detergents, they generally become quite stable. One way to break such emulsions and thereby separate out the wastes is to add chemicals that will cause the oil droplet to agglomerate into larger drops. This study sought to assess the usefulness of electrical measurements, particularly the so-called zeta potential, in guiding the treatment process to chemicals and application rates thatmore » can break measured emulsions. When the zeta potential, which for a highly stable emulsion may be as negative as -0.090 volt, is made to approach -0.015 volt, the stability of the emulsion deteriorates rapidly. Past this poin oil-in-water emulsions often break spontaneously. The larger drops will then rise to the water surface and form a distinct oil layer that can be easily removed. Laboratory applications of various chemicals to emulsion samples and subsequent zeta potential measurement should thus provide a ready guide to those trying to remove oily waste water discharge.« less

  2. Oil

    USGS Publications Warehouse

    Rocke, T.E.

    1999-01-01

    Each year, an average of 14 million gallons of oil from more than 10,000 accidental spills flow into fresh and saltwater environments in and around the United States. Most accidental oil spills occur when oil is transported by tankers or barges, but oil is also spilled during highway, rail, and pipeline transport, and by nontransportation-related facilities, such as refinery, bulk storage, and marine and land facilities (Fig. 42.1). Accidental releases, however, account for only a small percentage of all oil entering the environment; in heavily used urban estuaries, the total petroleum hydrocarbon contributions due to transportation activities may be 10 percent or less. Most oil is introduced to the environment by intentional discharges from normal transport and refining operations, industrial and municipal discharges, used lubricant and other waste oil disposal, urban runoff, river runoff, atmospheric deposition, and natural seeps. Oil-laden wastewater is often released into settling ponds and wetlands (Fig. 42.2). Discharges of oil field brines are a major source of the petroleum crude oil that enters estuaries in Texas.

  3. Validation and comparison of two sampling methods to assess dermal exposure to drilling fluids and crude oil.

    PubMed

    Galea, Karen S; McGonagle, Carolyn; Sleeuwenhoek, Anne; Todd, David; Jiménez, Araceli Sánchez

    2014-06-01

    Dermal exposure to drilling fluids and crude oil is an exposure route of concern. However, there have been no published studies describing sampling methods or reporting dermal exposure measurements. We describe a study that aimed to evaluate a wipe sampling method to assess dermal exposure to an oil-based drilling fluid and crude oil, as well as to investigate the feasibility of using an interception cotton glove sampler for exposure on the hands/wrists. A direct comparison of the wipe and interception methods was also completed using pigs' trotters as a surrogate for human skin and a direct surface contact exposure scenario. Overall, acceptable recovery and sampling efficiencies were reported for both methods, and both methods had satisfactory storage stability at 1 and 7 days, although there appeared to be some loss over 14 days. The methods' comparison study revealed significantly higher removal of both fluids from the metal surface with the glove samples compared with the wipe samples (on average 2.5 times higher). Both evaluated sampling methods were found to be suitable for assessing dermal exposure to oil-based drilling fluids and crude oil; however, the comparison study clearly illustrates that glove samplers may overestimate the amount of fluid transferred to the skin. Further comparison of the two dermal sampling methods using additional exposure situations such as immersion or deposition, as well as a field evaluation, is warranted to confirm their appropriateness and suitability in the working environment. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  4. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was

  5. Selective Hydrodeoxygenation of Vegetable Oils and Waste Cooking Oils to Green Diesel Using a Silica-Supported Ir-ReOx Bimetallic Catalyst.

    PubMed

    Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb

    2018-05-09

    High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement

    NASA Astrophysics Data System (ADS)

    Xiaowei, Cheng; Sheng, Huang; Xiaoyang, Guo; Wenhui, Duan

    2017-07-01

    Crumb waste tire rubber (WTR) was pretreated by oxygen low temperature plasma (LTP) and modified by LTP polymerization process of ethanol monomer to improve the adhesion property with oil-well cement matrix and the mechanical properties of cement. The surface properties of modified crumb WTR and the mechanical properties and structures of modified oil-well cement were investigated by means of contact angle measurement, dispersion test, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanics performance tests, permeability test and scanning electron microscopy (SEM). It was demonstrated that LTP treatment changed both the surface composition and roughness. The contact angle of pretreated crumb WTR dramatically fell from 122° to 34°, and sample with ethanol LPT polymer film decreased even further to 11°. The ATR-FTIR and XPS analysis results demonstrated that hydrophilic groups, such as -COOH, C-OH, and -CHO, were introduced on the WTR surface. The oxygen atomic percent increased from 8.11% to 14.50% and 24.83%. The mechanical properties, porosity and permeability of raw cement were compared to samples modified by untreated crumb WTR, pretreated crumb WTR and ethanol LTP polymerization treated crumb WTR. It was found that after 28 days, the compressive strength of the samples with the untreated crumb WTR decreased to 80% with respect to raw cement. The tensile strength and flexural strength also had a slight reduction compared with the raw cement. On the contrary, after 28 days, the tensile strength of cement modified by LTP polymerization treated WTR increased 11.03% and 13.36%, and the flexural strength increased 9.65% and 7.31%, respectively. A decrease in the compressive strength also occurred but was inconspicuous. A tight interface bonding for ethanol LTP polymerization treated WTR with cement matrix was observed via an SEM image.

  7. Effects of organic wastes on water quality from processing of oil shale from the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.

    1986-01-01

    A series of investigations were conducted during a 6-year research project to determine the nature and effects of organic wastes from processing of Green River Formation oil shale on water quality. Fifty percent of the organic compounds in two retort wastewaters were identified as various aromatic amines, mono- and dicarboxylic acids phenols, amides, alcohols, ketones, nitriles, and hydroxypyridines. Spent shales with carbonaceous coatings were found to have good sorbent properties for organic constituents of retort wastewaters. However, soils sampled adjacent to an in situ retort had only fair sorbent properties for organic constituents or retort wastewater, and application of retort wastewater caused disruption of soil structure characteristics and extracted soil organic matter constituents. Microbiological degradation of organic solutes in retort wastewaters was found to occur preferentially in hydrocarbons and fatty acid groups of compounds. Aromatic amines did not degrade and they inhibited bacterial growth where their concentrations were significant. Ammonia, aromatic amines, and thiocyanate persisted in groundwater contaminated by in situ oil shale retorting, but thiosulfate was quantitatively degraded one year after the burn. Thiocyanate was found to be the best conservative tracer for retort water discharged into groundwater. Natural organic solutes, isolated from groundwater in contact with Green River Formation oil shale and from the White River near Rangely, Colorado, were readily distinguished from organic constituents in retort wastewaters by molecular weight and chemical characteristic differences. (USGS)

  8. The effect of power intensity properties of microwave modified oil palm trunk lumber

    NASA Astrophysics Data System (ADS)

    Izzati Ibrahim, Anis; Salim, Nurjannah; Roslan, Rasidi; Ashry Jusoh, Mohammad; Hashim, Rokiah

    2018-04-01

    In the decade, oil palm (Elaeis guineensis) in Malaysia is one of the conventional sources that will be rising, and the rate of biomass will considerably increase in yet to come. Presently, oil palm biomass is going through research and development and appears to be the most sustainable alternative. Investigations on oil palm biomass have been conducted to support in draw out waste of oil palm and in the meantime can help economic yield to the country. This study was expected to estimate the effect of power intensity properties of microwave modified oil palm trunk lumber. Microwave treatment of oil palm trunk samples was set of connections by using a microwave operating at 2.45 GHz with the liberated process input power intensity (600-1000W) were studied under the given condition. Impact and compression of the samples were tested. The analysis of properties of the fresh material and dry samples was employed by scanning electron microscopy. Oven drying technique also was involved as a comparison of the conventional drying process in this research. Based on the outcomes of this study, both drying methods improved the characteristics of the specimens.

  9. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste.

    PubMed

    Ma, Jie; Yang, Yongqi; Dai, Xiaoli; Chen, Yetong; Deng, Hanmei; Zhou, Huijun; Guo, Shaohui; Yan, Guangxu

    2016-05-01

    Contamination from oil-field drilling waste is a worldwide environmental problem. This study investigated the performance of four bench-scale biopiles in treating drilling waste: 1) direct biopile (DW), 2) biopile plus oil-degrading microbial consortium (DW + M), 3) biopile plus microbial consortium and bulking agents (saw dust) (DW + M + BA), 4) biopile plus microbial consortium, bulking agents, and inorganic nutrients (Urea and K2HPO4) (DW + M + BA + N). Ninety days of biopiling removed 41.0%, 44.0%, 55.7% and 87.4% of total petroleum hydrocarbon (TPH) in the pile "DW", "DW + M", "DW + M + BA", and "DW + M + BA + N" respectively. Addition of inorganic nutrient and bulking agents resulted in a 56.9% and 26.6% increase in TPH removal efficiency respectively. In contrast, inoculation of hydrocarbon-degrading microorganisms only slightly enhanced the contaminant removal (increased 7.3%). The biopile with stronger contaminant removal also had higher pile temperature and lower pile pH (e.g., in "DW + M + BA + N"). GC-MS analysis shows that biopiling significantly reduced the total number of detected contaminants and changed the chemical composition. Overall, this study shows that biopiling is an effective remediation technology for drilling waste. Adding inorganic nutrients and bulking agents can significantly improve biopile performance while addition of microbial inocula had minimal positive impacts on contaminant removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bioprospecting microbes for single-cell oil production from starchy wastes.

    PubMed

    Chaturvedi, Shivani; Kumari, Arti; Nain, Lata; Khare, Sunil K

    2018-03-16

    Production of lipid from oleaginous yeast using starch as a carbon source is not a common practice; therefore, the purpose of this investigation was to explore the capability of starch assimilating microbes to produce oil, which was determined in terms of biomass weight, productivity, and lipid yield. Saccharomyces pastorianus, Rhodotorula mucilaginosa, Rhodotorula glutinis, and fungal isolate Ganoderma wiiroense were screened for the key parameters. The optimization was also performed by one-factor-at-a-time approach. Considering the specific yield of lipid and cell dry weight yield, R. glutinis and R. mucilaginosa showed superiority over other strains. G. wiiroense, a new isolate, would also be a promising strain for starch waste utilization in terms of extracellular and intracellular specific yield of lipids. Extracellular specific yield of lipid was highest in R. glutinis culture (0.025 g g -1 of biomass) followed by R. mucilaginosa (0.022 g g -1 of biomass) and G. wiiroense (0.020 g g -1 of biomass). Intracellular lipid was again highest in R. glutinis (0.048 g g -1 of biomass). The most prominent fatty acid methyl esters among the lipid as detected by GC-MS were saturated lipids mainly octadecanoic acid, tetradecanoate, and hexadecanoate. Extracellular lipid produced on starch substrate waste would be a cost-effective alternative for energy-intensive extraction process in biodiesel industry.

  11. Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster.

    PubMed

    Gros, Jonas; Reddy, Christopher M; Aeppli, Christoph; Nelson, Robert K; Carmichael, Catherine A; Arey, J Samuel

    2014-01-01

    Biodegradation plays a major role in the natural attenuation of oil spills. However, limited information is available about biodegradation of different saturated hydrocarbon classes in surface environments, despite that oils are composed mostly of saturates, due to the limited ability of conventional gas chromatography (GC) to resolve this compound group. We studied eight weathered oil samples collected from four Gulf of Mexico beaches 12-19 months after the Deepwater Horizon disaster. Using comprehensive two-dimensional gas chromatography (GC × GC), we successfully separated, identified, and quantified several distinct saturates classes in these samples. We find that saturated hydrocarbons eluting after n-C22 dominate the GC-amenable fraction of these weathered samples. This compound group represented 8-10%, or 38-68 thousand metric tons, of the oil originally released from Macondo well. Saturates in the n-C22 to n-C29 elution range were found to be partly biodegraded, but to different relative extents, with ease of biodegradation decreasing in the following order: n-alkanes > methylalkanes and alkylcyclopentanes+alkylcyclohexanes > cyclic and acyclic isoprenoids. We developed a new quantitative index designed to characterize biodegradation of >n-C22 saturates. These results shed new light onto the environmental fate of these persistent, hydrophobic, and mostly overlooked compounds in the unresolved complex mixtures (UCM) of weathered oils.

  12. The effects of forest conversion to oil palm on ground-foraging ant communities depend on beta diversity and sampling grain.

    PubMed

    Wang, Wendy Y; Foster, William A

    2015-08-01

    Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in

  13. Pyrolysis of waste tyres: a review.

    PubMed

    Williams, Paul T

    2013-08-01

    Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H(2), C(1)-C(4) hydrocarbons, CO(2), CO and H(2)S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil--A review.

    PubMed

    Headley, John V; Peru, Kerry M; Barrow, Mark P

    2016-01-01

    There has been a recent surge in the development of mass spectrometric methods for detailed characterization of naphthenic acid fraction compounds (all C(c)H(h)N(n)O(o)S(s), species, including heteroatomic and aromatic components in the acid-extractable fraction) in environmental samples. This surge is driven by the increased activity in oil sands environmental monitoring programs in Canada, the exponential increase in research studies on the isolation and toxicity identification of components in oil sands process water (OSPW), and the analytical requirements for development of technologies for treatment of OSPW. There has been additional impetus due to the parallel studies to control corrosion from naphthenic acids during the mining and refining of heavy bitumen and crude oils. As a result, a range of new mass spectrometry tools have been introduced since our last major review of this topic in 2009. Of particular significance are the developments of combined mass spectrometric methods that incorporate technologies such as gas chromatography, liquid chromatography, and ion mobility. There has been additional progress with respect to improved visualization methods for petroleomics and oil sands environmental forensics. For comprehensive coverage and more reliable characterization of samples, an approach based on multiple-methods that employ two or more ionization modes is recommended. On-line or off-line fractionation of isolated extracts, with or without derivatization, might also be used prior to mass spectrometric analyses. Individual ionization methods have their associated strengths and weaknesses, including biases, and thus dependence upon a single ionization method is potentially misleading. There is also a growing trend to not rely solely on low-resolution mass spectrometric methods (<20,000 resolving power at m/z 200) for characterization of complex samples. Future research is anticipated to focus upon (i) structural elucidation of components to determine

  15. Pyrolysis of waste tyres: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk

    2013-08-15

    Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest inmore » pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.« less

  16. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    NASA Astrophysics Data System (ADS)

    Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun

    2018-03-01

    Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  17. Rapid fingerprinting and classification of extra virgin olive oil by microjet sampling and extractive electrospray ionization mass spectrometry.

    PubMed

    Law, Wai Siang; Chen, Huan Wen; Balabin, Roman; Berchtold, Christian; Meier, Lukas; Zenobi, Renato

    2010-04-01

    Microjet sampling in combination with extractive electrospray ionization (EESI) mass spectrometry (MS) was applied to the rapid characterization and classification of extra virgin olive oil (EVOO) without any sample pretreatment. When modifying the composition of the primary ESI spray solvent, mass spectra of an identical EVOO sample showed differences. This demonstrates the capability of this technique to extract molecules with varying polarities, hence generating rich molecular information of the EVOO. Moreover, with the aid of microjet sampling, compounds of different volatilities (e.g.E-2-hexenal, trans-trans-2,4-heptadienal, tyrosol and caffeic acid) could be sampled simultaneously. EVOO data was also compared with that of other edible oils. Principal Component Analysis (PCA) was performed to discriminate EVOO and EVOO adulterated with edible oils. Microjet sampling EESI-MS was found to be a simple, rapid (less than 2 min analysis time per sample) and powerful method to obtain MS fingerprints of EVOO without requiring any complicated sample pretreatment steps.

  18. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil.

    PubMed

    Miandad, R; Nizami, A S; Rehan, M; Barakat, M A; Khan, M I; Mustafa, A; Ismail, I M I; Murphy, J D

    2016-12-01

    This paper aims to investigate the effect of temperature and reaction time on the yield and quality of liquid oil produced from a pyrolysis process. Polystyrene (PS) type plastic waste was used as a feedstock in a small pilot scale batch pyrolysis reactor. At 400°C with a reaction time of 75min, the gas yield was 8% by mass, the char yield was 16% by mass, while the liquid oil yield was 76% by mass. Raising the temperature to 450°C increased the gas production to 13% by mass, reduced the char production to 6.2% and increased the liquid oil yield to 80.8% by mass. The optimum temperature and reaction time was found to be 450°C and 75min. The liquid oil at optimum conditions had a dynamic viscosity of 1.77mPas, kinematic viscosity of 1.92cSt, a density of 0.92g/cm 3 , a pour point of -60°C, a freezing point of -64°C, a flash point of 30.2°C and a high heating value (HHV) of 41.6MJ/kg this is similar to conventional diesel. The gas chromatography with mass spectrophotometry (GC-MS) analysis showed that liquid oil contains mainly styrene (48%), toluene (26%) and ethyl-benzene (21%) compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Chemical Diversity of Lantana camara: Analyses of Essential Oil Samples from Cuba, Nepal, and Yemen.

    PubMed

    Satyal, Prabodh; Crouch, Rebecca A; Monzote, Lianet; Cos, Paul; Awadh Ali, Nasser A; Alhaj, Mehdi A; Setzer, William N

    2016-03-01

    The aerial parts of Lantana camara L. were collected from three different geographical locations: Artemisa (Cuba), Biratnagar (Nepal), and Sana'a (Yemen). The essential oils were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry. A cluster analysis of 39 L. camara essential oil compositions revealed eight major chemotypes: β-caryophyllene, germacrene D, ar-curcumene/zingiberene, γ-curcumen-15-al/epi-β-bisabolol, (E)-nerolidol, davanone, eugenol/alloaromadendrene, and carvone. The sample from Cuba falls into the group dominated by (E)-nerolidol, the sample from Nepal is a davanone chemotype, and the sample from Yemen belongs to the β-caryophyllene chemotype. The chemical composition of L. camara oil plays a role in the biological activity; the β-caryophyllene and (E)-nerolidol chemotypes showed antimicrobial and cytotoxic activities. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment.

    PubMed

    Morello, Luca; Raga, Roberto; Sgarbossa, Paolo; Rosson, Egle; Cossu, Raffaello

    2018-05-01

    The storage capacity and the potentially residual emissions of a stabilized waste coming from a landfill simulation experiment were evaluated. The evolution in time of the potential emissions and the mobility of some selected elements or compounds were determined, comparing the results of the stabilized waste samples with the values detected in the related fresh waste samples. Analyses were conducted for the total bulk waste and also for each identified category (under-sieve, kitchen residues, green and wooden materials, plastics, cellulosic material and textiles) to highlight the contribution of the different waste fractions in the total emission potential. The waste characterization was performed through analyses on solids and on leaching test eluates; the chemical speciation of carbon, nitrogen, chlorine and sulfur together with the partitioning of heavy metals through a SCE procedure were carried out. Results showed that the under-sieve is the most environmentally relevant fraction, hosting a consistent part of mobile compounds in fresh waste (40.7% of carbon, 44.0% of nitrogen, 47.6% of chloride and 40.0% of sulfur) and the greater part of potentially residual emissions in stabilized waste (88.4% of carbon, 90.9% of nitrogen, 98.4% of chloride and 91.1% of sulfur). Landfilled Municipal Solid Waste (MSW) proved to be an effective sink, finally storing more than 55% of carbon, 53% of nitrogen, 33% of sulfur and 90% of heavy metals (HM) which were initially present in fresh waste samples. A general decrease in leachable fractions from fresh to stabilized waste was observed for each category. Tests showed that solid waste is not a good sink for chlorine, whose residual non-mobile fraction amounts to 12.3% only. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Sampling and analyses plan for tank 103 at the 219-S waste handling facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOWLER, K.D.

    1999-06-23

    This document describes the sampling and analysis activities associated with taking a Resource Conservation and Recovery Act (RCRA) protocol sample of the waste from Tank 103 at the 21 9-S Waste Handling Facility treatment storage, andlor disposal (TSD) unit at the 2224 Laboratory complex. This sampling and analyses is required based on negotiations between the State of Washington Department of Ecology (Ecology) and the Department of Energy, Richland Operations, (RL) in letters concerning the TPA Change Form M-32-98-01. In a letter from George H. Sanders, RL to Moses N. Jaraysi, Ecology, dated January 28,1999, it was noted that ''Prior tomore » the Tank 103 waste inventory transfer, a RCRA protocol sample of the waste will be obtained and tested for the constituents contained on the Part A, Form 3 Permit Application for the 219-S Waste Handling Facility.'' In the April 2, 1999 letter, from Brenda L. Becher-Khaleel, Ecology to James, E. Rasmussen, RL, and William O. Adair, FDH, Ecology states that the purpose of these analyses is to provide information and justification for leaving Tank 103 in an isolated condition in the 2194 TSD unit until facility closure. The data may also be used at some future date in making decisions regarding closure methodology for Tank 103. Ecology also notes that As Low As Reasonably Achievable (ALARA) concerns may force deviations from some SW-846 protocol. Every effort will be made to accommodate requirements as specified. Deviations from SW-846 will be documented in accordance with HASQARD.« less

  2. Monoglyceride contents in biodiesel from various plants oil and the effect to low temperature properties

    NASA Astrophysics Data System (ADS)

    Aisyah, L.; Wibowo, C. S.; Bethari, S. A.; Ufidian, D.; Anggarani, R.

    2018-03-01

    Monoglyceride is a by-product component of biodiesel process that relates to sedimentation problem at low temperature environment. To prevent the problem in using biodiesel-diesel fuel blends, it is necessary to limit of the monoglyceride content. The factor affecting monoglyceride content in biodiesel is the transesterification reaction and also the plant that is used. In this study, we investigate the monoglyceride content in biodiesel made from 4 plant oils; kemiri sunan (Reutealis trisperma) oil, coconut oil, nyamplung (Calophyllum inophyllum) oil, and waste cooking oil. These oils are purified and checked for its critical properties then converted to biodiesel. The biodiesel tested refer to Standard National of Indonesia for biodiesel (SNI 7182:2015). The monoglyceride content of biodiesel from kemiri sunan (Reutealis trisperma) oil, coconut oil, nyamplung (Calophyllum inophyllum) oil, and waste cooking oil, are 8.86%, 0.69%, 4.0%, and 2.69% consecutively. The low temperature properties represented by viscosity (@40 0C) for the 4 samples in the same order as before are 6.1 cSt, 2.7 cSt, 4.71 cSt, and 4.90 cSt. The cloud point is measured with the result of 30 °C, -20 °C, -60 °C and 30 °C respectively. The conclusions indicate that monoglyceride content can affect the low temperature properties of biodiesel.

  3. Determination of estrogenic potential in waste water without sample extraction.

    PubMed

    Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester

    2013-09-15

    This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was

  4. Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MULKEY, C.H.

    1999-07-02

    This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for themore » Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements.« less

  5. Comparison of methods for determination of total oil sands-derived naphthenic acids in water samples.

    PubMed

    Hughes, Sarah A; Huang, Rongfu; Mahaffey, Ashley; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Meshref, Mohamed N A; Ibrahim, Mohamed D; Brown, Christine; Peru, Kerry M; Headley, John V; Gamal El-Din, Mohamed

    2017-11-01

    There are several established methods for the determination of naphthenic acids (NAs) in waters associated with oil sands mining operations. Due to their highly complex nature, measured concentration and composition of NAs vary depending on the method used. This study compared different common sample preparation techniques, analytical instrument methods, and analytical standards to measure NAs in groundwater and process water samples collected from an active oil sands operation. In general, the high- and ultrahigh-resolution methods, namely high performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and Orbitrap mass spectrometry (Orbitrap-MS), were within an order of magnitude of the Fourier transform infrared spectroscopy (FTIR) methods. The gas chromatography mass spectrometry (GC-MS) methods consistently had the highest NA concentrations and greatest standard error. Total NAs concentration was not statistically different between sample preparation of solid phase extraction and liquid-liquid extraction. Calibration standards influenced quantitation results. This work provided a comprehensive understanding of the inherent differences in the various techniques available to measure NAs and hence the potential differences in measured amounts of NAs in samples. Results from this study will contribute to the analytical method standardization for NA analysis in oil sands related water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of mineral matter on pyrolysis of palm oil wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haiping; Chen, Hanping; Zheng, Chuguang

    2006-09-15

    The influence of mineral matter on pyrolysis of biomass (including pure biomass components, synthesized biomass, and natural biomass) was investigated using a thermogravimetric analyzer (TGA). First, the mineral matter, KCl, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, CaMg(CO{sub 3}){sub 2}, Fe{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}, was mixed respectively with the three main biomass components (hemicellulose, cellulose, and lignin) at a weight ratio (C/W) of 0.1 and its pyrolysis characteristics were investigated. Most of these mineral additives, except for K{sub 2}CO{sub 3}, demonstrated negligible influence. Adding K{sub 2}CO{sub 3} inhibited the pyrolysis of hemicellulose by lowering its mass loss ratemore » by 0.3 wt%/{sup o}C, while it enhanced the pyrolysis of cellulose by shifting the pyrolysis to a lower temperature. With increased K{sub 2}CO{sub 3} added, the weight loss of cellulose in the lower temperature zone (200-315 {sup o}C) increased greatly, and the activation energies of hemicellulose and cellulose pyrolysis decreased notably from 204 to 42 kJ/mol. Second, studies on the synthetic biomass of hemicellulose, cellulose, lignin, and K{sub 2}CO{sub 3} (as a representative of minerals) indicated that peaks of cellulose and hemicellulose pyrolysis became overlapped with addition of K{sub 2}CO{sub 3} (at C/W=0.05-0.1), due to the catalytic effect of K{sub 2}CO{sub 3} lowering cellulose pyrolysis to a lower temperature. Finally, a local representative biomass--palm oil waste (in the forms of original material and material pretreated through water washing or K{sub 2}CO{sub 3} addition)--was studied. Water washing shifted pyrolysis of palm oil waste to a higher temperature by 20 {sup o}C, while K{sub 2}CO{sub 3} addition lowered the peak temperature of pyrolysis by {approx}50{sup o}C. It was therefore concluded that the obvious catalytic effect of adding K{sub 2}CO{sub 3} might be attributed to certain fundamental changes in terms of chemical structure of

  7. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation.

    PubMed

    Shu, Qing; Nawaz, Zeeshan; Gao, Jixian; Liao, Yuhui; Zhang, Qiang; Wang, Dezheng; Wang, Jinfu

    2010-07-01

    A solid acid catalyst that can keep high activity and stability is necessary when low cost feedstocks are utilized for biodiesel synthesis because the reaction medium contains a large amount of water. Three solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt. The structure of these catalysts was characterized by a variety of techniques. A new process that used the coupling of the reaction and separation was employed, which greatly improved the conversion of cottonseed oil (triglyceride) and free fatty acids (FFA) when a model waste oil feedstock was used. The vegetable oil asphalt-based catalyst showed the highest catalytic activity. This was due to the high density and stability of its acid sites, its loose irregular network, its hydrophobicity that prevented the hydration of -OH species, and large pores that provided more acid sites for the reactants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix.

    PubMed

    Das, Amar Jyoti; Kumar, Rajesh

    2018-07-01

    This study reports biosurfactant production by Pseudomonas azotoformans AJ15 under submerged fermentation via utilizing the agro-industrial wastes (bagasse and potato peels). The extracted biosurfactant was characterized for its classification (nature, group, and class) and stability against environmental stresses. Further, the biosurfactant was employed to explore its oil recovery efficiency from the sand matrix with 2000 ppm salt concentration. Results revealed that substrates developed by mixing both the agro-industrial wastes account for high yield of biosurfactant. The subsequent experimental studies demonstrated that the biosurfactant might belong to glycolipid group and rhamnolipid class. Moreover, the biosurfactant was stable at a high temperature of 90 °C and enable to persist its activity in the high salt concentration of 6% and varying pH. The biosurfactant was found to be effective in recovering up to 36.56% of trapped oil under saline condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  10. 30 CFR 56.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that.... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil. ...

  11. 30 CFR 56.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that.... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil. ...

  12. 30 CFR 56.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that.... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil. ...

  13. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Determining the PCB concentration of..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation...

  14. 25 CFR 213.33 - Diligence and prevention of waste.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... prevention of waste. The lessee shall exercise diligence in drilling and operating wells for oil and gas on... prevention of waste of oil or gas developed on the land, or the entrance of water through wells drilled by... the same and to shut off effectually all water from the oil or gas-bearing strata; not drill any well...

  15. 25 CFR 213.33 - Diligence and prevention of waste.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prevention of waste. The lessee shall exercise diligence in drilling and operating wells for oil and gas on... prevention of waste of oil or gas developed on the land, or the entrance of water through wells drilled by... the same and to shut off effectually all water from the oil or gas-bearing strata; not drill any well...

  16. 25 CFR 213.33 - Diligence and prevention of waste.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... prevention of waste. The lessee shall exercise diligence in drilling and operating wells for oil and gas on... prevention of waste of oil or gas developed on the land, or the entrance of water through wells drilled by... the same and to shut off effectually all water from the oil or gas-bearing strata; not drill any well...

  17. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system mustmore » also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11

  18. Using multivariate regression modeling for sampling and predicting chemical characteristics of mixed waste in old landfills.

    PubMed

    Brandstätter, Christian; Laner, David; Prantl, Roman; Fellner, Johann

    2014-12-01

    Municipal solid waste landfills pose a threat on environment and human health, especially old landfills which lack facilities for collection and treatment of landfill gas and leachate. Consequently, missing information about emission flows prevent site-specific environmental risk assessments. To overcome this gap, the combination of waste sampling and analysis with statistical modeling is one option for estimating present and future emission potentials. Optimizing the tradeoff between investigation costs and reliable results requires knowledge about both: the number of samples to be taken and variables to be analyzed. This article aims to identify the optimized number of waste samples and variables in order to predict a larger set of variables. Therefore, we introduce a multivariate linear regression model and tested the applicability by usage of two case studies. Landfill A was used to set up and calibrate the model based on 50 waste samples and twelve variables. The calibrated model was applied to Landfill B including 36 waste samples and twelve variables with four predictor variables. The case study results are twofold: first, the reliable and accurate prediction of the twelve variables can be achieved with the knowledge of four predictor variables (Loi, EC, pH and Cl). For the second Landfill B, only ten full measurements would be needed for a reliable prediction of most response variables. The four predictor variables would exhibit comparably low analytical costs in comparison to the full set of measurements. This cost reduction could be used to increase the number of samples yielding an improved understanding of the spatial waste heterogeneity in landfills. Concluding, the future application of the developed model potentially improves the reliability of predicted emission potentials. The model could become a standard screening tool for old landfills if its applicability and reliability would be tested in additional case studies. Copyright © 2014 Elsevier Ltd

  19. [PHAHs levels in soil samples from the E-waste disassembly sites and their sources allocation].

    PubMed

    Zhao, Gao-Feng; Wang, Zi-Jian

    2009-06-15

    Soil samples (each with 3 replicates of - 1 kg, at the top 0-5 cm layer) were collected from each of the e-waste disassembly sites and the control site. Also obtained from each disassembly site were samples (each weighing - 0.2 kg) of cable coating,stuffing powder, and circuit boards chipping. The contents of 23 PBB congeners, 12 PBDE congeners, and 27 PCB congeners in soil and in their potential sources, including e-waste residues, were measured using the GC-MS5975B technique. The highest level of PBBs was found in the cable coating among the three e-waste residues, with a concentration of 35.25 ng x g(-1). The contents of low-brominated PBBs (including monobromobiphenyls and dibromobiphenyls) accounted for 38% of the total PBBs concentration observed in cable coating sample. The highest levels of PBDEs and PBDE209 were found in the stuffing powder for electronic component among the collected e-waste residues, with a concentration of 29.71 and 4.19 x 10(3) ng x g(-1). PBDE153 and PBDE183 were the most predominant PBDE congeners, with their concentration accounting for 43% and 24% of the total PBDEs concentration observed in the stuffing powder sample, respectively. Levels of PCBs in cable coating were the highest in these e-waste residues, with a concentration of 680.02 ngx g(-1). The observed values of the three PHAHs in soils from the disassembly site were considerably higher than their corresponding values observed in the control site (p < 0.05), which indicates that these PHAHs from e-waste is the pollution source of local environment.

  20. Emissions from Simulated Open Burning of Deployed US Military Waste

    DTIC Science & Technology

    2012-03-22

    pasta …. Wet food waste (slop) 13 1.3 1300 Soup, creams,… Oils and greases 2 0.2 200 oil, grease Unopened MREs 1 0.1 100 MREs Opened MRE Inner... pasta …. Wet food waste (slop) 13.61 1.361 1361.3 Soup, creams,… Oils and greases 2.09 0.209 209.4 oil, grease Unopened MREs 1.05 0.105 104.7 MREs

  1. Biotransformation of 1,8-cineole by solid-state fermentation of Eucalyptus waste from the essential oil industry using Pleurotus ostreatus and Favolus tenuiculus.

    PubMed

    Omarini, Alejandra; Dambolena, José Sebastián; Lucini, Enrique; Jaramillo Mejía, Santiago; Albertó, Edgardo; Zygadlo, Julio A

    2016-03-01

    Biotechnological conversion of low-cost agro-industrial by-products, such as industrial waste or terpenes from the distillation of essential oils from plants into more valuable oxygenated derivatives, can be achieved by using microbial cells or enzymes. In Argentina, the essential oil industry produces several tons of waste each year that could be used as raw materials in the production of industrially relevant and value-added compounds. In this study, 1,8-cineole, one of the components remaining in the spent leaves of the Eucalyptus cinerea waste, was transformed by solid-state fermentation (SSF) using the two edible mushrooms Pleurotus ostreatus and Favolus tenuiculus. As a result, two new oxygenated derivatives of 1,8-cineole were identified: 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-ol and 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-one. Additionally, changes in the relative percentages of other aroma compounds present in the substrate were observed during SSF. Both fungal strains have the ability to produce aroma compounds with potential applications in the food and pharmaceutical industries.

  2. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  3. FORMATION OF CHLORINATED DIOXINS AND FURANS IN A HAZARDOUS-WASTE-FIRING INDUSTRIAL BOILER

    EPA Science Inventory

    This research examined the potential for emissions of polychlorinated diebnzodioxin and dibenzofuran (PCDD/F) from industrial boilers that cofire hazardous waste. PCDD/F emissions were sampled from a 732 kW (2.5 x 106 Btu/h), 3-pass, firetube boiler using #2 fuel oil cofired wit...

  4. Biobased lubricant from used cooking oils

    USDA-ARS?s Scientific Manuscript database

    As more and more people look for healthy alternatives for cooking and frying oils, the opportunity to develop high-value products from these waste streams increases. Cooking oils that are often described as healthier contain higher levels of monounsaturated fats. NuSun® sunflower oil is an example o...

  5. Transesterification of waste cooking oil by an organic solvent-tolerant alkaline lipase from Streptomyces sp. CS273.

    PubMed

    Mander, Poonam; Yoo, Hah-Young; Kim, Seung Wook; Choi, Yun Hee; Cho, Seung Sik; Yoo, Jin Cheol

    2014-02-01

    The aim of this present study was to produce a microbial enzyme that can potentially be utilized for the enzymatic transesterification of waste cooking oil. To that end, an extracellular lipase was isolated and purified from the culture broth of Streptomyces sp. CS273. The molecular mass of purified lipase was estimated to be 36.55 kDa by SDS PAGE. The optimum lipolytic activity was obtained at alkaline pH 8.0 to 8.5 and temperature 40 °C, while the enzyme was stable in the pH range 7.0 ∼ 9.0 and at temperature ≤40 °C. The lipase showed highest hydrolytic activity towards p-nitrophenyl myristate (C14). The lipase activity was enhanced by several salts and detergents including NaCl, MnSo₄, and deoxy cholic acid, while phenylmethylsulfonyl fluoride at concentration 10 mM inhibited the activity. The lipase showed tolerance towards different organic solvents including ethanol and methanol which are commonly used in transesterification reactions to displace alcohol from triglycerides (ester) contained in renewable resources to yield fatty acid alkyl esters known as biodiesel. Applicability of the lipase in transesterification of waste cooking oil was confirmed by gas chromatography mass spectrometry analysis.

  6. 21 CFR 186.1557 - Tall oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tall oil. 186.1557 Section 186.1557 Food and Drugs....1557 Tall oil. (a) Tall oil (CAS Reg. No. 8002-26-4) is essentially the sap of the pine tree. It is obtained commercially from the waste liquors of pinewood pulp mills and consists mainly of tall oil resin...

  7. Season matters when sampling streams for swine CAFO waste pollution impacts.

    PubMed

    Mallin, Michael A; McIver, Matthew R

    2018-02-01

    Concentrated (or confined) animal feed operations (CAFOs) are the principal means of livestock production in the United States, and such facilities pollute nearby waterways because of their waste management practices; CAFO waste is pumped from the confinement structure into a cesspit and sprayed on a field. Stocking Head Creek is located in eastern North Carolina, a state with >9,000,000 head of swine confined in CAFOs. This watershed contains 40 swine CAFOs; stream water quality was investigated at seven sites during 2016, with five sampling dates in early spring and five in summer. Geometric mean fecal coliform counts were in the thousands/100 mL at five sites in spring and all seven sites in summer. Excessive nitrate pollution was widespread with concentrations up to >11.0 mg N/L. Seasonality played an important role in pollutant concentrations. In North Carolina, spraying animal waste on adjoining fields is permissible from March 1 through September 30. Seasonal data showed significantly higher (p < 0.01) concentrations of conductivity, nitrate, total nitrogen, total organic carbon, and fecal bacteria in summer as opposed to early spring. Thus, sampling performed only in winter-early spring would significantly underestimate impacts from swine CAFO spray fields on nearby waterways.

  8. Biodiesel synthesis using chicken manure biochar and waste cooking oil.

    PubMed

    Jung, Jong-Min; Lee, Sang-Ryong; Lee, Jechan; Lee, Taewoo; Tsang, Daniel C W; Kwon, Eilhann E

    2017-11-01

    This study laid an emphasis on the possible employment of biochar generated from pyrolysis of chicken manure to establish a green platform for producing biodiesel. To this end, the pseudo-catalytic transesterification reaction using chicken manure biochar and waste cooking oil was investigated. Compared with a commercial porous material (SiO 2 ), chicken manure biochar generated from 350°C showed better performance, resulting in 95.6% of the FAME yield at 350°C. The Ca species in chicken manure biochar imparted strong catalytic capability by providing the basicity for transesterification. The identified catalytic effect also led to the thermal cracking of unsaturated FAMEs, which decreased the overall FAME yield. For example, 40-60% of converted FAMEs were thermally degraded. To avoid undesirable thermal cracking arising from the high content of the Ca species in chicken manure biochar, the fabrication of chicken manure biochar at temperatures ≥350°C was highly recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Microwave Synthesis and Characterization of Waste Soybean Oil-Based Gemini Imidazolinium Surfactants with Carbonate Linkage

    NASA Astrophysics Data System (ADS)

    Tripathy, Divya Bajpai; Mishra, Anuradha

    Gemini surfactants are presently gaining attention due to their unusual self-assembling characteristics and incomparable interfacial activity. Current research work involves the cost-effective microwave (MW) synthesis of waste soybean oil-based gemini imidazolinium surfactants (GIS) having a carbonate linkage in its spacer moiety. Structural characterizations of the materials have been done using FT-IR, 1H-NMR and 13C-NMR. Using indigenous and natural material as base and MW as energy source for synthesizing the GIS with easily degradable chemical moiety make them to be labeled as green surfactants.

  10. Properties of palm oil fuel ash cement sand brick containing pulverized cockle shell as partial sand replacement

    NASA Astrophysics Data System (ADS)

    Mat Aris, S.; Muthusamy, K.; Uzer, A.; Ahmad, S. Wan

    2018-04-01

    Environmental pollution caused by the disposal of solid wastes generated from both palm oil industry and cockle shell trade has motivated researches to explore the potential of these wastes. Integrating these wastes in production of construction material is one of the ways to reduce amount of waste thrown at dumping area. Thus, the present investigation investigates the performance of palm oil fuel ash (POFA) cement sand brick containing pulverized cockle shell as partial fine aggregate replacement. All mixes used contain 20% of POFA as partial cement replacement. Total of six mixes were prepared by adding a range of pulverized cockle shell that is 0%, 10%, 20%, 30%, 40% and 50% as partial sand replacement. The mixes were prepared in form of brick. All the water cured samples were tested for compressive strength and flexural strength until 28 days. Findings show that brick produced using 20% pulverized cockle shell exhibit the highest compressive strength and flexural strength also the lowest water absorption value.

  11. Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas.

    PubMed

    Agamuthu, P; Abioye, O P; Aziz, A Abdul

    2010-07-15

    Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil. 2010 Elsevier B.V. All rights reserved.

  12. Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples.

    PubMed

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-10-01

    In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multiple Biological Effects of Olive Oil By-products such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin.

    PubMed

    Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi

    2015-06-01

    As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Separation of sardine oil without heating from surimi waste and its effect on lipid metabolism in rats.

    PubMed

    Toyoshima, Kotoe; Noguchi, Ryoko; Hosokawa, Masashi; Fukunaga, Kenji; Nishiyama, Toshimasa; Takahashi, Riki; Miyashita, Kazuo

    2004-04-21

    Sardine oil was obtained by centrifugation of surimi wastewater without heating or chemical refining. This oil (CE) showed light yellow color and the peroxide value was less than 1.0 meq/kg. The main lipid class of CE was triacylglycerol (TG) (>99%). These features indicate that CE can be directly used as food materials without further purification. Commercial sardine oil (CO) is usually prepared via some kind of refining process with high temperature (250 degrees C) and chemical treatment. The comparative study on the physiological effects of these sardine oils (CE and CO) revealed that the dietary sardine oils were more effective in reducing abdominal fat pads, plasma total cholesterol, and TG levels of rats than was a soybean oil diet (control). Furthermore, these effects were greater in CE than CO, although there was little difference in the fatty acid composition of both oils. Although the main lipid class of CE was TG (>99%), CE was prepared by centrifugation from surimi waste and directly used as dietary fat without further purification. Therefore, CE may contain some kinds of minor components, which could be attributed to the higher physiological activity of CE. To reveal the involvement of the minor compounds in CE, we prepared TG from CE by column chromatography and measured its effect on lipid metabolism of rats. TG from CE also showed the reducing effects on abdominal fad pads and plasma lipid levels. The effect of TG from CE was almost the same as that of original CE, suggesting that the higher nutritional activity of CE than CO may not be due to the minor compounds in CE.

  15. Chemometric techniques in oil classification from oil spill fingerprinting.

    PubMed

    Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wong, Kok Fah; Retnam, Ananthy; Zali, Munirah Abdul; Mokhtar, Mazlin; Yusri, Mohd Ayub

    2016-10-15

    Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources. Copyright © 2016. Published by Elsevier Ltd.

  16. Comparison of the mopping ability of chemically modified and unmodified biological wastes on crude oil and its lower fractions.

    PubMed

    Nduka, John Kanayochukwu; Ezenweke, Linus Obi; Ezenwa, Emmanuel Tagbo

    2008-11-01

    Activated and unactivated powders of goat hair and coir (coconut husk) separated into two particle sizes were used to mop up spills of crude oil, diesel, kerosene and petrol. It was observed that the materials (sorbents) mopped up appreciable volumes of the hydrocarbon liquids (sorbates) within 90 min of contact. Activation, particle size of sorbents and molecular weight (chain length) of sorbates (hydrocarbon) are major determining factors. Carbonization and particle size enhanced the mopping ability as follows--carbonized 325 microm > uncarbonized 325 microm > carbonized 625 microm > uncarbonized 625 microm, thus activated sorbents with large surface area (small particle size) mopped more hydrocarbons than unactivated of the same particle size. The sorbates were mopped in the order--crude oil > diesel > kerosene > petrol. It was further observed that goat hair (keratin protein) with oleophilic and aquaphobic properties adsorbed more of all the hydrocarbons than coir at all sizes and treatment. Large quantities of the mopped oils were recovered by mere pressing while the waste sorbents with 0.5-2.0% leachable residual oil could be utilized as alternative to fire wood.

  17. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Purification of waste water from olive-oil pressing plants using hydrophytes. Preliminary study on the use of Eichornia crassipes].

    PubMed

    Ferrara, L; Forgione, P; Schettino, O; Rullo, V

    1989-04-01

    The use of Eichornia crassipes has been tested in order to depurate the waste water from olive oil factories. The control of some parameter variations during the treatment, such as COD, total azote, dissolved oxygen and pH, has given encouraging results about the depurative efficacy of employed hydrophytae. Particularly indicative is, in this regard, COD rejection of about 60%.

  19. Characterization of bio-oil from hydrothermal liquefaction of organic waste by NMR spectroscopy and FTICR mass spectrometry.

    PubMed

    Leonardis, Irene; Chiaberge, Stefano; Fiorani, Tiziana; Spera, Silvia; Battistel, Ezio; Bosetti, Aldo; Cesti, Pietro; Reale, Samantha; De Angelis, Francesco

    2013-01-01

    Solid wastes of organic origins are potential feedstocks for the production of liquid biofuels, which could be suitable alternatives to fossil fuels for the transport and heating sectors, as well as for industrial use. By hydrothermal liquefaction, the wet biomass is partially transformed into a water-immiscible, oil-like organic matter called bio-oil. In this study, an integrated NMR spectroscopy/mass spectrometry approach has been developed for the characterization of the hydrothermal liquefaction of bio-oil at the molecular level. (1)H and (13)C NMR spectroscopy were used for the identification of functional groups and gauging the aromatic carbon content in the mixture. GC-MS analysis revealed that the volatile fraction was rich in fatty acids, as well as in amides and esters. High-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been applied in a systematic way to fully categorize the bio-oil in terms of different classes of components, according to their molecular formulas. Most importantly, for the first time, by using this technique, and for the liquefaction bio-oil characterization in particular, FT-MS data have been used to develop a methodology for the determination of the aromatic versus aliphatic carbon and nitrogen content. It is well known that, because they resist hydrogenation and represent sources of polluting species, both aromatic molecules and nitrogen-containing species raise concerns for subsequent upgrading of bio-oil into a diesel-like fuel. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales.

    PubMed

    Sierra-Garcia, Isabel Natalia; Dellagnezze, Bruna M; Santos, Viviane P; Chaves B, Michel R; Capilla, Ramsés; Santos Neto, Eugenio V; Gray, Neil; Oliveira, Valeria M

    2017-01-01

    Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

  1. Techno-economic evaluation of biodiesel production from waste cooking oil--a case study of Hong Kong.

    PubMed

    Karmee, Sanjib Kumar; Patria, Raffel Dharma; Lin, Carol Sze Ki

    2015-02-18

    Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification. However, biodiesel obtained from vegetable oils as feedstock is expensive. Thus, an alternative and inexpensive feedstock such as waste cooking oil (WCO) can be used as feedstock for biodiesel production. In this project, techno-economic analyses were performed on the biodiesel production in Hong Kong using WCO as a feedstock. Three different catalysts such as acid, base, and lipase were evaluated for the biodiesel production from WCO. These economic analyses were then compared to determine the most cost-effective method for the biodiesel production. The internal rate of return (IRR) sensitivity analyses on the WCO price and biodiesel price variation are performed. Acid was found to be the most cost-effective catalyst for the biodiesel production; whereas, lipase was the most expensive catalyst for biodiesel production. In the IRR sensitivity analyses, the acid catalyst can also acquire acceptable IRR despite the variation of the WCO and biodiesel prices.

  2. Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock.

    PubMed

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2010-06-01

    The application of waste frying oil (WFO) mixed with rapeseed oil as a feedstock for the effective production of fatty acid methyl esters (FAME) in a lipase-catalyzed process was investigated. The response surface methodology (RSM) was used to optimize the interaction of four variables: the percentage of WFO in the mixed feedstock, the methanol-to-oil ratio, the dosage of Novozym 435 as a catalyst and the temperature. Furthermore, the addition of methanol to the reaction mixture in a second step after 8 h was shown to effectively diminish enzyme inhibition. Using this technique, the model predicted the optimal conditions that would reach 100% FAME, including a methanol-to-oil molar ratio of 3.8:1, 100% (wt) WFO, 15% (wt) Novozym 435 and incubation at 44.5 degrees C for 12 h with agitation at 200 rpm, and verification experiments confirmed the validity of the model. According to the model, the addition of WFO increased FAME production yield, which is largely due to its higher contents of monoacylglycerols, diacylglycerols and free fatty acids (in comparison to rapeseed oil), which are more available substrates for the enzymatic catalysis. Therefore, the replacement of rapeseed oil with WFO in Novozym 435-catalyzed processes could diminish biodiesel production costs since it is a less expensive feedstock that increases the production yield and could be a potential alternative for FAME production on an industrial scale. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Physical and mechanical properties of parallel strand lumber made from hot pre-pressed long strand oil palm trunk waste

    NASA Astrophysics Data System (ADS)

    Fridiyanti, Inayah; Massijaya, M. Y.

    2018-03-01

    This research was focused on the utilization of oil palm trunk waste as a Parallel Strand Lumber (PSL) raw material. This research aimed to analyze the effect of adhesive types and glue spreads to the physical and mechanical properties of PSL. The adhesive types used were isocyanate and urea formaldehyde adhesives. The glue spreads used were 150 g/m2 and 300 g/m2. The research results showed that the moisture content of PSL ranged from 9.30% to 11.80%. The PSL density ranged from 0.64 to 0.78 g/cm3. The volume shrinkage ranged from 5.69 to 7.17%. Modulus of Elasticity (MOE) parallel to the grain and edge side ranged from 51.6 × 103 to 98.3 × 103 kg/cm2, and 62.1 × 103 to 99.9 × 103 kg/cm2, respectively. The Modulus of Rupture (MOR) parallel to the grain and edge side ranged from 269 to 724 kg/cm2 and 342 to 728 kg/cm2, respectively. The PSL hardness perpendicular to the grain, parallel to the grain and the edge side ranged from 135 to 300 kg/cm2, 87 to 321 kg/cm2, and 128 to 251 kg/cm2, respectively. The compressive strength ranged from 181 to 231 kg/cm2. The best adhesive and glue spreads of PSL was isocyanate with glue spread 300 g/m2. PSL made from hot pre-pressed long strand of oil palm trunk waste bonded by isocyanate fulfill JAS 1152: 2007. However, those of bonded by urea formaldehyde failed to fulfill the standard. The physical and mechanical properties of PSL made from oil palm trunk were better compared to those of solid oil palm trunk.

  4. Noble Gas signatures of Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble

  5. Determination of physiochemical properties of palm oil methyl ester catalyzed by waste cockle shells

    NASA Astrophysics Data System (ADS)

    Nasir, Nurul Fitriah; Latif, Noradila Abdul; Bakar, Sharifah Adzila Syed Abu; Rahman, Mohd Nasrull Abdul; Selamat, Siti Norhidayah; Nasharudin, Nurul Nadirah

    2017-04-01

    Waste cockle shell can be used as a source of calcium oxide (CaO) in catalyzing a transesterification reaction to produce biodiesel or fatty acid methyl ester (FAME). This aim of this paper is to determine the physicochemical properties of (FAME) which utilize waste cockle shells in the transesterification reaction process. In this study, the catalyst was prepared using high temperature furnace (700°C) for 4 h. The molar ratio of methanol to oil was fixed at 9:1 and the reaction temperature and catalyst concentration were varied from 65 -70 °C, and 10-30 wt. %, respectively for transesterification reaction. The reaction time was also fixed at 3 h. The analyzed physicochemical properties were density, viscosity, flash point and net heat of combustion. The results obtained from the analysis found that reaction temperature 65°C with 30% of catalyst concentration has produced the physical properties of FAME that comply the biodiesel standards. The results suggest that reaction temperature and catalyst concentration have influence on the value of physicochemical properties of FAME produced.

  6. Development of a Highly Specific Fluorescence Immunoassay for Detection of Diisobutyl Phthalate in Edible Oil Samples.

    PubMed

    Cui, Xiping; Wu, Panpan; Lai, Dan; Zheng, Shengwu; Chen, Yingshan; Eremin, Sergei A; Peng, Wei; Zhao, Suqing

    2015-10-28

    The diisobutyl phthalate (DiBP) hapten containing an amino group was synthesized successfully, and the polyclonal antibody against 4-amino phthalate-bovine serum albumin (BSA) was developed. On the basis of the polyclonal antibody, a rapid and sensitive indirect competitive fluorescence immunoassay (icFIA) has been established to detect DiBP in edible oil samples for the first time. Under the optimized conditions, the quantitative working range of the icFIA was from 10.47 to 357.06 ng/mL (R(2) = 0.991), exhibiting a detection limit of 5.82 ng/mL. In this assay, the specific results showed that other similar phthalates did not significantly interfere with the analysis, with the cross-reactivity less than 1.5%, except for that of DiBAP. Thereafter, DiBP contamination in edible oil samples was detected by icFIA, with the recovery being from 79 to 103%. Furthermore, the reliability of icFIA was validated by gas chromatography-mass spectrometry (GC-MS). Therefore, the developed icFIA is suitable for monitoring DiBP in some edible oil samples.

  7. Productivity improvement with green approach to palm oil factory productivity

    NASA Astrophysics Data System (ADS)

    Matondang, N.

    2018-02-01

    The palm oil factory (POF) processes fresh fruit bunches into crude palm oil (CPO) and palm kernel oil (PKO) by products in the form of liquid and solid waste. One of the solid wastes produced in POF Tanjung Kasau is empty fruit bunches of palm oil (FBPO) which have been burned completely on incinerator tubes so that potentially produces pollutants that pollute the environment. If FBPO waste is managed properly, it will improve the productivity of the company. Therefore, it is necessary to conduct a study to find out how far the increased productivity of the company can reduce their impact on the environment, if FBPO is used as raw material of liquid smoke. The productivity improvement approach is done by Green Productivity concept, by looking at three aspects: environmental, social and economical. Green Productivity aims to protect the environment simultaneously by increasing the productivity of the company. One way is to turn FBPO waste into liquid smoke product is by pyrolysis process. The results showed that turning FBPO solid waste into liquid smoke will increase productivity by 18.18%. Implementation of Green Productivity can improve productivity through the improvement of FBPO waste treatment process which has been done by perfect combustion by pyrolysis process so that waste can be minimized to create environment industry POF clean and friendly environment.

  8. 33 CFR 151.10 - Control of oil discharges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Control of oil discharges. 151.10...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND... Treaty as it Pertains to Pollution from Ships Oil Pollution § 151.10 Control of oil discharges. (a) When...

  9. 33 CFR 151.10 - Control of oil discharges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Control of oil discharges. 151.10...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND... Treaty as it Pertains to Pollution from Ships Oil Pollution § 151.10 Control of oil discharges. (a) When...

  10. 33 CFR 151.10 - Control of oil discharges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Control of oil discharges. 151.10...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND... Treaty as it Pertains to Pollution from Ships Oil Pollution § 151.10 Control of oil discharges. (a) When...

  11. Polycyclic aromatic hydrocarbons in caribou, moose, and wolf scat samples from three areas of the Alberta oil sands.

    PubMed

    Lundin, Jessica I; Riffell, Jeffrey A; Wasser, Samuel K

    2015-11-01

    Impacts of toxic substances from oil production in the Alberta oil sands (AOS), such as polycyclic aromatic hydrocarbons (PAHs), have been widely debated. Studies have been largely restricted to exposures from surface mining in aquatic species. We measured PAHs in Woodland caribou (Rangifer tarandus caribou), moose (Alces americanus), and Grey wolf (Canis lupus) across three areas that varied in magnitude of in situ oil production. Our results suggest a distinction of PAH level and source profile (petro/pyrogenic) between study areas and species. Caribou samples indicated pyrogenic sourced PAHs in the study area previously devastated by forest fire. Moose and wolf samples from the high oil production area demonstrated PAH ratios indicative of a petrogenic source and increased PAHs, respectively. These findings emphasize the importance of broadening monitoring and research programs in the AOS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Multicommuted flow injection method for fast photometric determination of phenolic compounds in commercial virgin olive oil samples.

    PubMed

    Lara-Ortega, Felipe J; Sainz-Gonzalo, Francisco J; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-01-15

    A multicommuted flow injection method has been developed for the determination of phenolic species in virgin olive oil samples. The method is based on the inhibitory effect of antioxidants on a stable and colored radical cation formation from the colorless compound N,N-dimethyl-p-phenylenediamine (DMPD(•+)) in acidic medium in the presence of Fe(III) as oxidant. The signal inhibition by phenolic species and other antioxidants is proportional to their concentration in the olive oil sample. Absorbance was recorded at 515nm by means of a modular fiber optic spectrometer. Oleuropein was used as the standard for phenols determination and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox) was the reference standard used for total antioxidant content calculation. Linear response was observed within the range of 250-1000mg/kg oleuropein, which was in accordance with phenolic contents observed in commercial extra virgin olive oil in the present study. Fast and low-volume liquid-liquid extraction of the samples using 60% MeOH was made previous to their insertion in the flow multicommuted system. The five three-way solenoid valves used for multicommuted liquid handling were controlled by a homemade electronic interface and Java-written software. The proposed approach was applied to different commercial extra virgin olive oil samples and the results were consistent with those obtained by the Folin Ciocalteu (FC) method. Total time for the sample preparation and the analysis required in the present approach can be drastically reduced: the throughput of the present analysis is 8 samples/h in contrast to 1sample/h of the conventional FC method. The present method is easy to implement in routine analysis and can be regarded as a feasible alternative to FC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    PubMed

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.

  14. Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams.

    PubMed

    Dang, Yu; Luo, Xiaolan; Wang, Feng; Li, Yebo

    2016-06-01

    A sustainable process of value-added utilization of wastes including waste cooking oil (WCO) and post-consumer PET bottles for the production of biodiesel and polyurethane (PU) foams was developed. WCO collected from campus cafeteria was firstly converted into biodiesel, which can be used as vehicle fuel. Then crude glycerol (CG), a byproduct of the above biodiesel process, was incorporated into the glycolysis process of post-consumer PET bottles collected from campus to produce polyols. Thirdly, PU foams were synthesized through the reaction of the above produced polyols with isocyanate in the presence of catalysts and other additives. The characterization of the produced biodiesel demonstrated that its properties meet the specification of biodiesel standard. The effect of crude glycerol loading on the properties of polyols and PU foams were investigated. All the polyols showed satisfactory properties for the production of rigid PU foams which had performance comparable to those of some petroleum-based analogs. A mass balance and a cost analysis for the conversion of WCO and waste PET into biodiesel and PU foams were also discussed. This study demonstrated the potential of WCO and PET waste for the production of value-added products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fate of bromine in pyrolysis of printed circuit board wastes.

    PubMed

    Chien, Y C; Wang, H P; Lin, K S; Huang, Y J; Yang, Y W

    2000-02-01

    Behavior of Br in pyrolysis of the printed circuit board waste with valuable copper and oil recycling has been studied in the present work. Experimentally, pyrolysis of the printed circuit board waste generated approximately 40.6% of oils, 24.9% of noncondensible gases and 34.5% of solid residues that enriched in copper (90-95%). The cuts of the oils produced from pyrolysis of the printed circuit board waste into weighted boiling fraction were primarily light naphtha and heavy gas oil. Approximately 72.3% of total Br in the printed circuit board waste were found in product gas mainly as HBr and bromobenzene. However, by extended X-ray absorption fine structural (EXAFS) spectroscopy, Cu-O and Cu-(O)-Cu species with bond distance of 1.87 and 2.95 A, respectively, were observed in the solid residues. Essentially, no Cu-Br species was found.

  16. Chemical composition, antimicrobial and antioxidant activities of anethole-rich oil from leaves of selected varieties of fennel [Foeniculum vulgare Mill. ssp. vulgare var. azoricum (Mill.) Thell].

    PubMed

    Senatore, Felice; Oliviero, Filomena; Scandolera, Elia; Taglialatela-Scafati, Orazio; Roscigno, Graziana; Zaccardelli, Massimo; De Falco, Enrica

    2013-10-01

    The chemical composition and biological activity of the essential oils obtained from the leaves of two different cultivars of Florence fennel cropped under three different fertilization treatments (Control not fertilized; Mineral Fertilization; Compost from Municipal Solid Wastes) have been analyzed. All the oils were characterized by high anethole concentration and some showed also a good percentage of limonene. Thus, the leaves of Florence fennel, which are agricultural wastes, could be used for the recovery of anethole to be used for its flavoring and biomedical properties. The antimicrobial activity expressed by assays on the examined oils indicates an appreciable effect, generally higher on Gram-positive bacteria. The various samples of Florence fennel analyzed did not show any results with FRAP test. The DPPH test showed a weak capacity of the samples to catch the free radicals from the solution, attributable to their content in anethole. © 2013.

  17. Medicines discarded in household garbage: analysis of a pharmaceutical waste sample in Vienna.

    PubMed

    Vogler, Sabine; Leopold, Christine; Zuidberg, Christel; Habl, Claudia

    2014-01-01

    To analyze a sample of pharmaceutical waste drawn from household garbage in Vienna, with the aim to learn whether and which medicines end up unused in normal household waste. We obtained a pharmaceutical waste sample from the Vienna Municipal Waste Department. This was drawn by their staff in a representative search in October and November 2009. We did a manual investigation of the sample which contained packs and loose blisters, excluded medical devices and traced loose blisters back to medicines packs. We reported information on the prescription status, origin, therapeutic group, dose form, contents and expiry date. We performed descriptive statistics for the total data set and for sub-groups (e.g. items still containing some of original content). In total, 152 packs were identified, of which the majority was prescription-only medicines (74%). Cardiovascular medicines accounted for the highest share (24%). 87% of the packs were in oral form. 95% of the packs had not expired. 14.5% of the total data set contained contents but the range of content left in the packs varied. Results on the packs with contents differed from the total: the shares of Over-the Counter medicines (36%), of medicines of the respiratory system (18%) and of the musculo-skeletal system (18%), for dermal use (23%) and of expired medicines (19%) were higher compared to the full data set. The study showed that some medicines end up unused or partially used in normal household garbage in Vienna. Our results did not confirm speculations about a high percentage of unused medicines improperly discarded. There is room for improved patient information and counseling to enhance medication adherence and a proper discharge of medicines.

  18. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... discharged to the refinery oil recovery sewer before primary oil/water/solids separation—heat exchanger bundle cleaning sludge from the petroleum refining industry (EPA Hazardous Waste No. K050), crude oil... oil tank sediment and/or in-line filter/separation solids from petroleum refining operations (EPA...

  19. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... discharged to the refinery oil recovery sewer before primary oil/water/solids separation—heat exchanger bundle cleaning sludge from the petroleum refining industry (EPA Hazardous Waste No. K050), crude oil... oil tank sediment and/or in-line filter/separation solids from petroleum refining operations (EPA...

  20. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... discharged to the refinery oil recovery sewer before primary oil/water/solids separation—heat exchanger bundle cleaning sludge from the petroleum refining industry (EPA Hazardous Waste No. K050), crude oil... oil tank sediment and/or in-line filter/separation solids from petroleum refining operations (EPA...

  1. Biogas Upgrading and Waste-to-Energy | Bioenergy | NREL

    Science.gov Websites

    dots. Waste Feedstocks We inventory WTE feedstocks-waste fat, oil, and greases; municipal solid wastes " and points right to an icon of an Excel spreadsheet labeled "Equipment and Raw Material

  2. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste.

    PubMed

    Mokhtar, Sayed M; Swailam, Hesham M; Embaby, Hassan El-Sayed

    2018-05-15

    Goldenberry waste powder, contained 5.87% moisture, 15.89% protein, 13.72% fat, 3.52% ash, 16.74% dietary fiber and 61% carbohydrates. Potassium (560 mg/100 g) was the predominant element followed by sodium (170 mg/100 g) and phosphorus (130 mg/100 g). Amino acid analysis gave high levels of cystine/methionine, histidine and tyrosine/phenylalanine. Goldenberry waste powder had good levels of the techno-functional properties including water absorption index, swelling index, foaming capacity and stability (3.38 g/g, 5.24 ml/g, 4.09 and 72.0%, respectively). Fatty acids profile showed that linoleic acid was the predominant fatty acid followed by oleic, palmitic and stearic acids. Iodine value (109.5 g/100 g of oil), acid value (2.36 mg KOH/g of oil), saponification value (183.8 mg KOH/g of oil), peroxide value (8.2 meq/kg of oil) and refractive index (1.4735) were comparable to those of soybean and sunflower oils. Goldenberry waste oil exhibited absorbance in the UV range at 100-400 nm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 77 FR 13200 - Texas: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ....1. Such wastes are termed ``oil and gas wastes.'' The TCEQ has responsibility to administer the RCRA program, however, hazardous waste generated at natural gas or natural gas liquids processing plants or... with the exploration, development, or production of oil or gas or geothermal resources and other...

  4. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.

  5. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  6. Application of a chitosan-immobilized Talaromyces thermophilus lipase to a batch biodiesel production from waste frying oils.

    PubMed

    Romdhane, Ines Belhaj-Ben; Romdhane, Zamen Ben; Bouzid, Maha; Gargouri, Ali; Belghith, Hafedh

    2013-12-01

    Waste frying oil, which not only harms people's health but also causes environmental pollution, can be a good alternative to partially substitute petroleum diesel through transesterification reaction. This oil contained 8.8 % of free fatty acids, which cause a problem in a base-catalyzed process. In this study, synthesis of biodiesel was efficiently catalyzed by the covalently immobilized Talaromyces thermophilus lipase and allowed bioconversion yield up to 92 % after 24 h of reaction time. The optimal molar ratio was four to six parts of methanol to one part of oil with a biocatalyst loaded of 25 wt.% of oil. Further, experiments revealed that T. thermophilus lipase, immobilized by a multipoint covalent liaison onto activated chitosan via a short spacer (glutaraldehyde), was sufficiently tolerant to methanol. In fact, using the stepwise addition of methanol, no significant difference was observed from the one-step whole addition at the start of reaction. The batch biodiesel synthesis was performed in a fixed bed reactor with a lipase loaded of 10 g. The bioconversion yield of 98 % was attained after a 5-h reaction time. The bioreactor was operated successfully for almost 150 h without any changes in the initial conversion yield. Most of the chemical and physical properties of the produced biodiesel meet the European and USA standard specifications of biodiesel fuels.

  7. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes inmore » the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.« less

  8. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Processing liquid organic wastes at the NNL Preston laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppersthwaite, Duncan; Greenwood, Howard; Docrat, Tahera

    2013-07-01

    Organic compounds of various kinds have been used in the nuclear industry for numerous duties in uranium chemical, metal and ceramic processing plants. In the course of the various operations undertaken, these organic compounds have become contaminated with uranic material, either accidentally or as an inevitable part of the process. Typically, the chemical/physical form and/or concentration of the uranic content of the organics has prevented disposal. In order to address the issue of contaminated liquid organic wastes, the National Nuclear Laboratory (NNL) has developed a suite of treatments designed to recover uranium and to render the waste suitable for disposal.more » The developed processes are operated at industrial scale via the NNL Preston Laboratory Residue Processing Plant. The Oil Waste Leaching (OWL) Process is a fully industrialised process used for the treatment of contaminated oils with approximately 200 tonnes of uranium contaminated oil being treated to date. The process was originally developed for the treatment of contaminated tributyl phosphate and odourless kerosene which had been adsorbed onto sawdust. However, over the years, the OWL process has been refined for a range of oils including 'water emulsifiable' cutting oils, lubricating oils, hydraulic oils/fluids and 'Fomblin' (fully fluorinated) oils. Chemically, the OWL process has proved capable of treating solvents as well as oils but the highly volatile/flammable nature of many solvents has required additional precautions compared with those required for oil treatment. These additional precautions led to the development of the Solvent Treatment Advanced Rig (STAR), an installation operated under an inert atmosphere. STAR is a small 'module' (100 dm{sup 3} volume) which allows the treatment of both water miscible and immiscible solvents. This paper discusses the challenges associated with the treatment of liquid organic wastes and the process developments which have allowed a wide range

  10. Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition.

    PubMed

    Waghmare, Govind V; Rathod, Virendra K

    2016-09-01

    The present work demonstrates the hydrolysis of waste cooking oil (WCO) under solvent free condition using commercial available immobilized lipase (Novozyme 435) under the influence of ultrasound irradiation. The process parameters were optimized using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound intensity. It has been observed that ultrasound-assisted lipase-catalyzed hydrolysis of WCO would be a promising alternative for conventional methods. A maximum conversion of 75.19% was obtained at mild operating parameters: molar ratio of oil to water (buffer pH 7) 3:1, catalyst loading of 1.25% (w/w), lower ultrasound power 100W (ultrasound intensity - 7356.68Wm(-2)), duty cycle 50% and temperature (50°C) in a relatively short reaction time (2h). The activation energy and thermodynamic study shows that the hydrolysis reaction is more feasible when ultrasound is combined with mechanical agitation as compared with the ultrasound alone and simple conventional stirring technique. Application of ultrasound considerably reduced the reaction time as compared to conventional reaction. The successive use of the catalyst for repetitive cycles under the optimum experimental conditions resulted in a loss of enzymatic activity and also minimized the product conversion. Copyright © 2016. Published by Elsevier B.V.

  11. Description and hydrogeologic evaluation of nine hazardous-waste sites in Kansas, 1984-86

    USGS Publications Warehouse

    Hart, R.J.; Spruill, T.B.

    1988-01-01

    Wastes generated at nine hazardous-waste sites in Kansas were disposed in open pits, 55-gal drums, or large storage tanks. These disposal methods have the potential to contaminate groundwater beneath the sites, the soil on the sites, and nearby surface water bodies. Various activities on the nine sites included production of diborane, transformer oil waste, production of soda ash, use of solvents for the manufacture of farm implements, reclamation of solvents and paints, oil-refinery wastes, meat packaging, and the manufacture and cleaning of tanker-truck tanks. Monitoring wells were installed upgradient and downgradient from the potential contamination source on each site. Strict decontamination procedures were followed to prevent cross contamination between well installations. Air-quality surveys were made on each site before other investigative procedures started. Hydrogeologic investigative techniques, such as terrain geophysical surveys, gamma-ray logs, and laboratory permeameter tests, were used. Groundwater level measurements provide data to determine the direction of flow. Groundwater contamination detected under the sites posed the greatest threat to the environment because of possible migration of contaminants by groundwater flow. Concentrations of volatile organic compounds, polynuclear aromatic hydrocarbons, and trace metals were detected in the groundwater at several of the sites. Many of the same compounds detected in the groundwater also were detected in soil and bed-material samples collected onsite or adjacent to the sites. Several contaminants were detected in background samples of groundwater and soil. (USGS)

  12. Performance of the heavy fraction of pyrolysis oil derived from waste printed circuit boards in modifying asphalt.

    PubMed

    Yang, Fan; Sun, Shuiyu; Zhong, Sheng; Li, Shenyong; Wang, Yi; Wu, Jiaqi

    2013-09-15

    The focus of this research was the development of efficient and affordable asphalt modifiers. Pyrolysis oil was produced as a byproduct from the pyrolysis of waste printed circuit boards (WPCBs). The high boiling point fraction was separated from the pyrolysis oil through distillation and is referred to as the heavy fraction of pyrolysis oil (HFPO). The HFPO was tested as an asphalt modifier. Three asphalt modifiers were tested: HFPO; styrene-butadiene rubber (SBR); and HFPO + SBR (1:1). The physical properties and road performance of the three modified asphalts were measured and evaluated. The results have shown that when the amount of modifier was less than 10%, the HFPO modified asphalt had the highest softening point of the three. The dynamic stability (DS) and water resistance of the asphalt mixture with the HFPO modified asphalt was 10,161 cycles/mm and 87.2%, respectively. The DS was much larger than for the HFPO + SBR and SBR modified asphalt mixtures. These results indicate that using HFPO as an asphalt modifier has significant benefits not only for road engineering but also for resource recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. 25 CFR 227.22 - Diligence and prevention of waste.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Diligence and prevention of waste. 227.22 Section 227.22... IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.22 Diligence and prevention of waste. The lessee shall exercise diligence in drilling and operating wells for oil and gas on...

  14. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  15. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Improving Phytoremediation of Oil Spills through Organic Absorbents

    NASA Astrophysics Data System (ADS)

    Xie, W.

    2017-12-01

    Every year, oil spills around the world contaminate the environment and cost billions of dollars to clean up. Phytoremediation is a current technology for recovering environments contaminated by harmful substances, such as oil, that utilizes plants' capabilities to concentrate and metabolize the contaminants. Ranunculus, or the buttercup, has raised interest in the field of phytoremediation, being reported to grow in waste environments including municipal waste disposals. My project confirmed Ranunculus to be a suitable plant for phytoremediation. However, the Ranunculus plants throughout experiments showed a limited tolerance for oil concentration, causing the plant to wilt, thus ending the phytoremediation process. To overcome this problem, my project explored the combination of organic oil absorbents and phytoremediation. Oil absorbents can quickly fix the spilled oil in place and prevent it from further migration. In addition, and most importantly, the initial free oil concentration in contact with the roots is thus effectively decreased, which is essential for the plants to survive. Typha(cattail) inflorescence, saw dust, cotton and a commercial polymer were tested for oil absorption and Typha was deemed superior, being highly oil absorbent, inexpensive, organic and hydrophobic. Further experiments were undertaken in a small outdoor space and in the UBC Horticulture greenhouse during the winter season over the course of one year. The experiments were set up to both determine the most suitable plant for phytoremediation and test the impact of using Typha inflorescence as an absorbent. For each plant, there were three pots with Typha inflorescence and oil, with oil but no Typha inflorescence and without either. In order to measure the benefit quantitatively, naturally occurring electrical currents of the metabolic process common in phytoremediation was used as an indicator for phytoremediative activity. The main findings of the experiments were: 1. Adding Typha

  17. Identification of Cellulose Breaking Bacteria in Landfill Samples for Organic Waste Management

    NASA Astrophysics Data System (ADS)

    Chan, P. M.; Leung, F. C.

    2015-12-01

    According to the Hong Kong Environmental Protection Department, the citizens of Hong Kong disposes 13,500 tonnes of waste to the landfill everyday. Out of the 13,500 tonnes, 3600 tonnes consist of organic waste. Furthermore, due to the limited supply of land for landfills in Hong Kong, it is estimated that landfills will be full by about 2020. Currently, organic wastes at landfills undergo anaerobic respiration, where methane gas, one of the most harmful green house gases, will be released. The management of such waste is a pressing issue, as possible solutions must be presented in this crucial period of time. The Independent Schools Foundation Academy introduced their very own method to manage the waste produced by the students. With an approximate of 1500 students on campus, the school produces 27 metric tonnes of food waste each academic year. The installation of the rocket food composter provides an alternate method of disposable of organic waste the school produces, for the aerobic environment allows for different by-products to be produced, namely compost that can be used for organic farming by the primary school students and subsequently carbon dioxide, a less harmful greenhouse gas. This research is an extension on the current work, as another natural factor is considered. It evaluates the microorganism community present in leachate samples collected from the North East New Territories Landfill, for the bacteria in the area exhibits special characteristics in the process of decomposition. Through the sequencing and analysis of the genome of the bacteria, the identification of the bacteria might lead to a break through on the current issue. Some bacteria demonstrate the ability to degrade lignin cellulose, or assist in the production of methane gas in aerobic respirations. These characteristics can hopefully be utilized in the future in waste managements across the globe.

  18. Aerosat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns

    EPA Science Inventory

    Emissions from the in situ burning of oil in the Gulf of Mexico after the catastrophic failure of the Deepwater Horizon drilling platform were sampled for polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs). A battery-operated instrument package was lo...

  19. 33 CFR 151.10 - Control of oil discharges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol on Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships Oil Pollution § 151.10 Control of oil discharges. (a) When...

  20. Medicines discarded in household garbage: analysis of a pharmaceutical waste sample in Vienna

    PubMed Central

    2014-01-01

    Objectives To analyze a sample of pharmaceutical waste drawn from household garbage in Vienna, with the aim to learn whether and which medicines end up unused in normal household waste. Methods We obtained a pharmaceutical waste sample from the Vienna Municipal Waste Department. This was drawn by their staff in a representative search in October and November 2009. We did a manual investigation of the sample which contained packs and loose blisters, excluded medical devices and traced loose blisters back to medicines packs. We reported information on the prescription status, origin, therapeutic group, dose form, contents and expiry date. We performed descriptive statistics for the total data set and for sub-groups (e.g. items still containing some of original content). Results In total, 152 packs were identified, of which the majority was prescription-only medicines (74%). Cardiovascular medicines accounted for the highest share (24%). 87% of the packs were in oral form. 95% of the packs had not expired. 14.5% of the total data set contained contents but the range of content left in the packs varied. Results on the packs with contents differed from the total: the shares of Over-the Counter medicines (36%), of medicines of the respiratory system (18%) and of the musculo-skeletal system (18%), for dermal use (23%) and of expired medicines (19%) were higher compared to the full data set. Conclusions The study showed that some medicines end up unused or partially used in normal household garbage in Vienna. Our results did not confirm speculations about a high percentage of unused medicines improperly discarded. There is room for improved patient information and counseling to enhance medication adherence and a proper discharge of medicines. PMID:25848546

  1. Preparation of polyurethane foams using liquefied oil palm mesocarp fibre (OPMF) and renewable monomer from waste cooking oil

    NASA Astrophysics Data System (ADS)

    Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.

    2017-09-01

    The aim of this research is the production of polyurethane (PU) foams with biopolyols from liquefied oil palm mesocarp fibre (OPMF) and renewable monomer. Liquefaction of OPMF was studied using polyhydric alcohol (PA) which is PEG-400 as liquefaction solvents in conventional glass flask. In the second part of this paper was obtained the PU foams which presented good results when compared with commercial foams and include polyols from of fossil fuels. PU foams were prepared by mixing liquefied OPMF biopolyol, renewable monomer from waste cooking, additives and methylene diphenyl diisocyanate (MDI). Water was used as an environmental friendly blowing agent. The factors that influence the cell structure of foams (i.e., catalyst, surfactant, dosage of blowing agent, and mass ratio of biopolyol to renewable monomer were studied. The synthesized PU foams were characterized by FTIR and SEM. The formulation of the PU foams should be improved, but the results show that is possible the use biopolyols and renewable monomer to produce industrial foams with lower cost.

  2. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Jesus, Alexandre; Zmozinski, Ariane Vanessa; Damin, Isabel Cristina Ferreira; Silva, Márcia Messias; Vale, Maria Goreti Rodrigues

    2012-05-01

    In this work, a direct sampling graphite furnace atomic absorption spectrometry method has been developed for the determination of arsenic and cadmium in crude oil samples. The samples were weighed directly on the solid sampling platforms and introduced into the graphite tube for analysis. The chemical modifier used for both analytes was a mixture of 0.1% Pd + 0.06% Mg + 0.06% Triton X-100. Pyrolysis and atomization curves were obtained for both analytes using standards and samples. Calibration curves with aqueous standards could be used for both analytes. The limits of detection obtained were 5.1 μg kg- 1 for arsenic and 0.2 μg kg- 1 for cadmium, calculated for the maximum amount of sample that can be analyzed (8 mg and 10 mg) for arsenic and cadmium, respectively. Relative standard deviations lower than 20% were obtained. For validation purposes, a calibration curve was constructed with the SRM 1634c and aqueous standards for arsenic and the results obtained for several crude oil samples were in agreement according to paired t-test. The result obtained for the determination of arsenic in the SRM against aqueous standards was also in agreement with the certificate value. As there is no crude oil or similar reference material available with a certified value for cadmium, a digestion in an open vessel under reflux using a "cold finger" was adopted for validation purposes. The use of paired t-test showed that the results obtained by direct sampling and digestion were in agreement at a 95% confidence level. Recovery tests were carried out with inorganic and organic standards and the results were between 88% and 109%. The proposed method is simple, fast and reliable, being appropriated for routine analysis.

  3. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95more » wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.« less

  4. Hydrothermal liquefaction of separated dairy manure for production of bio-oils with simultaneous waste treatment.

    PubMed

    Theegala, Chandra S; Midgett, Jason S

    2012-03-01

    A bench scale hydrothermal liquefaction (HTL) system was tested using dairy manure to explore biooil production and waste treatment potential. Carbon monoxide was used as the process gas and sodium carbonate (Na(2)CO(3)) as catalyst. At a 350°C process temperature, the HTL unit produced 3.45 g (± 0.21) of acetone soluble oil fractions (ASF), with an average Higher Heating Value of 32.16 (± 0.23) MJ kg(-1). A maximum ASF yield of 4.8 g was produced at a process temperature of 350°C and 1g of catalyst. The best ASF yield corresponded to 67.6% of energy contained in the raw manure. GC-MS analysis of ASF indicated that the highest quantities of phenolic compounds were formed when 1g catalyst was used. Chemical Oxygen Demand (COD) reduction in the dischargeable slurry was as high as 75%. The results point to an alternative dairy waste treatment technology with a potential to generate transportable biooils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Prediction of physical-chemical properties of crude oils by 1H NMR analysis of neat samples and chemometrics.

    PubMed

    Masili, Alice; Puligheddu, Sonia; Sassu, Lorenzo; Scano, Paola; Lai, Adolfo

    2012-11-01

    In this work, we report the feasibility study to predict the properties of neat crude oil samples from 300-MHz NMR spectral data and partial least squares (PLS) regression models. The study was carried out on 64 crude oil samples obtained from 28 different extraction fields and aims at developing a rapid and reliable method for characterizing the crude oil in a fast and cost-effective way. The main properties generally employed for evaluating crudes' quality and behavior during refining were measured and used for calibration and testing of the PLS models. Among these, the UOP characterization factor K (K(UOP)) used to classify crude oils in terms of composition, density (D), total acidity number (TAN), sulfur content (S), and true boiling point (TBP) distillation yields were investigated. Test set validation with an independent set of data was used to evaluate model performance on the basis of standard error of prediction (SEP) statistics. Model performances are particularly good for K(UOP) factor, TAN, and TPB distillation yields, whose standard error of calibration and SEP values match the analytical method precision, while the results obtained for D and S are less accurate but still useful for predictions. Furthermore, a strategy that reduces spectral data preprocessing and sample preparation procedures has been adopted. The models developed with such an ample crude oil set demonstrate that this methodology can be applied with success to modern refining process requirements. Copyright © 2012 John Wiley & Sons, Ltd.

  6. c9t11-Conjugated linoleic acid-rich oil fails to attenuate wasting in colon-26 tumor-induced late-stage cancer cachexia in male CD2F1 mice.

    PubMed

    Tian, Min; Kliewer, Kara L; Asp, Michelle L; Stout, Michael B; Belury, Martha A

    2011-02-01

    Cancer cachexia is characterized by muscle and adipose tissue wasting caused partly by chronic, systemic inflammation. Conjugated linoleic acids (CLAs) are a group of fatty acids with various properties including anti-inflammatory cis9, trans11 (c9t11)-CLA and lipid-mobilizing trans10, cis12 (t10c12)-CLA. The purpose of this study was to test whether dietary supplementation of a c9t11-CLA-rich oil (6:1 c9t11:t10c12) could attenuate wasting of muscle and adipose tissue in colon-26 adenocarcinoma-induced cachexia in mice. Loss of body weight, muscle and adipose tissue mass caused by tumors were not rescued by supplementation with the c9t11-CLA-rich oil. In quadriceps muscle, c9t11-CLA-rich oil exacerbated tumor-induced gene expression of inflammatory markers tumor necrosis factor-α, IL-6 receptor and the E3 ligase MuRF-1 involved in muscle proteolysis. In epididymal adipose tissue, tumor-driven delipidation and atrophy was aggravated by the c9,t11-CLA-rich oil, demonstrated by further reduced adipocyte size and lower adiponectin expression. However, expression of inflammatory cytokines and macrophage markers were not altered by tumors, or CLA supplementation. These data suggest that addition of c9t11-CLA-rich oil (0.6% c9t11, 0.1% t10c12) in diet did not ameliorate wasting in mice with cancer cachexia. Instead, it increased expression of inflammatory markers in the muscle and increased adipose delipidation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil).

    PubMed

    Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar

    2012-08-01

    The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Collagen based magnetic nanocomposites for oil removal applications

    PubMed Central

    Thanikaivelan, Palanisamy; Narayanan, Narayanan T.; Pradhan, Bhabendra K.; Ajayan, Pulickel M.

    2012-01-01

    A stable magnetic nanocomposite of collagen and superparamagnetic iron oxide nanoparticles (SPIONs) is prepared by a simple process utilizing protein wastes from leather industry. Molecular interaction between helical collagen fibers and spherical SPIONs is proven through calorimetric, microscopic and spectroscopic techniques. This nanocomposite exhibited selective oil absorption and magnetic tracking ability, allowing it to be used in oil removal applications. The environmental sustainability of the oil adsorbed nanobiocomposite is also demonstrated here through its conversion into a bi-functional graphitic nanocarbon material via heat treatment. The approach highlights new avenues for converting bio-wastes into useful nanomaterials in scalable and inexpensive ways. PMID:22355744

  9. Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup.

    PubMed

    Nguyen, Duc Dung; Hsieh, Ping-Yen; Tsai, Meng-Ting; Lee, Chi-Young; Tai, Nyan-Hwa; To, Bao Dong; Vu, Duc Tu; Hsu, Chia Chen

    2017-11-22

    We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.

  10. Review on innovative techniques in oil sludge bioremediation

    NASA Astrophysics Data System (ADS)

    Mahdi, Abdullah M. El; Aziz, Hamidi Abdul; Eqab, Eqab Sanoosi

    2017-10-01

    Petroleum hydrocarbon waste is produced in worldwide refineries in significant amount. In Libya, approximately 10,000 tons of oil sludge is generated in oil refineries (hydrocarbon waste mixtures) annually. Insufficient treatment of those wastes can threaten the human health and safety as well as our environment. One of the major challenges faced by petroleum refineries is the safe disposal of oil sludge generated during the cleaning and refining process stages of crude storage facilities. This paper reviews the hydrocarbon sludge characteristics and conventional methods for remediation of oil hydrocarbon from sludge. This study intensively focuses on earlier literature to describe the recently selected innovation technology in oily hydrocarbon sludge bioremediation process. Conventional characterization parameters or measurable factors can be gathered in chemical, physical, and biological parameters: (1) Chemical parameters are consequently necessary in the case of utilization of topsoil environment when they become relevant to the presence of nutrients and toxic compounds; (2) Physical parameters provide general data on sludge process and hand ability; (3) Biological parameters provide data on microbial activity and organic matter presence, which will be used to evaluate the safety of the facilities. The objective of this research is to promote the bioremediating oil sludge feasibility from Marsa El Hariga Terminal and Refinery (Tobruk).

  11. CHARACTERIZATION OF HAZARDOUS WASTE SITES, A METHODS MANUAL. VOLUME 2. AVAILABLE SAMPLING METHODS (SECOND EDITION)

    EPA Science Inventory

    Investigations at hazardous waste sites and sites of chemical spills often require on-site measurements and sampling activities to assess the type and extent of contamination. This document is a compilation of sampling methods and materials suitable to address most needs that ari...

  12. The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2.

    PubMed

    Reyoung Kim, Hee

    2013-09-01

    The radioactivity of (14)C and (3)H in graphite samples from the dismantled Korea Research Reactor-2 (the KRR-2) site was analyzed by high-temperature oxidation and liquid scintillation counting, and the graphite waste was suggested to be disposed of as a low-level radioactive waste. The graphite samples were oxidized at a high temperature of 800 °C, and their counting rates were measured by using a liquid scintillation counter (LSC). The combustion ratio of the graphite was about 99% on the sample with a maximum weight of 1g. The recoveries from the combustion furnace were around 100% and 90% in (14)C and (3)H, respectively. The minimum detectable activity was 0.04-0.05 Bq/g for the (14)C and 0.13-0.15 Bq/g for the (3)H at the same background counting time. The activity of (14)C was higher than that of (3)H over all samples with the activity ratios of the (14)C to (3)H, (14)C/(3)H, being between 2.8 and 25. The dose calculation was carried out from its radioactivity analysis results. The dose estimation gave a higher annual dose than the domestic legal limit for a clearance. It was thought that the sampled graphite waste from the dismantled research reactor was not available for reuse or recycling and should be monitored as low-level radioactive waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Assessment of two thermally treated drill mud wastes for landfill containment applications.

    PubMed

    Carignan, Marie-Pierre; Lake, Craig B; Menzies, Todd

    2007-10-01

    Offshore oil and gas drilling operations generate significant amounts of drill mud waste, some of which is transported onshore for subsequent thermal treatment (i.e. via thermal remediation). This treatment process results in a mineral waste by-product (referred to as thermally treated drill mud waste; TTDMW). Bentonites are originally present in many of the drill mud products and it is hypothesized that TTDMW can be utilized in landfill containment applications (i.e. cover or base liner). The objective of this paper is to examine the feasibility of this application by performing various physical and chemical tests on two TTDMW samples. It is shown that the two TTDMW samples contained relatively small amounts of clay-sized minerals although hydraulic conductivity values are found to be less than 10(-8) m/s. Organic carbon contents of the samples were approximately 2%. Mineralogy characterization of the samples confirmed varying amounts of smectite, however, peak friction angles for a TTDMW sample was greater than 36 degrees. Chemical characterization of the TTDMW samples show potential leaching of barium and small amounts of other heavy metals. Discussion is provided in the paper on suggestions to assist in overcoming regulatory issues associated with utilization of TTDMW in landfill containment applications.

  14. Bio-degradation of oily food waste employing thermophilic bacterial strains.

    PubMed

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Chan, Man Ting; Wong, Jonathan W C

    2018-01-01

    The objective of this work was to isolate a novel thermophilic bacterial strain and develop a bacterial consortium (BC) for efficient degradation oily food waste. Four treatments were designed: 1:1 mixture of pre-consumption food wastes (PrCFWs) and post-consumption food wastes (PCFWs) (T-1), 1:2 mixture of PrCFWs and PCFWs mixture (T-2), PrCFWs (T-3) and PCFWs (T-4). Equal quantity of BC was inoculated into each treatment to compare the oil degradation efficiency. Results showed that after 15days of incubation, a maximum oil reduction of 65.12±0.08% was observed in treatment T-4, followed by T-2 (55.44±0.12%), T-3 (54.79±0.04%) and T-1 (52.52±0.02%), while oil reduction was negligible in control. Results indicate that the development of oil utilizing thermophilic BC was more cost-effective in solving the degradation of oily food wastes and conversion into a stable end product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  16. Biaccumulation and tolerance of heavy metals on the tropical earthworm, Allobophora sp. after exposed to contaminated soil from oil mine waste

    NASA Astrophysics Data System (ADS)

    Suhendrayatna; Darusman; Raihannah; Nurmala, D.

    2018-04-01

    In this study, the impact of contaminated soil from oil mine waste on survival, behavior, tolerance, and bioaccumulation of heavy metals by the tropical earthworm, Allobophora sp. has been quantified. Earthworm was isolated from heavy metals-contaminated soil, cultured in laboratory condition, and exposed to contaminated soil from oil mine waste for a couple of months. The behavior and response of earthworms to contaminated soil was monitored for 28 days and evaluated by the response criteria was expressed in scale index (SI) referred to Langdon method. Resistance test of the earthworm (LC50) to heavy metals also conducted with variation soil concentrations of 100%, 50%, 25%, 12.5%, and 6.25%, and 0% (Control). Results showed that contaminated soil extremely affected to the earthworm live, especially length and their body weight. The Lethal Concentration 50% (LC50) of earthworm against contaminated soil was 19.05% (w/w). When exposed to contaminated soil, earthworm accumulated chromium, barium, and manganese at the concentration of 88; 92.2; and 280 mg/kg-DW, respectively. Based on these results, earthworm Allobophora sp. has potential to reduce heavy metals from contaminated soil in the field of bioremediation process.

  17. A method for sampling waste corn

    USGS Publications Warehouse

    Frederick, R.B.; Klaas, E.E.; Baldassarre, G.A.; Reinecke, K.J.

    1984-01-01

    Corn had become one of the most important wildlife food in the United States. It is eaten by a wide variety of animals, including white-tailed deer (Odocoileus virginianus ), raccoon (Procyon lotor ), ring-necked pheasant (Phasianus colchicus , wild turkey (Meleagris gallopavo ), and many species of aquatic birds. Damage to unharvested crops had been documented, but many birds and mammals eat waste grain after harvest and do not conflict with agriculture. A good method for measuring waste-corn availability can be essential to studies concerning food density and food and feeding habits of field-feeding wildlife. Previous methods were developed primarily for approximating losses due to harvest machinery. In this paper, a method is described for estimating the amount of waste corn potentially available to wildlife. Detection of temporal changes in food availability and differences caused by agricultural operations (e.g., recently harvested stubble fields vs. plowed fields) are discussed.

  18. 40 CFR 61.347 - Standards: Oil-water separators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards: Oil-water separators. 61.347... Waste Operations § 61.347 Standards: Oil-water separators. (a) Except as provided in § 61.352 of this subpart, the owner or operator shall meet the following standards for each oil-water separator in which...

  19. 40 CFR 61.347 - Standards: Oil-water separators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards: Oil-water separators. 61.347... Waste Operations § 61.347 Standards: Oil-water separators. (a) Except as provided in § 61.352 of this subpart, the owner or operator shall meet the following standards for each oil-water separator in which...

  20. 40 CFR 61.347 - Standards: Oil-water separators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards: Oil-water separators. 61.347... Waste Operations § 61.347 Standards: Oil-water separators. (a) Except as provided in § 61.352 of this subpart, the owner or operator shall meet the following standards for each oil-water separator in which...

  1. Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; P, Kumaran; M, Jayakumar

    2013-06-01

    One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

  2. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production.

    PubMed

    Yan, Dong; Lu, Yue; Chen, Yi-Feng; Wu, Qingyu

    2011-06-01

    The by-product of sugar refinery-waste molasses was explored as alternative to glucose-based medium of Chlorella protothecoides in this study. Enzymatic hydrolysis is required for waste molasses suitable for algal growth. Waste molasses hydrolysate was confirmed as a sole source of full nutrients to totally replace glucose-based medium in support of rapid growth and high oil yield from algae. Under optimized conditions, the maximum algal cell density, oil content, and oil yield were respectively 70.9 g/L, 57.6%, and 40.8 g/L. The scalability of the waste molasses-fed algal system was confirmed from 0.5L flasks to 5L fermenters. The quality of biodiesel from waste molasses-fed algae was probably comparable to that from glucose-fed ones. Economic analysis indicated the cost of oil production from waste molasses-fed algae reduced by 50%. Significant cost reduction of algal biodiesel production through fermentation engineering based on the approach is expected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, D.J.; Hazen, T.C.; Tien, A.J.

    1997-05-10

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organicmore » sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.« less

  4. Thermo-Catalytic Reforming of municipal solid waste.

    PubMed

    Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas

    2017-10-01

    Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H 2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content <7wt.% and water content <4wt.%. Due to the bio-oil's chemical and physical properties, the bio-oil was found to be directly miscible with fossil diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H 2 content of 36vol% and HHV of 17.23MJ/Nm 3 , and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H 2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Lead accumulation and depression of delta-aminolevulinic acid dehydratase (ALAD) in young birds fed automotive waste oil

    USGS Publications Warehouse

    Eastin, W.C.; Hoffman, D.J.; O'Leary, C.T.

    1983-01-01

    The effects of a 3-week dietary exposure to automotive waste crankcase oil (WCO) were examined in 1-week-old mallard (Anas platyrhynchos) ducklings and pheasant (Phasianus colchicus) chicks. Treatment groups consisted of birds exposed to 0.5, 1.5, or 4.5% WCO, to 4.5% clean crankcase oil (CCO), or untreated controls. In both species, red blood cell ALAD activity was significantly inhibited after one week by 50 to 60% in the 0.5% WCO group and by 85 to 90% in the 4.5% WCO group due to the presence of lead. Growth, hematocrit, and hemoglobin were not significantly affected at the end of three weeks. Plasma aspartate aminotransferase (AST) activity was higher in mallards after three weeks of ingesting either 4.5% WCO or 4.5% CCO, suggesting an oil-related effect due to components other than lead. Treatment had no effect on plasma concentration of uric acid, glucose, triglycerides, total protein, or cholesterol. Lead analysis showed the WCO to contain 4,200 ppm Pb and the CCO to contain 2 ppm. Tissues of mallards were examined for accumulation of lead and the order of accumulation at the end of three weeks was kidney > liver > blood ~ brain.

  6. Distribution of human waste samples in relation to sizing waste processing in space

    NASA Technical Reports Server (NTRS)

    Parker, Dick; Gallagher, S. K.

    1992-01-01

    Human waste processing for closed ecological life support systems (CELSS) in space requires that there be an accurate knowledge of the quantity of wastes produced. Because initial CELSS will be handling relatively few individuals, it is important to know the variation that exists in the production of wastes rather than relying upon mean values that could result in undersizing equipment for a specific crew. On the other hand, because of the costs of orbiting equipment, it is important to design the equipment with a minimum of excess capacity because of the weight that extra capacity represents. A considerable quantity of information that had been independently gathered on waste production was examined in order to obtain estimates of equipment sizing requirements for handling waste loads from crews of 2 to 20 individuals. The recommended design for a crew of 8 should hold 34.5 liters per day (4315 ml/person/day) for urine and stool water and a little more than 1.25 kg per day (154 g/person/day) of human waste solids and sanitary supplies.

  7. GC and GC-MS characterization of crude oil transformation in sediments and microbial mat samples after the 1991 oil spill in the Saudi Arabian Gulf coast.

    PubMed

    Garcia de Oteyza, T; Grimalt, J O

    2006-02-01

    The massive oil discharge in the Saudi Arabian coast at the end of the 1991 Gulf War is used here as a natural experiment to study the ability of microbial mats to transform oil residues after major spills. The degree of oil transformation has been evaluated from the analysis of the aliphatic and aromatic hydrocarbons by gas chromatography (GC) and GC coupled to mass spectrometry (GC-MS). The oil-polluted microbial mat samples from coastal environments exhibited an intermediate degree of transformation between that observed in superficial and deep sediments. Evaporation, photo-oxidation and water-washing seemed to lead to more effective and rapid elimination of hydrocarbons than cyanobacteria and its associated microorganisms. Furthermore, comparison of some compounds (e.g. regular isoprenoid hydrocarbons or alkylnaphthalenes) in the oil collected in the area after the spill or in the mixtures retained by cyanobacterial growth gave rise to an apparent effect of hydrocarbon preservation in the microbial mat ecosystems.

  8. 40 CFR 279.72 - On-specification used oil fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On...

  9. 40 CFR 279.72 - On-specification used oil fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On...

  10. 40 CFR 279.72 - On-specification used oil fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On...

  11. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions.

    PubMed

    Ortega, Ryan A; Carter, Erin S; Ortega, Albert E

    2016-01-01

    Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric.

  12. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions

    PubMed Central

    Carter, Erin S.; Ortega, Albert E.

    2016-01-01

    Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric. PMID:27411088

  13. Long-term sampling of CO(2) from waste-to-energy plants: (14)C determination methodology, data variation and uncertainty.

    PubMed

    Fuglsang, Karsten; Pedersen, Niels Hald; Larsen, Anna Warberg; Astrup, Thomas Fruergaard

    2014-02-01

    A dedicated sampling and measurement method was developed for long-term measurements of biogenic and fossil-derived CO(2) from thermal waste-to-energy processes. Based on long-term sampling of CO(2) and (14)C determination, plant-specific emission factors can be determined more accurately, and the annual emission of fossil CO(2) from waste-to-energy plants can be monitored according to carbon trading schemes and renewable energy certificates. Weekly and monthly measurements were performed at five Danish waste incinerators. Significant variations between fractions of biogenic CO(2) emitted were observed, not only over time, but also between plants. From the results of monthly samples at one plant, the annual mean fraction of biogenic CO(2) was found to be 69% of the total annual CO(2) emissions. From weekly samples, taken every 3 months at the five plants, significant seasonal variations in biogenic CO(2) emissions were observed (between 56% and 71% biogenic CO(2)). These variations confirmed that biomass fractions in the waste can vary considerably, not only from day to day but also from month to month. An uncertainty budget for the measurement method itself showed that the expanded uncertainty of the method was ± 4.0 pmC (95 % confidence interval) at 62 pmC. The long-term sampling method was found to be useful for waste incinerators for determination of annual fossil and biogenic CO(2) emissions with relatively low uncertainty.

  14. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    PubMed

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  15. Quantification and classification of ship scraping waste at Alang-Sosiya, India.

    PubMed

    Srinivasa Reddy, M; Basha, Shaik; Sravan Kumar, V G; Joshi, H V; Ghosh, P K

    2003-12-01

    Alang-Sosiya located on the Western Coast of Gulf of Cambay, is the largest ship recycling yard in the world. Every year on average 365 ships having a mean weight (2.10x10(6)+/-7.82x10(5) LDT) are scrapped. This industry generates a huge quantity of solid waste in the form of broken wood, rubber, insulation materials, paper, metals, glass and ceramics, plastics, leather, textiles, food waste, chemicals, paints, thermocol, sponge, ash, oil mixed sponges, miscellaneous combustible and non-combustible. The quantity and composition of solid waste was collected for a period of three months and the average values are presented in this work. Sosiya had the most waste 15.63 kg/m(2) compared to Alang 10.19 kg/m(2). The combustible solid waste quantity was around 83.0% of the total solid waste available at the yard, which represents an average weight of 9.807 kg/m(2); whereas, non-combustible waste is 1.933 kg/m(2). There is not much difference between the average of total solid waste calculated from the sampling data (96.71 MT/day) and the data provided by the port authorities (96.8 MT/day).

  16. Evaluation of commercial essential oil samples on the growth of postharvest pathogen Monilinia fructicola (G. Winter) Honey.

    PubMed

    Lazar-Baker, E E; Hetherington, S D; Ku, V V; Newman, S M

    2011-03-01

    To assess the effect of several commercial essential oils samples Australian lemon myrtle (Backhousia citriodora), cinnamon bark (Cinnamomum zeylanicum), oregano (Origanum vulgare), thyme oil (Thymus vulgaris), clove bud (Eugenia caryophyllata), valerian (Valeriana officinalis) and Australian tea tree oil (Melaleuca alternifolia) on mycelium growth and spore germination of Monilinia fructicola. The effectiveness of lemon myrtle essential oil as a fumigant for the control of brown rot in nectarines was evaluated. Monilinia fructicola exhibited a different level of sensitivity to each tested essential oil with results suggesting that the essential oils provide excellent control of the pathogen with respect to mycelium growth and spore germination at very low concentrations, whereas for others higher concentrations are needed to reduce significant fungal growth. In vivo application of lemon myrtle essential oil effectively reduced the incidence of M. fructicola on noninoculated fruit. Fumigation of nectarines following inoculation did not reduce the incidence of brown rot in comparison with the inoculated control treatment. No evidence of phytotoxicity on the fruit was recorded. Lemon myrtle essential oil exhibited the strongest antifungal activity against M. fructicola, in vitro and to a lesser extent, under in vivo conditions. The results demonstrate that lemon myrtle essential oil, in particular, has potential as an antifungal agent to control M. fructicola. © 2011 NSW Industry & Investment, Australia. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  17. Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue.

    PubMed

    Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin

    2014-10-01

    An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Co-detoxification of transformer oil-contained PCBs and heavy metals in medical waste incinerator fly ash under sub- and supercritical water.

    PubMed

    Wang, Chunfeng; Zhu, Nengmin; Wang, Yanmin; Zhang, Fushen

    2012-01-17

    The simultaneous detoxification processes of transformer oil-contained PCBs and heavy metals in medical waste incinerator (MWI) fly ash were developed under sub- and supercritical water. The addition of MWI fly ash to transformer oil-contained PCBs was found to increase the destruction efficiency of PCBs, at the same time, it facilitated reducing the leaching concentration of toxic metals from residues (obtained after reaction) for harmless disposal. In this study, we elucidated primarily the catalysis possibility of heavy metals in raw MWI fly ash for PCBs degradation by adopting the sequential extraction procedure. For both MWI fly ashes, more than 90% destruction efficiency of PCBs was achieved at ≥375 °C for 30 min, and trichlorobenzene (TCB) existing in the transformer oil was also completely decomposed. The correlation of catalytic performance to PCBs degradation was discussed based on structural characteristics and dechlorinated products. Likewise, such process rendered residues innocuous through supercritical water treatment for reuse or disposal in landfill.

  19. Polymers used to absorb fats and oils: A concept

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.

    1974-01-01

    One approach to problem of excessive oils and fats is to develop method by which oil is absorbed into solid mixture for elimination as solid waste. Materials proposed for these purposes are cross-linked (network) polymers that have high affinity for aliphatic substances, i. e., petroleum, animal, and vegetable oils.

  20. Bio-Friendly Alternatives for Xylene – Carrot oil, Olive oil, Pine oil, Rose oil

    PubMed Central

    Nandan, Surapaneni Rateesh Kumar; Kulkarni, Pavan G.; Rao, Thokala Madhusudan; Palakurthy, Pavan

    2015-01-01

    Background Xylene is a flammable liquid with characteristic petroleum or aromatic odours, it is miscible with most of the organic solvents and paraffin wax. Xylene clears tissues rapidly and renders transparency, facilitating clearing endpoint determination, this made it to be used as a clearing agent in routine histopathological techniques. Even though it is a good clearing agent, it causes damage to the tissues by its hardening effect particularly those fixed in non-protein coagulant fixatives. Apart from these tissue effects, it has severe, long lasting ill effects on health of technicians and pathologists when exposed to longer duration. Hence in order to overcome these effects and replace xylene with a safe alternative agent, the present study was carried out to assess the clearing ability and bio-friendly nature of four different natural oils i.e., Carrot oil, Olive oil, Pine oil and Rose oil in comparison with that of Xylene. According to Bernoulli’s principle of fluid dynamics, to decrease viscosity of these oils and increase penetration into tissues for rapid clearing hot-air oven technique was used. Aims To assess:1) Clearing ability and bio-friendly nature of four different oils i.e., Carrot oil, Olive oil, Pine oil, Rose oil in comparison with that of xylene, 2) Application of Bernoulli’s principle of fluid dynamics in rapid clearing of tissues by using hot-air oven. Materials and Methods Forty different formalin fixed tissue samples were taken. Each sample of tissue was cut into 5 bits (40x5=200 total bits) which were subjected for dehydration in differential alcohol gradients. Later, each bit is kept in 4 different oils such as Carrot oil, Olive oil, Pine oil, Rose oil and xylene and transferred into hot-air oven. Further routine steps of processing, sectioning and staining were done. Individual sections cleared in four different oils were assessed for cellular architecture, staining quality and a comparison was done between them. Results Results