Sharma, Naresh; Kalra, K L; Oberoi, Harinder Singh; Bansal, Sunil
2007-12-01
A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6 (kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63 gL(-1) reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting in ethanol production, yield and fermentation efficiency of 26.84 gL(-1), 0.426 gg (-1) and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol production using optimized fermentation parameters.
NASA Astrophysics Data System (ADS)
Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.
2017-09-01
In injection moulding process, it is important to keep the productivity increase constantly with least of waste produced such as warpage defect. Thus, this study is concerning on minimizing warpage defect on wheel caster part. Apart from eliminating product wastes, this project also giving out best optimization techniques using response surface methodology. This research studied on five parameters A-packing pressure, B-packing time, C-mold temperature, D-melting temperature and E-cooling time. The optimization showed that packing pressure is the most significant parameter. Warpage have been improved 42.64% from 0.6524 mm to 0.3742mm.
Optimization of waste combinations during in-vessel composting of agricultural waste.
Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh
2017-01-01
In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.
NASA Astrophysics Data System (ADS)
Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.
2017-09-01
In injection moulding process, the defects will always encountered and affected the final product shape and functionality. This study is concerning on minimizing warpage and optimizing the process parameter of injection moulding part. Apart from eliminating product wastes, this project also giving out best recommended parameters setting. This research studied on five parameters. The optimization showed that warpage have been improved 42.64% from 0.6524 mm to 0.30879 mm in Autodesk Moldflow Insight (AMI) simulation result and Genetic Algorithm (GA) respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.; Kawase, Y.
2006-07-01
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less
Cabeza, I O; López, R; Ruiz-Montoya, M; Díaz, M J
2013-10-15
Composting is one of the most successful biological processes for the treatment of the residues enriched in putrescible materials. The optimization of parameters which have an influence on the stability of the products is necessary in order to maximize recycling and recovery of waste components. The influence of the composting process parameters (aeration, moisture, C/N ratio, and time) on the stability parameters (organic matter, N-losses, chemical oxygen demand, nitrate, biodegradability coefficient) of the compost was studied. The composting experiment was carried out using Municipal Solid Waste (MSW) and Legume Trimming Residues (LTR) in 200 L isolated acrylic barrels following a Box-Behnken central composite experimental design. Second-order polynomial models were found for each of the studied compost stability parameter, which accurately described the relationship between the parameters. The differences among the experimental values and those estimated by using the equations never exceeded 10% of the former. Results of the modelling showed that excluding the time, the C/N ratio is the strongest variable influencing almost all the stability parameters studied in this case, with the exception of N-losses which is strongly dependent on moisture. Moreover, an optimized ratio MSW/LTR of 1/1 (w/w), moisture content in the range of 40-55% and moderate to low aeration rate (0.05-0.175 Lair kg(-)(1) min(-1)) is recommended to maximise degradation and to obtain a stable product during co-composting of MSW and LTR. Copyright © 2013 Elsevier Ltd. All rights reserved.
Varadharajan, Venkatramanan; Vadivel, Sudhan Shanmuga; Ramaswamy, Arulvel; Sundharamurthy, Venkatesaprabhu; Chandrasekar, Priyadharshini
2017-01-01
Tannase production by Aspergillus oryzae using various agro-wastes as substrates by submerged fermentation was studied in this research. The microbe was isolated from degrading corn kernel obtained from the corn fields at Tiruchengode, India. The microbial identification was done using 18S rRNA gene analysis. The agro-wastes chosen for the study were pomegranate rind, Cassia auriculata flower, black gram husk, and tea dust. The process parameters chosen for optimization study were substrate concentration, pH, temperature, and incubation period. During one variable at a time optimization, the pomegranate rind extract produced maximum tannase activity of 138.12 IU/mL and it was chosen as the best substrate for further experiments. The quadratic model was found to be the effective model for prediction of tannase production by A. oryzae. The optimized conditions predicted by response surface methodology (RSM) with genetic algorithm (GA) were 1.996% substrate concentration, pH of 4.89, temperature of 34.91 °C, and an incubation time of 70.65 H with maximum tannase activity of 138.363 IU/mL. The confirmatory experiment under optimized conditions showed tannase activity of 139.22 IU/mL. Hence, RSM-GA pair was successfully used in this study to optimize the process parameters required for the production of tannase using pomegranate rind. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Effect on Ca(OH)2 pretreatment to enhance biogas production of organic food waste
NASA Astrophysics Data System (ADS)
Junoh, H.; Yip, CH; Kumaran, P.
2016-03-01
This study investigated the effect of calcium hydroxide, Ca(OH)2 pretreatment in optimizing COD solubilisation and methane production through anaerobic digestion process. Two different parameters, chemical concentration (40-190 mEq/L) and pretreatment time (1-6 hours) were used to pretreat food waste. A central composite design and response surface methodology (RSM) was applied in obtaining the optimized condition for COD solubilisation. Result showed COD solubilisation was optimized at 166.98 mEq/L (equivalent to 6.1 g Ca(OH)2/L) for 1 hour. These conditions were applied through biomethane potential test with methane production of 864.19 mL/g VSdestructed and an increase of 20.0% as compared to untreated food waste.
An inexact reverse logistics model for municipal solid waste management systems.
Zhang, Yi Mei; Huang, Guo He; He, Li
2011-03-01
This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jolanta Walery, Maria
2017-12-01
The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
USING WASTE TO CLEAN UP THE ENVIRONMENT: CELLULOSIC ETHANOL, THE FUTURE OF FUELS
In the process of converting municipal solid waste (MSW) into ethanol we optimized the first two major steps of pretreatment and enzymatic hydrolysis stages to enhance the sugar yield and to reduce the cost. For the pretreatment process, we tested different parameters of react...
Assessment of municipal solid waste settlement models based on field-scale data analysis.
Bareither, Christopher A; Kwak, Seungbok
2015-08-01
An evaluation of municipal solid waste (MSW) settlement model performance and applicability was conducted based on analysis of two field-scale datasets: (1) Yolo and (2) Deer Track Bioreactor Experiment (DTBE). Twelve MSW settlement models were considered that included a range of compression behavior (i.e., immediate compression, mechanical creep, and biocompression) and range of total (2-22) and optimized (2-7) model parameters. A multi-layer immediate settlement analysis developed for Yolo provides a framework to estimate initial waste thickness and waste thickness at the end-of-immediate compression. Model application to the Yolo test cells (conventional and bioreactor landfills) via least squares optimization yielded high coefficient of determinations for all settlement models (R(2)>0.83). However, empirical models (i.e., power creep, logarithmic, and hyperbolic models) are not recommended for use in MSW settlement modeling due to potential non-representative long-term MSW behavior, limited physical significance of model parameters, and required settlement data for model parameterization. Settlement models that combine mechanical creep and biocompression into a single mathematical function constrain time-dependent settlement to a single process with finite magnitude, which limits model applicability. Overall, all models evaluated that couple multiple compression processes (immediate, creep, and biocompression) provided accurate representations of both Yolo and DTBE datasets. A model presented in Gourc et al. (2010) included the lowest number of total and optimized model parameters and yielded high statistical performance for all model applications (R(2)⩾0.97). Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Jia-De; Zheng, Liang-Wei; Zhu, Run-Ye; Yu, Yun-Feng
2013-12-01
The removal of toluene from waste gas by Honeycomb Adsorption Rotor with modified 13X molecular sieves was systematically investigated. The effects of the rotor operating parameters and the feed gas parameters on the adsorption efficiency were clarified. The experimental results indicated that the honeycomb adsorption rotor had a good humidity resistance. The removal efficiency of honeycomb adsorption rotor achieved the maximal value with optimal rotor speed and optimal generation air temperature. Moreover, for an appropriate flow rate ratio the removal efficiency and energy consumption should be taken into account. When the recommended operating parameters were regeneration air temperature of 180 degrees C, rotor speed of 2.8-5 r x h(-1), flow rate ratio of 8-12, the removal efficiency kept over 90% for the toluene gas with concentration of 100 mg x m(-3) and inlet velocity of 2 m x s(-1). The research provided design experience and operating parameters for industrial application of honeycomb adsorption rotor. It showed that lower empty bed velocity, faster rotor speed and higher temperature were necessary to purify organic waste gases of higher concentrations.
Dadaser-Celik, Filiz; Azgin, Sukru Taner; Yildiz, Yalcin Sevki
2016-12-01
Biogas production from food waste has been used as an efficient waste treatment option for years. The methane yields from decomposition of waste are, however, highly variable under different operating conditions. In this study, a statistical experimental design method (Taguchi OA 9 ) was implemented to investigate the effects of simultaneous variations of three parameters on methane production. The parameters investigated were solid content (SC), carbon/nitrogen ratio (C/N) and food/inoculum ratio (F/I). Two sets of experiments were conducted with nine anaerobic reactors operating under different conditions. Optimum conditions were determined using statistical analysis, such as analysis of variance (ANOVA). A confirmation experiment was carried out at optimum conditions to investigate the validity of the results. Statistical analysis showed that SC was the most important parameter for methane production with a 45% contribution, followed by F/I ratio with a 35% contribution. The optimum methane yield of 151 l kg -1 volatile solids (VS) was achieved after 24 days of digestion when SC was 4%, C/N was 28 and F/I were 0.3. The confirmation experiment provided a methane yield of 167 l kg -1 VS after 24 days. The analysis showed biogas production from food waste may be increased by optimization of operating conditions. © The Author(s) 2016.
Hong, Chen; Haiyun, Wu
2010-07-01
Central-composite design (CCD) and response surface methodology (RSM) were used to optimize the parameters of volatile fatty acid (VFA) production from food wastes and dewatered excess sludge in a semi-continuous process. The effects of four variables (food wastes composition in the co-substrate of food wastes and excess sludge, hydraulic retention time (HRT), organic loading rate (OLR), and pH) on acidogenesis were evaluated individually and interactively. The optimum condition derived via RSM was food wastes composition, 88.03%; HRT, 8.92 days; OLR, 8.31 g VSS/ld; and pH 6.99. The experimental VFA concentration was 29,099 mg/l under this optimum condition, which was well in agreement with the predicted value of 28,000 mg/l. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
An algorithm for the optimal collection of wet waste.
Laureri, Federica; Minciardi, Riccardo; Robba, Michela
2016-02-01
This work refers to the development of an approach for planning wet waste (food waste and other) collection at a metropolitan scale. Some specific modeling features distinguish this specific waste collection problem from the other ones. For instance, there may be significant differences as regards the values of the parameters (such as weight and volume) characterizing the various collection points. As it happens for classical waste collection planning, even in the case of wet waste, one has to deal with difficult combinatorial problems, where the determination of an optimal solution may require a very large computational effort, in the case of problem instances having a noticeable dimensionality. For this reason, in this work, a heuristic procedure for the optimal planning of wet waste is developed and applied to problem instances drawn from a real case study. The performances that can be obtained by applying such a procedure are evaluated by a comparison with those obtainable via a general-purpose mathematical programming software package, as well as those obtained by applying very simple decision rules commonly used in practice. The considered case study consists in an area corresponding to the historical center of the Municipality of Genoa. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Jia; Lu, Hongzhou; Liu, Shushu; Xu, Zhenming
2008-05-01
The printed circuit board (PCB) has a metal content of nearly 28% metal, including an abundance of nonferrous metals such as copper, lead, and tin. The purity of precious metals in PCBs is more than 10 times that of rich-content minerals. Therefore, the recycling of PCBs is an important subject, not only from the viewpoint of waste treatment, but also with respect to the recovery of valuable materials. Compared with traditional process the corona electrostatic separation (CES) had no waste water or gas during the process and it had high productivity with a low-energy cost. In this paper, the roll-type corona electrostatic separator was used to separate metals and nonmetals from scraped waste PCBs. The software MATLAB was used to simulate the distribution of electric field in separating space. It was found that, the variations of parameters of electrodes and applied voltages directly influenced the distribution of electric field. Through the correlation of simulated and experimental results, the good separation results were got under the optimized operating parameter: U=20-30 kV, L=L(1)=L(2)=0.21 m, R(1)=0.114, R(2)=0.019 m, theta(1)=20 degrees and theta(2)=60 degrees .
Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge.
Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar
2018-05-01
In the current study, the feasibility of utilizing municipal secondary wastewater sludge for Polyhydroxyalkanoate (PHA) extraction was improved by optimization of various parameters (temperature, duration and concentration of sludge solids). Optimized process parameters resulted in PHA recovery of 0.605 g, significantly higher than un-optimized conditions. The characterization of PHA was carried out by GC-MS, FT-IR and NMR ( 1 H and 13 C) spectroscopy. The PHA profile was found to be dominated by mcl PHA (58%) along with other diverse PHA. The results of the present study show rich diversity of PHA extracted from a raw material which is readily available at minimal cost. In conclusion, exploring the potential of wastes for production of bioplastics not only reduces the cost of bioplastic production, but also provides a sustainable means for waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gupta, Ankur; Balomajumder, Chandrajit
2017-12-01
In this study, simultaneous removal of Cr(VI) and phenol from binary solution was carried out using Fe-treated tea waste biomass. The effect of process parameters such as adsorbent dose, pH, initial concentration of Cr(VI) (mg/L), and initial concentration of phenol (mg/L) was optimized. The analysis of variance of the quadratic model demonstrates that the experimental results are in good agreement with the predicted values. Based on experimental design at an initial concentration of 55 mg/L of Cr(VI), 27.50 mg/L of phenol, pH 2.0, 15 g/L adsorbent dose, 99.99% removal of Cr(VI), and phenol was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
2017-06-08
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Combined Municipal Solid Waste and biomass system optimization for district energy applications.
Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P
2014-01-01
Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
The effect of inflation rate on the cost of medical waste management system
NASA Astrophysics Data System (ADS)
Jolanta Walery, Maria
2017-11-01
This paper describes the optimization study aimed to analyse the impact of the parameter describing the inflation rate on the cost of the system and its structure. The study was conducted on the example of the analysis of medical waste management system in north-eastern Poland, in the Podlaskie Province. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. the inflation rate on the economic efficiency index (E) and the spatial structure of the system was determined. With the assumed inflation rate in the range of 1.00 to 1.12, the highest cost of the system was achieved at the level of PLN 2022.20/t (increase of economic efficiency index E by ca. 27% in comparison with run 1, with inflation rate = 1.12).
Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.
2011-09-23
To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are stillmore » too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.« less
Pietrzykowski, Marcin; Woś, Bartłomiej; Pająk, Marek; Wanic, Tomasz; Krzaklewski, Wojciech; Chodak, Marcin
2018-06-01
Combustion wastes are characterised by extremely low N contents. Therefore, introduction of nitrogen-fixing species at the first stage of their biological reclamation is required. This paper presents an assessment of the growth parameters of alders (Alnus sp.) 10 years after their introduction to a disposal site of lignite combustion waste in Central Poland. Black (Alnus glutinosa) and grey alders (Alnus incana) were planted directly in the combustion waste. The soil amendment included three variants: control with pure combustion waste, admixture of lignite culm and addition of acid sand. Both alder species displayed good growth parameters comparable to those of alders in natural habitats. However, black alder had better growth parameters, such as stand density index (SDI), diameter at breast height (DBH) and height (H) than grey alder. The lignite amendment exerted a positive effect on tree growth, reflected in a higher SDI and H, whereas the acid sand amendment did not affect any of the growth parameters of the studied alder species. Despite the good growth parameters, the measured N:P and N:K ratios in the alder leaves largely differed from the optimal values indicating insufficient P and K supply at the combustion waste disposal site. This may pose a threat to further development of the introduced tree plantings. The introduction of alders along with the lignite addition into the planting holes seems to be a successful method of combustion waste revegetation.
Flash Cracking Reactor for Waste Plastic Processing
NASA Technical Reports Server (NTRS)
Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu
2013-01-01
Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
Guo, P; Huang, G H
2010-03-01
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their combinations; secondly, it has capability in addressing the temporal variations of the functional intervals; thirdly, it can facilitate dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period and multi-option context. Copyright 2009 Elsevier Ltd. All rights reserved.
Algapani, Dalal E; Qiao, Wei; di Pumpo, Francesca; Bianchi, David; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie
2018-01-01
Anaerobic digestion is a well-established technology for treating organic waste, but it is still under challenge for food waste due to process stability problems. In this work, continuous H 2 and CH 4 production from canteen food waste (FW) in a two-stage system were successfully established by optimizing process parameters. The optimal hydraulic retention time was 5d for H 2 and 15d for CH 4 . Overall, around 59% of the total COD in FW was converted into H 2 (4%) and into CH 4 (55%). The fluctuations of FW characteristics did not significantly affect process performance. From the energy point view, the H 2 reactor contributed much less than the methane reactor to total energy balance, but it played a key role in maintaining the stability of anaerobic treatment of food waste. Microbial characterization indicated that methane formation was through syntrophic acetate oxidation combined with hydrogenotrophic methanogenesis pathway. Copyright © 2017. Published by Elsevier Ltd.
Wei, Na
2015-01-01
Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800
Wei, Na
2015-05-07
Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.
Unuofin, F O; Mnkeni, P N S
2014-11-01
Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung-paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg(-1) dry weight of cow dung-waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg(-1) resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg(-1) feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Abu, M. Y.; Norizan, N. S.; Rahman, M. S. Abd
2018-04-01
Remanufacturing is a sustainability strategic planning which transforming the end of life product to as new performance with their warranty is same or better than the original product. In order to quantify the advantages of this strategy, all the processes must implement the optimization to reach the ultimate goal and reduce the waste generated. The aim of this work is to evaluate the criticality of parameters on the end of life crankshaft based on Taguchi’s orthogonal array. Then, estimate the cost using traditional cost accounting by considering the critical parameters. By implementing the optimization, the remanufacturer obviously produced lower cost and waste during production with higher potential to gain the profit. Mahalanobis-Taguchi System was proven as a powerful method of optimization that revealed the criticality of parameters. When subjected the method to the MAN engine model, there was 5 out of 6 crankpins were critical which need for grinding process while no changes happened to the Caterpillar engine model. Meanwhile, the cost per unit for MAN engine model was changed from MYR1401.29 to RM1251.29 while for Caterpillar engine model have no changes due to the no changes on criticality of parameters consideration. Therefore, by integrating the optimization and costing through remanufacturing process, a better decision can be achieved after observing the potential profit will be gained. The significant of output demonstrated through promoting sustainability by reducing re-melting process of damaged parts to ensure consistent benefit of return cores.
Li, Lei; He, Qingming; Wei, Yunmei; He, Qin; Peng, Xuya
2014-11-01
To determine reliable state parameters which could be used as early warning indicators of process failure due to the acidification of anaerobic digestion of food waste, three mesophilic anaerobic digesters of food waste with different operation conditions were investigated. Such parameters as gas production, methane content, pH, concentrations of volatile fatty acid (VFA), alkalinity and their combined indicators were evaluated. Results revealed that operation conditions significantly affect the responses of parameters and thus the optimal early warning indicators of each reactor differ from each other. None of the single indicators was universally valid for all the systems. The universally valid indicators should combine several parameters to supply complementary information. A combination of total VFA, the ratio of VFA to total alkalinity (VFA/TA) and the ratio of bicarbonate alkalinity to total alkalinity (BA/TA) can reflect the metabolism of the digesting system and realize rapid and effective early warning. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biodegradation of waste lubricants by a newly isolated Ochrobactrum sp. C1.
Bhattacharya, Munna; Biswas, Dipa; Sana, Santanu; Datta, Sriparna
2015-10-01
A potential degrader of paraffinic and aromatic hydrocarbons was isolated from oil-contaminated soil from steel plant effluent area in Burnpur, India. The strain was investigated for degradation of waste lubricants (waste engine oil and waste transformer oil) that often contain EPA (Environmental Protection Agency, USA) classified priority pollutants and was identified as Ochrobactrum sp. C1 by 16S rRNA gene sequencing. The strain C1 was found to tolerate unusually high waste lubricant concentration along with emulsification capability of the culture broth, and its degradation efficiency was 48.5 ± 0.5 % for waste engine oil and 30.47 ± 0.25 % for waste transformer oil during 7 days incubation period. In order to get optimal degradation efficiency, a three level Box-Behnken design was employed to optimize the physical parameters namely pH, temperature and waste oil concentration. The results indicate that at temperature 36.4 °C, pH 7.3 and with 4.6 % (v/v) oil concentration, the percentage degradation of waste engine oil will be 57 % within 7 days. At this optimized condition, the experimental values (56.7 ± 0.25 %) are in a good agreement with the predicted values with a calculated R 2 to be 0.998 and significant correlation between biodegradation and emulsification activity (E 24 = 69.42 ± 0.32 %) of the culture broth toward engine oil was found with a correlation coefficient of 0.972. This is the first study showing that an Ochrobactrum sp. strain is capable of degrading waste lubricants, which might contribute to the bioremediation of waste lubricating oil-contaminated soil.
Physical and chemical evaluation of furniture waste briquettes.
Moreno, Ana Isabel; Font, Rafael; Conesa, Juan A
2016-03-01
Furniture waste is mainly composed of wood and upholstery foam (mostly polyurethane foam). Both of these have a high calorific value, therefore, energy recovery would be an appropriate process to manage these wastes. Nevertheless, the drawback is that the energy content of these wastes is limited due to their low density mainly that of upholstery foam. Densification of separate foam presents difficulties due to its elastic character. The significance of this work lies in obtaining densified material by co-densification of furniture wood waste and polyurethane foam waste. Densification of furniture wood and the co-densification of furniture wood waste with polyurethane foam have been studied. On the one hand, the parameters that have an effect on the quality of the furniture waste briquettes have been analysed, i.e., moisture content, compaction pressure, presence of lignin, etc. The maximum weight percentage of polyurethane foam that can be added with furniture wood waste to obtain durable briquettes and the optimal moisture were determined. On the other hand, some parameters were analysed in order to evaluate the possible effect on the combustion. The chemical composition of waste wood was compared with untreated wood biomass; the higher nitrogen content and the concentration of some metals were the most important differences, with a significant difference of Ti content. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming
2010-07-01
Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications.
Yuan, Zhihui; Ruan, Jujun; Li, Yaying; Qiu, Rongliang
2018-04-10
Bioleaching is a green recycling technology for recovering precious metals from waste printed circuit boards (WPCBs). However, this technology requires increasing cyanide production to obtain desirable recovery efficiency. Luria-Bertani medium (LB medium, containing tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L) was commonly used in bioleaching of precious metal. In this study, results showed that LB medium did not produce highest yield of cyanide. Under optimal culture conditions (25 °C, pH 7.5), the maximum cyanide yield of the optimized medium (containing tryptone 6 g/L and yeast extract 5 g/L) was 1.5 times as high as that of LB medium. In addition, kinetics and relationship of cell growth and cyanide production was studied. Data of cell growth fitted logistics model well. Allometric model was demonstrated effective in describing relationship between cell growth and cyanide production. By inserting logistics equation into allometric equation, we got a novel hybrid equation containing five parameters. Kinetic data for cyanide production were well fitted to the new model. Model parameters reflected both cell growth and cyanide production process. Copyright © 2018 Elsevier B.V. All rights reserved.
Performance optimization and validation of ADM1 simulations under anaerobic thermophilic conditions.
Atallah, Nabil M; El-Fadel, Mutasem; Ghanimeh, Sophia; Saikaly, Pascal; Abou-Najm, Majdi
2014-12-01
In this study, two experimental sets of data each involving two thermophilic anaerobic digesters treating food waste, were simulated using the Anaerobic Digestion Model No. 1 (ADM1). A sensitivity analysis was conducted, using both data sets of one digester, for parameter optimization based on five measured performance indicators: methane generation, pH, acetate, total COD, ammonia, and an equally weighted combination of the five indicators. The simulation results revealed that while optimization with respect to methane alone, a commonly adopted approach, succeeded in simulating methane experimental results, it predicted other intermediary outputs less accurately. On the other hand, the multi-objective optimization has the advantage of providing better results than methane optimization despite not capturing the intermediary output. The results from the parameter optimization were validated upon their independent application on the data sets of the second digester. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards
Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen
2015-01-01
For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au+ and Cu2+ respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs. PMID:26316021
Comparison of existing models to simulate anaerobic digestion of lipid-rich waste.
Béline, F; Rodriguez-Mendez, R; Girault, R; Bihan, Y Le; Lessard, P
2017-02-01
Models for anaerobic digestion of lipid-rich waste taking inhibition into account were reviewed and, if necessary, adjusted to the ADM1 model framework in order to compare them. Experimental data from anaerobic digestion of slaughterhouse waste at an organic loading rate (OLR) ranging from 0.3 to 1.9kgVSm -3 d -1 were used to compare and evaluate models. Experimental data obtained at low OLRs were accurately modeled whatever the model thereby validating the stoichiometric parameters used and influent fractionation. However, at higher OLRs, although inhibition parameters were optimized to reduce differences between experimental and simulated data, no model was able to accurately simulate accumulation of substrates and intermediates, mainly due to the wrong simulation of pH. A simulation using pH based on experimental data showed that acetogenesis and methanogenesis were the most sensitive steps to LCFA inhibition and enabled identification of the inhibition parameters of both steps. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde
2016-09-01
The energy conversion potential of municipal solid waste (MSW) disposed of in landfills remains largely untapped because of the slow and variable rate of biogas generation, delayed and inefficient biogas collection, leakage of biogas, and landfill practices and infrastructure that are not geared toward energy recovery. A database consisting of methane (CH4) generation data, the major constituent of biogas, from 49 laboratory experiments and field monitoring data from 57 landfills was developed. Three CH4 generation parameters, i.e., waste decay rate (k), CH4 generation potential (L0), and time until maximum CH4 generation rate (tmax), were calculated for each dataset using U.S. EPA's Landfill Gas Emission Model (LandGEM). Factors influencing the derived parameters in laboratory experiments and landfills were investigated using multi-linear regression analysis. Total weight of waste (W) was correlated with biodegradation conditions through a ranked classification scheme. k increased with increasing percentage of readily biodegradable waste (Br0 (%)) and waste temperature, and reduced with increasing W, an indicator of less favorable biodegradation conditions. The values of k obtained in the laboratory were commonly significantly higher than those in landfills and those recommended by LandGEM. The mean value of L0 was 98 and 88L CH4/kg waste for laboratory and field studies, respectively, but was significantly affected by waste composition with ranges from 10 to 300L CH4/kg. tmax increased with increasing percentage of biodegradable waste (B0) and W. The values of tmax in landfills were higher than those in laboratory experiments or those based on LandGEM's recommended parameters. Enhancing biodegradation conditions in landfill cells has a greater impact on improving k and tmax than increasing B0. Optimizing the B0 and Br0 values of landfilled waste increases L0 and reduces tmax. Copyright © 2015 Elsevier Ltd. All rights reserved.
Treatment of waste water by coagulation and flocculation using biomaterials
NASA Astrophysics Data System (ADS)
Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh
2017-11-01
The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.
Jovanovic, Sasa; Savic, Slobodan; Jovicic, Nebojsa; Boskovic, Goran; Djordjevic, Zorica
2016-09-01
Multi-criteria decision making (MCDM) is a relatively new tool for decision makers who deal with numerous and often contradictory factors during their decision making process. This paper presents a procedure to choose the optimal municipal solid waste (MSW) management system for the area of the city of Kragujevac (Republic of Serbia) based on the MCDM method. Two methods of multiple attribute decision making, i.e. SAW (simple additive weighting method) and TOPSIS (technique for order preference by similarity to ideal solution), respectively, were used to compare the proposed waste management strategies (WMS). Each of the created strategies was simulated using the software package IWM2. Total values for eight chosen parameters were calculated for all the strategies. Contribution of each of the six waste treatment options was valorized. The SAW analysis was used to obtain the sum characteristics for all the waste management treatment strategies and they were ranked accordingly. The TOPSIS method was used to calculate the relative closeness factors to the ideal solution for all the alternatives. Then, the proposed strategies were ranked in form of tables and diagrams obtained based on both MCDM methods. As shown in this paper, the results were in good agreement, which additionally confirmed and facilitated the choice of the optimal MSW management strategy. © The Author(s) 2016.
Optimization of fuels from waste composition with application of genetic algorithm.
Małgorzata, Wzorek
2014-05-01
The objective of this article is to elaborate a method to optimize the composition of the fuels from sewage sludge (PBS fuel - fuel based on sewage sludge and coal slime, PBM fuel - fuel based on sewage sludge and meat and bone meal, PBT fuel - fuel based on sewage sludge and sawdust). As a tool for an optimization procedure, the use of a genetic algorithm is proposed. The optimization task involves the maximization of mass fraction of sewage sludge in a fuel developed on the basis of quality-based criteria for the use as an alternative fuel used by the cement industry. The selection criteria of fuels composition concerned such parameters as: calorific value, content of chlorine, sulphur and heavy metals. Mathematical descriptions of fuel compositions and general forms of the genetic algorithm, as well as the obtained optimization results are presented. The results of this study indicate that the proposed genetic algorithm offers an optimization tool, which could be useful in the determination of the composition of fuels that are produced from waste.
Chen, Zhenyang; Niu, Bo; Zhang, Lingen; Xu, Zhenming
2018-01-15
Recycling rare metal tantalum from waste tantalum capacitors (WTCs) is significant to alleviate the shortage of tantalum resource. However, environmental problems will be caused if the organic materials from WTCs are improperly disposed. This study presented a promising vacuum pyrolysis technology to recycle the organic materials from WTCs. The organics removal rate could reach 94.32wt% according to TG results. The optimal parameters were determined as 425°C, 50Pa and 30min on the basis of response surface methodology (RSM). The oil yield and residual rate was 18.09wt% and 74.94wt%, respectively. All pyrolysis products can be recycled through a reasonable route. Besides, to deeply understand the pyrolysis process, the pyrolysis mechanism was also proposed based on the product and free radical theory. This paper provides an efficient process for recycling the organic material from WTCs, which can facilitate the following tantalum recovery. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills.
Jovanov, Dejan; Vujić, Bogdana; Vujić, Goran
2018-06-15
Monitoring of the gas and leachate parameters in a closed landfill is a long-term activity defined by national legislative worldwide. Serbian Waste Disposal Law defines the monitoring of a landfill at least 30 years after its closing, but the definition of the monitoring extent (number and type of parameters) is incomplete. In order to define and clear all the uncertainties, this research focuses on process of monitoring optimization, using the closed landfill in Zrenjanin, Serbia, as the experimental model. The aim of optimization was to find representative parameters which would define the physical, chemical and biological processes in the closed methanogenic landfill and to make this process less expensive. Research included development of the five monitoring models with different number of gas and leachate parameters and each model has been processed in open source software GeoGebra which is often used for solving optimization problems. The results of optimization process identified the most favorable monitoring model which fulfills all the defined criteria not only from the point of view of mathematical analyses, but also from the point of view of environment protection. The final outcome of this research - the minimal required parameters which should be included in the landfill monitoring are precisely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arun, C; Sivashanmugam, P
2015-10-01
Reuse and management of organic solid waste, reduce the environmental impact on human health and increase the economic status by generating valuable products for current and novel applications. Garbage enzyme is one such product produced from fermentation of organic solid waste and it can be used as liquid fertilizer, antimicrobial agents, treatment of domestic wastewater, municipal and industrial sludge treatment, etc. The semi-continuous production of garbage enzyme in large quantity at minimal time period and at lesser cost is needed to cater for treatment of increasing quantities of industrial waste activated sludge. This necessitates a parameter for monitoring and control for the scaling up of current process on semi-continuous basis. In the present study a RP-HPLC (Reversed Phase-High Performance Liquid Chromatography) method is used for quantification of standard organic acid at optimized condition 30°C column oven temperature, pH 2.7, and 0.7 ml/min flow rate of the mobile phase (potassium dihydrogen phosphate in water) at 50mM concentration. The garbage enzyme solution collected in 15, 30, 45, 60, 75 and 90 days were used as sample to determine the concentration of organic acid. Among these, 90th day sample showed the maximum concentration of 78.14 g/l of acetic acid in garbage enzyme, whereas other organic acids concentration got decreased when compare to the 15th day sample. This result confirms that the matured garbage enzyme contains a higher concentration of acetic acid and thus it can be used as a monitoring parameter for semi-continuous production of garbage enzyme in large scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of electric signal frequency and form on physical-chemical oxidation of organic wastes
NASA Astrophysics Data System (ADS)
Morozov, Yegor; Tikhomirov, Alexander A.; Trifonov, Sergey V.; Kudenko, D.. Yurii A.
The behavior conditions of physical-chemical reactions securing organic wastes’ oxidation in H _{2}O _{2} aqueous medium aimed at an increase of mass exchange processes in a life support system (LSS) for a space purpose have been under study. The character of dependence of organic wastes oxidation rate in H _{2}O _{2} aqueous medium, activated with alternating current of different frequency and form have been considered. Ways of those parameters optimization for the purpose to efficiently increase the physical-chemical decomposition of organic wastes in LSS have been proposed. Specifically, power consumption and reaction time of wastes mineralization have been determined to reduce more than twice. Involvement ways of mineralized organic wastes received in intrasystem mass exchange have been shown. Application feasibility of the obtained results both for space and terrestrial purpose has been discussed. Key words: life support sustem, mineralization, turnover, frequency, organic wastes
Yang, Sen; Li, Qing; Zeng, Qinglan; Zhang, Jibin; Yu, Ziniu; Liu, Ziduo
2012-01-01
The feedstocks for biodiesel production are predominantly from edible oils and the high cost of the feedstocks prevents its large scale application. In this study, we evaluated the oil extracted from Boettcherisca peregrine larvae (BPL) grown on solid organic wastes for biodiesel production. The oil contents detected in the BPL converted from swine manure, fermentation residue and the degreased food waste, were 21.7%, 19.5% and 31.1%, respectively. The acid value of the oil is 19.02 mg KOH/g requiring a two-step transesterification process. The optimized process of 12∶1 methanol/oil (mol/mol) with 1.5% H(2)SO(4) reacted at 70°C for 120 min resulted in a 90.8% conversion rate of free fatty acid (FFA) by esterification, and a 92.3% conversion rate of triglycerides into esters by alkaline transesterification. Properties of the BPL oil-based biodiesel are within the specifications of ASTM D6751, suggesting that the solid organic waste-grown BPL could be a feasible non-food feedstock for biodiesel production.
Yang, Sen; Li, Qing; Zeng, Qinglan; Zhang, Jibin; Yu, Ziniu; Liu, Ziduo
2012-01-01
The feedstocks for biodiesel production are predominantly from edible oils and the high cost of the feedstocks prevents its large scale application. In this study, we evaluated the oil extracted from Boettcherisca peregrine larvae (BPL) grown on solid organic wastes for biodiesel production. The oil contents detected in the BPL converted from swine manure, fermentation residue and the degreased food waste, were 21.7%, 19.5% and 31.1%, respectively. The acid value of the oil is 19.02 mg KOH/g requiring a two-step transesterification process. The optimized process of 12∶1 methanol/oil (mol/mol) with 1.5% H2SO4 reacted at 70°C for 120 min resulted in a 90.8% conversion rate of free fatty acid (FFA) by esterification, and a 92.3% conversion rate of triglycerides into esters by alkaline transesterification. Properties of the BPL oil-based biodiesel are within the specifications of ASTM D6751, suggesting that the solid organic waste-grown BPL could be a feasible non-food feedstock for biodiesel production. PMID:23029331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unuofin, F.O., E-mail: funmifrank2009@gmail.com; Mnkeni, P.N.S., E-mail: pmnkeni@ufh.ac.za
2014-11-15
Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg{sup -1} resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung andmore » rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg{sup −1} dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg{sup −1} resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg{sup −1} feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.« less
Remediation of lead from lead electroplating industrial effluent using sago waste.
Jeyanthi, G P; Shanthi, G
2007-01-01
Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)
NASA Astrophysics Data System (ADS)
Woskov, P. P.
1995-01-01
Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.
Characterization and recycling of cadmium from waste nickel-cadmium batteries.
Huang, Kui; Li, Jia; Xu, Zhenming
2010-11-01
A severe threat was posed due to improper and inefficient recycling of waste batteries in China. The present work considered the fundamental aspects of the recycling of cadmium from waste nickel-cadmium batteries by means of vacuum metallurgy separation in scale-up. In the first stage of this work, the characterization of waste nickel-cadmium batteries was carried out. Five types of batteries from different brands and models were selected and their components were characterized in relation to their elemental chemical composition and main phase. In the second stage of this work, the parameters affecting the recycling of cadmium by means of vacuum metallurgy separation were investigated and a L(16) (4(4)) orthogonal design was applied to optimize the parameters. With the thermodynamics theory and numerical analysis, it can be seen that the orthogonal design is an effective tool for investigating the parameters affecting the recycling of cadmium. The optimum operating parameters for the recycling of cadmium obtained by orthogonal design and verification test were 1073 K (temperature), 2.5h (heating time), 2 wt.% (the addition of carbon powder), and 30 mm (the loaded height), respectively, with recycling efficiency approaching 99.98%. The XRD and ICP-AES analyzed results show that the condensed product was characterized as metallic cadmium, and cadmium purity was 99.99% under the optimum condition. Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
An investigation on the modelling of kinetics of thermal decomposition of hazardous mercury wastes.
Busto, Yailen; M G Tack, Filip; Peralta, Luis M; Cabrera, Xiomara; Arteaga-Pérez, Luis E
2013-09-15
The kinetics of mercury removal from solid wastes generated by chlor-alkali plants were studied. The reaction order and model-free method with an isoconversional approach were used to estimate the kinetic parameters and reaction mechanism that apply to the thermal decomposition of hazardous mercury wastes. As a first approach to the understanding of thermal decomposition for this type of systems (poly-disperse and multi-component), a novel scheme of six reactions was proposed to represent the behaviour of mercury compounds in the solid matrix during the treatment. An integration-optimization algorithm was used in the screening of nine mechanistic models to develop kinetic expressions that best describe the process. The kinetic parameters were calculated by fitting each of these models to the experimental data. It was demonstrated that the D₁-diffusion mechanism appeared to govern the process at 250°C and high residence times, whereas at 450°C a combination of the diffusion mechanism (D₁) and the third order reaction mechanism (F3) fitted the kinetics of the conversions. The developed models can be applied in engineering calculations to dimension the installations and determine the optimal conditions to treat a mercury containing sludge. Copyright © 2013 Elsevier B.V. All rights reserved.
Enzymatic conversion of waste cooking oils into alternative fuel--biodiesel.
Chen, Guanyi; Ying, Ming; Li, Weizhun
2006-01-01
Production of biodiesel from pure oils through chemical conversion may not be applicable to waste oils/fats. Therefore, enzymatic conversion using immobilized lipase based on Rhizopus orzyae is considered in this article. This article studies this technological process, focusing on optimization of several process parameters, including the molar ratio of methanol to waste oils, biocatalyst load, and adding method, reaction temperature, and water content. The results indicate that methanol/oils ratio of 4, immobilized lipase/oils of 30 wt% and 40 degrees C are suitable for waste oils under 1 atm. The irreversible inactivation of the lipase is presumed and a stepwise addition of methanol to reduce inactivation of immobilized lipases is proposed. Under the optimum conditions the yield of methyl esters is around 88-90%.
Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.
Alimahmoodi, Mahmood; Mulligan, Catherine N
2011-01-01
The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40°C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series. Copyright © 2010 Elsevier Ltd. All rights reserved.
Statistical optimization for lipase production from solid waste of vegetable oil industry.
Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara
2018-04-21
The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.
Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar
2018-01-01
Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
A facility location model for municipal solid waste management system under uncertain environment.
Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K
2017-12-15
In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimization of municipal solid waste collection and transportation routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in
2015-09-15
Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less
Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Marfà, Oriol
2015-03-01
This study aimed to monitor process parameters when two by-products (green waste - GW, and the solid fraction of cattle slurry - SFCS) were composted to obtain growing media. Using compost in growing medium mixtures involves prolonged composting processes that can last at least half a year. It is therefore crucial to study the parameters that affect compost stability as measured in the field in order to shorten the composting process at composting facilities. Two mixtures were prepared: GW25 (25% GW and 75% SFCS, v/v) and GW75 (75% GW and 25% SFCS, v/v). The different raw mixtures resulted in the production of two different growing media, and the evolution of process management parameters was different. A new parameter has been proposed to deal with attaining the thermophilic temperature range and maintaining it during composting, not only it would be useful to optimize composting processes, but also to assess the hygienization degree. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rai, Suchita; Wasewar, Kailas L; Lataye, Dilip H; Mishra, Rajshekhar S; Puttewar, Suresh P; Chaddha, Mukesh J; Mahindiran, P; Mukhopadhyay, Jyoti
2012-09-01
'Red mud' or 'bauxite residue', a waste generated from alumina refinery is highly alkaline in nature with a pH of 10.5-12.5. Red mud poses serious environmental problems such as alkali seepage in ground water and alkaline dust generation. One of the options to make red mud less hazardous and environmentally benign is its neutralization with acid or an acidic waste. Hence, in the present study, neutralization of alkaline red mud was carried out using a highly acidic waste (pickling waste liquor). Pickling waste liquor is a mixture of strong acids used for descaling or cleaning the surfaces in steel making industry. The aim of the study was to look into the feasibility of neutralization process of the two wastes using Taguchi's design of experimental methodology. This would make both the wastes less hazardous and safe for disposal. The effect of slurry solids, volume of pickling liquor, stirring time and temperature on the neutralization process were investigated. The analysis of variance (ANOVA) shows that the volume of the pickling liquor is the most significant parameter followed by quantity of red mud with 69.18% and 18.48% contribution each respectively. Under the optimized parameters, pH value of 7 can be achieved by mixing the two wastes. About 25-30% of the total soda from the red mud is being neutralized and alkalinity is getting reduced by 80-85%. Mineralogy and morphology of the neutralized red mud have also been studied. The data presented will be useful in view of environmental concern of red mud disposal.
Xue, Mianqiang; Li, Jia; Xu, Zhenming
2013-02-01
Electronic waste (e-waste) management is pressing as global production has increased significantly in the past few years and is rising continuously at a fast rate. Many countries are facing hazardous e-waste mountains, most of which are disposed of by backyard recyclers, creating serious threats to public health and ecosystems. Industrialization of state-of-the-art recycling technologies is imperative to enhance the comprehensive utilization of resources and to protect the environment. This article aims to provide an overview of management strategies solving the crucial problems during the process of industrialization. A typical case study of electrostatic separation for recycling waste printed circuit boards was discussed in terms of parameters optimization, materials flow control, noise assessment, risk assessment, economic evaluation and social benefits analysis. The comprehensive view provided by the review could be helpful to the progress of the e-waste recycling industry.
Malek, Ammar; Hachemi, Messaoud; Didier, Villemin
2009-10-15
Herein, we describe an original novel method which allows the decontamination of the chromium-containing leather wastes to simplify the recovery of its considerable protein fractions. Organic salts and acids such as potassium oxalate, potassium tartrate, acetic and citric acids were tested for their efficiency to separate the chromium from the leather waste. Our investigation is based on the research of the total reversibility of the tanning process, in order to decontaminate the waste without its previous degradation or digestion. The effect of several influential parameters on the treatment process was also studied. Therefore, the action of chemical agents used in decontamination process seems very interesting. The optimal yield of chromium extraction about 95% is obtained. The aim of the present study is to define a preliminary processing of solid leather waste with two main impacts: Removing with reusing chromium in the tanning process with simple, ecological and economic treatment process and potential valorization of the organic matrix of waste decontaminated.
Waste vinegar residue as substrate for phytase production.
Wang, Zhi-Hong; Dong, Xiao-Fang; Zhang, Guo-Qing; Tong, Jian-Ming; Zhang, Qi; Xu, Shang-Zhong
2011-12-01
Waste vinegar residue, the by-product of vinegar processing, was used as substrate for phytase production from Aspergillus ficuum NTG-23 in solid-state fermentation to investigate the potential for the efficient re-utilization or recycling of waste vinegar residue. Statistical designs were applied in the processing of phytase production. First, a Plackett-Burman (PB) design was used to evaluate eleven parameters: glucose, starch, wheat bran, (NH(4))(2)SO(4), NH(4)NO(3), tryptone, soybean meal, MgSO(4)·7H(2)O, CaCl(2)·7H(2)O, FeSO(4)·7H(2)O, incubation time. The PB experiments showed that there were three significant factors: glucose, soybean meal and incubation time. The closest values to the optimum point were then derived by steepest ascent path. Finally, a mathematical model was created and validated to explain the behavioural process after these three significant factors were optimized using response surface methodology (RSM). The best phytase activity was attained using the following conditions: glucose (7.2%), soybean meal (5.1%), and incubation time (271 h). The phytase activity was 7.34-fold higher due to optimization by PB design, steepest ascent path design and RSM. The phytase activity was enhanced 0.26-fold in comparison with the results by the second step of steepest ascent path design. The results indicate that with waste vinegar residue as a substrate higher production of phytase from Aspergillus ficuum NTG-23 could be obtained through an optimization process and that this method might be applied to an integrated system for recycling of the waste vinegar residue.
NASA Astrophysics Data System (ADS)
Vimmrová, Alena; Kočí, Václav; Krejsová, Jitka; Černý, Robert
2016-06-01
A method for lightweight-gypsum material design using waste stone dust as the foaming agent is described. The main objective is to reach several physical properties which are inversely related in a certain way. Therefore, a linear optimization method is applied to handle this task systematically. The optimization process is based on sequential measurement of physical properties. The results are subsequently point-awarded according to a complex point criterion and new composition is proposed. After 17 trials the final mixture is obtained, having the bulk density equal to (586 ± 19) kg/m3 and compressive strength (1.10 ± 0.07) MPa. According to a detailed comparative analysis with reference gypsum, the newly developed material can be used as excellent thermally insulating interior plaster with the thermal conductivity of (0.082 ± 0.005) W/(m·K). In addition, its practical application can bring substantial economic and environmental benefits as the material contains 25 % of waste stone dust.
NASA Astrophysics Data System (ADS)
Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin
2017-05-01
Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.
Stabilization/solidification of hot dip galvanizing ash using different binders.
Vinter, S; Montanes, M T; Bednarik, V; Hrivnova, P
2016-12-15
This study focuses on solidification of hot dip-galvanizing ash with a high content of zinc and soluble substances. The main purpose of this paper is to immobilize these pollutants into a matrix and allow a safer way for landfill disposal of that waste. Three different binders (Portland cement, fly ash and coal fluidized-bed combustion ash) were used for the waste solidification. Effectiveness of the process was evaluated using leaching test according to EN 12457-4 and by using the variance analysis and the categorical multifactorial test. In the leaching test, four parameters were observed: pH, zinc concentration in leachate, and concentration of chlorides and dissolved substances in leachate. The acquired data was then processed using statistical software to find an optimal solidifying ratio of the addition of binder, water, and waste to the mixture, with the aim to fulfil the requirement for landfill disposal set by the Council Decision 2003/33/EC. The influence on the main observed parameters (relative amount of water and a binder) on the effectiveness of the used method and their influence of measured parameters was also studied. Copyright © 2016 Elsevier B.V. All rights reserved.
Rovetta, Alberto; Xiumin, Fan; Vicentini, Federico; Minghua, Zhu; Giusti, Alessandro; Qichang, He
2009-12-01
The present study describes a novel application for use in the monitoring of municipal solid waste, based on distributed sensor technology and geographical information systems. Original field testing and evaluation of the application were carried out in Pudong, Shanghai (PR China). The local waste management system in Pudong features particular requirements related to the rapidly increasing rate of waste production. In view of the fact that collected waste is currently deployed to landfills or to incineration plants within the context investigated, the key aspects to be taken into account in waste collection procedures include monitoring of the overall amount of waste produced, quantitative measurement of the waste present at each collection point and identification of classes of material present in the collected waste. The case study described herein focuses particularly on the above mentioned aspects, proposing the implementation of a network of sensorized waste containers linked to a data management system. Containers used were equipped with a set of sensors mounted onto standard waste bins. The design, implementation and validation procedures applied are subsequently described. The main aim to be achieved by data collection and evaluation was to provide for feasibility analysis of the final device. Data pertaining to the content of waste containers, sampled and processed by means of devices validated on two purpose-designed prototypes, were therefore uploaded to a central monitoring server using GPRS connection. The data monitoring and management modules are integrated into an existing application used by local municipal authorities. A field test campaign was performed in the Pudong area. The system was evaluated in terms of real data flow from the network nodes (containers) as well as in terms of optimization functions, such as collection vehicle routing and scheduling. The most important outcomes obtained were related to calculations of waste weight and volume. The latter data were subsequently used as parameters for the routing optimization of collection trucks and material density evaluation.
Ratanatamskul, Chavalit; Saleart, Tawinan
2016-04-01
Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less
NASA Astrophysics Data System (ADS)
Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang
2008-12-01
Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.
State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
Zhan, Lu; Xu, Zhenming
2014-12-16
In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.
Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar
2017-03-01
Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iden, S. C.; Durner, W.; Delay, M.; Frimmel, F. H.
2009-04-01
Contaminated porous materials, like soils, dredged sediments or waste materials must be tested before they can be used as filling materials in order to minimize the risk of groundwater pollution. We applied a multiple batch extraction test at varying liquid-to-solid (L/S) ratios to a demolition waste material and a municipal waste incineration product and investigated the release of chloride, sulphate, sodium, copper, chromium and dissolved organic carbon from both waste materials. The liquid phase test concentrations were used to estimate parameters of a relatively simple mass balance model accounting for equilibrium partitioning. The model parameters were estimated within a Bayesian framework by applying an efficient MCMC sampler and the uncertainties of the model parameters and model predictions were quantified. We tested isotherms of the linear, Freundlich and Langmuir type and selected the optimal isotherm model by use of the Deviance Information Criterion (DIC). Both the excellent fit to the experimental data and a comparison between the model-predicted and independently measured concentrations at the L/S ratios of 0.25 and 0.5 L/kg demonstrate the applicability of the model for almost all studied substances and both waste materials. We conclude that batch extraction tests at varying L/S ratios provide, at moderate experimental cost, a powerful complement to established test designs like column leaching or single batch extraction tests. The method constitutes an important tool in risk assessments, because concentrations at soil water contents representative for the field situation can be predicted from easier-to-obtain test concentrations at larger L/S ratios. This helps to circumvent the experimental difficulties of the soil saturation extract and eliminates the need to apply statistical approaches to predict such representative concentrations which have been shown to suffer dramatically from poor correlations.
Hymavathi, M; Sathish, T; Subba Rao, Ch; Prakasham, R S
2009-10-01
L-asparaginase production was optimized using isolated Bacillus circulans (MTCC 8574) under solid-state fermentation (SSF) using locally available agricultural waste materials. Among different agricultural materials (red gram husk, bengal gram husk, coconut, and groundnut cake), red gram husk gave the maximum enzyme production. A wide range of SSF parameters were optimized for maximize the production of L-asparaginase. Preliminary studies revealed that incubation temperature, moisture content, inoculum level, glucose, and L-asparagine play a vital role in enzyme yield. The interactive behavior of each of these parameters along with their significance on enzyme yield was analyzed using fractional factorial central composite design (FFCCD). The observed correlation coefficient (R(2)) was 0.9714. Only L-asparagine and incubation temperature, were significant in linear and quadratic terms. L-asparaginase yield improved from 780 to 2,322 U/gds which is more than 300% using FFCCD as a means of optimizing conditions.
NASA Astrophysics Data System (ADS)
Chandrakanth, Balaji; Venkatesan, G; Prakash Kumar, L. S. S; Jalihal, Purnima; Iniyan, S
2018-03-01
The present work discusses the design and selection of a shell and tube condenser used in Low Temperature Thermal Desalination (LTTD). To optimize the key geometrical and process parameters of the condenser with multiple parameters and levels, a design of an experiment approach using Taguchi method was chosen. An orthogonal array (OA) of 25 designs was selected for this study. The condenser was designed, analysed using HTRI software and the heat transfer area with respective tube side pressure drop were computed using the same, as these two objective functions determine the capital and running cost of the condenser. There was a complex trade off between the heat transfer area and pressure drop in the analysis, however second law analysis was worked out for determining the optimal heat transfer area vs pressure drop for condensing the required heat load.
Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam
2015-04-01
In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.
Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering
Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz
2013-01-01
Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327
Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.
Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz
2013-01-01
Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.
Moodley, Preshanthan; Kana, E B Gueguim
2017-07-01
This paper presents a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt to enhance enzymatic saccharification. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl 2 and MA-FeCl 3 were developed with high coefficients of determination (R 2 >0.8) and optimized. Maximum reducing sugar yield of 0.406g/g was obtained with 2M FeCl 3 at 700W for 3.5min. Scanning electron microscopy (SEM), Fourier Transform Infrared analysis (FTIR) and X-ray diffraction (XRD) showed major changes in lignocellulosic structure after MA-FeCl 3 pretreatment with 71.5% hemicellulose solubilization. This regime was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl 3 conditions. A 2-fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass. Copyright © 2017. Published by Elsevier Ltd.
Sedaghat, Fatemeh; Yousefzadi, Morteza; Toiserkani, Hojjat; Najafipour, Sohrab
2017-11-01
Chitin extraction from shrimp wastes by biological treatment, using the Pseudomonas aeruginosa was a positive and simple method. In order to look for the optimal conditions, the wastes were incubated at 30°C and 100rpm in different glucose (0%, 10%, 15% and 20%) and inoculation (10%, 15% and 20%) concentrations for 4 and 6days. At the end of fermentation, Protease activity was investigated at different temperatures and temperature 50°C was considered as the optimum. The results obtained also showed a direct relationship between the concentration of different parameters and deproteinization and demineralization rates, so that the optimal conditions were 20% glucose, 20% inoculation and 6days fermentation. These conditions led to 82% demineralization, 92% deproteinization and chitin yield of 47%. Then, chitin was converted to chitosan using microwave, autoclave and traditional methods. The highest yield (87%) was obtained with autoclave method. At the end, the chitin and chitosan were characterized by elemental analysis and FTIR. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Swain, Ranjita; Bhima Rao, R.
2018-04-01
In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.
Pandit, Priti R; Fulekar, M H
2017-08-01
Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2 g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Md. Sohrab; Nik Ab Rahman, Nik Norulaini; Balakrishnan, Venugopal
2015-04-15
Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO{sub 2}) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis,more » and gram-negative Escherichia coli in CSW. The effects of SC-CO{sub 2} sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO{sub 2}-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO{sub 2} exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.« less
Economic and environmental optimization of waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Münster, M.; Ravn, H.; Hedegaard, K.
2015-04-15
Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectivesmore » given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.« less
Tomke, Prerana D; Rathod, Virendra K
2018-05-04
This work explains the utilization of agro-waste (coconut and peanut shell) to produce mesoporous activated carbon which further utilized as a support material for lipase immobilization (Candida antarctica B, CALB). Various parameters affecting the binding of enzyme to activated carbon with high surface area (1603 m 2 g -1 ) were optimized. Maximum 200 μg g -1 CALB has been loaded at 40 °C and pH 6.8 in 12 h by using glutaraldehyde as a cross-linker. The operational parameters such as pH (5.8-8.8) and temperature (30-70 °C) were optimized for free and immobilized form of lipase. In thermal stability (50-70 °C) study, immobilization of enzyme showed 2.35 folds increased half-life with respect to free enzyme. The samples, before and after immobilization, were characterized by specific surface area, FT-IR, SEM, XRD. This immobilized lipase was successfully used for the synthesis of cinnamyl acetate by transesterification reaction producing 94% conversion in 60 min. Catalytic efficiency (58 ± 1.08) was seen to be retained for more than five consecutive cycles of chemical reaction for repeated applications. Sequential results towards activity retention were obtained upto 30 days of storability study. In the context, this process constitutes a clean route for the development of sustainable biocatalysts from agro waste, capable of applications in various area. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammon Williams; Supathorn Phongikaroon; Michael Simpson
A parametric study has been conducted to identify the effects of several parameters on the separation of CsCl from molten LiCl-KCl salt via a melt crystallization process. A reverse vertical Bridgman technique was used to grow the salt crystals. The investigated parameters were: (1) the advancement rate, (2) the crucible lid configuration, (3) the amount of salt mixture, (4) the initial composition of CsCl, and (5) the temperature difference between the high and low furnace zones. From each grown crystal, samples were taken axially and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results show that CsCl concentrations at themore » top of the crystals were low and increased to a maximum at the bottom of the salt. Salt (LiCl-KCl) recycle percentages for the experiments ranged from 50% to 75% and the CsCl composition in the waste salt was low. To increase the recycle percentage and the concentration of CsCl in the waste form, the possibility of using multiple crystallization stages was explored to further optimize the process. Results show that multiple crystallization stages are practical and the optimal experimental conditions should be operated at 5.0 mm/hr rate with a lid configuration and temperature difference of 200 °C for a total of five crystallization stages. Under these conditions, up to 88% of the salt can be recycled.« less
Asnoune, M; Abdelmalek, F; Djelloul, A; Mesghouni, K; Addou, A
2016-11-01
In household waste matters, the objective is always to conceive an optimal integrated system of management, where the terms 'optimal' and 'integrated' refer generally to a combination between the waste and the techniques of treatment, valorization and elimination, which often aim at the lowest possible cost. The management optimization of household waste using operational methodologies has not yet been applied in any Algerian district. We proposed an optimization of the valorization of household waste in Tiaret city in order to lower the total management cost. The methodology is modelled by non-linear mathematical equations using 28 variables of decision and aims to assign optimally the seven components of household waste (i.e. plastic, cardboard paper, glass, metals, textiles, organic matter and others) among four centres of treatment [i.e. waste to energy (WTE) or incineration, composting (CM), anaerobic digestion (ANB) or methanization and landfilling (LF)]. The analysis of the obtained results shows that the variation of total cost is mainly due to the assignment of waste among the treatment centres and that certain treatment cannot be applied to household waste in Tiaret city. On the other hand, certain techniques of valorization have been favoured by the optimization. In this work, four scenarios have been proposed to optimize the system cost, where the modelling shows that the mixed scenario (the three treatment centres CM, ANB, LF) suggests a better combination of technologies of waste treatment, with an optimal solution for the system (cost and profit). © The Author(s) 2016.
Mupambwa, Hupenyu Allan; Mnkeni, Pearson Nyari Stephano
2018-04-01
Vermicomposting is a bio-oxidative process that involves the action of mainly epigeic earthworm species and different micro-organisms to accelerate the biodegradation and stabilization of organic materials. There has been a growing realization that the process of vermicomposting can be used to greatly improve the fertilizer value of different organic materials, thus, creating an opportunity for their enhanced use as organic fertilizers in agriculture. The link between earthworms and micro-organisms creates a window of opportunity to optimize the vermi-degradation process for effective waste biodegradation, stabilization, and nutrient mineralization. In this review, we look at up-to-date research work that has been done on vermicomposting with the intention of highlighting research gaps on how further research can optimize vermi-degradation. Though several researchers have studied the vermicomposting process, critical parameters that drive this earthworm-microbe-driven process which are C/N and C/P ratios; substrate biodegradation fraction, earthworm species, and stocking density have yet to be adequately optimized. This review highlights that optimizing the vermicomposting process of composts amended with nutrient-rich inorganic materials such as fly ash and rock phosphate and inoculated with microbial inoculants can enable the development of commercially acceptable organic fertilizers, thus, improving their utilization in agriculture.
Composition and parameters of household bio-waste in four seasons.
Hanc, Ales; Novak, Pavel; Dvorak, Milan; Habart, Jan; Svehla, Pavel
2011-07-01
Bio-waste makes up almost half portion of municipal solid waste. The characterization of household bio-waste is important in determining the most appropriate treatment method. The differences in composition and parameters of bio-waste derived from urban settlement (U-bio-waste) and family houses (F-bio-waste) during the four climate seasons are described in this paper. Twelve components and 20 parameters for bio-waste were evaluated. The composition of U-bio-waste was almost steady over those seasons, unlike F-bio-waste. U-bio-waste was comprised mainly (58.2%) of fruit and vegetable debris. F-bio-waste was primarily made up of seasonal garden components. The amount of variation among seasons in both type of bio-waste increased in sequence: basic parameters
Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas
2016-09-01
The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês
2018-05-01
Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.
Jacob, Samuel; Banerjee, Rintu
2016-08-01
A novel approach to overcome the acidification problem has been attempted in the present study by codigesting industrial potato waste (PW) with Pistia stratiotes (PS, an aquatic weed). The effectiveness of codigestion of the weed and PW was tested in an equal (1:1) proportion by weight with substrate concentration of 5g total solid (TS)/L (2.5gPW+2.5gPS) which resulted in enhancement of methane yield by 76.45% as compared to monodigestion of PW with a positive synergistic effect. Optimization of process parameters was conducted using central composite design (CCD) based response surface methodology (RSM) and artificial neural network (ANN) coupled genetic algorithm (GA) model. Upon comparison of these two optimization techniques, ANN-GA model obtained through feed forward back propagation methodology was found to be efficient and yielded 447.4±21.43LCH4/kgVSfed (0.279gCH4/kgCODvs) which is 6% higher as compared to the CCD-RSM based approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.
Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M
2015-06-01
The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.
[Optimization of fuel ethanol production from kitchen waste by Plackett-Burman design].
Ma, Hong-Zhi; Gong, Li-Juan; Wang, Qun-Hui; Zhang, Wen-Yu; Xu, Wen-Long
2008-05-01
Kitchen garbage was chosen to produce ethanol through simultaneous saccharification and fermentation (SSF) by Zymomonas mobilis. Plackett-Burman design was employed to screen affecting parameters during SSF process. The parameters were divided into two parts, enzymes and nutritions. None of the nutritions added showed significant effect during the experiment, which demonstrated that the kitchen garbage could meet the requirement of the microorganism without extra supplementation. Protease and glucoamylase were determined to be affecting factors for ethanol production. Single factor experiment showed that the optimum usage of these two enzymes were both 100 U/g and the corresponding maximum ethanol was determined to be 53 g/L. The ethanol yield could be as high as 44%. The utilization of kitchen garbage to produce ethanol could reduce threaten of waste as well as improve the protein content of the spent. This method could save the ethanol production cost and benefit for the recycle of kitchen garbage.
Potysz, Anna; van Hullebusch, Eric D; Kierczak, Jakub
2018-05-05
Smelting activity by its very nature produces large amounts of metal-bearing waste, often called metallurgical slag(s). In the past, industry used to dispose of these waste products at dumping sites without the appropriate environmental oversight. Once there, ongoing biogeochemical processes affect the stability of the slags and cause the release of metallic contaminants. Rather than viewing metallurgical slags as waste, however, such deposits should be viewed as secondary metal resources. Metal bioleaching is a "green" treatment route for metallurgical slags, currently being studied under laboratory conditions. Metal-laden leachates obtained at the bioleaching stage have to be subjected to further recovery operations in order to obtain metal(s) of interest to achieve the highest levels of purity possible. This perspective paper considers the feasibility of the reuse of base-metal slags as secondary metal resources. Special focus is given to current laboratory bioleaching approaches and associated processing obstacles. Further directions of research for development of more efficient methods for waste slag treatment are also highlighted. The optimized procedure for slag treatment is defined as the result of this review and should include following steps: i) slag characterization (chemical and phase composition and buffering capacity) following the choice of initial pH, ii) the choice of particle size, iii) the choice of the liquid-to-solid ratio, iv) the choice of microorganisms, v) the choice of optimal nutrient supply (growth medium composition). An optimal combination of all these parameters will lead to efficient extraction and generation of metal-free solid residue. Copyright © 2018 Elsevier Ltd. All rights reserved.
Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar
2012-08-01
The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Comparative Analysis of Life-Cycle Assessment Tools for ...
We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c
Optimization of commercial scale photonuclear production of radioisotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bindu, K. C.; Harmon, Frank; Starovoitova, Valeriia N.
2013-04-19
Photonuclear production of radioisotopes driven by bremsstrahlung photons using a linear electron accelerator in the suitable energy range is a promising method for producing radioisotopes. The photonuclear production method is capable of making radioisotopes more conveniently, cheaply and with much less radioactive waste compared to existing methods. Historically, photo-nuclear reactions have not been exploited for isotope production because of the low specific activity that is generally associated with this production process, although the technique is well-known to be capable of producing large quantities of certain radioisotopes. We describe an optimization technique for a set of parameters to maximize specific activitymore » of the final product. This set includes the electron beam energy and current, the end station design (an integrated converter and target as well as cooling system), the purity of materials used, and the activation time. These parameters are mutually dependent and thus their optimization is not trivial. {sup 67}Cu photonuclear production via {sup 68}Zn({gamma}p){sup 67}Cu reaction was used as an example of such an optimization process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehrmann, Henning; Perdue, Robert
2012-07-01
Cementation of radioactive waste is a common technology. The waste is mixed with cement and water and forms a stable, solid block. The physical properties like compression strength or low leach ability depends strongly on the cement recipe. Due to the fact that this waste cement mixture has to fulfill special requirements, a recipe development is necessary. The Six Sigma{sup TM}' DMAIC methodology, together with the Design of experiment (DoE) approach, was employed to optimize the process of a recipe development for cementation at the Ling Ao nuclear power plant (NPP) in China. The DMAIC offers a structured, systematical andmore » traceable process to derive test parameters. The DoE test plans and statistical analysis is efficient regarding the amount of test runs and the benefit gain by getting a transfer function. A transfer function enables simulation which is useful to optimize the later process and being responsive to changes. The DoE method was successfully applied for developing a cementation recipe for both evaporator concentrate and resin waste in the plant. The key input parameters were determined, evaluated and the control of these parameters were included into the design. The applied Six Sigma{sup TM} tools can help to organize the thinking during the engineering process. Data are organized and clearly presented. Various variables can be limited to the most important ones. The Six Sigma{sup TM} tools help to make the thinking and decision process trace able. The tools can help to make data driven decisions (e.g. C and E Matrix). But the tools are not the only golden way. Results from scoring tools like the C and E Matrix need close review before using them. The DoE is an effective tool for generating test plans. DoE can be used with a small number of tests runs, but gives a valuable result from an engineering perspective in terms of a transfer function. The DoE prediction results, however, are only valid in the tested area. So a careful selection of input parameter and their limits for setting up a DoE is very important. An extrapolation of results is not recommended because the results are not reliable out of the tested area. (authors)« less
Dhillon, G S; Brar, S K; Verma, M; Tyagi, R D
2011-04-01
To evaluate the potential of apple pomace (AP) supplemented with rice husk for hyper citric acid production through solid-state fermentation by Aspergillus niger NRRL-567. Optimization of two key parameters, such as moisture content and inducer (ethanol and methanol) concentration was carried out by response surface methodology. In this study, the effect of two crucial process parameters for solid-state citric acid fermentation by A. niger using AP waste supplemented with rice husk were thoroughly investigated in Erlenmeyer flasks through response surface methodology. Moisture and methanol had significant positive effect on citric acid production by A. niger grown on AP (P < 0·05). Higher values of citric acid on AP by A. niger (342·41gkg(-1) and 248·42gkg(-1) dry substrate) were obtained with 75% (v/w) moisture along with two inducers [3% (v/w) methanol and 3% (v/w) ethanol] with fermentation efficiency of 93·90% and 66·42%, respectively depending upon the total carbon utilized after 144h of incubation period. With the same optimized parameters, conventional tray fermentation was conducted. The citric acid concentration of 187·96gkg(-1) dry substrate with 3% (v/w) ethanol and 303·34gkg(-1) dry substrate with 3% (v/w) methanol were achieved representing fermentation efficiency of 50·80% and 82·89% in tray fermentation depending upon carbon utilization after 120h of incubation period. Apple pomace proved to be the promising substrate for the hyper production of citric acid through solid-state tray fermentation, which is an economical technique and does not require any sophisticated instrumentation. The study established that the utilization of agro-industrial wastes have positive repercussions on the economy and will help to meet the increasing demands of citric acid and moreover will help to alleviate the environmental problems resulting from the disposal of agro-industrial wastes. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Chromium removal from water by activated carbon developed from waste rubber tires.
Gupta, Vinod Kumar; Ali, Imran; Saleh, Tawfik A; Siddiqui, M N; Agarwal, Shilpi
2013-03-01
Because of the continuous production of large amount of waste tires, the disposal of waste tires represents a major environmental issue throughout the world. This paper reports the utilization of waste tires (hard-to-dispose waste) as a precursor in the production of activated carbons (pollution-cleaning adsorbent). In the preparation of activated carbon (AC), waste rubber tire (WRT) was thermally treated and activated. The tire-derived activated carbon was characterized by means of scanning electron microscope, energy-dispersive X-ray spectroscopy, FTIR spectrophotometer, and X-ray diffraction. In the IR spectrum, a number of bands centred at about 3409, 2350, 1710, 1650, and 1300-1000 cm(-1) prove the present of hydroxyl and carboxyl groups on the surface of AC in addition to C═C double bonds. The developed AC was tested and evaluated as potential adsorbent removal of chromium (III). Experimental parameters, such as contact time, initial concentration, adsorbent dosage and pH were optimized. A rapid uptake of chromium ions was observed and the equilibrium is achieved in 1 h. It was also found that the adsorption process is pH dependent. This work adds to the global discussion of the cost-effective utilization of waste rubber tires for waste water treatment.
Saidi, Neyla; Kouki, Soulwene; M'hiri, Fadhel; Jedidi, Naceur; Mahrouk, Meriam; Hassen, Abdennaceur; Ouzari, Hadda
2009-01-01
The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio < 15; (b) NH4+-N < 400 mg/kg; (c) CO2-C < 2000 mg CO2-C/kg; (d) dehydrogenase activity < 1 mg TPF/g dry matter; (e) germination index (GI) > 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.
Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R
2017-07-12
This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.
Optimization of municipal solid waste collection and transportation routes.
Das, Swapan; Bhattacharyya, Bidyut Kr
2015-09-01
Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.
Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina
2015-02-01
Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Jia; Xu, Zhenming; Zhou, Yaohe
2008-05-30
Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES.
NASA Astrophysics Data System (ADS)
Sudibyo, Hermida, L.; Suwardi
2017-11-01
Tapioca waste water is very difficult to treat; hence many tapioca factories could not treat it well. One of method which able to overcome this problem is electrodeposition. This process has high performance when it conducted using batch recycle process and use aluminum bipolar electrode. However, the optimum operation conditions are having a significant effect in the tapioca wastewater treatment using bath recycle process. In this research, The Taguchi method was successfully applied to know the optimum condition and the interaction between parameters in electrocoagulation process. The results show that current density, conductivity, electrode distance, and pH have a significant effect on the turbidity removal of cassava starch waste water.
NASA Astrophysics Data System (ADS)
Hashemi-Dezaki, Hamed; Mohammadalizadeh-Shabestary, Masoud; Askarian-Abyaneh, Hossein; Rezaei-Jegarluei, Mohammad
2014-01-01
In electrical distribution systems, a great amount of power are wasting across the lines, also nowadays power factors, voltage profiles and total harmonic distortions (THDs) of most loads are not as would be desired. So these important parameters of a system play highly important role in wasting money and energy, and besides both consumers and sources are suffering from a high rate of distortions and even instabilities. Active power filters (APFs) are innovative ideas for solving of this adversity which have recently used instantaneous reactive power theory. In this paper, a novel method is proposed to optimize the allocation of APFs. The introduced method is based on the instantaneous reactive power theory in vectorial representation. By use of this representation, it is possible to asses different compensation strategies. Also, APFs proper placement in the system plays a crucial role in either reducing the losses costs and power quality improvement. To optimize the APFs placement, a new objective function has been defined on the basis of five terms: total losses, power factor, voltage profile, THD and cost. Genetic algorithm has been used to solve the optimization problem. The results of applying this method to a distribution network illustrate the method advantages.
Zsigraiova, Zdena; Semiao, Viriato; Beijoco, Filipa
2013-04-01
This work proposes an innovative methodology for the reduction of the operation costs and pollutant emissions involved in the waste collection and transportation. Its innovative feature lies in combining vehicle route optimization with that of waste collection scheduling. The latter uses historical data of the filling rate of each container individually to establish the daily circuits of collection points to be visited, which is more realistic than the usual assumption of a single average fill-up rate common to all the system containers. Moreover, this allows for the ahead planning of the collection scheduling, which permits a better system management. The optimization process of the routes to be travelled makes recourse to Geographical Information Systems (GISs) and uses interchangeably two optimization criteria: total spent time and travelled distance. Furthermore, rather than using average values, the relevant parameters influencing fuel consumption and pollutant emissions, such as vehicle speed in different roads and loading weight, are taken into consideration. The established methodology is applied to the glass-waste collection and transportation system of Amarsul S.A., in Barreiro. Moreover, to isolate the influence of the dynamic load on fuel consumption and pollutant emissions a sensitivity analysis of the vehicle loading process is performed. For that, two hypothetical scenarios are tested: one with the collected volume increasing exponentially along the collection path; the other assuming that the collected volume decreases exponentially along the same path. The results evidence unquestionable beneficial impacts of the optimization on both the operation costs (labor and vehicles maintenance and fuel consumption) and pollutant emissions, regardless the optimization criterion used. Nonetheless, such impact is particularly relevant when optimizing for time yielding substantial improvements to the existing system: potential reductions of 62% for the total spent time, 43% for the fuel consumption and 40% for the emitted pollutants. This results in total cost savings of 57%, labor being the greatest contributor, representing over €11,000 per year for the two vehicles collecting glass-waste. Moreover, it is shown herein that the dynamic loading process of the collection vehicle impacts on both the fuel consumption and on pollutant emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foye, Kevin C.; Soong, Te-Yang
2012-07-01
The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the wastemore » mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)« less
A systematic review on the composting of green waste: Feedstock quality and optimization strategies.
Reyes-Torres, M; Oviedo-Ocaña, E R; Dominguez, I; Komilis, D; Sánchez, A
2018-04-27
Green waste (GW) is an important fraction of municipal solid waste (MSW). The composting of lignocellulosic GW is challenging due to its low decomposition rate. Recently, an increasing number of studies that include strategies to optimize GW composting appeared in the literature. This literature review focuses on the physicochemical quality of GW and on the effect of strategies used to improve the process and product quality. A systematic search was carried out, using keywords, and 447 papers published between 2002 and 2018 were identified. After a screening process, 41 papers addressing feedstock quality and 32 papers on optimization strategies were selected to be reviewed and analyzed in detail. The GW composition is highly variable due to the diversity of the source materials, the type of vegetation, and climatic conditions. This variability limits a strict categorization of the GW physicochemical characteristics. However, this research established that the predominant features of GW are a C/N ratio higher than 25, a deficit in important nutrients, namely nitrogen (0.5-1.5% db), phosphorous (0.1-0.2% db) and potassium (0.4-0.8% db) and a high content of recalcitrant organic compounds (e.g. lignin). The promising strategies to improve composting of GW were: i) GW particle size reduction (e.g. shredding and separation of GW fractions); ii) addition of energy amendments (e.g. non-refined sugar, phosphate rock, food waste, volatile ashes), bulking materials (e.g. biocarbon, wood chips), or microbial inoculum (e.g. fungal consortia); and iii) variations in operating parameters (aeration, temperature, and two-phase composting). These alternatives have successfully led to the reduction of process length and have managed to transform recalcitrant substances to a high-quality end-product. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kleeberg, K K; Liu, Y; Jans, M; Schlegelmilch, M; Streese, J; Stegmann, R
2005-01-01
A solid-phase microextraction (SPME) method has been developed for the extraction of odorous compounds from waste gas. The enriched compounds were characterized by gas chromatography-mass spectrometry (GC-MS) and gas chromatography followed by simultaneous flame ionization detection and olfactometry (GC-FID/O). Five different SPME fiber coatings were tested, and the carboxen/polydimethylsiloxane (CAR/PDMS) fiber showed the highest ability to extract odorous compounds from the waste gas. Furthermore, parameters such as exposure time, desorption temperature, and desorption time have been optimized. The SPME method was successfully used to characterize an odorous waste gas from a fat refinery prior to and after waste gas treatment in order to describe the treatment efficiency of the used laboratory scale plant which consisted of a bioscrubber/biofilter combination and an activated carbon adsorber. The developed method is a valuable approach to provide detailed information of waste gas composition and complements existing methods for the determination of odors. However, caution should be exercised if CAR/PDMS fibers are used for the quantification of odorous compounds in multi-component matrices like waste gas emissions since the relative affinity of each analyte was shown to differ according to the total amount of analytes present in the sample.
NASA Astrophysics Data System (ADS)
Tikhomirova, Natalia; Ushakova, Sofya; Kalacheva, Galina; Tikhomirov, Alexander
2016-09-01
The study addresses the effectiveness of using ion exchange substrates (IES) to optimize mineral nutrition of plants grown in the nutrient solutions containing oxidized human wastes for application in bio-technical life support systems. The study shows that the addition of IES to the root-inhabited substrate is favorable for the growth of wheat vegetative organs but causes a decrease in the grain yield. By contrast, the addition of IES to the nutrient solution does not influence the growth of vegetative organs but favors normal development of wheat reproductive organs. Thus, to choose the proper method of adjusting the solution with IES, one should take into account specific parameters of plant growth and development and the possibility of multiple recycling of IES based on the liquid products of mineralization of human wastes.
Srivastava, Neha; Srivastava, Manish; Manikanta, Ambepu; Singh, Pardeep; Ramteke, P W; Mishra, P K; Malhotra, Bansi D
2017-10-01
Cellulase enzymes have versatile industrial applications. This study was directed towards the isolation, production, and characterization of cellulase enzyme system. Among the five isolated fungal cultures, Emericella variecolor NS3 showed maximum cellulase production using untreated orange peel waste as substrate using solid-state fermentation (SSF). Maximum enzyme production of 31 IU/gds (per gram of dry substrate) was noticed at 6.0 g concentration of orange peel. Further, 50 °C was recorded as the optimum temperature for cellulase activity and the thermal stability for 240 min was observed at this temperature. In addition, the crude enzyme was stable at pH 5.0 and held its complete relative activity in presence of Mn 2+ and Fe 3+ . This study explored the production of crude enzyme system using biological waste with future potential for research and industrial applications.
Starvin, A M; Rao, T Prasada
2004-09-10
As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.
Charnier, Cyrille; Latrille, Eric; Jimenez, Julie; Lemoine, Margaux; Boulet, Jean-Claude; Miroux, Jérémie; Steyer, Jean-Philippe
2017-01-01
The development of anaerobic digestion involves both co-digestion of solid wastes and optimization of the feeding recipe. Within this context, substrate characterisation is an essential issue. Although it is widely used, the biochemical methane potential is not sufficient to optimize the operation of anaerobic digestion plants. Indeed the biochemical composition in carbohydrates, lipids, proteins and the chemical oxygen demand of the inputs are key parameters for the optimisation of process performances. Here we used near infrared spectroscopy as a robust and less-time consuming tool to predict the solid waste content in carbohydrates, lipids and nitrogen, and the chemical oxygen demand. We built a Partial Least Square regression model with 295 samples and validated it with an independent set of 46 samples across a wide range of solid wastes found in anaerobic digestion units. The standard errors of cross-validation were 90mgO 2 ⋅gTS -1 carbohydrates, 2.5∗10 -2 g⋅gTS -1 lipids, 7.2∗10 -3 g⋅gTS -1 nitrogen and 99mgO 2 ⋅gTS -1 chemical oxygen demand. The standard errors of prediction were 53mgO 2 ⋅gTS -1 carbohydrates, 3.2∗10 -2 g⋅gTS -1 lipids, 8.6∗10 -3 g⋅gTS -1 nitrogen and 83mgO 2 ⋅gTS -1 chemical oxygen demand. These results show that near infrared spectroscopy is a new fast and cost-efficient way to characterize solid wastes content and improve their anaerobic digestion monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.
Zeng, Xianlai; Li, Jinhui; Xie, Henghua; Liu, Lili
2013-10-01
Recycling processes for waste printed circuit boards (WPCBs) have been well established in terms of scientific research and field pilots. However, current dismantling procedures for WPCBs have restricted the recycling process, due to their low efficiency and negative impacts on environmental and human health. This work aimed to seek an environmental-friendly dismantling process through heating with water-soluble ionic liquid to separate electronic components and tin solder from two main types of WPCBs-cathode ray tubes and computer mainframes. The work systematically investigates the influence factors, heating mechanism, and optimal parameters for opening solder connections on WPCBs during the dismantling process, and addresses its environmental performance and economic assessment. The results obtained demonstrate that the optimal temperature, retention time, and turbulence resulting from impeller rotation during the dismantling process, were 250 °C, 12 min, and 45 rpm, respectively. Nearly 90% of the electronic components were separated from the WPCBs under the optimal experimental conditions. This novel process offers the possibility of large industrial-scale operations for separating electronic components and recovering tin solder, and for a more efficient and environmentally sound process for WPCBs recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Villar, Iria; Alves, David; Garrido, Josefina; Mato, Salustiano
2016-08-01
During composting, facilities usually exert greater control over the bio-oxidative phase of the process, which uses a specific technology and generally has a fixed duration. After this phase, the material is deposited to mature, with less monitoring during the maturation phase. While there has been considerable study of biological parameters during the thermophilic phase, there is less research on the stabilization and maturation phase. This study evaluates the effects of the type of starting material on the evolution of microbial dynamics during the maturation phase of composting. Three waste types were used: sludge from the fish processing industry, municipal sewage sludge and pig manure, each independently mixed with shredded pine wood as bulking agent. The composting system for each waste type comprised a static reactor with capacity of 600L for the bio-oxidative phase followed by stabilization and maturation phase in triplicate 200L boxes for 112days. Phospholipid fatty acids, enzyme activities and physico-chemical parameters were measured throughout the maturation phase. The evolution of the total microbial biomass, Gram + bacteria, Gram - bacteria, fungi and enzymatic activities (β-glucosidase, cellulase, protease, acid and alkaline phosphatase) depended significantly on the waste type (p<0.001). The predominant microbial community for each waste type remained present throughout the maturation process, indicating that the waste type determines the microorganisms that are able to develop at this stage. While fungi predominated during fish sludge maturation, manure and municipal sludge were characterized by a greater proportion of bacteria. Both the structure of the microbial community and enzymatic activities provided important information for monitoring the composting process. More attention should be paid to the maturation phase in order to optimize composting. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Peng; Chung, Tai-Shung
2012-09-01
The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gohlke, Oliver
2009-11-01
Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.
Recycling of lead solder dross, Generated from PCB manufacturing
NASA Astrophysics Data System (ADS)
Lucheva, Biserka; Tsonev, Tsonio; Iliev, Peter
2011-08-01
The main purpose of this work is to analyze lead solder dross, a waste product from manufacturing of printed circuit boards by wave soldering, and to develop an effective and environmentally sound technology for its recycling. A methodology for determination of the content and chemical composition of the metal and oxide phases of the dross is developed. Two methods for recycling of lead solder dross were examined—carbothermal reduction and recycling using boron-containing substances. The influence of various factors on the metal yield was studied and the optimal parameters of the recycling process are defined. The comparison between them under the same parameters-temperature and retention time, showed that recycling of dross with a mixture of borax and boric acid in a 1:2 ratio provides higher metal yield (93%). The recycling of this hazardous waste under developed technology gets glassy slag and solder, which after correction of the chemical composition can be used again for production of PCB.
Recovery of valuable metals from waste diamond cutters through ammonia-ammonium sulfate leaching
NASA Astrophysics Data System (ADS)
Xue, Ping; Li, Guang-qiang; Yang, Yong-xiang; Qin, Qin-wei; Wei, Ming-xing
2017-12-01
Copper and zinc were recovered from waste diamond cutters through leaching with an ammonia-ammonium sulfate system and air as an oxidant. The effects of experimental parameters on the leaching process were investigated, and the potential-pH ( E-pH) diagrams of Cu-NH3-SO4 2--H2O and Zn-NH3-SO4 2--H2O at 25°C were drawn. Results showed that the optimal parameters for the leaching reaction are as follows: reaction temperature, 45°C; leaching duration, 3 h; liquid-to-solid ratio, 50:1 (mL/g); stirring speed, 200 r/min; ammonia concentration, 4.0 mol/L; ammonium sulfate concentration, 1.0 mol/L; and air flow rate, 0.2 L/min. The results of the kinetics study indicated that the leaching is controlled by the surface chemical reaction at temperatures below 35°C, and the leaching is controlled by diffusion through the product layer at temperatures above 35°C.
Manufacturing and process optimization of porous rice straw board
NASA Astrophysics Data System (ADS)
Liu, Dejun; Dong, Bing; Bai, Xuewei; Gao, Wei; Gong, Yuanjuan
2018-03-01
Development and utilization of straw resources and the production of straw board can dramatically reduce straw waste and environmental pollution associated with straw burning in China. However, the straw board production faces several challenges, such as improving the physical and mechanical properties, as well as eliminating its formaldehyde content. The recent research was to develop a new straw board compound adhesive containing both inorganic (MgSO4, MgCO3, active silicon and ALSiO4) and organic (bean gum and modified Methyl DiphenylDiisocyanate, MDI) gelling materials, to devise a new high frequency straw board hot pressing technique and to optimize the straw board production parameters. The results indicated that the key hot pressing parameters leading to porous straw board with optimal physical and mechanical properties. These parameters are as follows: an adhesive containing a 4:1 ratio of inorganic-to-organic gelled material, the percentage of adhesive in the total mass of preload straw materials is 40%, a hot-pressing temperature in the range of 120 °C to 140 °C, and a high frequency hot pressing for 10 times at a pressure of 30 MPa. Finally, the present work demonstrated that porous straw board fabricated under optimal manufacturing condition is an environmentally friendly and renewable materials, thereby meeting national standard of medium density fiberboard (MDF) with potential applications in the building industry.
A review of distributed parameter groundwater management modeling methods
Gorelick, Steven M.
1983-01-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
A Review of Distributed Parameter Groundwater Management Modeling Methods
NASA Astrophysics Data System (ADS)
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Yan, Dahai; Peng, Zheng; Liu, Yuqiang; Li, Li; Huang, Qifei; Xie, Minghui; Wang, Qi
2015-01-01
The consumption of milk in China is increasing as living standards rapidly improve, and huge amounts of aseptic composite milk packaging waste are being generated. Aseptic composite packaging is composed of paper, polyethylene, and aluminum. It is difficult to separate the polyethylene and aluminum, so most of the waste is currently sent to landfill or incinerated with other municipal solid waste, meaning that enormous amounts of resources are wasted. A wet process technique for separating the aluminum and polyethylene from the composite materials after the paper had been removed from the original packaging waste was studied. The separation efficiency achieved using different separation reagents was compared, different separation mechanisms were explored, and the impacts of a range of parameters, such as the reagent concentration, temperature, and liquid-solid ratio, on the separation time and aluminum loss ratio were studied. Methanoic acid was found to be the optimal separation reagent, and the suitable conditions were a reagent concentration of 2-4 mol/L, a temperature of 60-80°C, and a liquid-solid ratio of 30 L/kg. These conditions allowed aluminum and polyethylene to be separated in less than 30 min, with an aluminum loss ratio of less than 3%. A mass balance was produced for the aluminum-polyethylene separation system, and control technique was developed to keep the ion concentrations in the reaction system stable. This allowed a continuous industrial-scale process for separating aluminum and polyethylene to be developed, and a demonstration facility with a capacity of 50t/d was built. The demonstration facility gave polyethylene and aluminum recovery rates of more than 98% and more than 72%, respectively. Separating 1t of aluminum-polyethylene composite packaging material gave a profit of 1769 Yuan, meaning that an effective method for recycling aseptic composite packaging waste was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.
2017-01-01
This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958
Bari, Quazi H; Koenig, Albert
2012-11-01
The aeration rate is a key process control parameter in the forced aeration composting process because it greatly affects different physico-chemical parameters such as temperature and moisture content, and indirectly influences the biological degradation rate. In this study, the effect of a constant airflow rate on vertical temperature distribution and organic waste degradation in the composting mass is analyzed using a previously developed mathematical model of the composting process. The model was applied to analyze the effect of two different ambient conditions, namely, hot and cold ambient condition, and four different airflow rates such as 1.5, 3.0, 4.5, and 6.0 m(3) m(-2) h(-1), respectively, on the temperature distribution and organic waste degradation in a given waste mixture. The typical waste mixture had 59% moisture content and 96% volatile solids, however, the proportion could be varied as required. The results suggested that the model could be efficiently used to analyze composting under variable ambient and operating conditions. A lower airflow rate around 1.5-3.0 m(3) m(-2) h(-1) was found to be suitable for cold ambient condition while a higher airflow rate around 4.5-6.0 m(3) m(-2) h(-1) was preferable for hot ambient condition. The engineered way of application of this model is flexible which allows the changes in any input parameters within the realistic range. It can be widely used for conceptual process design, studies on the effect of ambient conditions, optimization studies in existing composting plants, and process control. Copyright © 2012 Elsevier Ltd. All rights reserved.
Preethi, V; Kanmani, S
2016-10-01
Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recent developments in photocatalytic water treatment technology: a review.
Chong, Meng Nan; Jin, Bo; Chow, Christopher W K; Saint, Chris
2010-05-01
In recent years, semiconductor photocatalytic process has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology to align with the "zero" waste scheme in the water/wastewater industry. The ability of this advanced oxidation technology has been widely demonstrated to remove persistent organic compounds and microorganisms in water. At present, the main technical barriers that impede its commercialisation remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the recent R&D progresses of engineered-photocatalysts, photoreactor systems, and the process optimizations and modellings of the photooxidation processes for water treatment. A number of potential and commercial photocatalytic reactor configurations are discussed, in particular the photocatalytic membrane reactors. The effects of key photoreactor operation parameters and water quality on the photo-process performances in terms of the mineralization and disinfection are assessed. For the first time, we describe how to utilize a multi-variables optimization approach to determine the optimum operation parameters so as to enhance process performance and photooxidation efficiency. Both photomineralization and photo-disinfection kinetics and their modellings associated with the photocatalytic water treatment process are detailed. A brief discussion on the life cycle assessment for retrofitting the photocatalytic technology as an alternative waste treatment process is presented. This paper will deliver a scientific and technical overview and useful information to scientists and engineers who work in this field.
Zhao, Chunhui; Mu, Hui; Zhao, Yuxiao; Wang, Liguo; Zuo, Bin
2018-02-01
This study firstly evaluated the microbial role when choosing the acclimated anaerobic granular sludge (AGS) and waste activated sludge (WAS) as microbial and nutritional regulators to improve the biomethanation of fruit and vegetable wastes (FVW). Results showed that the enriched hydrogenotrophic methanogens, and Firmicutes and Spirochaeta in the AGS were responsible for the enhanced methane yield. A synthetic waste representing the mixture of WAS and FVW was then used to investigate the influences of different substrate composition on methane generations. The optimal mass ratio of carbohydrate/protein/cellulose was observed to be 50:45:5, and the corresponding methane yield was 411mL/g-VS added . Methane kinetic studies suggested that the modified Gompertz model fitted better with those substrates of carbohydrate- than protein-predominated. Parameter results indicated that the maximum methane yield and production rate were enhanced firstly and then reduced with the decreasing carbohydrate and increasing protein percentages; the lag phase time however increased continuously. Copyright © 2017 Elsevier Ltd. All rights reserved.
Singh, Yogendra; Srivastav, S K
2013-04-01
Over the past few decades, L-asparaginase has emerged as an excellent anti-neoplastic agent. In present study, a new strain ITBHU02, isolated from soil site near degrading hospital waste, was investigated for the production of extracellular L-asparaginase. Further, it was renamed as Bacillus aryabhattai ITBHU02 based on its phenotypical features, biochemical characteristics, fatty acid methyl ester (FAME) profile and phylogenetic similarity of 16S rDNA sequences. The strain was found protease-deficient and its optimal growth occurred at 37 degrees C and pH 7.5. The strain was capable of producing enzyme L-asparaginase with maximum specific activity of 3.02 +/- 0.3 Umg(-1) protein, when grown in un-optimized medium composition and physical parameters. In order to improve the production of L-asparaginase by the isolate, response surface methodology (RSM) and genetic algorithm (GA) based techniques were implemented. The data achieved through the statistical design matrix were used for regression analysis and analysis of variance studies. Furthermore, GA was implemented utilizing polynomial regression equation as a fitness function. Maximum average L-asparaginase productivity of 6.35 Umg(-1) was found at GA optimized concentrations of 4.07, 0.82, 4.91, and 5.2 gL(-1) for KH2PO4, MgSO4 x 7H2O, L-asparagine, and glucose respectively. The GA optimized yield of the enzyme was 7.8% higher in comparison to the yield obtained through RSM based optimization.
Development of engineering parameters for the design of metal biosorption waste treatment systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, W.S.
1991-12-03
Untreated landfill leachates and wastes from metal plating and mining operations are sources of environmental contamination by heavy metals. Because of their toxicity and potential for accumulation, the discharge of heavy metals must be controlled. Standard physical and chemical treatments used to remove metals from wastes such as concentration by electro-precipitation, ion exchange, solvent extraction, evaporative recovery, and conventional precipitation, are usually expensive and produce high quantities of sludge. Biosorption is the removal of metals from aqueous solutions by microorganisms. It is called biosorption rather than bioadsorption or bioaccumulation because the mechanisms of removal are not restricted to adsorption ormore » metabolic uptake and so the more general term is preferable and has come to be accepted. In this thesis the focus is one two microorganisms and two metals. However, the possible combinations of conditions such as pH, relative metal molarities, time of contact, and organism are numerous. These experiments are designed to provide optimized parameters to facilitate the design of a functioning biosorption system. The two metals chosen for study are copper and lead in aqueous solution. The two types of microorganisms chosen for testing include an actinomycete and a fungus. The purpose of this research is to identify the significant engineering parameters to be evaluated include reaction rates, equilibrium partitioning of metal ions between those in solution and those removed to the cells, optimum pH for achieving the removal or recovery goal, and biosorption selectivity for one metal over another.« less
A multi-objective programming model for assessment the GHG emissions in MSW management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr; Skoulaxinou, Sotiria; Gakis, Nikos
2013-09-15
Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty yearsmore » they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region.« less
Changes of parameters during composting of bio-waste collected over four seasons.
Hanc, Ales; Ochecova, Pavla; Vasak, Filip
2017-07-01
This study investigated the evolution of several main parameters during the composting of separately collected household bio-waste originating from urban settlements (U-bio-waste) and family houses (F-bio-waste) from four climate seasons. When comparing both types of composts, U-bio-waste compost contained a higher amount of nutrients, however F-bio-waste compost was characterized by greater yield, greater availability of phosphorus and magnesium, and faster stability. In terms of seasons, compost from bio-waste collected in spring contained the highest amount of nutrients, reflecting the high content of nutrients in plant feedstock. Dissolved organic carbon and pH in U- and F-bio-waste compost, respectively, frequently showed close relationships with other parameters. The seasonal variations of most of the parameters in the composts were found to be lower compared to the variations observed in the feedstocks. The greatest seasonal variation was found in nitrate nitrogen, which is the reason for the more frequent analysis of this parameter.
Lee, Jechan; Jung, Jong-Min; Oh, Jeong-Ik; Sik Ok, Yong; Kwon, Eilhann E
2017-10-01
To establish a green platform for biodiesel production, this study mainly investigates pseudo-catalytic (non-catalytic) transesterification of olive oil. To this end, biochar from agricultural waste (maize residue) and dimethyl carbonate (DMC) as an acyl acceptor were used for pseudo-catalytic transesterification reaction. Reaction parameters (temperature and molar ratio of DMC to olive oil) were also optimized. The biodiesel yield reached up to 95.4% under the optimal operational conditions (380°C and molar ratio of DMC to olive oil (36:1)). The new sustainable environmentally benign biodiesel production introduced in this study is greener and faster than conventional transesterification reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biodiesel production using waste frying oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charpe, Trupti W.; Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in
2011-01-15
Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction tomore » select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.« less
Respirometric screening of several types of manure and mixtures intended for composting.
Barrena, Raquel; Turet, Josep; Busquets, Anna; Farrés, Moisès; Font, Xavier; Sánchez, Antoni
2011-01-01
The viability of mixtures from manure and agricultural wastes as composting sources were systematically studied using a physicochemical and biological characterization. The combination of different parameters such as C:N ratio, free air space (FAS) and moisture content can help in the formulation of the mixtures. Nevertheless, the composting process may be challenging, particularly at industrial scales. The results of this study suggest that if the respirometric potential is known, it is possible to predict the behaviour of a full scale composting process. Respiration indices can be used as a tool for determining the suitability of composting as applied to manure and complementary wastes. Accordingly, manure and agricultural wastes with a high potential for composting and some proposed mixtures have been characterized in terms of respiration activity. Specifically, the potential of samples to be composted has been determined by means of the oxygen uptake rate (OUR) and the dynamic respirometric index (DRI). During this study, four of these mixtures were composted at full scale in a system consisting of a confined pile with forced aeration. The biological activity was monitored by means of the oxygen uptake rate inside the material (OURinsitu). This new parameter represents the real activity of the process. The comparison between the potential respirometric activities at laboratory scale with the in situ respirometric activity observed at full scale may be a useful tool in the design and optimization of composting systems for manure and other organic agricultural wastes. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moak, Don J.; Grondin, Richard L.; Triner, Glen C.
CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site andmore » off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance with the facility's radioactive materials license(s) (RML). While both CHPRC and PFNW maintain waste databases to track all waste movements, it became evident early in the process that a tool was needed that married the two systems to better track SNM inventories and sequence waste from the point of generation, through the PFNW facility, and back to the Hanford site for final disposition. This tool, known as the Treatment Integration and Planning Tool (TIPT), has become a robust planning tool that provides real-time data to support compliant and efficient waste generation, transportation, treatment, and disposition. TIPT is developing into the next generation tool that will change the way in which legacy wastes, retrieval wastes and decontamination and decommissioning operations are conducted on the Plateau Remediation Contract (PRC). The real value of the TIPT is its predictive capability. It allows the W and FMP to map out optimal windows for processing waste through the PFNW facility, or through any process that is in some way resource limited. It allows project managers to identify and focus on problem areas before shipments are affected. It has been modified for use in broader applications to predict turnaround times and identify windows of opportunity for processing higher gram wastes through PFNW and to allow waste generators, site-wide, to accurately predict scope, cost, and schedule for waste generation to optimize processing and eliminate storage, double handling, and related costs and unnecessary safety risks. The TIPT addresses the years old problem of how to effectively predict not only what needs to be done, but when. 'When' is the key planning parameter that has been ignored by the generator and processor for many years, but has proven to be the most important parameter for both parties. While further refinement is a natural part of any development process, the current improvements on the TIPT have shown that prediction is a powerful consideration. Even in lean times expected for the foreseeable future, the improved TIPT continues to play a central role in managing our way through those times to assure facilities remain viable and available. It is recommended that other major remediation projects and waste processing facilities incorporate a tool such as TIPT to improve customer-commercial supplier communications and better optimization of resources. (authors)« less
Mrudula, Soma; Murugammal, Rangasamy
2011-01-01
Aspergillus niger was used for cellulase production in submerged (SmF) and solid state fermentation (SSF). The maximum production of cellulase was obtained after 72 h of incubation in SSF and 96 h in Smf. The CMCase and FPase activities recorded in SSF were 8.89 and 3.56 U per g of dry mycelial bran (DBM), respectively. Where as in Smf the CMase & FPase activities were found to be 3.29 and 2.3 U per ml culture broth, respectively. The productivity of extracellular cellulase in SSF was 14.6 fold higher than in SmF. The physical and nutritional parameters of fermentation like pH, temperature, substrate, carbon and nitrogen sources were optimized. The optimal conditions for maximum biosynthesis of cellulase by A. niger were shown to be at pH 6, temperature 30 °C. The additives like lactose, peptone and coir waste as substrate increased the productivity both in SmF and SSF. The moisture ratio of 1:2 (w/v) was observed for optimum production of cellulase in SSF. PMID:24031730
NASA Astrophysics Data System (ADS)
Li, Leyuan; Liu, lh64. Hong
2012-07-01
It has been confirmed in our previous work that in bioregenerative life support systems, feeding yellow mealworms (Tenebrio molitor L.) using fermented straw has the potential to provide good animal protein for astronauts, meanwhile treating with plant wastes. However, since the nitrogen content in straw is very low, T. molitor larvae can not obtain sufficient nitrogen, which results in a relatively low growth efficiency. In this study, wheat straw powder was mixed with simulated human urine before fermentation. Condition parameters, e.g. urine:straw ratio, moisture content, inoculation dose, fermentation time, fermentation temperature and pH were optimized using Taguchi method. Larval growth rate and average individual mass of mature larva increased significantly in the group of T. molitor larvae fed with feedstuff prepared with the optimized process.
First-order kinetic gas generation model parameters for wet landfills.
Faour, Ayman A; Reinhart, Debra R; You, Huaxin
2007-01-01
Landfill gas collection data from wet landfill cells were analyzed and first-order gas generation model parameters were estimated for the US EPA landfill gas emissions model (LandGEM). Parameters were determined through statistical comparison of predicted and actual gas collection. The US EPA LandGEM model appeared to fit the data well, provided it is preceded by a lag phase, which on average was 1.5 years. The first-order reaction rate constant, k, and the methane generation potential, L(o), were estimated for a set of landfills with short-term waste placement and long-term gas collection data. Mean and 95% confidence parameter estimates for these data sets were found using mixed-effects model regression followed by bootstrap analysis. The mean values for the specific methane volume produced during the lag phase (V(sto)), L(o), and k were 33 m(3)/Megagrams (Mg), 76 m(3)/Mg, and 0.28 year(-1), respectively. Parameters were also estimated for three full scale wet landfills where waste was placed over many years. The k and L(o) estimated for these landfills were 0.21 year(-1), 115 m(3)/Mg, 0.11 year(-1), 95 m(3)/Mg, and 0.12 year(-1) and 87 m(3)/Mg, respectively. A group of data points from wet landfills cells with short-term data were also analyzed. A conservative set of parameter estimates was suggested based on the upper 95% confidence interval parameters as a k of 0.3 year(-1) and a L(o) of 100 m(3)/Mg if design is optimized and the lag is minimized.
NASA Astrophysics Data System (ADS)
Kinantan, Bag; Rahim Matondang, A.; Hidayati, Juliza
2018-02-01
The problem of urban waste has reached a point of concern. Population and economic growth are thought to be the cause of increasing the waste generation. The major problem related to this condition is the increasing of waste production which is not balance with the increase of its management capacity. Based on the Law Number 18 of 2008 that waste management starts from the source by applying the 3R approach (Reduction, Reuse, Recycle). This regulation provides a way which expect the waste management can be better, so that, the level of waste service can be improved and load on landfills (TPA) can be reduced.The cost of garbage collection and transport are 85% of the total waste management cost, so if this is optimized, it will optimize the system as a whole. Subsequent research focuses on how to optimize the garbage collection and transport sub-systems by finding the shortest route of transportation to the landfill by developing a Vehicle Routing Problem (VRP) model. The development of an urban area leads to the preparation of the best route is no longer an optimal solution. The complexity of the waste problem is not only related to the technical matters, but also the social and economic problems of the community. So, it is necessary to develop a model of waste management which does not only pay attention to the technical aspects, but also the social and economic. Waste is expected to be no longer a burden, but can also be utilized economically to increase community income.
Treatment of hazardous waste landfill leachate using Fenton oxidation process
NASA Astrophysics Data System (ADS)
Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei
2018-03-01
The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.
Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R
2016-09-01
Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.
Van Geel, Paul J; Murray, Kathleen E
2015-12-01
Twelve instrument bundles were placed within two waste profiles as waste was placed in an operating landfill in Ste. Sophie, Quebec, Canada. The settlement data were simulated using a three-component model to account for primary or instantaneous compression, secondary compression or mechanical creep and biodegradation induced settlement. The regressed model parameters from the first waste layer were able to predict the settlement of the remaining four waste layers with good agreement. The model parameters were compared to values published in the literature. A MSW landfill scenario referenced in the literature was used to illustrate how the parameter values from the different studies predicted settlement. The parameters determined in this study and other studies with total waste heights between 15 and 60 m provided similar estimates of total settlement in the long term while the settlement rates and relative magnitudes of the three components varied. The parameters determined based on studies with total waste heights less than 15m resulted in larger secondary compression indices and lower biodegradation induced settlements. When these were applied to a MSW landfill scenario with a total waste height of 30 m, the settlement was overestimated and provided unrealistic values. This study concludes that more field studies are needed to measure waste settlement during the filling stage of landfill operations and more field data are needed to assess different settlement models and their respective parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management
NASA Astrophysics Data System (ADS)
Tan, S. T.; Hashim, H.
2014-02-01
Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.
Tepe, Ozlem; Dursun, Arzu Y
2014-01-01
In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.
Gatemala, Harnchana; Ekgasit, Sanong; Wongravee, Kanet
2017-07-01
A simple, rapid, and environmentally friendly process using hydrogen peroxide, was developed for recovering high purity silver directly from industry and laboratory wastes. Silver ammine complex, [Ag(NH 3 ) 2 ] + Cl - , derived from AgCl were generated and then directly reduced using H 2 O 2 to reliably turn into high purity microcrystalline silver (99.99%) examined by EDS and XRD. Morphology of the recovered silver microcrystals could be selectively tuned by an addition of poly(vinyl pyrrolidone). The main parameters in the recovering process including pH, concentration of Ag + and the mole ratio of H 2 O 2 :Ag + were carefully optimized though the central composite design (CCD). The optimized condition was employed for a trial recovery of 50 L silver ammine complex prepared from a collection of silver-wastes during 3-year research on industrial nanoparticle production. The recovered silver microcrystals >700 g could be recovered with 91.27%. The remaining solution after filtering of the recovered silver microcrystals can be used repeatedly (at least 8 cycles) without losing recovery efficiency. Matrix interferences including Pb 2+ and Cl - play a minimal role in our silver recovery process. Furthermore, the direct usage of the recovered silver microcrystals was demonstrated by using as a raw material of silver clay for creating a set of wearable silver jewelries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nguyen-Trong, Khanh; Nguyen-Thi-Ngoc, Anh; Nguyen-Ngoc, Doanh; Dinh-Thi-Hai, Van
2017-01-01
The amount of municipal solid waste (MSW) has been increasing steadily over the last decade by reason of population rising and waste generation rate. In most of the urban areas, disposal sites are usually located outside of the urban areas due to the scarcity of land. There is no fixed route map for transportation. The current waste collection and transportation are already overloaded arising from the lack of facilities and insufficient resources. In this paper, a model for optimizing municipal solid waste collection will be proposed. Firstly, the optimized plan is developed in a static context, and then it is integrated into a dynamic context using multi-agent based modelling and simulation. A case study related to Hagiang City, Vietnam, is presented to show the efficiency of the proposed model. From the optimized results, it has been found that the cost of the MSW collection is reduced by 11.3%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Automated carbon dioxide cleaning system
NASA Technical Reports Server (NTRS)
Hoppe, David T.
1991-01-01
Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.
Measuring Water in Bioreactor Landfills
NASA Astrophysics Data System (ADS)
Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.
2004-12-01
Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water was 29%, while the moisture content, the mass of water divided by total wet mass of solid waste, was 28%. Near the sloped sides of the landfill, PTT results indicated that only 7.1% of the pore space was filled with water, while the moisture content was estimated to be 6.9%. These measurements are in close agreement with gravimetric measurements made on solid waste samples collected after each PTT: moisture content of 27% in the center of the landfill and only 6% near the edge of the landfill. We discuss these measurements in detail, the limitations of the PTT method for landfills, and operational guidelines for achieving unbiased measurements of moisture content in landfills using the PTT method.
[PRIORITY TECHNOLOGIES OF THE MEDICAL WASTE DISPOSAL SYSTEM].
Samutin, N M; Butorina, N N; Starodubova, N Yu; Korneychuk, S S; Ustinov, A K
2015-01-01
The annual production of waste in health care institutions (HCI) tends to increase because of the growth of health care provision for population. Among the many criteria for selecting the optimal treatment technologies HCI is important to provide epidemiological and chemical safety of the final products. Environmentally friendly method of thermal disinfection of medical waste may be sterilizators of medical wastes intended for hospitals, medical centers, laboratories and other health care facilities that have small and medium volume of processing of all types of waste Class B and C. The most optimal method of centralized disposal of medical waste is a thermal processing method of the collected material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com; Qi, Yingying; Zhang, Fu-Shen
Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercriticalmore » water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.« less
Classification methodology for tritiated waste requiring interim storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cana, D.; Dall'ava, D.; Decanis, C.
2015-03-15
Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less
Tripathi, Pranav K; Durbach, Shane; Coville, Neil J
2017-09-22
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.
Bian, Bo; Zhang, Limin; Zhang, Qin; Zhang, Shaopeng; Yang, Zhen; Yang, Weiben
2018-08-01
A cost-effective approach for pretreatment of chemical sludge for further dewatering, based on the idea of "using waste to treat waste", is provided. It is a coupled heating/acidification pretreatment method, where waste sulfuric acid is employed and relatively low temperatures (<100 °C) are applied. Effects of reaction time, temperature, and dosage of waste acid on dewatering performance (both dewatering speed and degree) are studied. Under the optimal conditions (reaction time: 30 min; temperature: 90 °C; waste acid dosage: 0.175 g/(g dried sludge)), the method of this work demonstrates three advantages compared to the conventional method using lime+polyacrylamide: lower moisture content of treated sludge; higher calorific value for incineration process; and lower cost. Detailed mechanism of the pretreatment for dewatering is investigated via characterizations and statistical analyses of various parameters, among which zeta potential, particle size, protein and polysaccharide contents, soluble chemical oxygen demand (SCOD), reduction of combined water and volatile suspended solid (VSS), are associated with dewatering performance. Both heating and acidification generate disintegration of cells in sludge, giving rise to two phenomena: more organic matters are released into solution and more bound water turns into free water. Meantime, the released organic polymers flocculate sludge particles, further accelerating the solid-liquid separation process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Durbach, Shane
2017-01-01
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst. PMID:28937596
Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy.
Shokri, Ali; Pahlevani, Farshid; Cole, Ivan; Sahajwalla, Veena
2017-09-01
This study investigates, verifies and determines the optimal parameters for the selective thermal transformation of problematic electronic waste (e-waste) to produce value-added copper-tin (Cu-Sn) based alloys; thereby demonstrating a novel new pathway for the cost-effective recovery of resources from one of the world's fastest growing and most challenging waste streams. Using outdated computer printed circuit boards (PCBs), a ubiquitous component of e-waste, we investigated transformations across a range of temperatures and time frames. Results indicate a two-step heat treatment process, using a low temperature step followed by a high temperature step, can be used to produce and separate off, first, a lead (Pb) based alloy and, subsequently, a Cu-Sn based alloy. We also found a single-step heat treatment process at a moderate temperature of 900 °C can be used to directly transform old PCBs to produce a Cu-Sn based alloy, while capturing the Pb and antimony (Sb) as alloying elements to prevent the emission of these low melting point elements. These results demonstrate old computer PCBs, large volumes of which are already within global waste stockpiles, can be considered a potential source of value-added metal alloys, opening up a new opportunity for utilizing e-waste to produce metal alloys in local micro-factories. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hindryawati, Noor; Maniam, Gaanty Pragas
2015-01-01
This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation. Copyright © 2014 Elsevier B.V. All rights reserved.
Niphadkar, Sonali S; Rathod, Virendra K
2015-01-01
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase (PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t-butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0-40% (w/v), extract to t-butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0-40% (w/v), crude extract to t-butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26-36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers.
Sanjeevi, V; Shahabudeen, P
2016-01-01
Worldwide, about US$410 billion is spent every year to manage four billion tonnes of municipal solid wastes (MSW). Transport cost alone constitutes more than 50% of the total expenditure on solid waste management (SWM) in major cities of the developed world and the collection and transport cost is about 85% in the developing world. There is a need to improve the ability of the city administrators to manage the municipal solid wastes with least cost. Since 2000, new technologies such as geographical information system (GIS) and related optimization software have been used to optimize the haul route distances. The city limits of Chennai were extended from 175 to 426 km(2) in 2011, leading to sub-optimum levels in solid waste transportation of 4840 tonnes per day. After developing a spatial database for the whole of Chennai with 200 wards, the route optimization procedures have been run for the transport of solid wastes from 13 wards (generating nodes) to one transfer station (intermediary before landfill), using ArcGIS. The optimization process reduced the distances travelled by 9.93%. The annual total cost incurred for this segment alone is Indian Rupees (INR) 226.1 million. Savings in terms of time taken for both the current and shortest paths have also been computed, considering traffic conditions. The overall savings are thus very meaningful and call for optimization of the haul routes for the entire Chennai. © The Author(s) 2015.
Translating landfill methane generation parameters among first-order decay models.
Krause, Max J; Chickering, Giles W; Townsend, Timothy G
2016-11-01
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.
NASA Astrophysics Data System (ADS)
Krishnan, Thulasirajan; Purushothaman, Revathi
2017-07-01
There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.
Effect of a water-based drilling waste on receiving soil properties and plants growth.
Saint-Fort, Roger; Ashtani, Sahar
2014-01-01
This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth.
Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes.
Maiti, Sampa; Gallastegui, Gorka; Suresh, Gayatri; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Drogui, Patrick; LeBihan, Yann; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo
2018-02-01
Brewery industry liquid waste (BLW), brewery spent grain (BSG), apple pomace solid wastes (APS), apple pomace ultrafiltration sludge (APUS) and starch industry wastewater (SIW) have been considered as substrates to produce biobutanol. Efficiency of hydrolysis techniques tested to produce fermentable sugars depended on nature of agro-industrial wastes and process conditions. Acid-catalysed hydrolysis of BLW and BSG gave a total reducing sugar yield of 0.433 g/g and 0.468 g/g respectively. Reducing sugar yield from microwave assisted hydrothermal method was 0.404 g/g from APS and 0.631 g/g from APUS, and, 0.359 g/g from microwave assisted acid-catalysed SIW dry mass. Parameter optimization (time, pH and substrate concentration) for acid-catalysed BLW hydrolysate utilization using central composite model technique produced 307.9 g/kg glucose with generation of inhibitors (5-hydroxymethyl furfural (20 g/kg), furfural (1.6 g/kg), levulinic acid (9.3 g/kg) and total phenolic compound (0.567 g/kg)). 10.62 g/L of acetone-butanol-ethanol was produced by subsequent clostridial fermentation of the substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chang, Yao-Jen; Chu, Chien-Wei; Lin, Min-Der
2012-05-01
Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. For sustainable MSWM strategies, the critical management factors to be considered include not only economic efficiency of MSW treatment but also life-cycle assessment of the environmental impact. This paper employed linear programming technique to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of a MSWM system, and investigated the correlations between the economical optimization and pollutant emissions. A case study based on real-world MSW operating parameters in Taichung City is also presented. The results showed that the costs, benefits, streams of MSW, and throughputs of incinerators and landfills will be affected if pollution emission reductions are implemented in the MSWM strategies. In addition, the quantity of particulate matter is the best pollutant indicator for the MSWM system performance of emission reduction. In particular this model will assist the decision maker in drawing up a friendly MSWM strategy for Taichung City in Taiwan. Recently, life-cycle assessments of municipal solid waste management (MSWM) strategies have been given more considerations. However, what seems to be lacking is the consideration of economic factors and environmental impacts simultaneously. This work analyzed real-world data to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of the MSWM system. The results indicated that the consideration of environmental impacts will affect the costs, benefits, streams of MSW, and throughputs of incinerators and landfills. This work is relevant to public discussion and may establish useful guidelines for the MSWM policies.
Rada, E C; Ragazzi, M; Fedrizzi, P
2013-04-01
Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan
2012-06-01
In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.
Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization.
Izmirlioglu, Gulten; Demirci, Ali
2015-10-15
Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO₄·7H₂O showed significantly positive effects, whereas KH₂PO₄ and CaCl₂·2H₂O had a significantly negative effect (p-value<0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO₄·7H₂O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production.
NASA Astrophysics Data System (ADS)
Batnasan, Altansukh; Haga, Kazutoshi; Shibayama, Atsushi
2018-02-01
This paper considers the issue of recycling of waste printed circuit boards (WPCBs) containing precious and base metals in appreciable amounts. High-pressure oxidative leaching (HPOL) with dilute sulfuric acid resulted in removal of a significant amount of base metals from a WPCB ash sample obtained by incineration at 800°C. The parameters investigated in the precious metal leaching from WPCB residue after HPOL included the sulfuric acid concentration, thiourea concentration, oxidant concentration, leaching temperature, and leaching time. Recovery of gold, silver, and palladium of 100%, 81%, and 13% from the WPCB residue sample was achieved by thiourea leaching under optimized conditions. The results show that the efficiency of precious metal dissolution from the WPCB sample using thiourea solution depended strongly on the concentration of both thiourea and oxidant.
NASA Astrophysics Data System (ADS)
Batnasan, Altansukh; Haga, Kazutoshi; Shibayama, Atsushi
2017-12-01
This paper considers the issue of recycling of waste printed circuit boards (WPCBs) containing precious and base metals in appreciable amounts. High-pressure oxidative leaching (HPOL) with dilute sulfuric acid resulted in removal of a significant amount of base metals from a WPCB ash sample obtained by incineration at 800°C. The parameters investigated in the precious metal leaching from WPCB residue after HPOL included the sulfuric acid concentration, thiourea concentration, oxidant concentration, leaching temperature, and leaching time. Recovery of gold, silver, and palladium of 100%, 81%, and 13% from the WPCB residue sample was achieved by thiourea leaching under optimized conditions. The results show that the efficiency of precious metal dissolution from the WPCB sample using thiourea solution depended strongly on the concentration of both thiourea and oxidant.
Samolada, M C; Zabaniotou, A A
2014-02-01
For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Petrovic, Igor
2016-09-01
The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw waste as well as planning landfill mining projects. © The Author(s) 2016.
Optimal synthesis and design of the number of cycles in the leaching process for surimi production.
Reinheimer, M Agustina; Scenna, Nicolás J; Mussati, Sergio F
2016-12-01
Water consumption required during the leaching stage in the surimi manufacturing process strongly depends on the design and the number and size of stages connected in series for the soluble protein extraction target, and it is considered as the main contributor to the operating costs. Therefore, the optimal synthesis and design of the leaching stage is essential to minimize the total annual cost. In this study, a mathematical optimization model for the optimal design of the leaching operation is presented. Precisely, a detailed Mixed Integer Nonlinear Programming (MINLP) model including operating and geometric constraints was developed based on our previous optimization model (NLP model). Aspects about quality, water consumption and main operating parameters were considered. The minimization of total annual costs, which considered a trade-off between investment and operating costs, led to an optimal solution with lesser number of stages (2 instead of 3 stages) and higher volumes of the leaching tanks comparing with previous results. An analysis was performed in order to investigate how the optimal solution was influenced by the variations of the unitary cost of fresh water, waste treatment and capital investment.
Solid state anaerobic co-digestion of yard waste and food waste for biogas production.
Brown, Dan; Li, Yebo
2013-01-01
Food and yard wastes are available year round at low cost and have the potential to complement each other for SS-AD. The goal of this study was to determine optimal feedstock/effluent (F/E) and food waste/yard waste mixing ratios for optimal biogas production. Co-digestion of yard and food waste was carried out at F/E ratios of 1, 2, and 3. For each F/E ratio, food waste percentages of 0%, 10%, and 20%, based on dry volatile solids, were evaluated. Results showed increased methane yields and volumetric productivities as the percentage of food waste was increased to 10% and 20% of the substrate at F/E ratios of 2 and 1, respectively. This study showed that co-digestion of food waste with yard waste at specific ratios can improve digester operating characteristics and end performance metrics over SS-AD of yard waste alone. Copyright © 2012 Elsevier Ltd. All rights reserved.
Determination of service standard time for liquid waste parameter in certification institution
NASA Astrophysics Data System (ADS)
Sembiring, M. T.; Kusumawaty, D.
2018-02-01
Baristand Industry Medan is a technical implementation unit under the Industrial and Research and Development Agency, the Ministry of Industry. One of the services often used in Baristand Industry Medan is liquid waste testing service. The company set the standard of service 9 working days for testing services. At 2015, 89.66% on testing services liquid waste does not meet the specified standard of services company. The purpose of this research is to specify the standard time of each parameter in testing services liquid waste. The method used is the stopwatch time study. There are 45 test parameters in liquid waste laboratory. The measurement of the time done 4 samples per test parameters using the stopwatch. From the measurement results obtained standard time that the standard Minimum Service test of liquid waste is 13 working days if there is testing E. coli.
Selective waste collection optimization in Romania and its impact to urban climate
NASA Astrophysics Data System (ADS)
Mihai, Šercǎianu; Iacoboaea, Cristina; Petrescu, Florian; Aldea, Mihaela; Luca, Oana; Gaman, Florian; Parlow, Eberhard
2016-08-01
According to European Directives, transposed in national legislation, the Member States should organize separate collection systems at least for paper, metal, plastic, and glass until 2015. In Romania, since 2011 only 12% of municipal collected waste was recovered, the rest being stored in landfills, although storage is considered the last option in the waste hierarchy. At the same time there was selectively collected only 4% of the municipal waste. Surveys have shown that the Romanian people do not have selective collection bins close to their residencies. The article aims to analyze the current situation in Romania in the field of waste collection and management and to make a proposal for selective collection containers layout, using geographic information systems tools, for a case study in Romania. Route optimization is used based on remote sensing technologies and network analyst protocols. Optimizing selective collection system the greenhouse gases, particles and dust emissions can be reduced.
Environmental Optimization Using the WAste Reduction Algorithm (WAR)
Traditionally chemical process designs were optimized using purely economic measures such as rate of return. EPA scientists developed the WAste Reduction algorithm (WAR) so that environmental impacts of designs could easily be evaluated. The goal of WAR is to reduce environme...
Leaching of metals from end-of-life solar cells.
Chakankar, Mital; Su, Chun Hui; Hocheng, Hong
2018-04-10
The issue of recycling waste solar cells is critical with regard to the expanded use of these cells, which increases waste production. Technology establishment for this recycling process is essential with respect to the valuable and hazardous metals present therein. In the present study, the leaching potentials of Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans, Penicillium chrysogenum, and Penicillium simplicissimum were assessed for the recovery of metals from spent solar cells, with a focus on retrieval of the valuable metal Te. Batch experiments were performed to explore and compare the metal removal efficiencies of the aforementioned microorganisms using spent media. P. chrysogenum spent medium was found to be most effective, recovering 100% of B, Mg, Si, V, Ni, Zn, and Sr along with 93% of Te at 30 °C, 150 rpm and 1% (w/v) pulp density. Further optimization of the process parameters increased the leaching efficiency, and 100% of Te was recovered at the optimum conditions of 20 °C, 200 rpm shaking speed and 1% (w/v) pulp density. In addition, the recovery of aluminum increased from 31 to 89% upon process optimization. Thus, the process has considerable potential for metal recovery and is environmentally beneficial.
Genuino, Divine Angela D; de Luna, Mark Daniel G; Capareda, Sergio C
2018-02-01
Biochar produced from the slow pyrolysis of municipal solid waste was activated with KOH and thermal treatments to enhance its surface and adsorptive properties. The effects of KOH concentration, activation temperature and time on the specific surface area (SSA) of the activated biochar were evaluated and optimized using central composite design (CCD) of the response surface methodology (RSM). Results showed that the activation of biochar enhanced its SSA from 402.8 ± 12.5 to 662.4 ± 28.6 m 2 g -1 . The adsorptive capacities of the pristine biochar (PBC) and activated biochar (ABC) were compared using methylene blue (MB) dye as model compound. For MB concentrations up to 25 mg L -1 , more than 99% dye removal was achieved with ABC, while only a maximum of 51% was obtained with PBC. Results of the isotherm study showed that the Langmuir model best described MB adsorption on ABC with adsorption capacity of 37.0-41.2 mg g -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Razack, Sirajunnisa Abdul; Duraiarasan, Surendhiran
2016-01-01
In the recent scenario, consumption of petroleum fuels has increased to greater height which has led to deforestation and decline in fossil fuels. In order to tackle the perilous situation, alternative fuel has to be generated. Biofuels play a vital role in substituting the diesel fuels as they are renewable and ecofriendly. Biodiesel, often referred to as green fuel, could be a potential replacement as it could be synthesized from varied substrates, advantageous being the microalgae in several ways. The present investigation was dealt with the interesterification of waste cooking oil using immobilised lipase from mixed cultures for biodiesel production. In order to standardize the production for a scale up process, the parameters necessary for interesterification had been optimized using the statistical tool, Central Composite Design - Response Surface Methodology. The optimal conditions required to generate biodiesel were 2 g enzyme load, 1:12 oil to methyl acetate ratio, 60 h reaction time and 35 °C temperature, yielding a maximum of 93.61% biodiesel. The immobilised lipase beads remain stable without any changes in their function and structure even after 20 cycles which made this study, less cost intensive. In conclusion, the study revealed that the cooking oil, a residue of many dining centers, left as waste product, can be used as a potential raw material for the production of ecofriendly and cost effective biofuel, the biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fortuna, Lorena M; Diyamandoglu, Vasil
2017-08-01
Product reuse in the solid waste management sector is promoted as one of the key strategies for waste prevention. This practice is considered to have favorable impact on the environment, but its benefits have yet to be established. Existing research describes the perspective of "avoided production" only, but has failed to examine the interdependent nature of reuse practices within an entire solid waste management system. This study proposes a new framework that uses optimization to minimize the greenhouse gas emissions of an integrated solid waste management system that includes reuse strategies and practices such as reuse enterprises, online platforms, and materials exchanges along with traditional solid waste management practices such as recycling, landfilling, and incineration. The proposed framework uses material flow analysis in combination with an optimization model to provide the best outcome in terms of GHG emissions by redistributing product flows in the integrated solid waste management system to the least impacting routes and processes. The optimization results provide a basis for understanding the contributions of reuse to the environmental benefits of the integrated solid waste management system and the exploration of the effects of reuse activities on waste prevention. A case study involving second-hand clothing is presented to illustrate the implementation of the proposed framework as applied to the material flow. Results of the case study showed the considerable impact of reuse on GHG emissions even for small replacement rates, and helped illustrate the interdependency of the reuse sector with other waste management practices. One major contribution of this study is the development of a framework centered on product reuse that can be applied to identify the best management strategies to reduce the environmental impact of product disposal and to increase recovery of reusable products. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J.I.; Tsai, J.J.; Wu, K.H.
2005-07-01
The impacts of the aeration and the agitation on the composting process of synthetic food wastes made of dog food were studied in a laboratory-scale reactor. Two major peaks of CO{sub 2} evolution rate were observed. Each peak represented an independent stage of composting associated with the activities of thermophilic bacteria. CO{sub 2} evolutions known to correlate well with microbial activities and reactor temperatures were fitted successfully to a modified Gompertz equation, which incorporated three biokinetic parameters, namely, CO{sub 2} evolution potential, specific CO{sub 2} evolution rate, and lag phase time. No parameters that describe the impact of operating variablesmore » are involved. The model is only valid for the specified experimental conditions and may look different with others. The effects of operating parameters such as aeration and agitation were studied statistically with multivariate regression technique. Contour plots were constructed using regression equations for the examination of the dependence of CO{sub 2} evolution potentials on aeration and agitation. In the first stage, a maximum CO{sub 2} evolution potential was found when the aeration rate and the agitation parameter were set at 1.75 l/kg solids-min and 0.35, respectively. In the second stage, a maximum existed when the aeration rate and the agitation parameter were set at 1.8 l/kg solids-min and 0.5, respectively. The methods presented here can also be applied for the optimization of large-scale composting facilities that are operated differently and take longer time.« less
Sudheer, Surya; Ali, Asgar; Manickam, Sivakumar
2016-01-01
Rigorous research has been carried out regarding the cultivation of Ganoderma lucidum using different agricultural residues. Nevertheless, large-scale cultivation and the separation of active compounds of G. lucidum are still challenges for local farmers. The objective of this study was to evaluate the use of oil palm waste fibers such as empty fruit bunch fibers and mesocarp fibers as effective substrates for the growth of G. lucidum mycelia to study the possibility of solid-state cultivation and to determine the optimum conditions necessary for the growth of mycelia of this mushroom on these waste fibers. Various parameters such as temperature, pH, humidity, and carbon and nitrogen compositions required for the optimum growth of mycelia have been determined. Oil palm fibers are a vivid source of lignocellulose, and their availability in Malaysia is high compared to that of sawdust. G. lucidum is a wood-rotting fungi that can easily decay and utilize this lignocellulose biomass, a major agricultural waste in Malaysia.
Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong
2016-03-01
The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ntaikou, Ioanna; Menis, Nikolaos; Alexandropoulou, Maria; Antonopoulou, Georgia; Lyberatos, Gerasimos
2018-04-30
The biotransformation of the pre-dried and shredded organic fraction of kitchen waste to ethanol was investigated, via co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis (Scheffersomyces stipitis). Preliminary experiments with synthetic media were performed, in order to investigate the effect of different operational parameters on the ethanol production efficiency of the co-culture. The control of the pH and the supplementation with organic nitrogen were shown to be key factors for the optimization of the process. Subsequently, the ethanol production efficiency from the waste was assessed via simultaneous saccharification and fermentation experiments. Different loadings of cellulolytic enzymes and mixtures of cellulolytic with amylolytic enzymatic blends were tested in order to enhance the substrate conversion efficiency. It was further shown that for solids loading up to 40% waste on dry mass basis, corresponding to 170 g.L -1 initial concentration of carbohydrates, no substrate inhibition occurred, and ethanol concentration up to 45 g.L -1 was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.
El Essawy, Noha A; Konsowa, Abdelaziz H; Elnouby, Mohamed; Farag, Hassan A
2017-03-01
Nowadays our planet suffers from an accumulation of plastic products that have the potential to cause great harm to the environment in the form of air, water, and land pollution. Plastic water bottles have become a great problem in the environment because of the large numbers consumed throughout the world. Certain types of plastic bottles can be recycled but most of them are not. This paper describes an economical solvent-free process that converts polyethylene terephthalate (PET) bottles waste into carbon nanostructure materials via thermal dissociation in a closed system under autogenic pressure together with additives and/or catalyst, which can act as cluster nuclei for carbon nanostructure materials such as fullerenes and carbon nanotubes. This research succeeded in producing and controlling the microstructure of various forms of carbon nanoparticles from the PET waste by optimizing the preparation parameters in terms of time, additives, and amounts of catalyst. Plastic water bottles are becoming a growing segment of the municipal solid waste stream in the world; some are recycled but many are left in landfill sites. Recycling PET bottles waste can positively impact the environment in several ways: for instance, reduced waste, resource conservation, energy conservation, reduced greenhouse gas emissions, and decreasing the amount of pollution in air and water sources. The main novelty of the present work is based on the acquisition of high-value carbon-based nanomaterials from PET waste by a simple solvent-free chemical technique. Thus, the prepared materials are considered to be promising, cheap, eco-friendly materials that may find use in different applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutt, M.; Nuclear Engineering Division
2010-05-25
The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less
Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization
Izmirlioglu, Gulten; Demirci, Ali
2015-01-01
Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO4·7H2O showed significantly positive effects, whereas KH2PO4 and CaCl2·2H2O had a significantly negative effect (p-value < 0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO4·7H2O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production. PMID:26501261
SEMINAR PUBLICATION: OPERATIONAL PARAMETERS FOR HAZARDOUS WASTE COMBUSTION DEVICES
The information in the document is based on presentations at the EPA-sponsored seminar series on Operational Parameters for Hazardous Waste Combustion Devices. This series consisted of five seminars held in 1992. Hazardous waste combustion devices are regulated under the Resource...
Tan, Q; Huang, G H; Cai, Y P
2010-09-01
The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives. 2010 Elsevier Ltd. All rights reserved.
Optimization of laccase production by Trametes versicolor cultivated on industrial waste.
Tišma, Marina; Znidaršič-Plazl, Polona; Vasić-Rački, Durđa; Zelić, Bruno
2012-01-01
Laccases are very interesting biocatalysts for several industrial applications. Its production by different white-rot fungi can be stimulated by a variety of inducing substrates, and the use of lignocellulosic wastes or industrial by-products is one of the possible approaches to reduce production costs. In this work, various industrial wastes were tested for laccase production by Trametes versicolor MZKI G-99. Solid waste from chemomechanical treatment facility of a paper manufacturing plant showed the highest potential for laccase production. Enzyme production during submerged cultivation of T. versicolor on the chosen industrial waste has been further improved by medium optimization using genetic algorithm. Concentrations of five components in the medium were optimized within 60 shake-flasks experiments, where the highest laccase activity of 2,378 U dm(-3) was achieved. Waste from the paper industry containing microparticles of CaCO(3) was found to stimulate the formation of freely dispersed mycelium and laccase production during submerged cultivation of T. versicolor. It was proven to be a safe and inexpensive substrate for commercial production of laccase and might be more widely applicable for metabolite production by filamentous fungi.
Optimizing Resource and Energy Recovery for Municipal Solid Waste Management
Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...
Eggimann, Sven; Truffer, Bernhard; Maurer, Max
2016-10-15
To determine the optimal connection rate (CR) for regional waste water treatment is a challenge that has recently gained the attention of academia and professional circles throughout the world. We contribute to this debate by proposing a framework for a total cost assessment of sanitation infrastructures in a given region for the whole range of possible CRs. The total costs comprise the treatment and transportation costs of centralised and on-site waste water management systems relative to specific CRs. We can then identify optimal CRs that either deliver waste water services at the lowest overall regional cost, or alternatively, CRs that result from households freely choosing whether they want to connect or not. We apply the framework to a Swiss region, derive a typology for regional cost curves and discuss whether and by how much the empirically observed CRs differ from the two optimal ones. Both optimal CRs may be reached by introducing specific regulatory incentive structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Fang; Li, Feng; Zhao, Ting; Mao, Guanghua; Zou, Ye; Zheng, Daheng; Takase, Mohammed; Feng, Weiwei; Wu, Xiangyang; Yang, Liuqing
2013-08-01
The industrial solid wastes generated during the production of silymarin from the fruits of milk thistle Silybum marianum was used as the substrate. Preparation and evaluation of the feeds produced by solid-state fermentation (SSF) of the industrial solid wastes was carried out. The protein content of the fermented feed (FF) from a combination of Aspergillus niger and Candida tropicalis was the highest among the examined strains. The optimal process parameters for protein enrichment with SSF using A. niger and C. tropicalis included incubation temperature of 30.8 °C, fermentation time of 87.0 h, and initial moisture content of 59.7 %. Under these conditions, the value additions of FF occurred. The fiber of FF was decreased by 25.07 %, while the digestibility of protein, protein content, and the ratio of total essential amino acids to total amino acids were increased by 79.85, 16.22, and 8.21 %, respectively. The analysis indicated that FF contained 1.44 mg/kg flavonoids and 0.5 mg/kg silybin, which significantly increased by 2.42 and 1.63 times, respectively than those in unfermented substrates. FF recorded reduced molecular weight of proteins from 20.1 to 44.3 kDa to below 14.3 kDa. The results of feeding trial of FF replacement with soybean meal in broilers diets for 8 weeks showed that FF significantly improved carcass characteristics including abdominal fat rate, serum biochemical parameters including aspartate transaminase, blood urea nitrogen and high density lipoprotein cholesterol, and immune responses of broilers. A potential feed quality improvement was achieved through mixed strains SSF of industrial solid wastes of S. marianum fruits.
NASA Astrophysics Data System (ADS)
Sun, Y.; Li, Y. P.; Huang, G. H.
2012-06-01
In this study, a queuing-theory-based interval-fuzzy robust two-stage programming (QB-IRTP) model is developed through introducing queuing theory into an interval-fuzzy robust two-stage (IRTP) optimization framework. The developed QB-IRTP model can not only address highly uncertain information for the lower and upper bounds of interval parameters but also be used for analysing a variety of policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. Moreover, it can reflect uncertainties in queuing theory problems. The developed method has been applied to a case of long-term municipal solid waste (MSW) management planning. Interval solutions associated with different waste-generation rates, different waiting costs and different arriving rates have been obtained. They can be used for generating decision alternatives and thus help managers to identify desired MSW management policies under various economic objectives and system reliability constraints.
NASA Astrophysics Data System (ADS)
Assaf, Ramiz; Saleh, Yahya
2017-09-01
Municipalities are responsible for solid waste collectiont for environmental, social and economic purposes. Practices of municipalities should be effective and efficient, with the objectives of reducing the total incurred costs in the solid waste collection network concurrently achieving the highest service level. This study aims at finding the best routes of solid waste collection network in Nablus city-Palestine. More specifically, the study seeks the optimal route that minimizes the total travelled distance by the trucks and hence the resulted costs. The current situation is evaluated and the problem is modelled as a Vehicle Routing Problem (VRP). The VRP is then optimized via a genetic algorithm. Specifically, compared to the current situation, the trucks total travelled distance was reduced by 66%, whereas the collection time was reduced from 7 hours per truck-trip to 2.3 hours. The findings of this study is useful for all municipality policy makers that are responsible for solid waste collection.
Synthesis of Trigeneration Systems: Sensitivity Analyses and Resilience
Carvalho, Monica; Lozano, Miguel A.; Ramos, José; Serra, Luis M.
2013-01-01
This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs. PMID:24453881
Synthesis of trigeneration systems: sensitivity analyses and resilience.
Carvalho, Monica; Lozano, Miguel A; Ramos, José; Serra, Luis M
2013-01-01
This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs.
Bedekar, Priyanka A; Bhalkar, Bhumika N; Patil, Swapnil M; Govindwar, Sanjay P
2016-10-01
Generation of secondary sludge is a major concern of textile dye removal by coagulation process. Combinatorial coagulation-biodegradation treatment system has been found efficient in degradation of coagulated textile dye sludge. Moringa oleifera seed powder (700 mg L -1 ) was able to coagulate textile dyestuff from real textile wastewater with 98 % color removal. Novel consortium-BBA was found to decolorize coagulated dye sludge. Parameters that significantly affect coagulation process were optimized using response surface methodology. The bench-scale stirred tank reactor (50-L capacity) designed with optimized parameters for coagulation process could efficiently remove 98, 89, 78, and 67 % of American Dye Manufacturer's Institute (ADMI) in four repetitive cycles, respectively. Solid-state fermentation composting reactor designed to treat coagulated dye sludge showed 96 % removal of dye within 10 days. Coagulation of dyes from textile wastewater and degradation of coagulated dye sludge were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis. Cell morphology assay, comet assay, and phytotoxicity confirmed the formation of less toxic products after coagulation and degradation mechanism.
Sun, Yongfu; Cheng, Hao; Gao, Shan; Liu, Qinghua; Sun, Zhihu; Xiao, Chong; Wu, Changzheng; Wei, Shiqiang; Xie, Yi
2012-12-19
Thermoelectric materials can realize significant energy savings by generating electricity from untapped waste heat. However, the coupling of the thermoelectric parameters unfortunately limits their efficiency and practical applications. Here, a single-layer-based (SLB) composite fabricated from atomically thick single layers was proposed to optimize the thermoelectric parameters fully. Freestanding five-atom-thick Bi(2)Se(3) single layers were first synthesized via a scalable interaction/exfoliation strategy. As revealed by X-ray absorption fine structure spectroscopy and first-principles calculations, surface distortion gives them excellent structural stability and a much increased density of states, resulting in a 2-fold higher electrical conductivity relative to the bulk material. Also, the surface disorder and numerous interfaces in the Bi(2)Se(3) SLB composite allow for effective phonon scattering and decreased thermal conductivity, while the 2D electron gas and energy filtering effect increase the Seebeck coefficient, resulting in an 8-fold higher figure of merit (ZT) relative to the bulk material. This work develops a facile strategy for synthesizing atomically thick single layers and demonstrates their superior ability to optimize the thermoelectric energy harvesting.
Analysis of Advanced Thermoelectric Materials and Their Functional Limits
NASA Technical Reports Server (NTRS)
Kim, Hyun Jung
2015-01-01
The world's demand for energy is increasing dramatically, but the best energy conversion systems operate at approximately 30% efficiency. One way to decrease energy loss is in the recovery of waste heat using thermoelectric (TE) generators. A TE generator is device that generates electricity by exploiting heat flow across a thermal gradient. The efficiency of a TE material for power generation and cooling is determined by the dimensionless Figure of Merit (ZT): ZT = S(exp. 2)sigmaT/?: where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature, and ? is the thermal conductivity. The parameters are not physically independent, but intrinsically coupled since they are a function of the transport properties of electrons. Traditional research on TE materials has focused on synthesizing bulk semiconductor-type materials that have low thermal conductivity and high electrical conductivity affording ZT values of 1. The optimization of the s/? ratio is difficult to achieve using current material formats, as these material constants are complementary. Recent areas of research are focusing on using nanostructural artifacts that introduce specific dislocations and boundary conditions that scatter the phonons. This disrupts the physical link between thermal (phonon) and electrical (electron) transport. The result is that ? is decreased without decreasing s. These material formats give ZT values of up to 2 which represent approximately 18% energy gain from waste heat recovery. The next challenge in developing the next generation of TE materials with superior performance is to tailor the interconnected thermoelectric physical parameters of the material system. In order to approach this problem, the fundamental physics of each parameter S, sigma, and ? need to be physically understood in their context of electron/phonon interaction for the construction of new high ZT thermoelectric devices. Is it possible to overcome the physical limit imposed by of the effect of phonon lattice oscillation and energetic electrons towards thermal conductivity? Is the Seebeck coefficient, based on the difference in voltage over temperature gradient ( deltaV/deltaT), an intrinsic parameter of each material? All these parameters were manipulated using nano-bridge and twin-lattice structural concepts at the NASA Langley Research Center. This talk will review the current trend of TE research to optimize the ZT and discuss about new approaches on increasing ZT within functional limits of each parameter.
NASA Astrophysics Data System (ADS)
Guo, Sijing; Liu, Yilun; Xu, Lin; Guo, Xuexun; Zuo, Lei
2016-07-01
Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions ('Pareto-optimal solutions') are also obtained by considering the trade-off between ride comfort and road handling.
Economopoulou, M A; Economopoulou, A A; Economopoulos, A P
2013-11-01
The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to: (a) serve 113 Municipalities and Communities that generate nearly 2 milliont/y of comingled MSW with distinctly different waste collection patterns, (b) take into consideration several existing waste transfer stations (WTS) and optimize their use within the overall plan, (c) select the most appropriate sites among the potentially suitable (new and in use) ones, (d) generate the optimal profile of each WTS proposed, and (e) perform sensitivity analysis so as to define the impact of selected sets of constraints (limitations in the availability of sites and in the capacity of their installations) on the design and cost of the ensuing optimal waste transfer system. The results show that optimal planning offers significant economic savings to municipalities, while reducing at the same time the present levels of traffic, fuel consumptions and air emissions in the congested Athens basin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin
2009-10-01
Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.
Kiselev, S M; Shandala, N K; Akhromeev, S V; Gimadova, T I; Seregin, V A; Titov, A V; Biryukova, N G
2015-01-01
Intensification ofactivities in the field of spent nuclear fuel (SNF) and radioactive waste (RW) management in the Far East region of Russia assumes an increase of the environmental load on the territories adjacent to the enterprise and settlements. To ensure radiation safety during works on SNF and radioactive waste management in the standard mode of operation and during the rehabilitation works in the contaminated territories, there is need for the optimization of the existing system of radiation-hygienic monitoring, aimed at the implementation of complex dynamic observation of parameters of radiation-hygienic situation and radiation amount of the population living in the vicinity of the Far Eastern Center for Radioactive Waste Management (FEC "DALRAO"). To solve this problem there is required a significant amount of total and enough structured information on the character of the formation of the radiation situation, the potential ways of the spread of man-made pollution to the surrounding area, determining the radiation load on the population living in the vicinity of the object. In this paper there are presented the results of field studies of the radiation situation at the plant FEC "DALRAO", which were obtained during the course of expedition trips in 2009-2012.
Modeling for waste management associated with environmental-impact abatement under uncertainty.
Li, P; Li, Y P; Huang, G H; Zhang, J L
2015-04-01
Municipal solid waste (MSW) treatment can generate significant amounts of pollutants, and thus pose a risk on human health. Besides, in MSW management, various uncertainties exist in the related costs, impact factors, and objectives, which can affect the optimization processes and the decision schemes generated. In this study, a life cycle assessment-based interval-parameter programming (LCA-IPP) method is developed for MSW management associated with environmental-impact abatement under uncertainty. The LCA-IPP can effectively examine the environmental consequences based on a number of environmental impact categories (i.e., greenhouse gas equivalent, acid gas emissions, and respiratory inorganics), through analyzing each life cycle stage and/or major contributing process related to various MSW management activities. It can also tackle uncertainties existed in the related costs, impact factors, and objectives and expressed as interval numbers. Then, the LCA-IPP method is applied to MSW management for the City of Beijing, the capital of China, where energy consumptions and six environmental parameters [i.e., CO2, CO, CH4, NOX, SO2, inhalable particle (PM10)] are used as systematic tool to quantify environmental releases in entire life cycle stage of waste collection, transportation, treatment, and disposal of. Results associated with system cost, environmental impact, and the related policy implication are generated and analyzed. Results can help identify desired alternatives for managing MSW flows, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty.
Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R
2014-07-01
Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.
A web-based Decision Support System for the optimal management of construction and demolition waste.
Banias, G; Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, N; Papaioannou, I
2011-12-01
Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece. Copyright © 2011 Elsevier Ltd. All rights reserved.
Davari, S; Lichayee, M J
2003-01-01
In steam thermal power plants (TPP) with open re-circulating wet cooling towers, elimination of water hardness and suspended solids (SS) is performed in clarifiers. Most of these clarifiers are of high efficiency sludge re-circulating type (SRC) with capacity between 500-1,500 m3/hr. Improper design and/or mal-operation of clarifiers in TPPs results in working conditions below design capacity or production of soft water with improper quality (hardness and S.S.). This causes accumulation of deposits in heat exchangers, condenser tubes, cooling and service water pipes and boiler tubes as well as increasing the ionic load of water at the demineralizing system inlet. It also increases the amount of chemical consumptions and produces more liquid and solid waste. In this regard, a software program for optimal design and simulation of SRCs has been developed. Then design parameters of existing SRCs in four TPPs in Iran were used as inputs to developed software program and resulting technical specifications were compared with existing ones. In some cases improper design was the main cause of poor outlet water quality. In order to achieve proper efficiency, further investigations were made to obtain control parameters as well as design parameters for both mal-designed and/or mal-operated SRCs.
DOE Waste Treatability Group Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, T.D.
1995-01-01
This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less
A multi-objective model for sustainable recycling of municipal solid waste.
Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz
2017-04-01
The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.
Measuring the value of accurate link prediction for network seeding.
Wei, Yijin; Spencer, Gwen
2017-01-01
The influence-maximization literature seeks small sets of individuals whose structural placement in the social network can drive large cascades of behavior. Optimization efforts to find the best seed set often assume perfect knowledge of the network topology. Unfortunately, social network links are rarely known in an exact way. When do seeding strategies based on less-than-accurate link prediction provide valuable insight? We introduce optimized-against-a-sample ([Formula: see text]) performance to measure the value of optimizing seeding based on a noisy observation of a network. Our computational study investigates [Formula: see text] under several threshold-spread models in synthetic and real-world networks. Our focus is on measuring the value of imprecise link information. The level of investment in link prediction that is strategic appears to depend closely on spread model: in some parameter ranges investments in improving link prediction can pay substantial premiums in cascade size. For other ranges, such investments would be wasted. Several trends were remarkably consistent across topologies.
Yu, Hao; Solvang, Wei Deng
2016-01-01
Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment. PMID:27258293
Yu, Hao; Solvang, Wei Deng
2016-05-31
Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.
Is bigger better? An empirical analysis of waste management in New South Wales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, Pedro, E-mail: pedrotcc@gmail.com; CESUR – Center for Urban and Regional Systems, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon; Marques, Rui Cunha, E-mail: rui.marques@tecnico.ulisboa.pt
Highlights: • We search for the most efficient cost structure for NSW household waste services. • We found that larger services are no longer efficient. • We found an optimal size for the range 12,000–20,000 inhabitants. • We found significant economies of output density for household waste collection. • We found economies of scope in joint provision of unsorted and recycling services. - Abstract: Across the world, rising demand for municipal solid waste services has seen an ongoing increase in the costs of providing these services. Moreover, municipal waste services have typically been provided through natural or legal monopolies, wheremore » few incentives exist to reduce costs. It is thus vital to examine empirically the cost structure of these services in order to develop effective public policies which can make these services more cost efficient. Accordingly, this paper considers economies of size and economies of output density in the municipal waste collection sector in the New South Wales (NSW) local government system in an effort to identify the optimal size of utilities from the perspective of cost efficiency. Our results show that – as presently constituted – NSW municipal waste services are not efficient in terms of costs, thereby demonstrating that ‘bigger is not better.’ The optimal size of waste utilities is estimated to fall in the range 12,000–20,000 inhabitants. However, significant economies of output density for unsorted (residual) municipal waste collection and recycling waste collection were found, which means it is advantageous to increase the amount of waste collected, but maintaining constant the number of customers and the intervention area.« less
Mallek-Fakhfakh, Hanen; Fakhfakh, Jawhar; Walha, Kamel; Hassairi, Hajer; Gargouri, Ali; Belghith, Hafedh
2017-10-01
This work aims at realizing an optimal hydrolysis of pretreated Alfa fibers (Stipa tenacissima) through the use of enzymes produced from Talaromyces thermophilus AX4, namely β-d-glucosidase and xylanase, by a solid state fermentation process of an agro-industrial waste (wheat bran supplemented with lactose). The carbon source was firstly selected and the optimal values of three other parameters were determined: substrate loading (10g), moisture content (85%) and production time (10days); which led to an optimized enzymatic juice. The outcome was then supplemented with cellulases of T. reesei and used to optimize the enzymatic saccharification of alkali-pretreated Alfa fibers (PAF). The maximum saccharification yield of 83.23% was achieved under optimized conditions (substrate concentration 3.7% (w/v), time 144h and enzyme loading of 0.8 FPU, 15U CMCase, 60U β-d-glucosidase and 125U xylanase).The structural modification of PAF due to enzymatic saccharification was supported by the changes of morphologic and chemical composition observed through macroscopic representation, FTIR and X-Ray analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimal planning for the sustainable utilization of municipal solid waste.
Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M
2013-12-01
The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P., E-mail: eco@otenet.gr
2013-11-15
Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/ormore » wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to: (a) serve 113 Municipalities and Communities that generate nearly 2 million t/y of comingled MSW with distinctly different waste collection patterns, (b) take into consideration several existing waste transfer stations (WTS) and optimize their use within the overall plan, (c) select the most appropriate sites among the potentially suitable (new and in use) ones, (d) generate the optimal profile of each WTS proposed, and (e) perform sensitivity analysis so as to define the impact of selected sets of constraints (limitations in the availability of sites and in the capacity of their installations) on the design and cost of the ensuing optimal waste transfer system. The results show that optimal planning offers significant economic savings to municipalities, while reducing at the same time the present levels of traffic, fuel consumptions and air emissions in the congested Athens basin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rada, E.C., E-mail: Elena.Rada@ing.unitn.it; Ragazzi, M.; Fedrizzi, P.
Highlights: ► As an appropriate solution for MSW management in developed and transient countries. ► As an option to increase the efficiency of MSW selective collection. ► As an opportunity to integrate MSW management needs and services inventories. ► As a tool to develop Urban Mining actions. - Abstract: Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspectsmore » related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector.« less
Grey fuzzy optimization model for water quality management of a river system
NASA Astrophysics Data System (ADS)
Karmakar, Subhankar; Mujumdar, P. P.
2006-07-01
A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.
Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta
2017-09-15
The present study discusses the potentiality of using anaerobic Packed Bed Bioreactor (PBR) for the treatment of acid mine drainage (AMD). The multiple process parameters such as pH, hydraulic retention time (HRT), concentration of marine waste extract (MWE), total organic carbon (TOC) and sulfate were optimized together using Taguchi design. The order of influence of the parameters towards biological sulfate reduction was found to be pH > MWE > sulfate > HRT > TOC. At optimized conditions (pH - 7, 20% (v/v) MWE, 1500 mg/L sulfate, 48 h HRT and 2300 mg/L TOC), 98.3% and 95% sulfate at a rate of 769.7 mg/L/d. and 732.1 mg/L/d. was removed from the AMD collected from coal and metal mine, respectively. Efficiency of metal removal (Fe, Cu, Zn, Mg and Ni) was in the range of 94-98%. The levels of contaminants in the treated effluent were below the minimum permissible limits of industrial discharge as proposed by Bureau of Indian Standards (IS 2490:1981). The present study establishes the optimized conditions for PBR operation to completely remove sulfate and metal removal from AMD at high rate. The study also creates the future scope to develop an efficient treatment process for sulfate and metal-rich mine wastewater in a large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Junhui; de Toledo, Renata Alves; Shim, Hojae
2017-01-05
This study aimed to evaluate the effects of some major parameters on the cometabolic removal of cis-1,2-dichloroethylene (cis-DCE) and trichloroethylene (TCE), mixed with benzene, toluene, ethylbenzene, and xylenes, by an indigenous bacterial isolate Pseudomonas plecoglossicida. Such statistical methodologies as hierarchical cluster analysis heat map and principal component analysis were applied to better evaluate the effects of major parameters (soil pH, temperature, moisture, and cis-DCE/TCE concentrations) on the biological process. The bioremoval experiments were carried out in microcosms containing soil slurry, and the headspace concentrations of contaminants were analyzed by gas chromatography. The optimal bioremoval conditions for the mixture were soil water content >110%, pH 8-9, and temperature 15-20°C, while the cis-DCE/TCE concentration did not significantly affect the mixture bioremoval within the tested range (∼10mg per kg soil). Under the optimal conditions, benzene (97.7%), toluene (96.3%), and ethylbenzene (89.8%) were almost completely removed, while cis-DCE (24.5%), TCE (29.0%), m,p-xylene (36.3%), and o-xylene (29.6%) showed lower removal efficiencies. The obtained results would help to better design a remediation technology to be applied to the sites contaminated with mixed wastes, and the statistical methodologies used in this study appear to be very efficient and could serve as a template for optimization. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei
2015-04-01
The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity, and A226-400, SUVA254, S350-400, SUVA280 and S275-295 of DOM could serve as primary parameters when the compost maturity was assessed using UV-Vis spectra.
EMISSIONS OF PCDD/F FROM UNCONTROLLED, DOMESTIC WASTE BURNING
Emissions of polychlorinated bibenzodioxin and dibenzofuran (PCDD/F) result from inefficiencies of combustion processes, most typically waste combustion. Uncontrolled combustion, such as occurs during so-called "backyard burning" of domestic waste, may therefore produce optimal ...
Ren, Keyu; Zhang, Wenlin; Cao, Shurui; Wang, Guomin; Zhou, Zhiqin
2018-05-06
Carbon-based Fe₃O₄ nanocomposites (C/Fe₃O₄ NCs) were synthesized by a simple one-step hydrothermal method using waste pomelo peels as the carbon precursors. The characterization results showed that they had good structures and physicochemical properties. The prepared C/Fe₃O₄ NCs could be applied as excellent and recyclable adsorbents for magnetic solid phase extraction (MSPE) of 11 triazole fungicides in fruit samples. In the MSPE procedure, several parameters including the amount of adsorbents, extraction time, the type and volume of desorption solvent, and desorption time were optimized in detail. Under the optimized conditions, the good linearity ( R ² > 0.9916), the limits of detection (LOD), and quantification (LOQ) were obtained in the range of 1⁻100, 0.12⁻0.55, and 0.39⁻1.85 μg/kg for 11 pesticides, respectively. Lastly, the proposed MSPE method was successfully applied to analyze triazole fungicides in real apple, pear, orange, peach, and banana samples with recoveries in the range of 82.1% to 109.9% and relative standard deviations (RSDs) below 8.4%. Therefore, the C/Fe₃O₄ NCs based MSPE method has a great potential for isolating and pre-concentrating trace levels of triazole fungicides in fruits.
Three-dimensional modelling of leachate recirculation using vertical wells in bioreactor landfills.
Feng, Shi-Jin; Chen, Zheng-Wei; Cao, Ben-Yi
2016-12-01
Bioreactor landfills use leachate recirculation to enhance the biodegradation of municipal solid waste and accelerate landfill stabilisation, which can provide significant environmental and economic benefits. Vertical wells are operated as a major method for leachate recirculation systems. The objectives of this article are to analyse the leachate migration in bioreactor landfills using vertical wells and to offer theoretical basis for the design of leachate recirculation systems. A three-dimensional numerical model was built using FLAC-3D, and this model can consider the saturated and unsaturated flow of leachate within anisotropic waste to reflect the actual conditions. First, main influence factors of leachate migration were analysed, including the vertical well height, hydraulic conductivity, and anisotropic coefficient, in a single-well recirculation system. Then, the effects of different configurations of a group-well system were studied and the optimal well spacing was obtained. Some key design parameters (e.g. the recirculation flow rate, volume of impact zone, radius of impact zone and time to reach steady state) were also evaluated. The results show that the hydraulic conductivity has a great impact on the optimal height of vertical wells and uniform configuration is the best option in terms of both volume of impact zone and time to reach steady state. © The Author(s) 2016.
Co-composting of green waste and food waste at low C/N ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mathava; Ou, Y.-L.; Lin, J.-G., E-mail: jglin@mail.nctu.edu.t
2010-04-15
In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45-75%) and C/N ratios (13.9-19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12 days. The TVSmore » reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.« less
Yu, Zhen; Zhang, You-Chi; Zhang, Xiang; Wang, Yin
2015-01-01
The feasibility of converting food waste into nematocidal biofertilizer by nematophagous fungus Paecilomyces lilacinus (P. lilacinus) was investigated. The culture conditions of P. lilacinus were optimized through response surface methodology. Results showed that fermentation time, the amount of food waste, initial pH and temperature were most important factors for P. lilacinus production. The P. lilacinus production under optimized conditions was 10(9.6 ± 0.3) conidia mL⁻¹. After fermentation, the chemical oxygen demand concentration of food waste was efficiently decreased by 81.92%. Moreover, the property evaluation of the resultant food waste as biofertilizer indicates its high quality with reference to the standard released by the Chinese Ministry of Agriculture. The protease activity and nematocidal ability of P. lilacinus cultured by food waste were 10.8% and 27% higher than those by potato dextrose agar, respectively.
NASA Astrophysics Data System (ADS)
Kókai, Zsófia; Török, Szabina; Zagyvai, Péter; Kiselev, Daniela; Moormann, Rainer; Börcsök, Endre; Zanini, Luca; Takibayev, Alan; Muhrer, Günter; Bevilacqua, Riccardo; Janik, József
2018-02-01
Different target options have been examined for the European Spallation Source, which is under construction in Lund, Sweden. During the design update phase, parameters and characteristics for the target design have been optimized not only for neutronics but also with respect to the waste characteristics related to the final disposal of the target. A rotating, solid tungsten target was eventually selected as baseline concept; the other options considered included mercury and lead-bismuth (LBE) targets suitable for a pulsed source. Since the licensee is obliged to present a decommissioning plan even before the construction phase starts, the radioactive waste category of the target after full operation time is of crucial importance. The results obtained from a small survey among project partners of 7th Framework Program granted by EU 202247 contract have been used. Waste characteristics of different potential spallation target materials were compared. Based on waste index, the tungsten target is the best alternative and the second one is the mercury target. However, all alternatives have HLW category after a 10 year cooling. Based on heat generation alone all of the options would be below the HLW limit after this cooling period. The LBE is the least advantageous alternative based on waste index and heat generation comparison. These results can be useful in compiling the licensing documents of the ESS facility as the target alternatives can be compared from various aspects related to their disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Basudev, E-mail: swain@iae.re.kr; Ryang Park, Jae; Yoon Shin, Dong
Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonancemore » spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30 vol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1 h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). - Highlights: • Waste automotive laminated glass and polyvinyl butyral mechanochemically separated. • An economical total recovery and environment-friendly process has been developed. • It is a global problem rather than regional environmental issue has been addressed. • Without using hazardous chemical wastes are being converted to a wealth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michele, Pognani, E-mail: michele.pognani@unimi.it; Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it; Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi
2015-01-15
Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doingmore » so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.« less
Piccoli, Giorgina Barbara; Nazha, Marta; Ferraresi, Martina; Vigotti, Federica Neve; Pereno, Amina; Barbero, Silvia
2015-06-01
Approximately 2 million chronic haemodialysis patients produce over 2,000,000 tons of waste per year that includes about 600,000 tons of potentially hazardous waste. The aim of the present study was to analyse the characteristics of the waste that is produced through chronic haemodialysis in an effort to identify strategies to reduce its environmental and financial impact. The study included three dialysis machines and disposables for bicarbonate dialysis, haemodiafiltration (HFR) and lactate dialysis. Hazardous waste is defined as waste that comes into contact with bodily fluids. The weight and cost of waste management was evaluated by various policies of differentiation, ranging from a careful-optimal differentiation to a careless one. The amount of time needed for optimal management was recorded in 30 dialysis sessions. Non-hazardous materials were assessed for potential recycling. The amount of plastic waste that is produced per dialysis session ranges from 1.5 to 8 kg (from 1.1 to 8 kg of potentially hazardous waste), depending upon the type of dialysis machine and supplies, differentiation and emptying policies. The financial cost of waste disposal is high, and is mainly related to hazardous waste disposal, with costs ranging from 2.2 to 16 Euro per session (2.7-21 USD) depending on the waste management policy. The average amount of time needed for careful, optimal differentiation disposal is approximately 1 minute for a haemodialysis session and 2 minutes for HFR. The ecological cost is likewise high: less than one-third of non-hazardous waste (23-28%) is potentially recyclable, while the use of different types of plastic, glues, inks and labels prevents the remaining materials from being recycled. Acknowledging the problem of waste management in dialysis could lead to savings of hundreds of millions of Dollars and to the reuse and recycling of hundreds of tons of plastic waste per year on a world-wide scale with considerable financial and ecological savings. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
NASA Astrophysics Data System (ADS)
Budiyanto, Slamet; Anies; Purnaweni, Hartuti; Sunoko, Henna Rya
2018-02-01
The city of Pekalongan known as "Kota Batik" is one of Batik Industrial Centers in Indonesia with 917 batik industry. There are 203 batik industries located in Jenggot Village, which is the biggest batik industrial center in Pekalongan City. The process of making batik requires a dye derived from synthetic dyes containing heavy metals. Most of the waste is directly discharged into the environment without going through the processing first. This is due to the lack of optimal management of existing WWTP as well as lack of public awareness of environmental conservation. This condition has a negative impact on the surrounding community, especially in terms of environmental health. The result of measurement of 5 (five) batik industrial waste outlets and 5 point of batik waste water in residential sewer shows almost equal number for 3 (three) parameters of heavy metals Cd, Cr and Pb with average number: Cd 0.07 Mg / L, Cr 0.76 mg / L and Pb 0.78 mg / L. These three parameters exceed the maximum level of quality standard established by Government Regulation No.82 of 2001 on Water Quality Management and Water Pollution Control. The average result of the water quality measurement of the well digging population to the heavy metal content are: Cd 0,001 mg / L, Cr 0,002 mg / L and Pb 0.04 mg / L. Of the three parameters of heavy metals, heavy metals of Pb are on average higher than the maximum level of quality standards established by Decree of the Minister of Health Number. 492 / Menkes / Per / IV / 2010 regarding Water Quality Requirements. Potential occurrence of dug well water contamination due to infiltration of batik waste water is big enough. Survey results of 15 dug wells show that the construction of dug wells is not sufficient. There is a dug well with a damaged outer wall of 16.1%, damaged inner wall of 17.9% and a damaged well floor of 19.7%. Improper well construction impacts on the infiltration of batik waste water into the well. Survey results of physical well water quality showed 3.6% snoring, 16.1% smelly, 9.8% color and 10.7% taste. Pollution to dug well water can affect public health because it is used for daily use to drink, cook, bathe and wash because> 65% do not have other sources of clean water. The recommendation of this research is the need for waste water treatment batik starting from source through WWTP both on the household and communal scale with the role of local government as a facilitator. Society and batik industry players need to be involved in managing environmentally friendly batik industrial center.
Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko
2017-01-01
Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.
Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K
2017-04-01
This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu 0 -alloy-phase and to a minor degree due to secondary precipitation (PbCl 2 ). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pilot plant experience on anaerobic codigestion of source selected OFMSW and sewage sludge.
Cabbai, Valentina; De Bortoli, Nicola; Goi, Daniele
2016-03-01
Anaerobic codigestion of source selected organic fraction of municipal solid waste (SS-OFMSW) and sewage sludge may be one of the most viable solutions to optimize oversized digesters efficiency in wastewater treatment plants. Based on results of BMP tests obtained for sewage sludge and SS-OFMSW, pilot plant tests were carried out by 3.4 m(3) CSTR reactor at mesophilic temperature. A mix of fruit and vegetable waste from wholesale market and canteen waste was used as SS-OFMSW substrate. Tests were conducted applying an OLR (organic loading rate) ramp with 6 different phases until a value of 3.2 kgVS/m(3) d. Feedstock and digestate characteristics, efficiency and process parameters were monitored. The anaerobic codigestion development was stable in each phase: early indicators like VFA (volatile fatty acids) and FOS/TAC ratio were always below instability threshold values. The maximum OLR tested determined a GPR (gas production rate) of 0.95 N m(3)/m(3) d and SGP (specific gas production) of 0.49 N m(3)/kgVS with a VS abatement of 67.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres.
Pol, Vilas Ganpat
2010-06-15
The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative "upcycling" processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactor under autogenic pressure ( approximately 1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LDPE, HDPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires.
Swain, Basudev; Ryang Park, Jae; Yoon Shin, Dong; Park, Kyung-Soo; Hwan Hong, Myung; Gi Lee, Chan
2015-10-01
Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30v ol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). Copyright © 2015 Elsevier Inc. All rights reserved.
Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.
Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy
2015-07-30
Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E , and resilient modules M r showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.
Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.
Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G
2004-12-01
A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Chao Chung, E-mail: ho919@pchome.com.tw
Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This ismore » because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.« less
Ho, Chao Chung
2011-07-01
Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design and construction of miniature artificial ecosystem based on dynamic response optimization
NASA Astrophysics Data System (ADS)
Hu, Dawei; Liu, Hong; Tong, Ling; Li, Ming; Hu, Enzhu
The miniature artificial ecosystem (MAES) is a combination of man, silkworm, salad and mi-croalgae to partially regenerate O2 , sanitary water and food, simultaneously dispose CO2 and wastes, therefore it have a fundamental life support function. In order to enhance the safety and reliability of MAES and eliminate the influences of internal variations and external dis-turbances, it was necessary to configure MAES as a closed-loop control system, and it could be considered as a prototype for future bioregenerative life support system. However, MAES is a complex system possessing large numbers of parameters, intricate nonlinearities, time-varying factors as well as uncertainties, hence it is difficult to perfectly design and construct a prototype through merely conducting experiments by trial and error method. Our research presented an effective way to resolve preceding problem by use of dynamic response optimiza-tion. Firstly the mathematical model of MAES with first-order nonlinear ordinary differential equations including parameters was developed based on relevant mechanisms and experimental data, secondly simulation model of MAES was derived on the platform of MatLab/Simulink to perform model validation and further digital simulations, thirdly reference trajectories of de-sired dynamic response of system outputs were specified according to prescribed requirements, and finally optimization for initial values, tuned parameter and independent parameters was carried out using the genetic algorithm, the advanced direct search method along with parallel computing methods through computer simulations. The result showed that all parameters and configurations of MAES were determined after a series of computer experiments, and its tran-sient response performances and steady characteristics closely matched the reference curves. Since the prototype is a physical system that represents the mathematical model with reason-able accuracy, so the process of designing and constructing a prototype of MAES is the reverse of mathematical modeling, and must have prerequisite assists from these results of computer simulation.
Atmospheric carbon mineralization in an industrial-scale chrysotile mining waste pile.
Nowamooz, Ali; Dupuis, J Christian; Beaudoin, Georges; Molson, John; Lemieux, Jean-Michel; Horswill, Micha; Fortier, Richard; Larachi, Faïçal; Maldague, Xavier; Constantin, Marc; Duchesne, Josee; Therrien, René
2018-06-12
Magnesium rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial-scale. Although functioning passively under less than optimal conditions compared to lab-scale experiments, the 110Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Yearly, over 100 Mt of ultramafic mine waste suitable for mineral carbonation are generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.
Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.
Bujak, J
2015-08-01
The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kumar, Anil; Saini, Harvinder Singh; Kumar, Sudhir
2018-02-01
Indigenous bacterial strain Pseudomonas balearica SAE1, tolerant to e-waste toxicity was isolated from an e-waste recycling facility Exigo Recycling Pvt. Ltd., India. Toxicity tolerance of bacterial strain was analyzed using crushed (particle size ≤150 µm) waste computer printed circuit boards (PCBs)/liter (L) of culture medium. The EC 50 value for SAE1 was 325.7 g/L of the e-waste pulp density. Two-step bioleaching was then applied to achieve the dissolution of gold (Au) and silver (Ag) from the e-waste. To maximize precious metal dissolution, factors including pulp density, glycine concentration, pH level, and temperature were optimized. The optimization resulted in 68.5 and 33.8% of Au and Ag dissolution, respectively, at a pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C, and a glycine concentration of 5 g/L. This is the first study of Au and Ag bioleaching using indigenous e-waste bacteria and its analysis to determine e-waste toxicity tolerance.
Zhang, Guangwen; He, Yaqun; Wang, Haifeng; Zhang, Tao; Wang, Shuai; Yang, Xing; Xia, Wencheng
2017-06-01
Recycling of waste printed circuit boards is important for environmental protection and sustainable resource utilization. Corona electrostatic separation has been widely used to recycle metals from waste printed circuit boards, but it has poor separation efficiency for finer sized fractions. In this study, a new process of vibrated gas-solid fluidized bed was used to recycle residual metals from nonmetallic fractions, which were treated using the corona electrostatic separation technology. The effects of three main parameters, i.e., vibration frequency, superficial air flow velocity, and fluidizing time on gravity segregation, were investigated using a vibrating gas-solid fluidized bed. Each size fraction had its own optimum parameters. Corresponding to their optimal segregation performance, the products from each experiment were analyzed using an X-ray fluorescence (XRF) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). From the results, it can be seen that the metal recoveries of -1+0.5mm, -0.5+0.25mm, and -0.25mm size fractions were 86.39%, 82.22% and 76.63%, respectively. After separation, each metal content in the -1+0.5 or -0.5+0.25mm size fraction reduced to 1% or less, while the Fe and Cu contents are up to 2.57% and 1.50%, respectively, in the -0.25mm size fraction. Images of the nonmetallic fractions with a size of -0.25mm indicated that a considerable amount of clavate glass fibers existed in these nonmetallic fractions, which may explain why fine particles had the poorest segregation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems
Meisner, Gregory P
2013-10-08
Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.
Parameters of Transportation of Tailings of Metals Lixiviating
NASA Astrophysics Data System (ADS)
Golik, Vladimir; Dmitrak, Yury
2017-11-01
The article shows that the change in the situation in the metals market with a steady increase in production volumes is intensified against the tendency of the transition of mining production from underground mining to underground mining for a certain group of ores. The possibility of a non-waste metals extraction from not only standard, but also from substandard raw materials, is currently provided only by technology with the lixiviating of metals from developing ores. The regular dependences of the magnitude of hydraulic resistances on the hydro-mixture velocity and its density are determined. The correct values of the experimental data convergence with the calculated values of these parameters are obtained. It is shown that the optimization of the transportation parameters of lixiviating tailings allows reducing the level of chemically dangerous pollution of the environment by leachate products. The direction of obtaining the ecological and technological effect from the use of simultaneously environmental and resource-saving technology for the extraction of the disclosed metals is indicated.
Recent trends in biological extraction of chitin from marine shell wastes: a review.
Kaur, Surinder; Dhillon, Gurpreet Singh
2015-03-01
The natural biopolymer chitin and its deacetylated product chitosan are widely used in innumerable applications ranging from biomedicine, pharmaceuticals, food, agriculture and personal care products to environmental sector. The abundant and renewable marine processing wastes are commercially exploited for the extraction of chitin. However, the traditional chitin extraction processes employ harsh chemicals at elevated temperatures for a prolonged time which can harm its physico-chemical properties and are also held responsible for the deterioration of environmental health. In view of this, green extraction methods are increasingly gaining popularity due to their environmentally friendly nature. The bioextraction of chitin from crustacean shell wastes has been increasingly researched at the laboratory scale. However, the bioextraction of chitin is not currently exploited to its maximum potential on the commercial level. Bioextraction of chitin is emerging as a green, cleaner, eco-friendly and economical process. Specifically in the chitin extraction, microorganisms-mediated fermentation processes are highly desirable due to easy handling, simplicity, rapidity, controllability through optimization of process parameters, ambient temperature and negligible solvent consumption, thus reducing environmental impact and costs. Although, chitin production from crustacean shell waste through biological means is still at its early stage of development, it is undergoing rapid progress in recent years and showing a promising prospect. Driven by reduced energy, wastewater or solvent, advances in biological extraction of chitin along with valuable by-products will have high economic and environmental impact.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes.
García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh; Lema, Juan M; Rodríguez, Jorge; Steyer, Jean-Philippe; Torrijos, Michel
2015-01-01
A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 gVS/Ld. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition.
Waghmare, Govind V; Rathod, Virendra K
2016-09-01
The present work demonstrates the hydrolysis of waste cooking oil (WCO) under solvent free condition using commercial available immobilized lipase (Novozyme 435) under the influence of ultrasound irradiation. The process parameters were optimized using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound intensity. It has been observed that ultrasound-assisted lipase-catalyzed hydrolysis of WCO would be a promising alternative for conventional methods. A maximum conversion of 75.19% was obtained at mild operating parameters: molar ratio of oil to water (buffer pH 7) 3:1, catalyst loading of 1.25% (w/w), lower ultrasound power 100W (ultrasound intensity - 7356.68Wm(-2)), duty cycle 50% and temperature (50°C) in a relatively short reaction time (2h). The activation energy and thermodynamic study shows that the hydrolysis reaction is more feasible when ultrasound is combined with mechanical agitation as compared with the ultrasound alone and simple conventional stirring technique. Application of ultrasound considerably reduced the reaction time as compared to conventional reaction. The successive use of the catalyst for repetitive cycles under the optimum experimental conditions resulted in a loss of enzymatic activity and also minimized the product conversion. Copyright © 2016. Published by Elsevier B.V.
Kausar, Abida; Bhatti, Haq Nawaz; MacKinnon, Gillian
2013-11-01
In this research, biosorption efficiency of different agro-wastes was evaluated with rice husk showing maximum biosorption capacity among the selected biosorbents. Optimization of native, SDS-treated and immobilized rice husk adsorption parameters including pH, biosorbent amount, contact time, initial U(VI) concentration and temperature for maximum U(VI) removal was investigated. Maximum biosorption capacity for native (29.56 mg g(-1)) and immobilized biomass (17.59 mg g(-1)) was observed at pH 4 while SDS-treated biomass showed maximum removal (28.08 mg g(-1)) at pH 5. The Langmuir sorption isotherm model correlated best with the U(IV) biosorption equilibrium data for the 10-100 mg L(-1) concentration range. The kinetics of the reaction followed pseudo-second order kinetic model. Thermodynamic parameters like free energy (ΔG(0)) and enthalpy (ΔH°) confirmed the spontaneous and exothermic nature of the process. Experiments to determine the regeneration capacity of the selected biosorbents and the effect of competing metal ions on biosorption capacity were also conducted. The biomass was characterized using scanning electron microscopy, surface area analysis, Fourier transformed infra-red spectroscopy and thermal gravimetric analysis. The study proved that rice husk has potential to treat uranium in wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.
A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine
NASA Astrophysics Data System (ADS)
Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro
2017-05-01
In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.
Assessment of solar-assisted gas-fired heat pump systems
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1981-01-01
As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.
Petrovic, Igor; Hip, Ivan; Fredlund, Murray D
2016-09-01
The variability of untreated municipal solid waste (MSW) shear strength parameters, namely cohesion and shear friction angle, with respect to waste stability problems, is of primary concern due to the strong heterogeneity of MSW. A large number of municipal solid waste (MSW) shear strength parameters (friction angle and cohesion) were collected from published literature and analyzed. The basic statistical analysis has shown that the central tendency of both shear strength parameters fits reasonably well within the ranges of recommended values proposed by different authors. In addition, it was established that the correlation between shear friction angle and cohesion is not strong but it still remained significant. Through use of a distribution fitting method it was found that the shear friction angle could be adjusted to a normal probability density function while cohesion follows the log-normal density function. The continuous normal-lognormal bivariate density function was therefore selected as an adequate model to ascertain rational boundary values ("confidence interval") for MSW shear strength parameters. It was concluded that a curve with a 70% confidence level generates a "confidence interval" within the reasonable limits. With respect to the decomposition stage of the waste material, three different ranges of appropriate shear strength parameters were indicated. Defined parameters were then used as input parameters for an Alternative Point Estimated Method (APEM) stability analysis on a real case scenario of the Jakusevec landfill. The Jakusevec landfill is the disposal site of the capital of Croatia - Zagreb. The analysis shows that in the case of a dry landfill the most significant factor influencing the safety factor was the shear friction angle of old, decomposed waste material, while in the case of a landfill with significant leachate level the most significant factor influencing the safety factor was the cohesion of old, decomposed waste material. The analysis also showed that a satisfactory level of performance with a small probability of failure was produced for the standard practice design of waste landfills as well as an analysis scenario immediately after the landfill closure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M
2016-01-01
Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.
Microbial utilisation of natural organic wastes
NASA Astrophysics Data System (ADS)
Ilyin, V. K.; Smirnov, I. A.; Soldatov, P. E.; Korniushenkova, I. N.; Grinin, A. S.; Lykov, I. N.; Safronova, S. A.
2004-03-01
The waste management strategy for the future should meet the benefits of humanity safety, respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. The biological treatment method is based upon the biodegradation of organic substances by various microorganisms. The advantage of the biodegradation waste management in general: it allows to diminish the volume of organic wastes, the biological hazard of the wastes is controlled and this system may be compatible with the other systems. The objectives of our study were: to evaluate effectiveness of microbial biodegradation of non-pretreated substrate, to construct phneumoautomatic digester for organic wastes biodegradation and to study microbial characteristics of active sludge samples used as inoculi in biodegradation experiment. The technology of vegetable wastes treatment was elaborated in IBMP and BMSTU. For this purpose the special unit was created where the degradation process is activated by enforced reinvention of portions of elaborated biogas into digester. This technology allows to save energy normally used for electromechanical agitation and to create optimal environment for anaerobic bacteria growth. The investigations were performed on waste simulator, which imitates physical and chemical content of food wastes calculated basing on the data on food wastes of moderate Russian city. The volume of created experimental sample of digester is 40 l. The basic system elements of device are digesters, gas receiver, remover of drops and valve monitoring and thermal control system. In our testing we used natural food wastes to measure basic parameters and time of biodegradation process. The diminution rate of organic gained 76% from initial mass taking part within 9 days of fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: gradual quantitative increasing of Lactobacillus sp. (from 10 3 to 10 5 colony forming units (CFU) per ml), activation of Clostridia sp. (from 10 2 to 10 4 CFU/ml) and elimination of aerobic conventional pathogens ( Enterobacteriaceae sp., Protea sp., staphylococci). The obtained results allow to evaluate effectiveness of proposed technology and to determine the leading role of lactobacilli and clostridia in process of natural wastes biodegradation. Our further investigations shall further be concentrated on creation of artificial inoculi for launching of food wastes biodegradation. These inoculi will include active and adapted strains of clostridia and lactobacilli.
NASA Astrophysics Data System (ADS)
MacDonald, D. D.; Saleh, A.; Lee, S. K.; Azizi, O.; Rosas-Camacho, O.; Al-Marzooqi, A.; Taylor, M.
2011-04-01
The prediction of corrosion damage of canisters to experimentally inaccessible times is vitally important in assessing various concepts for the disposal of High Level Nuclear Waste. Such prediction can only be made using deterministic models, whose predictions are constrained by the time-invariant natural laws. In this paper, we describe the measurement of experimental electrochemical data that will allow the prediction of damage to the carbon steel overpack of the super container in Belgium's proposed Boom Clay repository by using the Point Defect Model (PDM). PDM parameter values are obtained by optimizing the model on experimental, wide-band electrochemical impedance spectroscopy data.
Modeling of nitrogen transformation in an integrated multi-trophic aquaculture (IMTA)
NASA Astrophysics Data System (ADS)
Silfiana; Widowati; Putro, S. P.; Udjiani, T.
2018-03-01
The dynamic model of nitrogen transformation in IMTA (Integrated Multi-Trophic Aquaculture) is purposed. IMTA is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in IMTA consisting of ammonia (NH3), Nitrite (NO2) and Nitrate (NO3). Nitrogen transformation of several processes, nitrification, assimilation, and volatilization. Numerical simulations are performed by providing initial parameters and values based on a review of previous research. The numerical results show that the rate of change in nitrogen concentration in IMTA decrease and reaches stable at different times.
Tsiliyannis, Christos Aristeides
2013-09-01
Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biomethanation potential for co-digestion of municipal solid waste and rice straw: A batch study.
Negi, Suraj; Dhar, Hiya; Hussain, Athar; Kumar, Sunil
2018-04-01
Rice straw (RS) contains a high amount of lignocellulosic materials which are difficult to degrade without thermal pretreatment. In the present study, co-digestion of municipal solid waste (MSW) and RS was carried out in three different ratios i.e., 1:1, 2:1, and 3:1 to get the maximum biomethanation potential and methane generation rate constant (k). The biogas and methane (CH 4 ) potential increased by 60% and 57%, respectively for MSW and RS in the ratio 2:1 as compared to other combination. The values of k, biochemical methane potential (µ b ) and sludge activity were measured as 0.1 d -1 , 0.99 CH 4 -COD/COD fed and 0.50 g CH 4 -COD/g VSS, respectively. The sludge activity was found to be 100% for 2:1 ratio. Co-digestion of RS with MSW can also optimize the C/N ratio which is an essential parameter in the anaerobic digestion process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate.
Vuorinen, Tiina; Niittynen, Juha; Kankkunen, Timo; Kraft, Thomas M; Mäntysalo, Matti
2016-10-18
Epidermal electronic systems (EESs) are skin-like electronic systems, which can be used to measure several physiological parameters from the skin. This paper presents materials and a simple, straightforward fabrication process for skin-conformable inkjet-printed temperature sensors. Epidermal temperature sensors are already presented in some studies, but they are mainly fabricated using traditional photolithography processes. These traditional fabrication routes have several processing steps and they create a substantial amount of material waste. Hence utilizing printing processes, the EES may become attractive for disposable systems by decreasing the manufacturing costs and reducing the wasted materials. In this study, the sensors are fabricated with inkjet-printed graphene/PEDOT:PSS ink and the printing is done on top of a skin-conformable polyurethane plaster (adhesive bandage). Sensor characterization was conducted both in inert and ambient atmosphere and the graphene/PEDOT:PSS temperature sensors (thermistors) were able reach higher than 0.06% per degree Celsius sensitivity in an optimal environment exhibiting negative temperature dependence.
Recovery of tin from metal powders of waste printed circuit boards.
Yang, Tianzu; Zhu, Pengchun; Liu, Weifeng; Chen, Lin; Zhang, Duchao
2017-10-01
To avoid the adverse effects of tin on the smelting process used to recover copper from metal powders of waste printed circuit boards, an effective process is proposed that selectively extracts tin and its associated metals. That impacts of alkaline pressure oxidation leaching parameters on metal conversion were systematically investigated. The results showed that Sn, Pb, Al and small amounts of Zn in the metal powders were leached out, leaving copper residue. By optimizing the conditions, leaching recovery of 98.2%, 77.6%, 78.3 and 6.8% for Sn, Pb, Al and Zn, respectively, were achieved. Subsequently, more than 99.9% of Pb and Zn in the leaching solution were removed as a mixture of PbS-ZnS in the purification process, which can be used as a raw material in Pb smelting. Approximately 86.2% of Sn in the purified solution was recovered by electrowinning, and the purity of the cathode tin was over 99.8%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen
2015-07-01
Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sobianowska-Turek, Agnieszka
2018-04-11
The utilization of the stream of waste secondary nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) cells, representing annually about 33% of all consumer batteries and accumulators placed on the Polish market, will soon become a big challenge for both legislators and plants dealing with the recycling of this type of hazardous waste. It is due to the fact that no company in Poland operating on the market has a complete technology for the processing of a full stream of waste chemical energy sources produced in this country. Until now, the most commonly used techniques of processing this type of waste were pyrometallurgical process. In this paper, the quantitative and qualitative characteristics of the stream of waste batteries and accumulators collected at separate collection points are presented. The results of metal recovery: caesium, lanthanum, cobalt, iron, manganese, nickel and zinc from the stream of waste Ni-MH cells, type R6 (AA), using hydrometallurgical methods are also offered. The paper demonstrates that one-stage leaching at an initial temperature of 25.0 °C, with 3 M H 2 SO 4 and at the solid to liquid ratio of s/l = 1/10, within 75 min, at a mixing speed of 500 rpm and in a strongly acidic environment should be adopted as optimal parameters for acid leaching of the paramagnetic fraction created after mechanical machining of Ni-MH battery, for which the leaching rates of individual metals were as follows: Ce - 97.7%, La - 88.7%, Co - 79.4%, Fe - 68.5%, Mn - 91.9%, Ni - 66.2% and Zn - 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.
A multi-objective approach to solid waste management.
Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico
2010-01-01
The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.
A multi-objective approach to solid waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galante, Giacomo, E-mail: galante@dtpm.unipa.i; Aiello, Giuseppe; Enea, Mario
2010-08-15
The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached inmore » a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).« less
Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells.
Chen, Wei; Feng, Huajun; Shen, Dongsheng; Jia, Yufeng; Li, Na; Ying, Xianbin; Chen, Ting; Zhou, Yuyang; Guo, Jiayun; Zhou, Mengjiao
2018-03-15
In this study, carbonized waste tires were directly used as a high-performance anode material in microbial fuel cells (MFCs). The effect of the pyrolysis temperature used for waste tire carbonization on the current output performance was investigated to determine the optimal pyrolysis temperature. Thermal gravimetric analysis/differential scanning calorimetry showed that tire carbonization started at 200°C and ended at about 500°C; the weight loss was about 64%. When used in an MFC, the electrode obtained from waste tires carbonized at 800°C gave a current density of 23.1±1.4Am -2 , which is much higher than that achieved with traditional graphite felt anodes (5.5±0.1Am -2 ). The results of this study will be useful in optimizing the design of carbonized waste tire anodes for enhancing MFC performances and will alleviate the environmental problems caused by waste tires. Copyright © 2017 Elsevier B.V. All rights reserved.
New Multi-objective Uncertainty-based Algorithm for Water Resource Models' Calibration
NASA Astrophysics Data System (ADS)
Keshavarz, Kasra; Alizadeh, Hossein
2017-04-01
Water resource models are powerful tools to support water management decision making process and are developed to deal with a broad range of issues including land use and climate change impacts analysis, water allocation, systems design and operation, waste load control and allocation, etc. These models are divided into two categories of simulation and optimization models whose calibration has been addressed in the literature where great relevant efforts in recent decades have led to two main categories of auto-calibration methods of uncertainty-based algorithms such as GLUE, MCMC and PEST and optimization-based algorithms including single-objective optimization such as SCE-UA and multi-objective optimization such as MOCOM-UA and MOSCEM-UA. Although algorithms which benefit from capabilities of both types, such as SUFI-2, were rather developed, this paper proposes a new auto-calibration algorithm which is capable of both finding optimal parameters values regarding multiple objectives like optimization-based algorithms and providing interval estimations of parameters like uncertainty-based algorithms. The algorithm is actually developed to improve quality of SUFI-2 results. Based on a single-objective, e.g. NSE and RMSE, SUFI-2 proposes a routine to find the best point and interval estimation of parameters and corresponding prediction intervals (95 PPU) of time series of interest. To assess the goodness of calibration, final results are presented using two uncertainty measures of p-factor quantifying percentage of observations covered by 95PPU and r-factor quantifying degree of uncertainty, and the analyst has to select the point and interval estimation of parameters which are actually non-dominated regarding both of the uncertainty measures. Based on the described properties of SUFI-2, two important questions are raised, answering of which are our research motivation: Given that in SUFI-2, final selection is based on the two measures or objectives and on the other hand, knowing that there is no multi-objective optimization mechanism in SUFI-2, are the final estimations Pareto-optimal? Can systematic methods be applied to select the final estimations? Dealing with these questions, a new auto-calibration algorithm was proposed where the uncertainty measures were considered as two objectives to find non-dominated interval estimations of parameters by means of coupling Monte Carlo simulation and Multi-Objective Particle Swarm Optimization. Both the proposed algorithm and SUFI-2 were applied to calibrate parameters of water resources planning model of Helleh river basin, Iran. The model is a comprehensive water quantity-quality model developed in the previous researches using WEAP software in order to analyze the impacts of different water resources management strategies including dam construction, increasing cultivation area, utilization of more efficient irrigation technologies, changing crop pattern, etc. Comparing the Pareto frontier resulted from the proposed auto-calibration algorithm with SUFI-2 results, it was revealed that the new algorithm leads to a better and also continuous Pareto frontier, even though it is more computationally expensive. Finally, Nash and Kalai-Smorodinsky bargaining methods were used to choose compromised interval estimation regarding Pareto frontier.
Production of Fungal Glucoamylase for Glucose Production from Food Waste
Lam, Wan Chi; Pleissner, Daniel; Lin, Carol Sze Ki
2013-01-01
The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10−3 minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes. PMID:24970186
Çoruh, Semra; Elevli, Sermin; Geyikçi, Feza
2012-01-01
Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5°C. PMID:22629194
Coruh, Semra; Elevli, Sermin; Geyikçi, Feza
2012-01-01
Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5 °C.
Optimization of extraction parameters on the antioxidant properties of banana waste.
Toh, Pui Yee; Leong, Fei Shan; Chang, Sui Kiat; Khoo, Hock Eng; Yim, Hip Seng
2016-01-01
Banana is grown worldwide and consumed as ripe fruit or used for culinary purposes. Peels form about 18-33% of the whole fruit and are discarded as a waste product. With a view to exploiting banana peel as a source of valuable compounds, this study was undertaken to evaluate the effect of different extraction parameters on the antioxidant activities of the industrial by-product of banana waste (peel). Influence of different extraction parameters such as types of solvent, percentages of solvent, and extraction times on total phenolic content (TPC) and antioxidant activity of mature and green peels of Pisang Abu (PA), Pisang Berangan (PB), and Pisang Mas (PM) were investigated. The best extraction parameters were initially selected based on different percentages of ethanol (0-100% v/v), extraction time (1-5 hr), and extraction temperature (25-60°C) for extraction of antioxidants in the banana peels. Total phenolic content (TPC) was evaluated using Folin-Ciocalteu reagent assay while antioxidant activities (AA) of banana peel were accessed by DPPH, ABTS, and β-carotene bleaching (BCB) assays at optimum extraction conditions. Based on different extraction solvents and percentages of solvents used, 70% and 90% of acetone had yielded the highest TPC for the mature and green PA peels, respectively; 90% of ethanol and methanol has yielded the highest TPC for the mature and green PB peels, respectively; while 90% ethanol for the mature and green PM peels. Similar extraction conditions were found for the antioxidant activities for the banana peel assessed using DPPH assay except for green PB peel, which 70% methanol had contributed to the highest AA. Highest TPC and AA were obtained by applying 4, 1, and 2 hrs extraction for the peels of PA, PB and PM, respectively. The best extraction conditions were also used for determination of AAs using ABTS and β-carotene bleaching assays. Therefore, the best extraction conditions used have given the highest TPC and AAs. By-products of banana (peel) can be considered as a potential source of antioxidants in food and pharmaceutical industry.
NASA Astrophysics Data System (ADS)
Mole, Tracey Lawrence
In this work, an effective and systematic model is devised to synthesize the optimal formulation for an explicit engineering application in the nuclear industry, i.e. radioactive decontamination and waste reduction. Identification of an optimal formulation that is suitable for the desired system requires integration of all the interlacing behaviors of the product constituents. This work is unique not only in product design, but also in these design techniques. The common practice of new product development is to design the optimized product for a particular industrial niche and then subsequent research for the production process is conducted, developed and optimized separately from the product formulation. In this proposed optimization design technique, the development process, disposal technique and product formulation is optimized simultaneously to improve production profit, product behavior and disposal emissions. This "cradle to grave" optimization approach allowed a complex product formulation development process to be drastically simplified. The utilization of these modeling techniques took an industrial idea to full scale testing and production in under 18 months by reducing the number of subsequent laboratory trials required to optimize the formula, production and waste treatment aspects of the product simultaneously. This particular development material involves the use of a polymer matrix that is applied to surfaces as part of a decontamination system. The polymer coating serves to initially "fix" the contaminants in place for detection and ultimate elimination. Upon mechanical entrapment and removal, the polymer coating containing the radioactive isotopes can be dissolved in a solvent processor, where separation of the radioactive metallic particles can take place. Ultimately, only the collection of divided solids should be disposed of as nuclear waste. This creates an attractive alternative to direct land filling or incineration. This philosophy also provides waste generators a way to significantly reduce waste and associated costs, and help meet regulatory, safety and environmental requirements. In order for the polymeric film exhibit the desired performance, a combination of discrete constraints must be fulfilled. These interacting characteristics include the choice of polymer used for construction, drying time, storage constraints, decontamination ability, removal behavior, application process, coating strength and dissolvability processes. Identification of an optimized formulation that is suitable for this entire decontamination system requires integration of all the interlacing characteristics of the coating composition that affect the film behavior. A novel systematic method for developing quantitative values for theses qualitative characteristics is being developed in order to simultaneously optimize the design formulation subject to the discrete product specifications. This synthesis procedure encompasses intrinsic characteristics vital to successful product development, which allows for implementation of the derived model optimizations to operate independent of the polymer film application. This contribution illustrates the optimized synthesis example by which a large range of polymeric compounds and mixtures can be completed. (Abstract shortened by UMI.)
Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M
2013-02-01
Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically encountered in solid fuel combustion. DyNOR™ measures temperature in small furnace segments and delivers the reducing reagent to the exact location where it is most effective. The DyNOR™ distributor reacts precisely and dynamically to rapid changes in combustion conditions, resulting in very low NO(x) emissions from the stack. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vickers, Linda Diane
This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future studies should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this dissertation may be applied to any target material of a high-energy particle accelerator.
Biogas production from livestock waste anaerobic digesters: evaluation and optimization
USDA-ARS?s Scientific Manuscript database
Livestock wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. However, feedstocks from livestock re...
Quecholac-Piña, Xochitl; García-Rivera, Mariel Anel; Espinosa-Valdemar, Rosa María; Vázquez-Morillas, Alethia; Beltrán-Villavicencio, Margarita; Cisneros-Ramos, Adriana de la Luz
2017-11-01
Plastics are widely used in the production of short-life products, which are discarded producing an accumulation of these materials and problems due to their persistence in the environment and waste management systems. Degradable plastics (compostable, oxodegradable) have been presented as an alternative to decrease the negative effect of plastic waste. In this research, the feasibility of degrading a commercially available compostable film and oxodegradable polyethylene, with and without previous abiotic oxidation, is assessed in a home composting system. Reactors (200 L) were used to degrade the plastic films along with a mixture of organic food waste (50 %), mulch (25 %), and dry leaves (25 %), amended with yeast and a solution of brown sugar to increase the speed of the process. The presence of the plastic film did not affect the composting process, which showed an initial increase in temperature and typical profiles for moisture content, pH, with a final C/N of 17.4. After 57 days, the compostable plastic has decreased its mechanical properties in more than 90 %, while the oxodegradable film did not show significant degradation if it was not previously degraded by UV radiation. The use of these plastics should be assessed against the prevailing waste management system in each city or country. In the case of Mexico, which lacks the infrastructure for industrial composting, home composting could be an option to degrade compostable plastics along organic waste. However, more testing is needed in order to set the optimal parameters of the process.
Götze, Ramona; Boldrin, Alessio; Scheutz, Charlotte; Astrup, Thomas Fruergaard
2016-03-01
State-of-the-art environmental assessment of waste management systems rely on data for the physico-chemical composition of individual material fractions comprising the waste in question. To derive the necessary inventory data for different scopes and systems, literature data from different sources and backgrounds are consulted and combined. This study provides an overview of physico-chemical waste characterisation data for individual waste material fractions available in literature and thereby aims to support the selection of data fitting to a specific scope and the selection of uncertainty ranges related to the data selection from literature. Overall, 97 publications were reviewed with respect to employed characterisation method, regional origin of the waste, number of investigated parameters and material fractions and other qualitative aspects. Descriptive statistical analysis of the reported physico-chemical waste composition data was performed to derive value ranges and data distributions for element concentrations (e.g. Cd content) and physical parameters (e.g. heating value). Based on 11,886 individual data entries, median values and percentiles for 47 parameters in 11 individual waste fractions are presented. Exceptional values and publications are identified and discussed. Detailed datasets are attached to this study, allowing further analysis and new applications of the data. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhov, K.; Simakov, A.; Seregin, V.
2013-07-01
The report is an overview of the information-analytical system designed to assure radiation safety of workers. The system was implemented in the Northwest Radioactive Waste Management Center 'SevRAO' (which is a branch of the Federal State Unitary Enterprise 'Radioactive Waste Management Enterprise RosRAO'). The center is located in the Northwest Russia. In respect to 'SevRAO', the Federal Medical-Biological Agency is the regulatory body, which deals with issues of radiation control. The main document to regulate radiation control is 'Reference levels of radiation factors in radioactive wastes management center'. This document contains about 250 parameters. We have developed a software toolmore » to simplify control of these parameters. The software includes: input interface, the database, dose calculating module and analytical block. Input interface is used to enter radiation environment data. Dose calculating module calculates the dose on the route. Analytical block optimizes and analyzes radiation situation maps. Much attention is paid to the GUI and graphical representation of results. The operator can enter the route at the industrial site or watch the fluctuations of the dose rate field on the map. Most of the results are presented in a visual form. Here we present some analytical tasks, such as comparison of the dose rate in some point with control levels at this point, to be solved for the purpose of radiation safety control. The program helps to identify points making the largest contribution to the collective dose of the personnel. The tool can automatically calculate the route with the lowest dose, compare and choose the best route. The program uses several options to visualize the radiation environment at the industrial site. This system will be useful for radiation monitoring services during the operation, planning of works and development of scenarios. The paper presents some applications of this system on real data over three years - from March 2009 to February 2012. (authors)« less
Optimal Design of an Automotive Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Fagehi, Hassan; Attar, Alaa; Lee, Hosung
2018-07-01
The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).
Optimal Design of an Automotive Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Fagehi, Hassan; Attar, Alaa; Lee, Hosung
2018-04-01
The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).
Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling
2013-01-01
Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively. PMID:24336109
TRU Waste Management Program cost/schedule optimization analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.
1985-10-01
The cost/schedule optimization task is a necessary function to insure that program goals and plans are optimized from a cost and schedule aspect. Results of this study will offer DOE information with which it can establish, within institutional constraints, the most efficient program for the long-term management and disposal of contact handled transuranic waste (CH-TRU). To this end, a comprehensive review of program cost/schedule tradeoffs has been made, to identify any major cost saving opportunities that may be realized by modification of current program plans. It was decided that all promising scenarios would be explored, and institutional limitations to implementationmore » would be described. Since a virtually limitless number of possible scenarios can be envisioned, it was necessary to distill these possibilities into a manageable number of alternatives. The resultant scenarios were described in the cost/schedule strategy and work plan document. Each scenario was compared with the base case: waste processing at the originating site; transport of CH-TRU wastes in TRUPACT; shipment of drums in 6-Packs; 25 year stored waste workoff; WIPP operational 10/88, with all sites shipping to WIPP beginning 10/88; and no processing at WIPP. Major savings were identified in two alternate scenarios: centralize waste processing at INEL and eliminate rail shipment of TRUPACT. No attempt was made to calculate savings due to combination of scenarios. 1 ref., 5 figs., 1 tab. (MHB)« less
Li, Shuliang; Meng, Wei; Xie, Yufeng
2017-01-01
With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517
Li, Shuliang; Meng, Wei; Xie, Yufeng
2017-12-23
With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.
Calculation and analysis of cross-sections for p+184W reactions up to 200 MeV
NASA Astrophysics Data System (ADS)
Sun, Jian-Ping; Zhang, Zheng-Jun; Han, Yin-Lu
2015-08-01
A set of optimal proton optical potential parameters for p+ 184W reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross sections of proton-induced reactions on 184W are calculated and analyzed by using theoretical models which integrate the optical model, distorted Born wave approximation theory, intra-nuclear cascade model, exciton model, Hauser-Feshbach theory and evaporation model. The calculated results are compared with existing experimental data and good agreement is achieved. Supported by National Basic Research Program of China, Technology Research of Accelerator Driven Sub-critical System for Nuclear Waste Transmutation (2007CB209903) and Strategic Priority Research Program of Chinese Academy of Sciences, Thorium Molten Salt Reactor Nuclear Energy System (XDA02010100)
Turning refuse into resource: a study on aerobic composting.
Janakiram, T; Sridevi, K
2012-07-01
The management of solid waste disposal had been a perennial problem every where in our country. In order to overcome this problem one possible solution is to compost the solid waste in the presence of air, so that it may be converted into an useful manure. With this intention, solid wastes like coir waste and water hyacinth had been collected and composted with the addition of cow dung. The composted material had been examined for the physical and chemical parameters. The content of macronutrients was found to be higher as the period of composting increased. There were gradual variations in the case of other parameters. A comparative account of the two types of solid waste is also given.
DETERMINATION OF OPTIMAL TOXICANT LOADING FOR BIOLOGICAL CLOSURE OF A HAZARDOUS WASTE SITE
Information on Phase I and Phase Il of a multitask effort to achieve biological closure of an abandoned hazardous waste site. aste materials, in the form of buried sludges and lagoon wastes, were examined. ptimal loading levels were evaluated on the basis of biodegradative potent...
NASA Astrophysics Data System (ADS)
Julianto, T. S.; Nurlestari, R.
2018-04-01
The production of biodiesel from waste cooking oil by transesterification reaction using acetone as co-solvent has been carried out. This research studied the optimal amount ratio of acetone as co-solvent to methanol in the transesterification process using homogeneous alkaline catalyst KOH 1% (w/w) of waste cooking oil at room temperature for 15 minutes of reaction time. Mole ratio of waste cooking oil to methanol is 1:12. Acetone was added as co-solvent in varied amount ratio to methanol are 1:4, 1:2, and 1:1, respectively. The results of fatty acid methyl esters (FAME) were analysed using GC-MS instrument. The results showed that the optimal ratio is 1:4 with 99.93% of FAME yield.
Ren, Keyu; Zhang, Wenlin; Cao, Shurui; Wang, Guomin; Zhou, Zhiqin
2018-01-01
Carbon-based Fe3O4 nanocomposites (C/Fe3O4 NCs) were synthesized by a simple one-step hydrothermal method using waste pomelo peels as the carbon precursors. The characterization results showed that they had good structures and physicochemical properties. The prepared C/Fe3O4 NCs could be applied as excellent and recyclable adsorbents for magnetic solid phase extraction (MSPE) of 11 triazole fungicides in fruit samples. In the MSPE procedure, several parameters including the amount of adsorbents, extraction time, the type and volume of desorption solvent, and desorption time were optimized in detail. Under the optimized conditions, the good linearity (R2 > 0.9916), the limits of detection (LOD), and quantification (LOQ) were obtained in the range of 1–100, 0.12–0.55, and 0.39–1.85 μg/kg for 11 pesticides, respectively. Lastly, the proposed MSPE method was successfully applied to analyze triazole fungicides in real apple, pear, orange, peach, and banana samples with recoveries in the range of 82.1% to 109.9% and relative standard deviations (RSDs) below 8.4%. Therefore, the C/Fe3O4 NCs based MSPE method has a great potential for isolating and pre-concentrating trace levels of triazole fungicides in fruits. PMID:29734765
Elaboration d'une structure de collecte des matieres residuelles selon la Theorie Constructale
NASA Astrophysics Data System (ADS)
Al-Maalouf, George
Currently, more than 80% of the waste management costs are attributed to the waste collection phase. In order to reduce these costs, one current solution resides in the implementation of waste transfer stations. In these stations, at least 3 collection vehicles transfer their load into a larger hauling truck. This cost reduction is based on the principle of economy of scale applied to the transportation sector. This solution improves the efficiency of the system; nevertheless, it does not optimize it. Recent studies show that the compactor trucks used in the collection phase generate significant economic losses mainly due to the frequent stops and the transportation to transfer stations often far from the collection area. This study suggests the restructuring of the waste collection process by dividing it into two phases: the collection phase, and the transportation to the transfer station phase. To achieve this, a deterministic theory called: "the Constructal Theory" (CT) is used. The results show that starting a certain density threshold, the application of the CT minimizes energy losses in the system. In fact, the collection is optimal if it is done using a combination of low capacity vehicle to collect door to door and transfer their charge into high-capacity trucks. These trucks will then transport their load to the transfer station. To minimize the costs of labor, this study proposes the use of Cybernetic Transport System (CTS) as an automated collection vehicle to collect small amounts of waste. Finally, the optimization method proposed is part of a decentralized approach to the collection and treatment of waste. This allows the implementation of multi-process waste treatment facilities on a territory scale.
Kawai, Kosuke; Huong, Luong Thi Mai
2017-03-01
Proper management of food waste, a major component of municipal solid waste (MSW), is needed, especially in developing Asian countries where most MSW is disposed of in landfill sites without any pretreatment. Source separation can contribute to solving problems derived from the disposal of food waste. An organic waste source separation and collection programme has been operated in model areas in Hanoi, Vietnam, since 2007. This study proposed three key parameters (participation rate, proper separation rate and proper discharge rate) for behaviour related to source separation of household organic waste, and monitored the progress of the programme based on the physical composition of household waste sampled from 558 households in model programme areas of Hanoi. The results showed that 13.8% of 558 households separated organic waste, and 33.0% discharged mixed (unseparated) waste improperly. About 41.5% (by weight) of the waste collected as organic waste was contaminated by inorganic waste, and one-third of the waste disposed of as organic waste by separators was inorganic waste. We proposed six hypothetical future household behaviour scenarios to help local officials identify a final or midterm goal for the programme. We also suggested that the city government take further actions to increase the number of people participating in separating organic waste, improve the accuracy of separation and prevent non-separators from discharging mixed waste improperly.
Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji
2014-04-01
Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
Optimal management of substrates in anaerobic co-digestion: An ant colony algorithm approach.
Verdaguer, Marta; Molinos-Senante, María; Poch, Manel
2016-04-01
Sewage sludge (SWS) is inevitably produced in urban wastewater treatment plants (WWTPs). The treatment of SWS on site at small WWTPs is not economical; therefore, the SWS is typically transported to an alternative SWS treatment center. There is increased interest in the use of anaerobic digestion (AnD) with co-digestion as an SWS treatment alternative. Although the availability of different co-substrates has been ignored in most of the previous studies, it is an essential issue for the optimization of AnD co-digestion. In a pioneering approach, this paper applies an Ant-Colony-Optimization (ACO) algorithm that maximizes the generation of biogas through AnD co-digestion in order to optimize the discharge of organic waste from different waste sources in real-time. An empirical application is developed based on a virtual case study that involves organic waste from urban WWTPs and agrifood activities. The results illustrate the dominate role of toxicity levels in selecting contributions to the AnD input. The methodology and case study proposed in this paper demonstrate the usefulness of the ACO approach in supporting a decision process that contributes to improving the sustainability of organic waste and SWS management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jara-Samaniego, J.; Pérez-Murcia, M. D.; Bustamante, M. A.; Paredes, C.; Pérez-Espinosa, A.; Gavilanes-Terán, I.; López, M.; Marhuenda-Egea, F. C.; Brito, H.; Moral, R.
2017-01-01
Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador), more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17) with a C/N ratio 25; pile 2: (60:30:10) with C/N ratio 24 and pile 3 (75:0:25) with C/N ratio 33), prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter decomposition, reached in a shorter period of time in pile 3. At the end of the process, all the composts showed absence of phytotoxicity and suitable agronomic properties for their use as organic fertilizers. This reflects the viability of the proposed alternative to be scaled-up in developing areas, not only to manage and recycle urban waste fluxes, but also to obtain organic fertilizers, including added value in economic terms related to nutrient contents. PMID:28727757
Jara-Samaniego, J; Pérez-Murcia, M D; Bustamante, M A; Paredes, C; Pérez-Espinosa, A; Gavilanes-Terán, I; López, M; Marhuenda-Egea, F C; Brito, H; Moral, R
2017-01-01
Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador), more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17) with a C/N ratio 25; pile 2: (60:30:10) with C/N ratio 24 and pile 3 (75:0:25) with C/N ratio 33), prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter decomposition, reached in a shorter period of time in pile 3. At the end of the process, all the composts showed absence of phytotoxicity and suitable agronomic properties for their use as organic fertilizers. This reflects the viability of the proposed alternative to be scaled-up in developing areas, not only to manage and recycle urban waste fluxes, but also to obtain organic fertilizers, including added value in economic terms related to nutrient contents.
Optimizing Anesthesia-Related Waste Disposal in the Operating Room: A Brief Report.
Hubbard, Richard M; Hayanga, Jeremiah A; Quinlan, Joseph J; Soltez, Anita K; Hayanga, Heather K
2017-10-01
Misappropriation of noncontaminated waste into regulated medical waste (RMW) containers is a source of added expense to health care facilities. The operating room is a significant contributor to RMW waste production. This study sought to determine whether disposing of anesthesia-related waste in standard waste receptacles before patient entry into the operating room would produce a reduction in RMW. A median of 0.35 kg of waste was collected from 51 cases sampled, with a potential annual reduction of 13,800 kg of RMW to the host institution, and a cost savings of $2200.
Sensor System Fo4r Buried Waste Containment Sites
Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine
2003-11-18
A sensor system for a buried waste containment site having a bottom wall barrier and sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.
Sensor system for buried waste containment sites
Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine
2000-01-01
A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.
Sensor System Fo4r Buried Waste Containment Sites
Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine
2005-09-27
A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.
A model for managing sources of groundwater pollution
Gorelick, Steven M.
1982-01-01
The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.
Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M
2016-01-01
Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.
Dutta, Prajesh; Deb, Akash
2016-01-01
The management of municipal solid waste is one of the major problems of the present world. The use of microbial enzymes for sustainable management of the solid waste is the need of the time. In the present study, we have isolated a potent amylase producing strain (ISL B5) from municipal solid waste. The strain was identified as Pseudomonas stutzeri (P. stutzeri) both biochemically and by 16S rDNA sequencing. The optimization studies revealed that the strain ISL B5 exhibited maximum activity in the liquid media containing 2% starch (2.77 U/ml), 0.8% peptone (2.77 U/ml), and 0.001% Ca2+ ion (2.49 U/ml) under the pH 7.5 (2.59 U/ml), temperature 40°C (2.63 U/ml), and 25 h of incubation period (2.49 U/ml). The highest activity of crude enzyme has also been optimized at the pH 8 (2.49 U/ml). PMID:28096816
Development potential of e-waste recycling industry in China.
Li, Jinhui; Yang, Jie; Liu, Lili
2015-06-01
Waste electrical and electronic equipment (WEEE or e-waste) recycling industries in China have been through several phases from spontaneous informal family workshops to qualified enterprises with treatment fund. This study attempts to analyse the development potential of the e-waste recycling industry in China from the perspective of both time and scale potential. An estimation and forecast of e-waste quantities in China shows that, the total e-waste amount reached approximately 5.5 million tonnes in 2013, with 83% of air conditioners, refrigerators, washing machines, televisions sand computers. The total quantity is expected to reach ca. 11.7 million tonnes in 2020 and 20 million tonnes in 2040, which indicates a large increase potential. Moreover, the demand for recycling processing facilities, the optimal service radius of e-waste recycling enterprises and estimation of the profitability potential of the e-waste recycling industry were analysed. Results show that, based on the e-waste collection demand, e-waste recycling enterprises therefore have a huge development potential in terms of both quantity and processing capacity, with 144 and 167 e-waste recycling facilities needed, respectively, by 2020 and 2040. In the case that e-waste recycling enterprises set up their own collection points to reduce the collection cost, the optimal collection service radius is estimated to be in the range of 173 km to 239 km. With an e-waste treatment fund subsidy, the e-waste recycling industry has a small economic profit, for example ca. US$2.5/unit for television. The annual profit for the e-waste recycling industry overall was about 90 million dollars in 2013. © The Author(s) 2015.
Ma, Jun; Liu, Lei; Ge, Sai; Xue, Qiang; Li, Jiangshan; Wan, Yong; Hui, Xinminnan
2018-03-01
A quantitative description of aerobic waste degradation is important in evaluating landfill waste stability and economic management. This research aimed to develop a coupling model to predict the degree of aerobic waste degradation. On the basis of the first-order kinetic equation and the law of conservation of mass, we first developed the coupling model of aerobic waste degradation that considered temperature, initial moisture content and air injection volume to simulate and predict the chemical oxygen demand in the leachate. Three different laboratory experiments on aerobic waste degradation were simulated to test the model applicability. Parameter sensitivity analyses were conducted to evaluate the reliability of parameters. The coupling model can simulate aerobic waste degradation, and the obtained simulation agreed with the corresponding results of the experiment. Comparison of the experiment and simulation demonstrated that the coupling model is a new approach to predict aerobic waste degradation and can be considered as the basis for selecting the economic air injection volume and appropriate management in the future.
Targeted intervention strategies to optimise diversion of BMW in the Dublin, Ireland region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purcell, M., E-mail: mary.purcell@cit.ie; Centre for Water Resources Research, School of Architecture, Landscape and Civil Engineering, University College Dublin, Newstead, Belfield, Dublin 4; Magette, W.L.
Highlights: > Previous research indicates that targeted strategies designed for specific areas should lead to improved diversion. > Survey responses and GIS model predictions from previous research were the basis for goal setting. > Then logic modelling and behavioural research were employed to develop site-specific management intervention strategies. > Waste management initiatives can be tailored to specific needs of areas rather than one size fits all means currently used. - Abstract: Urgent transformation is required in Ireland to divert biodegradable municipal waste (BMW) from landfill and prevent increases in overall waste generation. When BMW is optimally managed, it becomes amore » resource with value instead of an unwanted by-product requiring disposal. An analysis of survey responses from commercial and residential sectors for the Dublin region in previous research by the authors proved that attitudes towards and behaviour regarding municipal solid waste is spatially variable. This finding indicates that targeted intervention strategies designed for specific geographic areas should lead to improved diversion rates of BMW from landfill, a requirement of the Landfill Directive 1999/31/EC. In the research described in this paper, survey responses and GIS model predictions from previous research were the basis for goal setting, after which logic modelling and behavioural research were employed to develop site-specific waste management intervention strategies. The main strategies devised include (a) roll out of the Brown Bin (Organics) Collection and Community Workshops in Dun Laoghaire Rathdown, (b) initiation of a Community Composting Project in Dublin City (c) implementation of a Waste Promotion and Motivation Scheme in South Dublin (d) development and distribution of a Waste Booklet to promote waste reduction activities in Fingal (e) region wide distribution of a Waste Booklet to the commercial sector and (f) Greening Irish Pubs Initiative. Each of these strategies was devised after interviews with both the residential and commercial sectors to help make optimal waste management the norm for both sectors. Strategy (b), (e) and (f) are detailed in this paper. By integrating a human element into accepted waste management approaches, these strategies will make optimal waste behaviour easier to achieve. Ultimately this will help divert waste from landfill and improve waste management practice as a whole for the region. This method of devising targeted intervention strategies can be adapted for many other regions.« less
Vecino, X; Devesa-Rey, R; Moldes, A B; Cruz, J M
2014-09-01
The cellulosic fraction of vineyard pruning waste (free of hemicellulosic sugars) was entrapped in calcium alginate beads and evaluated as an eco-friendly adsorbent for the removal of different nutrients and micronutrients (Mg, P, Zn, K, N-NH4, SO4, TN, TC and PO4) from an agroindustrial effluent (winery wastewater). Batch adsorption studies were performed by varying the amounts of cellulosic adsorbent (0.5-2%), sodium alginate (1-5%) and calcium chloride (0.05-0.9M) included in the biocomposite. The optimal formulation of the adsorbent composite varied depending on the target contaminant. Thus, for the adsorption of cationic contaminants (Mg, Zn, K, N-NH4 and TN), the best mixture comprised 5% sodium alginate, 0.05M calcium chloride and 0.5% cellulosic vineyard pruning waste, whereas for removal of anionic compounds (P, SO4 and PO4), the optimal mixture comprised 1% sodium alginate, 0.9M calcium chloride and 0.5% cellulosic vineyard pruning waste. To remove TC from the winery wastewater, the optimal mixture comprised 3% of sodium alginate, 0.475M calcium chloride and 0.5% cellulosic vineyard pruning waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard
2013-10-15
In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedscheid, J.; Stahl, S.; Devarakonda, M.
2002-02-26
The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste priormore » to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.« less
Planning and Design of Seawater Reverse Osmosis Desalination Plants Marine Outfalls
NASA Astrophysics Data System (ADS)
Maalouf, S.; Yeh, W. W.
2011-12-01
Increasing demands for water in urban areas and agricultural zones in arid and semi-arid regions have urged planners and regulators to look for alternative renewable water sources. Worldwide, seawater reverse osmosis (SWRO) desalination plants have become an essential supply source for the production of fresh water in such regions. Disposal of their wastes, however, has not been fully and properly addressed. This study presents a strategy for the analysis and design of optimal disposal systems of hypersaline wastes that are generated by SWRO desalination plants. The study evaluates current disposal methods and recommends ways to effectively employ multiport marine outfalls for this purpose. Such outfalls emerged as reliable means for conveying wastes from process plants, to include wastewater treatment and power plants, into the coastal waters. Their proper use, however, in conjunction with SWRO desalination plants is still in its beginning stage, and much work needs to be done to employ them effectively. Therefore, the main objective of this research is to provide design engineers with effective procedures that meet environmental permitting requirements and restrictions, while ascertaining adequate hydrodynamic performance. The study is tested by employing a simulation model and examining its reliability under many parameter perturbation scenarios. This is further extended by providing a solution to the same problem using a heuristic approach.
Li, Kuo; Xu, Zhenming
2015-02-03
Waste Memory Modules (WMMs), a particular kind of waste printed circuit board (WPCB), contain a high amount of brominated epoxy resin (BER), which may bring a series of environmental and health problems. On the other hand, metals like gold and copper are very valuable and are important to recover from WMMs. In the present study, an effective and environmental friendly method using supercritical water (SCW) to decompose BER and recover metals from WMMs was developed instead of hydrometallurgy or pyrometallurgy simultaneously. Experiments were conducted under external-catalyst-free conditions with temperatures ranging from 350 to 550 °C, pressures from 25 to 40 MPa, and reaction times from 120 to 360 min in a semibatch-type reactor. The results showed that BER could be quickly and efficiently decomposed under SCW condition, and the mechanism was possibly free radical reaction. After the SCW treatments, the glass fibers and metal foils in the solid residue could be easily liberated and recovered, respectively. The metal recovery rate reached 99.80%. The optimal parameters were determined as 495 °C, 33 MPa, and 305 min on the basis of response surface methodology (RSM). This study provides an efficient and environmental friendly approach for WMMs recycling compared with electrolysis, pyrometallurgy, and hydrometallurgy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pol, V.
2010-06-15
The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative 'upcycling' processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactormore » under autogenic pressure (1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LDPE, HDPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires.« less
Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst.
Pukale, Dipak D; Maddikeri, Ganesh L; Gogate, Parag R; Pandit, Aniruddha B; Pratap, Amit P
2015-01-01
Transesterification based biodiesel production from waste cooking oil in the presence of heterogeneous solid catalyst has been investigated in the present work. The effect of different operating parameters such as type of catalyst, catalyst concentration, oil to methanol molar ratio and the reaction temperature on the progress of the reaction was studied. Some studies related to catalyst reusability have also been performed. The important physicochemical properties of the synthesized biodiesel have also been investigated. The results showed that tri-potassium phosphate exhibits high catalytic activity for the transesterification of waste cooking oil. Under the optimal conditions, viz. catalyst concentration of 3wt% K3PO4, oil to methanol molar ratio of 1:6 and temperature of 50°C, 92.0% of biodiesel yield was obtained in 90min of reaction time. Higher yield was obtained in the presence of ultrasound as compared to conventional approach under otherwise similar conditions, which can be attributed to the cavitational effects. Kinetic studies have been carried out to determine the rate constant at different operating temperatures. It was observed that the kinetic rate constant increased with an increase in the temperature and the activation energy was found to be 64.241kJ/mol. Copyright © 2014 Elsevier B.V. All rights reserved.
Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure
Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy
2015-01-01
Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented. PMID:28793477
Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor.
Vanderberg-Twary, L; Steenhoudt, K; Travis, B J; Hanners, J L; Foreman, T M; Brainard, J R
1997-07-05
Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.
Review of concrete biodeterioration in relation to nuclear waste.
Turick, Charles E; Berry, Christopher J
2016-01-01
Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. Copyright © 2015. Published by Elsevier Ltd.
Activation of inoculum microorganism from dairy cattle feces
NASA Astrophysics Data System (ADS)
Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin
2018-02-01
Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).
Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, M. D.; Hunsberger, R.; Ness, J. E.
2014-08-01
This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.
Materials and Waste Management Research
EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.
NASA Astrophysics Data System (ADS)
Arneth, Jan-Dirk; Milde, Gerald; Kerndorff, Helmut; Schleyer, Ruprecht
Leachates from deposits of wastes may, in the long run, adversely influence groundwater quality. Since tipping still constitutes the most important form of waste disposal, strategies must be developed which are capable of protecting groundwater against contamination from leachates. In the first instance such protective measures must provide for a minimization of contamination by setting up optimal barriers. Since it would seem difficult to reach this goal in a forseeable future, the avoidance of substances with a high potential for groundwater hazards has to be attributed much importance. In former times, little attention was given to impermeability or avoidance of substances with a high potential for groundwater hazards contained in wastes. Therefore, results of the investigation of groundwater near abandoned sites can be used to optimize groundwater protection on future tipping sites. In the present study, the results of chemical investigation of groundwater from the vicinity of 92 waste disposal sites in the Federal Republic of Germany are presented and the changes in groundwater quality owing to the penetration of leachates are discussed separately for inorganic and organic contaminants.
Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.
Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong
2015-03-01
In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Hanandeh, Ali; El-Zein, Abbas
2009-07-15
Climate change is a driving force behind some recent environmental legislation around the world. Greenhouse gas emission reduction targets have been set in many industrialised countries. A change in current practices of almost all greenhouse-emitting industrial sectors is unavoidable, if the set targets is to be achieved. Although, waste disposal contributes around 3% of the total greenhouse gas emissions in Australia (mainly due to fugitive methane emissions from landfills), the carbon credit and trading scheme set to start in 2010 presents significant challenges and opportunities to municipal solid waste practitioners. Technological advances in waste management, if adopted properly, allow themore » municipal solid waste sector to act as carbon sink, hence earning tradable carbon credits. However, due to the complexity of the system and its inherent uncertainties, optimizing it for carbon credits may worsen its performance under other criteria. We use an integrated, stochastic multi-criteria decision-making tool that we developed earlier to analyse the carbon credit potential of Sydney municipal solid waste under eleven possible future strategies. We find that the changing legislative environment is likely to make current practices highly non-optimal and increase pressures for a change of waste management strategy.« less
Effects of biochars produced from solid organic municipal waste on soil quality parameters
USDA-ARS?s Scientific Manuscript database
New, value-added uses for solid organic waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed organic solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that...
Richard, Gontran; Touhami, Seddik; Zeghloul, Thami; Dascalescu, Lucien
2017-02-01
Plate-type electrostatic separators are commonly employed for the selective sorting of conductive and non-conductive granular materials. The aim of this work is to identify the optimal operating conditions of such equipment, when employed for separating copper and plastics from either flexible or rigid electric wire wastes. The experiments are performed according to the response surface methodology, on samples composed of either "calibrated" particles, obtained by manually cutting of electric wires at a predefined length (4mm), or actual machine-grinded scraps, characterized by a relatively-wide size distribution (1-4mm). The results point out the effect of particle size and shape on the effectiveness of the electrostatic separation. Different optimal operating conditions are found for flexible and rigid wires. A separate processing of the two classes of wire wastes is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh
2015-01-15
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowlymore » biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.« less
Comparative Risk Analysis for Metropolitan Solid Waste Management Systems
NASA Astrophysics Data System (ADS)
Chang, Ni-Bin; Wang, S. F.
1996-01-01
Conventional solid waste management planning usually focuses on economic optimization, in which the related environmental impacts or risks are rarely considered. The purpose of this paper is to illustrate the methodology of how optimization concepts and techniques can be applied to structure and solve risk management problems such that the impacts of air pollution, leachate, traffic congestion, and noise increments can be regulated in the iong-term planning of metropolitan solid waste management systems. Management alternatives are sequentially evaluated by adding several environmental risk control constraints stepwise in an attempt to improve the management strategies and reduce the risk impacts in the long run. Statistics associated with those risk control mechanisms are presented as well. Siting, routing, and financial decision making in such solid waste management systems can also be achieved with respect to various resource limitations and disposal requirements.
Power generation by thermally assisted electroluminescence: like optical cooling, but different
NASA Astrophysics Data System (ADS)
Buckner, Benjamin D.; Heeg, Bauke
2008-02-01
Thermally assisted electro-luminescence may provide a means to convert heat into electricity. In this process, radiation from a hot light-emitting diode (LED) is converted to electricity by a photovoltaic (PV) cell, which is termed thermophotonics. Novel analytical solutions to the equations governing such a system show that this system combines physical characteristics of thermophotovoltaics (TPV) and the inverse process of laser cooling. The flexibility of having both adjustable bias and load parameters may allow an optimized power generation system based on this concept to exceed the power throughput and efficiency of TPV systems. Such devices could function as efficient solar thermal, waste heat, and fuel-based generators.
Ragossnig, A M; Wartha, C; Pomberger, R
2009-11-01
A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
López, Iván; Borzacconi, Liliana
2010-10-01
A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.
Microbial utilisation of natural organic wastes.
Ilyin, V K; Smirnov, I A; Soldatov, P E; Korniushenkova, I N; Grinin, A S; Lykov, I N; Safronova, S A
2004-03-01
The waste management strategy for the future should meet the benefits of humanity safety, respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. The biological treatment method is based upon the biodegradation of organic substances by various microorganisms. The advantage of the biodegradation waste management in general: it allows to diminish the volume of organic wastes, the biological hazard of the wastes is controlled, and this system may be compatible with the other systems. The objectives of our study were: to evaluate effectiveness of microbial biodegradation of non-pretreated substrate, to construct phneumoautomatic digester for organic wastes biodegradation, and to study microbial characteristics of active sludge samples used as inoculi in biodegradation experiment. The technology of vegetable wastes treatment was elaborated in IBMP and BMSTU. For this purpose the special unit was created where the degradation process is activated by enforced reinvention of portions of elaborated biogas into digester. This technology allows to save energy normally used for electromechanical agitation and to create optimal environment for anaerobic bacteria growth. The investigations were performed on waste simulator, which imitates physical and chemical content of food wastes calculated basing on the data on food wastes of moderate Russian city. The volume of created experimental sample of digester is 40 l. The basic system elements of device are digesters, gas receiver, remover of drops and valve monitoring and thermal control system. In our testing we used natural food wastes to measure basic parameters and time of biodegradation process. The diminution rate of organic gained 76% from initial mass taking part within 9 days of fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i) gradual quantitative increasing of Lactobacillus sp. (from 10(3) to 10(5) colony forming units (CFU) per ml), (ii) activation of Clostridia sp. (from 10(2) to 10(4)CFU/ml), (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). The obtained results allow to evaluate effectiveness of proposed technology and to determine the leading role of lactobacilli and clostridia in process of natural wastes biodegradation. Our further investigations shall further be concentrated on creation of artificial inoculi for launching of food wastes biodegradation. These inoculi will include active and adapted strains of clostridia and lactobacilli. c2003 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei
2018-03-01
Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.
NASA Astrophysics Data System (ADS)
Van Oost, G.
2017-11-01
Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste, and to convert organic waste into energy or chemical substances as well as to destroy toxic organic compounds, and to vitrify radioactive waste in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.
Recycling of Vineyard and Winery Wastes as Nutritive Composts for Edible Mushroom Cultivation
NASA Astrophysics Data System (ADS)
Petre, Marian; Teodorescu, Alexandru
2011-01-01
Every year, in Romania huge amounts of wine and vine wastes cause serious environmental damages in vineyards as well as nearby winery factories, for instance, by their burning on the soil surface or their incorporation inside soil matrix. The optimal and efficient way to solve these problems is to recycle these biomass wastes as main ingredients in nutritive composts preparation that could be used for edible mushrooms cultivation. In this respect, the main aim of this work was to establish the best biotechnology of winery and vine wastes recycling by using them as appropriate growth substrata for edible and medicinal mushrooms. According to this purpose, two mushroom species of Basidiomycetes, namely Lentinula edodes as well as Pleurotus ostreatus were used as pure mushroom cultures in experiments. The experiments of inoculum preparation were set up under the following conditions: constant temperature, 23° C; agitation speed, 90-120 rev min-1 pH level, 5.0-6.0. All mycelia mushroom cultures were incubated for 120-168 h. In the next stage of experiments, the culture composts for mushroom growing were prepared from the lignocellulose wastes as vine cuttings and marc of grapes in order to be used as substrata in mycelia development and fruit body formation. The tested culture variants were monitored continuously to keep constant the temperature during the incubation as well as air humidity, air pressure and a balanced ratio of the molecular oxygen and carbon dioxide. In every mushroom culture cycle all the physical and chemical parameters that could influence the mycelia growing as well as fruit body formation of L. edodes and P. ostreatus were compared to the same fungal cultures that were grown on poplar logs used as control samples.
Optimization of food waste compost with the use of biochar.
Waqas, M; Nizami, A S; Aburiazaiza, A S; Barakat, M A; Ismail, I M I; Rashid, M I
2018-06-15
This paper aims to examine the influence of biochar produced from lawn waste in accelerating the degradation and mineralization rates of food waste compost. Biochar produced at two different temperatures (350 and 450 °C) was applied at the rates 10 and 15% (w/w) of the total waste to an in-vessel compost bioreactor for evaluating its effects on food waste compost. The quality of compost was assessed against stabilization indices such as moisture contents (MC), electrical conductivity (EC), organic matters (OM) degradation, change in total carbon (TC) and mineral nitrogen contents such as ammonium (NH 4 + ) and nitrate (NO 3 - ). The use of biochar significantly improved the composting process and physiochemical properties of the final compost. Results showed that in comparison to control trial, biochar amended compost mixtures rapidly achieved the thermophilic temperature, increased the OM degradation by 14.4-15.3%, concentration of NH 4 + by 37.8-45.6% and NO 3 - by 50-62%. The most prominent effects in term of achieving rapid thermophilic temperature and a higher concentration of NH 4 + and NO 3 - were observed at 15% (w/w) biochar. According to compost quality standard of United States (US), California, Germany, and Austria, the compost stability as a result of biochar addition was achieved in 50-60 days. Nonetheless, the biochar produced at 450 °C had similar effects as to biochar produced at 350 °C for most of the compost parameters. Therefore, it is recommended to produce biochar at 350 °C to reduce the energy requirements for resource recovery of biomass and should be added at a concentration of 15% (w/w) to the compost bioreactor for achieving a stable compost. Copyright © 2017 Elsevier Ltd. All rights reserved.
A degradation model for high kitchen waste content municipal solid waste.
Chen, Yunmin; Guo, Ruyang; Li, Yu-Chao; Liu, Hailong; Zhan, Tony Liangtong
2016-12-01
Municipal solid waste (MSW) in developing countries has a high content of kitchen waste (KW), and therefore contains large quantities of water and non-hollocellulose degradable organics. The degradation of high KW content MSW cannot be well simulated by the existing degradation models, which are mostly established for low KW content MSW in developed countries. This paper presents a two-stage anaerobic degradation model for high KW content MSW with degradations of hollocellulose, sugars, proteins and lipids considered. The ranges of the proportions of chemical compounds in MSW components are summarized with the recommended values given. Waste components are grouped into rapidly or slowly degradable categories in terms of the degradation rates under optimal water conditions for degradation. In the proposed model, the unionized VFA inhibitions of hydrolysis/acidogenesis and methanogenesis are considered as well as the pH inhibition of methanogenesis. Both modest and serious VFA inhibitions can be modeled by the proposed model. Default values for the parameters in the proposed method can be used for predictions of degradations of both low and high KW content MSW. The proposed model was verified by simulating two laboratory experiments, in which low and high KW content MSW were used, respectively. The simulated results are in good agreement with the measured data of the experiments. The results show that under low VFA concentrations, the pH inhibition of methanogenesis is the main inhibition to be considered, while the inhibitions of both hydrolysis/acidogenesis and methanogenesis caused by unionized VFA are significant under high VFA concentrations. The model is also used to compare the degradation behaviors of low and high KW content MSW under a favorable environmental condition, and it shows that the gas potential of high KW content MSW releases more quickly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multiphysics modeling of selective laser sintering/melting
NASA Astrophysics Data System (ADS)
Ganeriwala, Rishi Kumar
A significant percentage of total global employment is due to the manufacturing industry. However, manufacturing also accounts for nearly 20% of total energy usage in the United States according to the EIA. In fact, manufacturing accounted for 90% of industrial energy consumption and 84% of industry carbon dioxide emissions in 2002. Clearly, advances in manufacturing technology and efficiency are necessary to curb emissions and help society as a whole. Additive manufacturing (AM) refers to a relatively recent group of manufacturing technologies whereby one can 3D print parts, which has the potential to significantly reduce waste, reconfigure the supply chain, and generally disrupt the whole manufacturing industry. Selective laser sintering/melting (SLS/SLM) is one type of AM technology with the distinct advantage of being able to 3D print metals and rapidly produce net shape parts with complicated geometries. In SLS/SLM parts are built up layer-by-layer out of powder particles, which are selectively sintered/melted via a laser. However, in order to produce defect-free parts of sufficient strength, the process parameters (laser power, scan speed, layer thickness, powder size, etc.) must be carefully optimized. Obviously, these process parameters will vary depending on material, part geometry, and desired final part characteristics. Running experiments to optimize these parameters is costly, energy intensive, and extremely material specific. Thus a computational model of this process would be highly valuable. In this work a three dimensional, reduced order, coupled discrete element - finite difference model is presented for simulating the deposition and subsequent laser heating of a layer of powder particles sitting on top of a substrate. Validation is provided and parameter studies are conducted showing the ability of this model to help determine appropriate process parameters and an optimal powder size distribution for a given material. Next, thermal stresses upon cooling are calculated using the finite difference method. Different case studies are performed and general trends can be seen. This work concludes by discussing future extensions of this model and the need for a multi-scale approach to achieve comprehensive part-level models of the SLS/SLM process.
Resource Costs Give Optimization the Edge
C.M. Eddins
1996-01-01
To optimize or not to optimize - that is the question practically every sawmill has considered at some time or another. Edger and trimmer optimization is a particularly hot topic, as these are among the most wasteful areas of the sawmill because trimmer and edger operators traditionally tend to over edge or trim. By its very definition, optimizing equipment seeks to...
Khan, D; Samadder, S R
2016-07-01
Collection of municipal solid waste is one of the most important elements of municipal waste management and requires maximum fund allocated for waste management. The cost of collection and transportation can be reduced in comparison with the present scenario if the solid waste collection bins are located at suitable places so that the collection routes become minimum. This study presents a suitable solid waste collection bin allocation method at appropriate places with uniform distance and easily accessible location so that the collection vehicle routes become minimum for the city Dhanbad, India. The network analyst tool set available in ArcGIS was used to find the optimised route for solid waste collection considering all the required parameters for solid waste collection efficiently. These parameters include the positions of solid waste collection bins, the road network, the population density, waste collection schedules, truck capacities and their characteristics. The present study also demonstrates the significant cost reductions that can be obtained compared with the current practices in the study area. The vehicle routing problem solver tool of ArcGIS was used to identify the cost-effective scenario for waste collection, to estimate its running costs and to simulate its application considering both travel time and travel distance simultaneously. © The Author(s) 2016.
40 CFR 267.13 - What are my waste analysis requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 27 2014-07-01 2014-07-01 false What are my waste analysis...
40 CFR 267.13 - What are my waste analysis requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 28 2013-07-01 2013-07-01 false What are my waste analysis...
40 CFR 267.13 - What are my waste analysis requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 27 2011-07-01 2011-07-01 false What are my waste analysis...
40 CFR 267.13 - What are my waste analysis requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 28 2012-07-01 2012-07-01 false What are my waste analysis...
40 CFR 267.13 - What are my waste analysis requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What are my waste analysis...
Realm of Thermoalkaline Lipases in Bioprocess Commodities.
Lajis, Ahmad Firdaus B
2018-01-01
For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.
NASA Astrophysics Data System (ADS)
Davis, Rebecca Anne
The increase in waste disposal and energy costs has provided an incentive to convert carbohydrate-rich food waste streams into fuel. For example, dining halls and restaurants discard foods that require tipping fees for removal. An effective use of food waste may be the enzymatic hydrolysis of the waste to simple sugars and fermentation of the sugars to ethanol. As these wastes have complex compositions which may change day-to-day, experiments were carried out to test fermentability of two different types of food waste at 27° C using Saccharomyces cerevisiae yeast (ATCC4124) and Genencor's STARGEN™ enzyme in batch simultaneous saccharification and fermentation (SSF) experiments. A mathematical model of SSF based on experimentally matched rate equations for enzyme hydrolysis and yeast fermentation was developed in Matlab Simulink®. Using Simulink® parameter estimation 1.1.3, parameters for hydrolysis and fermentation were estimated through modified Michaelis-Menten and Monod-type equations with the aim of predicting changes in the levels of ethanol and glycerol from different initial concentrations of glucose, fructose, maltose, and starch. The model predictions and experimental observations agree reasonably well for the two food waste streams and a third validation dataset. The approach of using Simulink® as a dynamic visual model for SSF represents a simple method which can be applied to a variety of biological pathways and may be very useful for systems approaches in metabolic engineering in the future.
Biogas potential from anaerobic co-digestion of faecal sludge with food waste and garden waste
NASA Astrophysics Data System (ADS)
Afifah, Ukhtiy; Priadi, Cindy Rianti
2017-03-01
The limited faecal sludge management can be optimized by converting the sludge into biogas. This study purposed to optimize the biogas potential of faecal sludge with food waste and garden waste. The system using Anaerobic Co-digestion on the variation 25% and 50% concentration of faecal sludge based on Volatile Solids (VS). Inoculum used was cow's rumen. The study was operated using lab-scale batch reactor 51 L for 42 days. Biogas produced at 25% concentration of faecal sludge is 0,30 m3CH4/kg with 71,93% VS and 72,42% COD destruction. Meanwhile, at 50% concentration of faecal sludge produce 0,56 m3CH4/kg VS biogas with 92,43% VS and 87,55% COD destruction. This study concludes that biogas potential of 50% concentration greater than 25% concentration of faecal sludge.
SLFP: a stochastic linear fractional programming approach for sustainable waste management.
Zhu, H; Huang, G H
2011-12-01
A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.
Collection of low-grade waste heat for enhanced energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less
Synthesizing optimal waste blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, V.; Diwekar, W.M.; Hoza, M.
Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make thismore » problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach.« less
Substrate effects on pupation and adult emergence of Hermetia illucens (Diptera: Stratiomyidae).
Holmes, L A; Vanlaerhoven, S L; Tomberlin, J K
2013-04-01
Black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), are of particular interest for their applications in waste management. Feeding on decaying organic waste, black soldier flies successfully reduce manure in confined animal feeding operations of poultry, swine, and cattle. To optimize waste conversion in confined animal feeding operations and landfill facilities, it is imperative to optimize black soldier fly development. Unfortunately, black soldier flies only convert waste during their larval feeding stages and therefore it is of interest to optimize the nonfeeding stages of development, specifically, the postfeeding and pupal stages. The time spent in these stages is thought to be determined by the pupation substrate encountered by the postfeeding larvae. The objective of this study was to determine the effect different pupation substrates have on postfeeding development time, pupation time, and adult emergence success. Five pupation substrates were compared: wood shavings, potting soil, topsoil, sand, and nothing. Postfeeding larvae took longer to reach pupation in the absence of a pupation substrate, although reaching pupation in the shortest time in potting soil and wood shavings. The time spent in the pupal stage was shortest in the absence of a pupation substrate. However, fewer adults emerged when a pupation substrate was not provided.
Systems analysis of the CO2 concentrating mechanism in cyanobacteria
Mangan, Niall M; Brenner, Michael P
2014-01-01
Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO3− transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization. DOI: http://dx.doi.org/10.7554/eLife.02043.001 PMID:24842993
Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin
2016-12-01
The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Chad Edward; Thomas, Michael Loren; Wright, Jerome L.
2004-09-01
Waste characterization is probably the most costly part of radioactive waste management. An important part of this characterization is the measurements of headspace gas in waste containers in order to demonstrate the compliance with Resource Conservation and Recovery Act (RCRA) or transportation requirements. The traditional chemical analysis methods, which include all steps of gas sampling, sample shipment and laboratory analysis, are expensive and time-consuming as well as increasing worker's exposure to hazardous environments. Therefore, an alternative technique that can provide quick, in-situ, and real-time detections of headspace gas compositions is highly desirable. This report summarizes the results obtained from amore » Laboratory Directed Research & Development (LDRD) project entitled 'Potential Application of Microsensor Technology in Radioactive Waste Management with Emphasis on Headspace Gas Detection'. The objective of this project is to bridge the technical gap between the current status of microsensor development and the intended applications of these sensors in nuclear waste management. The major results are summarized below: {sm_bullet} A literature review was conducted on the regulatory requirements for headspace gas sampling/analysis in waste characterization and monitoring. The most relevant gaseous species and the related physiochemical environments were identified. It was found that preconcentrators might be needed in order for chemiresistor sensors to meet desired detection {sm_bullet} A long-term stability test was conducted for a polymer-based chemresistor sensor array. Significant drifts were observed over the time duration of one month. Such drifts should be taken into account for long-term in-situ monitoring. {sm_bullet} Several techniques were explored to improve the performance of sensor polymers. It has been demonstrated that freeze deposition of black carbon (CB)-polymer composite can effectively eliminate the so-called 'coffee ring' effect and lead to a desirable uniform distribution of CB particles in sensing polymer films. The optimal ratio of CB/polymer has been determined. UV irradiation has been shown to improve sensor sensitivity. {sm_bullet} From a large set of commercially available polymers, five polymers were selected to form a sensor array that was able to provide optimal responses to six target-volatile organic compounds (VOCs). A series of tests on the response of sensor array to various VOC concentrations have been performed. Linear sensor responses have been observed over the tested concentration ranges, although the responses over a whole concentration range are generally nonlinear. {sm_bullet} Inverse models have been developed for identifying individual VOCs based on sensor array responses. A linear solvation energy model is particularly promising for identifying an unknown VOC in a single-component system. It has been demonstrated that a sensor array as such we developed is able to discriminate waste containers for their total VOC concentrations and therefore can be used as screening tool for reducing the existing headspace gas sampling rate. {sm_bullet} Various VOC preconcentrators have been fabricated using Carboxen 1000 as an absorbent. Extensive tests have been conducted in order to obtain optimal configurations and parameter ranges for preconcentrator performance. It has been shown that use of preconcentrators can reduce the detection limits of chemiresistors by two orders of magnitude. The life span of preconcentrators under various physiochemical conditions has also been evaluated. {sm_bullet} The performance of Pd film-based H2 sensors in the presence of VOCs has been evaluated. The interference of sensor readings by VOC has been observed, which can be attributed to the interference of VOC with the H2-O2 reaction on the Pd alloy surface. This interference can be eliminated by coating a layer of silicon dioxide on sensing film surface. Our work has demonstrated a wide range of applications of gas microsensors in radioactive waste management. Such applications can potentially lead to a significant cost saving and risk reduction for waste characterization.« less
NASA Astrophysics Data System (ADS)
Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.
2009-12-01
We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.
Fuzzy robust credibility-constrained programming for environmental management and planning.
Zhang, Yimei; Hang, Guohe
2010-06-01
In this study, a fuzzy robust credibility-constrained programming (FRCCP) is developed and applied to the planning for waste management systems. It incorporates the concepts of credibility-based chance-constrained programming and robust programming within an optimization framework. The developed method can reflect uncertainties presented as possibility-density by fuzzy-membership functions. Fuzzy credibility constraints are transformed to the crisp equivalents with different credibility levels, and ordinary fuzzy inclusion constraints are determined by their robust deterministic constraints by setting a-cut levels. The FRCCP method can provide different system costs under different credibility levels (lambda). From the results of sensitivity analyses, the operation cost of the landfill is a critical parameter. For the management, any factors that would induce cost fluctuation during landfilling operation would deserve serious observation and analysis. By FRCCP, useful solutions can be obtained to provide decision-making support for long-term planning of solid waste management systems. It could be further enhanced through incorporating methods of inexact analysis into its framework. It can also be applied to other environmental management problems.
Dissolution and characterization of HEV NiMH batteries.
Larsson, Kristian; Ekberg, Christian; Ødegaard-Jensen, Arvid
2013-03-01
Metal recovery is an essential part of the recycling of hybrid electric vehicle battery waste and the first step in a hydrometallurgical treatment is dissolution of the solid material. The properties of separated battery electrode materials were investigated. Focus was put on both the solid waste and then the dissolution behaviour. The cathode contains metallic nickel that remains undissolved when utilizing non-oxidizing conditions such as hydrochloric or sulphuric acid in combination with a low oxygen atmosphere. In these conditions the cathode active electrode material is fully dissolved. Not dissolving the nickel metal saves up to 37% of the acid consumption for the cathode electrode material. In the commonly used case of oxidizing conditions the nickel metal dissolves and a cobalt-rich phase remains undissolved from the cathode active material. For the anode material a complete and rapid dissolution can be achieved at mild conditions with hydrochloric, nitric or sulphuric acid. Optimal parameters for all cases of dissolution was pH 1 with a reaction time of approximately ≥ 20,000 s. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Bo; Zhong, Zhaoping; Min, Min; Ding, Kuan; Xie, Qinglong; Ruan, Roger
2015-01-01
In this study, catalytic fast co-pyrolysis (co-CFP) of corn stalk and food waste (FW) was carried out to produce aromatics using quantitative pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and ZSM-5 zeolite in the hydrogen form was employed as the catalyst. Co-CFP temperature and a parameter called hydrogen to carbon effective ratio (H/C(eff) ratio) were examined for their effects on the relative content of aromatics. Experimental results showed that co-CFP temperature of 600 °C was optimal for the formation of aromatics and other organic pyrolysis products. Besides, H/C(eff) ratio had an important influence on product distribution. The yield of total organic pyrolysis products and relative content of aromatics increased non-linearly with increasing H/C(eff) ratio. There was an apparent synergistic effect between corn stalk and FW during co-CFP process, which promoted the production of aromatics significantly. Co-CFP of biomass and FW was an effective method to produce aromatics and other petrochemicals. Copyright © 2015. Published by Elsevier Ltd.
Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Arpád; Ilea, Petru
2014-05-30
The present study aims to develop an eco-friendly chemical-electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75kWh/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Food Waste Composting Study from Makanan Ringan Mas
NASA Astrophysics Data System (ADS)
Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.
2016-07-01
The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.
Alves, David; Mato, Salustiano
2016-01-01
In general, in composting facilities the active, or intensive, stage of the process is done separately from the maturation stage, using a specific technology and time. The pre-composted material to be matured can contain enough biodegradable substrates to cause microbial proliferation, which in turn can cause temperatures to increase. Therefore, not controlling the maturation period during waste management at an industrial level can result in undesired outcomes. The main hypothesis of this study is that controlling the maturation stage through turning provides one with an optimized process when compared to the static approach. The waste used was sludge from a seafood-processing plant, mixed with shredded wood (1:2, v/v). The composting system consists of an intensive stage in a 600L static reactor, followed by maturation in triplicate in 200L boxes for 112 days. Two tests were carried out with the same process in reactor and different treatments in boxes: static maturation and turning during maturation when the temperature went above 55°C. PLFAs, organic matter, pH, electrical conductivity, forms of nitrogen and carbon, hydrolytic enzymes and respiratory activity were periodically measured. Turning significantly increased the duration of the thermophilic phase and consequently increased the organic-matter degradation. PCA differentiated significantly the two treatments in function of tracking parameters, especially pH, total carbon, forms of nitrogen and C/N ratio. So, stability and maturity optimum values for compost were achieved in less time with turnings. Whereas turning resulted in microbial-group stabilization and a low mono/sat ratio, static treatment produced greater variability in microbial groups and a high mono/sat ratio, the presence of more degradable substrates causes changes in microbial communities and their study during maturation gives an approach of the state of organic-matter degradation. Obtaining quality compost and optimizing the composting process requires using turning as a control mechanism during maturation. PMID:28002444
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, M.D.; Reddy, C.A.
1986-03-01
An optimized batch fermentation process for the conversion of cattle feedlot waste filtrate, supplemented with cheese whey, into a nitrogenous feed supplement for ruminants is described. Feedlot waste filtrate supplemented with cheese whey (5 g of whey per 100 ml) was fermented by the indigenous microbial flora in the feedlot waste filtrate. Ammonium hydroxide was added to the fermentation not only to maintain a constant pH but also to produce ammonium salts of organic acids, which have been shown to be valuable as nitrogenous feed supplements for ruminants. The utilization of substrate carbohydrate at pH 7.0 and 43 degrees Cmore » was greater than 94% within 8 h, and the crude protein (total N X 6.25) content of the product was 70 to 78% (dry weight basis). About 66 to 69% of the crude protein was in the form of ammonia nitrogen. Lactate and acetate were the predominant acids during the first 6 to 8 hours of fermentation, but after 24 hours, appreciable levels of propionate and butyrate were also present. The rate of fermentation and the crude protein content of the product were optimal at pH 7.0 and decreased at a lower pH. For example, fermentation did not go to completion even after 24 hours at pH 4.5. Fermentation proceeded optimally at 43 degrees C, less so at 37 degrees C, and considerably more slowly at 23 and 50 degrees C. Concentrations of up to 15 g of cheese whey per 100 ml of feedlot waste filtrate were fermented efficiently. Fermentation of feedlot waste filtrate obtained from animals fed low silage-high grain, high silage-low grain, or dairy rations resulted in similar products in terms of total nitrogen and organic acid composition.« less
BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills
NASA Astrophysics Data System (ADS)
Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier
2015-04-01
One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.
NASA Astrophysics Data System (ADS)
Rengga, Wara Dyah Pita; Wati, Diyah Saras; Siregar, Riska Yuliana; Wulandari, Ajeng Riswanti; Lestari, Adela Ayu; Chafidz, Achmad
2017-03-01
One of alternative energies that can replace fossil fuels is hydrogen. Hydrogen can be used to generate electricity and to power combustion engines for transportation. Bio-hydrogen produced from tempeh and tofu processing waste can be considered as a renewable energy. Bio-hydrogen produced from tempeh and tofu processing waste is beneficial because the waste of soybean straw and tofu processing waste is plentiful, cheap, renewable and biodegradable. Specification of tempeh and tofu processing waste were soybean straw and sludge of tofu processing. They contain carbohydrates (cellulose, hemicellulose, and lignin) and methane. This paper reviews the optimal condition to produce bio-hydrogen from tempeh and tofu processing waste. The production of bio-hydrogen used microbial consortium which were enriched from cracked cereals and mainly dominated by Clostridium butyricum and Clostridium roseum. The production process of bio-hydrogen from tempeh and tofu processing waste used acid pre-treatment with acid catalyzed hydrolysis to cleave the bond of hemicellulose and cellulose chains contained in biomass. The optimal production of bio-hydrogen has a yield of 6-6.8 mL/g at 35-60 °C, pH 5.5-7 in hydraulic retention time (HRT) less than 16 h. The production used a continuous system in an anaerobic digester. This condition can be used as a reference for the future research.
Colombo, Bianca; Favini, Francesca; Scaglia, Barbara; Sciarria, Tommy Pepè; D'Imporzano, Giuliana; Pognani, Michele; Alekseeva, Anna; Eisele, Giorgio; Cosentino, Cesare; Adani, Fabrizio
2017-01-01
In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. The optimized acidogenic process resulted in an OA production of 151 g kg -1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg -1 total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg -1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg -1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate/hydroxyvalerate (%) ratio of 53/47 and Mw of 8∙10 5 kDa with a low polydispersity index, i.e. 1.4. This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.
DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
WASHENFELDER DJ
2008-01-22
The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control strategies to a nitrite-based control, where there is no constant depletion mechanism as with hydroxide, should greatly enhance tank lifetime, tank space availability, and reduce downstream reprocessing costs by reducing chemical addition to the tanks.« less
Kim, Hyun-Sun; Yi, Seung-Muk
2009-01-01
Quantifying methane emission from landfills is important to evaluating measures for reduction of greenhouse gas (GHG) emissions. To quantify GHG emissions and identify sensitive parameters for their measurement, a new assessment approach consisting of six different scenarios was developed using Tier 1 (mass balance method) and Tier 2 (the first-order decay method) methodologies for GHG estimation from landfills, suggested by the Intergovernmental Panel on Climate Change (IPCC). Methane emissions using Tier 1 correspond to trends in disposed waste amount, whereas emissions from Tier 2 gradually increase as disposed waste decomposes over time. The results indicate that the amount of disposed waste and the decay rate for anaerobic decomposition were decisive parameters for emission estimation using Tier 1 and Tier 2. As for the different scenarios, methane emissions were highest under Scope 1 (scenarios I and II), in which all landfills in Korea were regarded as one landfill. Methane emissions under scenarios III, IV, and V, which separated the dissimilated fraction of degradable organic carbon (DOC(F)) by waste type and/or revised the methane correction factor (MCF) by waste layer, were underestimated compared with scenarios II and III. This indicates that the methodology of scenario I, which has been used in most previous studies, may lead to an overestimation of methane emissions. Additionally, separate DOC(F) and revised MCF were shown to be important parameters for methane emission estimation from landfills, and revised MCF by waste layer played an important role in emission variations. Therefore, more precise information on each landfill and careful determination of parameter values and characteristics of disposed waste in Korea should be used to accurately estimate methane emissions from landfills.
Glass Development for Treatment of LANL Evaporator Bottoms Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
DE Smith; GF Piepel; GW Veazey
1998-11-20
Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durablemore » (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).« less
NASA Astrophysics Data System (ADS)
Zhao, Shipeng; Zhang, Shuping
2018-02-01
This paper focuses on several factors on the effects of fermented seaweed feed, and obtains the optimal fermentation process through the analysis of nutrients. Through the experiment we can get, Seaweed waste fermented the best feed when adding 1% of microbial agents and 0.5% of corn powder, fermenting for 15 days.
Unuofin, F O; Siswana, M; Cishe, E N
2016-01-01
Rock phosphate (RP) addition in cow-dung waste-paper mixtures at rates above 2% P has been reported to increase the rate of bio-transformation and humification of organic waste mixtures during vermicomposting to produce organic fertilizer for organic farming. However, the optimization of RP for vermicomposting was not established. The objective of this study was to determine the optimal amount of RP integration rates for effective bio-transformation of cow-dung waste-paper mixtures. Arrays of RP integration degrees (0, 0.5, 1, 1.5, 2, and 4% P as RP) were thoroughly mixed with cow- dung waste-paper mixtures to achieve an optimized C:N ratio of 30 and allowed to vermidegrade following the introduction of earthworms at a stocking mass of 12.5 g-worms kg -1 . The bio-transformation of the waste mixtures was examined by measuring C:N ratios and humification index (HI) and per cent ash and volatile solids. Application of 1% P as RP resulted in fast bio-transformation and maturation of cow-dung waste-paper mixtures. A scanning electron microscopy (SEM) was used to evaluate the morphological properties of the different vermicomposts affected by rates of RP showing the degree of degradation of initial compacted aggregates of cellulose and protein fibres in the mixtures at maturity. A germination test was used to further determine phytotoxicity of the final composts and microbial biomass assessment. The final vermicompost (organic fertilizer) had a C:N ratio of 7, MBC of 900 mg kg -1 and HI of 27.1%. The RP incorporation rate of 1% P of RP investigated is therefore, recommended for efficient vermidegradation and humification of cow-dung waste-paper mixtures. However, higher rates of RP incorporation should be considered where greater P enrichment of the final vermicompost (organic fertilizer) is desired.
Determining Optimal Waste Volume From an Intravenous Catheter
Baker, Rachel B.; Summer, Suzanne S.; Lawrence, Michelle; Shova, Amy; McGraw, Catherine A.; Khoury, Jane
2013-01-01
Waste is blood drawn from an intravenous (IV) catheter to remove saline before obtaining a blood sample. This study examines the minimum waste volume resulting in an undiluted sample. A repeated measures design was used. Investigators placed an IV catheter in 60 healthy adults and obtained samples at baseline and following waste volume ranging from 0.5 mL to 3 mL. A random effects mixed model was used to determine the stabilizing point. For sodium and glucose measurements, this stabilizing point was 1 mL of waste. Knowing that only 1 mL of waste is needed will prevent clinicians from obtaining extra waste and discarding blood needlessly. PMID:23455970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.K.
1999-05-10
Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.
Life cycle assessment of electronic waste treatment.
Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi
2015-04-01
Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.
Hossain, Md Sohrab; Nik Ab Rahman, Nik Norulaini; Balakrishnan, Venugopal; Alkarkhi, Abbas F M; Ahmad Rajion, Zainul; Ab Kadir, Mohd Omar
2015-04-01
Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO2) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO2 sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO2-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO2 exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials. Copyright © 2015 Elsevier Ltd. All rights reserved.
George, S; Jayachandran, K
2013-02-01
To improve biosurfactant production economics by the utilization of potential low-cost materials. In an attempt to utilize cost-effective carbon sources in the fermentative production of biosurfactants, various pure and waste frying oils were screened by a standard biosurfactant producing strain. Considering the regional significance, easy availability and the economical advantages, waste frying coconut oil was selected as the substrate for further studies. On isolation of more competent strains that could use waste frying coconut oil efficiently as a carbon source, six bacterial strains were isolated on cetyltrimethyl ammonium bromide-methylene blue agar plate, from a soil sample collected from the premises of a coconut oil mill. Among these, Pseudomonas aeruginosa D was selected as the potential producer of rhamnolipid. Spectrophotometric method, TLC, methylene blue active substance assay, drop collapse technique, surface tension measurement by Du Nouy ring method and emulsifying test confirmed the rhamnolipid producing ability of the selected strain and various process parameters were optimized for the production of maximum amount of biosurfactant. Rhamnolipid components purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, HPLC and TLC were characterized by fast atom bombardment mass spectrometry as a mixture of dirhamnolipids and monorhamnolipids. The rhamnolipid homologues detected were Rha-Rha-C(10) -C(10) , Rha-C(12) -C(10) and Rha-C(10) -C(8) /Rha-C(8) -C(10) . These results indicated the possibility of waste frying coconut oil to be used as a very effective alternate substrate for the economic production of rhamnolipid by a newly isolated Ps. aeruginosa D. Results of this study throws light on the alternate use of already used cooking oil as high-energy source for producing a high value product like rhamnolipid. This would provide options for the food industry other than the recycling and reuse of waste frying oils in cooking and also furthering the value of oil nuts. © 2012 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Trnovcevic, J.; Schneider, F.; Scherer, U. W.
2017-02-01
The production of nuclear energy and the application of other nuclear technologies produce large volumes of low- and intermediate-level radioactive wastes. To investigate a novel means of treating such wastes, plasma is investigated for its efficacy. Plasma treatment promises to simultaneously treat all waste types without any previous sorting or pre-treatment. Microwave-driven plasma torches have the advantage of high-energy efficiency and low-electrode wear. In small-scale experiments, several design variations of an open plasma oven were assembled in order to investigate constraints caused by the materials and oven geometry. The experimental set-up was modified several times in order to test the design characteristics and the variation of plasma-specific proprieties related to the radioactive waste treatment and in order to find a suitable solution with the minimum complexity that allows a representative reproducibility of the results obtained. A plasma torch controlled by a 2.45 GHz microwave signal of up to 200 W was used, employing air as the primary plasma gas with a flow rate of ∼2 L/min. Different organic and inorganic materials in different shapes and sizes were treated besides a standardized mixture resembling mixed wastes from nuclear plants. The results prove that the chosen microwave plasma torch is suitable for a combined combustion and melting of organic and in-organic materials. Investigation of the specimen size to be treated is influential in this process: the power is still too low to melt larger samples, but the temperature is sufficient to treat all kinds of material. When glass particles are added, materials melt together to form an amorphous substance, proving the possibility to vitrify material with this plasma torch. By optimization of the oven configuration, the time needed to combust 25 g of standard sample was reduced by ∼50%. Typical energy efficiencies were found in the range of 8-20% for melting of metal chipping, and ∼90% for melting of zinc powder.
Alananbeh, Kholoud M; Bouqellah, Nahla A; Al Kaff, Nadia S
2014-12-01
Promoting the use of agricultural waste is one of the newly prepared water and environment friendly agriculture strategies in the Kingdom of Saudi Arabia (KSA). The objective of this research was to study the efficiency of cultivating oyster mushroom (Pleurotus ostreatus) on date palm wastes mixed with other agricultural wastes available in KSA. Four agricultural wastes were mixed with date palm leaves at different ratios, with two supplements and three spawn rates were used. Wheat straw mixed with date palm at ratio of 25 (date palm): 75 (agro-waste) showed the best results in most of the parameters measured. Corn meal was superior over wheat bran as a supplement in all treatments. Parameter values increased with the increase of the spawn rate of P. ostreatus. Treatments with date palm leave wastes contained higher carbohydrates and fibers. No significant differences were found among the fruiting bodies produced on the different agro-wastes studied for the different proximates analyzed. Analyses of metal concentration showed that potassium was the highest in all the treatments tested followed by Na, Mg, Ca, and Zn. This is the first study that reported the success of growing oyster mushroom on date palm leaf wastes mixed with other agro-wastes obtainable in KSA.
Alananbeh, Kholoud M.; Bouqellah, Nahla A.; Al Kaff, Nadia S.
2014-01-01
Promoting the use of agricultural waste is one of the newly prepared water and environment friendly agriculture strategies in the Kingdom of Saudi Arabia (KSA). The objective of this research was to study the efficiency of cultivating oyster mushroom (Pleurotus ostreatus) on date palm wastes mixed with other agricultural wastes available in KSA. Four agricultural wastes were mixed with date palm leaves at different ratios, with two supplements and three spawn rates were used. Wheat straw mixed with date palm at ratio of 25 (date palm): 75 (agro-waste) showed the best results in most of the parameters measured. Corn meal was superior over wheat bran as a supplement in all treatments. Parameter values increased with the increase of the spawn rate of P. ostreatus. Treatments with date palm leave wastes contained higher carbohydrates and fibers. No significant differences were found among the fruiting bodies produced on the different agro-wastes studied for the different proximates analyzed. Analyses of metal concentration showed that potassium was the highest in all the treatments tested followed by Na, Mg, Ca, and Zn. This is the first study that reported the success of growing oyster mushroom on date palm leaf wastes mixed with other agro-wastes obtainable in KSA. PMID:25473372
NASA Astrophysics Data System (ADS)
Van Oost, G.
2017-12-01
Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste. It allows the conversion of organic waste into energy or chemical substances as well as the destruction of toxic organic compounds in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.
NASA Astrophysics Data System (ADS)
Suriani, A. B.; Dalila, A. R.; Mohamed, A.; Rosmi, M. S.; Mamat, M. H.; Malek, M. F.; Ahmad, M. K.; Hashim, N.; Isa, I. M.; Soga, T.; Tanemura, M.
2016-12-01
High-quality vertically aligned carbon nanotubes (VACNTs) were synthesised using ferrocene-chicken oil mixture utilising a thermal chemical vapour deposition (TCVD) method. Reaction parameters including vaporisation temperature, catalyst concentration and synthesis time were examined for the first time to investigate their influence on the growth of VACNTs. Analysis via field emission scanning electron microscopy and micro-Raman spectroscopy revealed that the growth rate, diameter and crystallinity of VACNTs depend on the varied synthesis parameters. Vaporisation temperature of 570°C, catalyst concentration of 5.33 wt% and synthesis time of 60 min were considered as optimum parameters for the production of VACNTs from waste chicken fat. These parameters are able to produce VACNTs with small diameters in the range of 15-30 nm and good quality (ID/IG 0.39 and purity 76%) which were comparable to those synthesised using conventional carbon precursor. The low turn on and threshold fields of VACNTs synthesised using optimum parameters indicated that the VACNTs synthesised using waste chicken fat are good candidate for field electron emitter. The result of this study therefore can be used to optimise the growth and production of VACNTs from waste chicken fat in a large scale for field emission application.
Determination of the optimal mesh parameters for Iguassu centrifuge flow and separation calculations
NASA Astrophysics Data System (ADS)
Romanihin, S. M.; Tronin, I. V.
2016-09-01
We present the method and the results of the determination for optimal computational mesh parameters for axisymmetric modeling of flow and separation in the Iguasu gas centrifuge. The aim of this work was to determine the mesh parameters which provide relatively low computational cost whithout loss of accuracy. We use direct search optimization algorithm to calculate optimal mesh parameters. Obtained parameters were tested by the calculation of the optimal working regime of the Iguasu GC. Separative power calculated using the optimal mesh parameters differs less than 0.5% from the result obtained on the detailed mesh. Presented method can be used to determine optimal mesh parameters of the Iguasu GC with different rotor speeds.
Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin
2015-07-06
During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM.
40 CFR 264.98 - Detection monitoring program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conductance, total organic carbon, or total organic halogen), waste constituents, or reaction products that... reaction products in the unsaturated zone beneath the waste management area; (3) The detectability of indicator parameters, waste constituents, and reaction products in ground water; and (4) The concentrations...
Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C; Berry, C.
Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in thismore » field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.« less
Impact of socioeconomic status on municipal solid waste generation rate.
Khan, D; Kumar, A; Samadder, S R
2016-03-01
The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimization of municipal solid waste management in Port Said - Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badran, M.F.; El-Haggar, S.M.
2006-07-01
Optimization of solid waste management systems using operational research methodologies has not yet been applied in any Egyptian governorate. In this paper, a proposed model for a municipal solid waste management system in Port Said, Egypt is presented. It includes the use of the concept of collection stations, which have not yet been used in Egypt. Mixed integer programming is used to model the proposed system and its solution is performed using MPL software V4.2. The results show that the best model would include 27 collection stations of 15-ton daily capacity and 2 collection stations of 10 ton daily capacity.more » Any transfer of waste between the collection station and the landfill should not occur. Moreover, the flow of the district waste should not be confined to the district collection stations. The cost of the objective function for this solution is 10,122 LE/day (equivalent to US$1716). After further calculations, the profit generated by the proposed model is 49,655.8 LE/day (equivalent to US$8418.23)« less
Luo, Jian Hong; Li, Jun; Guo, Lei; Zhu, Xin Hua; Dai, Shuang; Li, Xing
2017-11-01
A new circular microchannel device has been proposed for the removal of chromium(III) from aqueous waste solution by using kerosene as a diluent and (2-ethylhexyl) 2-ethylhexyl phosphonate as an extractant. The proposed device has several advantages such as a flexible and easily adaptable design, easy maintenance, and cheap setup without the requirement of microfabrication. To study the extraction efficiency and advantages of the circular microchannel device in the removal of chromium(III), the effects of various operating conditions such as the inner diameter of the channel, the total flow velocity, the phase ratio, the initial pH of aqueous waste solution, the reaction temperature and the initial concentration of extractant on the extraction efficiency are investigated and the optimal process conditions are obtained. The results show that chromium(III) in aqueous waste solution can be effectively removed with (2-ethylhexyl) 2-ethylhexyl phosphonate in the circular microchannel. Under optimized conditions, an extraction efficiency of chromium(III) of more than 99% can be attained and the aqueous waste solution can be discharged directly, which can meet the Chinese national emission standards.
Electrochemical decomposition of fluorinated wetting agents in plating industry waste water.
Fath, Andreas; Sacher, Frank; McCaskie, John E
2016-01-01
Electrochemical decomposition of fluorinated surfactants (PFAS, perfluorinated alkyl substances) used in the plating industry was analyzed and the decomposition process parameters optimized at the laboratory scale and production scale of a 500-liter reactor using lead electrodes. The method and system was successfully demonstrated under production conditions to treat PFAS) with up to 99% efficiency in the concentration range of 1,000-20,000 μg/l (1 ppm-20 ppm). The treatment also reduced hexavalent chromium (Cr(6+)) ions to trivalent chromium (Cr(3+)) ions in the wastewater. If the PFAS-containing wastewater is mixed with other wastewater streams, specifically from nickel plating drag out solution or when pH values >5, the treatment process is ineffective. For the short chain PFAS, (perfluorobutylsulfonate) the process was less efficient than C6-C8 PFAS. The process is automated and has safety procedures and controls to prevent hazards. The PFAS were decomposed to hydrogen fluoride (HF) under the strong acid electrochemical operating conditions. Analytical tests showed no evidence of organic waste products remaining from the process. Conventional alternative PFAS removal systems were tested on the waste streams and compared with each other and with the-E-destruct (electrochemical oxidation) process. For example, ion exchange resin (IX resin) treatment of wastewater to complex and remove PFAS was found to be seven times more efficient when compared to the conventional activated carbon absorption (C-treat) process. However, the E-destruct process is higher in capacity, exhibits longer service life and lower operating costs than either IX or C-treat methods for elimination of PFAS from these electroplating waste streams.
Designing the microturbine engine for waste-derived fuels.
Seljak, Tine; Katrašnik, Tomaž
2016-01-01
Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production. Copyright © 2015. Published by Elsevier Ltd.
Denes, Jeremy; Tremier, Anne; Menasseri-Aubry, Safya; Walter, Christian; Gratteau, Laurette; Barrington, Suzelle
2015-02-01
Composting wastes permits the reuse of organic matter (OM) as agricultural amendments. The fate of OM during composting and the subsequent degradation of composts in soils largely depend on waste OM quality. The proposed study aimed at developing a model to predict the evolution in organic matter quality during the aerobic degradation of organic waste, based on the quantification of the various OM fractions contained in the wastes. The model was calibrated from data gathered during the monitoring of four organic wastes (two non-treated wastes and their digestates) exposed to respirometric tests. The model was successfully fitted for all four wastes and permitted to predict respiration kinetics, expressed as CO2 production rates, and the evolution of OM fractions. The calibrated model demonstrated that hydrolysis rates of OM fractions were similar for all four wastes whereas the parameters related to microbial activity (eg. growth and death rates) were specific to each substrate. These later parameters have been estimated by calibration on respirometric data, thus demonstrating that coupling analyses of OM fractions in initial wastes and respirometric tests permit the simulation of the biodegradation of various type of waste. The biodegradation model presented in this paper could thereafter be integrated in a composting model by implementing mass and heat balance equations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills.
Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter
2014-11-01
The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55°C for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4-9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon content (DOCC) was in the range of 0.44-0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP values of 51.8-69.6 and 106.6-117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84-5.12% and 7.96-8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
Danon-Schaffer, Monica N; Mahecha-Botero, Andrés; Grace, John R; Ikonomou, Michael
2013-09-01
Previous research on brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) has largely focussed on their concentrations in the environment and their adverse effects on human health. This paper explores their transfer from waste streams to water and soil. A comprehensive mass balance model is developed to track polybrominated diphenyl ethers (PBDEs), originating from e-waste and non-e-waste solids leaching from a landfill. Stepwise debromination is assumed to occur in three sub-systems (e-waste, aqueous leachate phase, and non-e-waste solids). Analysis of landfill samples and laboratory results from a solid-liquid contacting chamber are used to estimate model parameters to simulate an urban landfill system, for past and future scenarios. Sensitivity tests to key model parameters were conducted. Lower BDEs require more time to disappear than high-molecular weight PBDEs, since debromination takes place in a stepwise manner, according to the simplified reaction scheme. Interphase mass transfer causes the decay pattern to be similar in all three sub-systems. The aqueous phase is predicted to be the first sub-system to eliminate PBDEs if their input to the landfill were to be stopped. The non-e-waste solids would be next, followed by the e-waste sub-system. The model shows that mass transfer is not rate-limiting, but the evolution over time depends on the kinetic degradation parameters. Experimental scatter makes model testing difficult. Nevertheless, the model provides qualitative understanding of the influence of key variables. Copyright © 2013 Elsevier B.V. All rights reserved.
Banerjee, Pradipta; Madhu, S; Chandra Babu, N K; Shanthi, C
2015-04-01
Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10mM of CaCl2, 5mM of Na2HPO4, 100mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal-protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. Copyright © 2015 Elsevier B.V. All rights reserved.
Demeestere, K; Smet, E; Van Langenhove, H; Galbacs, Z
2001-12-01
Among the physico-chemical abatement technologies, mainly acid scrubbers have been used to control NH3-emission. The disadvantage of this technique is that it yields waste water, highly concentrated in ammonia. In this report, the applicability of the magnesium ammonium phosphate (MAP) process to regenerate the liquid phase, produced by scrubbing NH3-loaded waste gases, was investigated. In the MAP process, ammonium is precipitated as magnesium ammonium phosphate, which can be used as a slow release fertilizer. The influence of a number of parameters, e.g. pH, kinetics, molar ratio NH(+)4/Mg2+/PO(3-)4 on the efficiency of the formation of MAP and on the ammonium removal efficiency was investigated. In this way, optimal conditions were determined for the precipitation reaction. Next to this, interference caused by other precipitation reactions was studied. At aqueous NH(+)4-concentrations of about 600 mg l(-1), ammonium removal efficiencies of 97% could be obtained at a molar ratio NH(+)4/Mg2+/PO(3-)4 of 1/1.5/1.5. To obtain this result, the pH was continuously adjusted to a value of 9 during the reaction. According to this study, it is obvious that the MAP-precipitation technology offers opportunities for ammonium removal from scrubbing liquids. The practical applicability of the MAP-process in waste gas treatment systems, however, should be the subject for further investigations.
Bioprospecting microbes for single-cell oil production from starchy wastes.
Chaturvedi, Shivani; Kumari, Arti; Nain, Lata; Khare, Sunil K
2018-03-16
Production of lipid from oleaginous yeast using starch as a carbon source is not a common practice; therefore, the purpose of this investigation was to explore the capability of starch assimilating microbes to produce oil, which was determined in terms of biomass weight, productivity, and lipid yield. Saccharomyces pastorianus, Rhodotorula mucilaginosa, Rhodotorula glutinis, and fungal isolate Ganoderma wiiroense were screened for the key parameters. The optimization was also performed by one-factor-at-a-time approach. Considering the specific yield of lipid and cell dry weight yield, R. glutinis and R. mucilaginosa showed superiority over other strains. G. wiiroense, a new isolate, would also be a promising strain for starch waste utilization in terms of extracellular and intracellular specific yield of lipids. Extracellular specific yield of lipid was highest in R. glutinis culture (0.025 g g -1 of biomass) followed by R. mucilaginosa (0.022 g g -1 of biomass) and G. wiiroense (0.020 g g -1 of biomass). Intracellular lipid was again highest in R. glutinis (0.048 g g -1 of biomass). The most prominent fatty acid methyl esters among the lipid as detected by GC-MS were saturated lipids mainly octadecanoic acid, tetradecanoate, and hexadecanoate. Extracellular lipid produced on starch substrate waste would be a cost-effective alternative for energy-intensive extraction process in biodiesel industry.
Koçoğlu, Elif Seda; Bakırdere, Sezgin; Keyf, Seyfullah
2017-09-01
A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid-liquid extraction with gas chromatography-mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Q.H.
1994-09-12
This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.
Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles
NASA Technical Reports Server (NTRS)
Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda
1996-01-01
Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.
Gupta, Vinod Kumar; Pathania, Deepak; Agarwal, Shilpi; Sharma, Shikha
2014-10-13
The present study deals with the surface modification of Luffa cylindrica fiber through graft copolymerization of methyl acrylate/acrylamide (MA/AAm) via microwave radiation without the use of initiator. Various reaction parameters effecting grafting yield were optimized and physico-chemical properties were evaluated. The grafted Luffa cylindrica fiber showed morphological transformations, thermal stability and chemical resistance. The adsorption potential of modified fiber was investigated using adsorption isotherms for hazardous congo red dye removal from aqueous system. The maximum adsorption capacity of dye onto grafted Luffa cylindrica fiber was found to be 17.39 mg/g with best fit for Langmuir adsorption isotherm. The values of thermodynamic parameters such as enthalpy change, ΔH(0) (21.27 kJ/mol), entropy change, ΔS(0) (64.71 J/mol K) and free energy change, ΔG(0) (-139.52 kJ/mol) were also calculated. Adsorption process was found spontaneous and endothermic in nature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Hyun-Woo; Shin, Hang-Sik; Han, Sun-Kee; Oh, Sae-Eun
2007-03-01
This study investigated the effects of food waste constituents on thermophilic (55 degrees C) anaerobic codigestion of sewage sludge and food waste by using statistical techniques based on biochemical methane potential tests. Various combinations of grain, vegetable, and meat as cosubstrate were tested, and then the data of methane potential (MP), methane production rate (MPR), and first-order kinetic constant of hydrolysis (kH) were collected for further analyses. Response surface methodology by the Box-Behnken design can verify the effects and their interactions of three variables on responses efficiently. MP was mainly affected by grain, whereas MPR and kH were affected by both vegetable and meat. Estimated polynomial regression models can properly explain the variability of experimental data with a high-adjusted R2 of 0.727, 0.836, and 0.915, respectively. By applying a series of optimization techniques, it was possible to find the proper criteria of cosubstrate. The optimal cosubstrate region was suggested based on overlay contours of overall mean responses. With the desirability contour plots, it was found that optimal conditions of cosubstrate for the maximum MPR (56.6 mL of CH4/g of chemical oxygen demand [COD]/day) were 0.71 g of COD/L of grain, 0.18 g of COD/L of vegetable, and 0.38 g of COD/L of meat by the simultaneous consideration of MP, MPR, and kH. Within the range of each factor examined, the corresponding optimal ratio of sewage sludge to cosubstrate was 71:29 as the COD basis. Elaborate discussions could yield practical operational strategies for the enhanced thermophilic anaerobic codigestion of sewage sludge and food waste.
Izmirlioglu, Gulten; Demirci, Ali
2016-06-01
Glucoamylase is one of the most common enzymes used in the food industry to break down starch into its monomers. Glucoamylase production and its activity are highly dependent on medium composition. Starch is well known as a glucoamylase inducer, and utilization of industrial starchy potato waste is an inexpensive way of improving glucoamylase production. Since glucoamylase production is highly dependent on medium composition, in this study medium optimization for glucoamylase production was considered to enhance glucoamylase activity. Among the evaluated microbial species, Aspergillus niger van Tieghem was found to be the best glucoamylase-producing fungus. The Plackett-Burman design was used to screen various medium ingredients, and malt extract, FeSO4 .7H2 O and CaCl2 ·2H2 O were found to have significant effects on glucoamylase production. Finally, malt extract, FeSO4 .7H2 O and CaCl2 .2H2 O were optimized by using a central composite design of response surface methodology. The results showed that the optimal medium composition for A. niger van Tieghem was 50 g L(-1) industrial waste potato mash supplemented with 51.82 g L(-1) malt extract, 9.27 g L(-1) CaCl2 ·2H2 O and 0.50 g L(-1) FeSO4 .7H2 O. At the end of optimization, glucoamylase activity and glucose production were improved 126% and 98% compared to only industrial waste potato mash basal medium; 274.4 U mL(-1) glucoamylase activity and 41.7 g L(-1) glucose levels were achieved, respectively. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Bundela, Pushpendra Singh; Khan, Jamaluddin
2015-04-01
The effect of various bulking waste such as wood shaving, agricultural and yard trimming waste combined with organic fraction of municipal solid waste (OFMSW) composting was investigated through assessing their influence on microbial enzymatic activities and quality of finished compost. All three piles of OFMSW with different bulking waste were inoculated with microbial consortium. The results revealed that OFMSW combined with wood shaving and microbial consortium (Phanerochaete chrysosporium, Trichoderma viride and Pseudomonas aeruginosa) were helpful tool to facilitate the enzymatic activity and shortened composting period within 4 weeks. Maximum enzymatic activity were observed in pile 1 and 3 during the first 3 weeks, while in pile 2 relatively very low. But phosphatase activity was relatively higher in all piles until the end of the process. Maturity parameters of compost quality also favored the pile 1 as the best formulation for OFMSW composting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ceramization of low and intermediate level radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiquet, O.; Berson, X.
1993-12-31
A ceramic conditioning is studied for a large variety of low and intermediate level wastes. These wastes arise from several waste streams coming from all process steps of the fuel cycle. The physical properties of ceramics can advantageously be used for radioactive waste immobilization. Their chemical durability can offer a barrier against external aggression. More over, some minerals have possible host sites in their crystal structure for heavy elements which can confer the best immobilization mechanism. The general route for development studies is described giving compositions and process choices. Investigations have been conducted on clay materials and on the processmore » parameters which condition the final product properties. Two practical examples are described concerning chemical precipitation sludge resulting from liquid waste treatment and chamot used as a fluidized bed in a graphite incinerator. Important process parameters are put in evidence and the possibility of a pilot plant development is briefly mentioned. Results of investigations are promising to define a new route of conditioning.« less
NASA Astrophysics Data System (ADS)
Shakurov, R. F.; Sitnikov, O. R.; Galimova, A. I.; Sabitova, A. F.
2018-03-01
The article presents an analysis of the used methods of recycling of waste rubber products. The worn out tires are exposed to natural decomposition only after 50 - 100 years, and toxic organic compounds used in the manufacture constitute a danger to the environment. It contemplates a method of recycling waste rubber products in devices where pulsating combustion is realized. The dependence of the influence of acoustic pulsation parameters on the combustion mechanism of waste rubber products and on the composition of combustion products was experimentally investigated and established. For this purpose, the setup scheme based on the Rijke effect is optimized. The resonance pipe is coaxially embedded in the shaft. The known mathematical model of finding the combustion zones in the Rijke pipe, corresponding to the gas flow oscillations with the maximum amplitude, is applied to the chosen scheme. Investigations were carried out for three positions of the grate relative to the lower section of the experimental pipe, in which 1st, 2nd, 3rd modes of oscillation are formed. There are favorable conditions arise for the secondary combustion of mechanical particles entrained in the gas flow in the tube. The favorable conditions for afterburning also include the fact that through the upper section of the resonant pipe, the ambient air, caused by the features of the standing wave, is mixed into the gas stream. A comparative analysis of the change of gas concentration composition along the length of the resonance tube is carried out. It is established that the basic mode of oscillations contributes to the reduction of nitrogen oxides, in comparison with the oscillations occurring simultaneously at several harmonics, considering the main one. The results of research for the three positions of the grate in relation to the lower section of the installation are presented in tabular form, in which 1, 2, 3 modes of oscillation are formed. The analysis of experimental results confirms that the content of harmful compounds in the gas emissions below the maximum allowable norms.
NASA Technical Reports Server (NTRS)
Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.
1986-01-01
Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.
Mohamed, Lagzouli; Kettani, Youssfi El; Ali, Aitounejjar; Mohamed, Elyachioui; Mohamed, Jadal
2017-01-01
Glucoamylase is among the most important enzymes in biotechnology. The present study aims to determine better conditions for growth and glucoamylase production by Candida guilliermondii and to reduce the overall cost of the medium using Box-Behnken design with one central point and response surface methodology. Box-Behnken factorial design based on three levels was carried out to obtain optimal medium combination of five independent variables such as initial pH, soluble starch, CH4N2O, yeast extract and MgSO4. Forty one randomized mediums were incubated in flask on a rotary shaker at 105 rpm for 72 h at 30°C. The production of biomass was found to be pH and starch dependent, maximum production when the starch concentration was 8 g L-1 and the initial pH was 6, while maximum glucoamylase production was found at 6.5 of initial pH, 4 g L-1 yeast extract and 6 g L-1 starch, whereas yeast extract and urea were highly significant, but interacted negatively. Box-Behnken factorial design used for the analysis of treatment combinations gave a second-order polynomial regression model with R2 = 0.976 for Biomass and R2 = 0.981 for glucoamylase. The final biomass and glucoamylase activity obtained was very close to the calculated parameters according to the p-values (p<0.001), the predicted optimal parameters were confirmed and provides a basis for further studies in baking additives and in the valuation of starch waste products.
Economic and environmental optimization of a multi-site utility network for an industrial complex.
Kim, Sang Hun; Yoon, Sung-Geun; Chae, Song Hwa; Park, Sunwon
2010-01-01
Most chemical companies consume a lot of steam, water and electrical resources in the production process. Given recent record fuel costs, utility networks must be optimized to reduce the overall cost of production. Environmental concerns must also be considered when preparing modifications to satisfy the requirements for industrial utilities, since wastes discharged from the utility networks are restricted by environmental regulations. Construction of Eco-Industrial Parks (EIPs) has drawn attention as a promising approach for retrofitting existing industrial parks to improve energy efficiency. The optimization of the utility network within an industrial complex is one of the most important undertakings to minimize energy consumption and waste loads in the EIP. In this work, a systematic approach to optimize the utility network of an industrial complex is presented. An important issue in the optimization of a utility network is the desire of the companies to achieve high profits while complying with the environmental regulations. Therefore, the proposed optimization was performed with consideration of both economic and environmental factors. The proposed approach consists of unit modeling using thermodynamic principles, mass and energy balances, development of a multi-period Mixed Integer Linear Programming (MILP) model for the integration of utility systems in an industrial complex, and an economic/environmental analysis of the results. This approach is applied to the Yeosu Industrial Complex, considering seasonal utility demands. The results show that both the total utility cost and waste load are reduced by optimizing the utility network of an industrial complex. 2009 Elsevier Ltd. All rights reserved.
Low-level radioactive waste technology: a selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fore, C.S.; Vaughan, N.D.; Hyder, L.K.
1980-10-01
This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinentmore » references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.« less
Martinez-Sanchez, Veronica; Levis, James W; Damgaard, Anders; DeCarolis, Joseph F; Barlaz, Morton A; Astrup, Thomas F
2017-03-21
The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including "budget costs" and "externality costs". Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO 2 , CH 4 , N 2 O, PM 2.5 , PM 10 , NO x , SO 2 , VOC, CO, NH 3 , Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO 2 , NO x , PM 2.5 , CH 4 , fossil CO 2 , and NH 3 emissions. S-LCC proved to be a valuable tool for policy analysis, but additional data on key externality costs such as organic compounds emissions to water would improve future analyses.
Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel.
Moorthy, I Ganesh; Maran, J Prakash; Ilakya, S; Anitha, S L; Sabarima, S Pooja; Priya, B
2017-01-01
Four factors three level face centered central composite response surface design was employed in this study to investigate and optimize the effect of process variables (liquid-solid (LS) ratio (10:1-20:1ml/g), pH (1-2), sonication time (15-30min) and extraction temperature (50-70°C)) on the maximum extraction yield of pectin from waste Artocarpus heterophyllus (Jackfruit) peel by ultrasound assisted extraction method. Numerical optimization method was adapted in this study and the following optimal condition was obtained as follows: Liquid-solid ratio of 15:1ml/g, pH of 1.6, sonication time of 24min and temperature of 60°C. The optimal condition was validated through experiments and the observed value was interrelated with predicted value. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators
NASA Astrophysics Data System (ADS)
Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris
2014-05-01
The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters. Results indicate that there are soil parameters that can be used as indictors to assess soil quality at such areas. For the two cases, i.e pistachio wastes and olive oil mill wastes, different soil parameters were identified as potential indicators. In specific, for OMW the proposed indicators are: organic matter, electrical conductivity, total N, total polyphenols, exchangeable K, DTPA-available Fe, available P and pH (for the cases of acid soils). For pistachio wastes, it seems that the most appropriate indictors are: organic matter, electrical conductivity, exchangeable Mg, DTPA-available Fe, DTPA-available Cu, available B. A monitoring system was developed which may assist authorities and policy makers to continuously monitor the disposal areas or areas where wastes are used for fertilization/irrigation. For this, soil parameters were mapped with respect to the depth, date and temporal variations of their spatial distribution (spatial surfaces). Interpolated surfaces based on the Inverse Distance Weighted method (IDW) were created and integrated within a geospatial web based map application tool.
Worldwide, various anthropogenic activities generate hazardous solid wastes that are abundant in heavy metals, which can cause significant damage to the environment and human health. One of the major problems with solid wastes is the generation of large quantities of heavily con...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, Stefano, E-mail: stefano.consonni@polimi.it; Giugliano, Michele; Massarutto, Antonio
Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW)more » in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.« less
Aghajani Mir, M; Taherei Ghazvinei, P; Sulaiman, N M N; Basri, N E A; Saheri, S; Mahmood, N Z; Jahan, A; Begum, R A; Aghamohammadi, N
2016-01-15
Selecting a suitable Multi Criteria Decision Making (MCDM) method is a crucial stage to establish a Solid Waste Management (SWM) system. Main objective of the current study is to demonstrate and evaluate a proposed method using Multiple Criteria Decision Making methods (MCDM). An improved version of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) applied to obtain the best municipal solid waste management method by comparing and ranking the scenarios. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Besides, Viekriterijumsko Kompromisno Rangiranje (VIKOR) compromise solution method applied for sensitivity analyses. The proposed method can assist urban decision makers in prioritizing and selecting an optimized Municipal Solid Waste (MSW) treatment system. Besides, a logical and systematic scientific method was proposed to guide an appropriate decision-making. A modified TOPSIS methodology as a superior to existing methods for first time was applied for MSW problems. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Next, 11 scenarios of MSW treatment methods are defined and compared environmentally and economically based on the waste management conditions. Results show that integrating a sanitary landfill (18.1%), RDF (3.1%), composting (2%), anaerobic digestion (40.4%), and recycling (36.4%) was an optimized model of integrated waste management. An applied decision-making structure provides the opportunity for optimum decision-making. Therefore, the mix of recycling and anaerobic digestion and a sanitary landfill with Electricity Production (EP) are the preferred options for MSW management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technology for advanced liquefaction processes: Coal/waste coprocessing studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.
1995-12-31
The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandiamore » National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.« less
Biosorption of Congo Red from aqueous solution onto burned root of Eichhornia crassipes biomass
NASA Astrophysics Data System (ADS)
Roy, Tapas Kumar; Mondal, Naba Kumar
2017-07-01
Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye containing waste water. In this work, adsorption of Congo Red (CR) from aqueous solution on burned root of Eichhornia crassipes ( BREC) biomass was investigated. A series of batch experiments were performed utilizing BREC biomass to remove CR dye from aqueous systems. Under optimized batch conditions, the BREC could remove up to 94.35 % of CR from waste water. The effects of operating parameters such as initial concentration, pH, adsorbent dose and contact time on the adsorption of CR were analyzed using response surface methodology. The proposed quadratic model for central composite design fitted very well to the experimental data. Response surface plots were used to determine the interaction effects of main factors and optimum conditions of the process. The optimum adsorption conditions were found to be initial CR concentration = 5 mg/L-1, pH = 7, adsorbent dose = 0.125 g and contact time = 45 min. The experimental isotherms data were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherm equations and the results indicated that the Freundlich isotherm showed a better fit for CR adsorption. Thermodynamic parameters were calculated from Van't Hoff plot, confirming that the adsorption process was spontaneous and exothermic. The high CR adsorptive removal ability and regeneration efficiency of this adsorbent suggest its applicability in industrial/household systems and data generated would help in further upscaling of the adsorption process.
Remote in-situ laser-induced breakdown spectroscopy using optical fibers
NASA Astrophysics Data System (ADS)
Marquardt, Brian James
The following dissertation describes the development of methods for performing remote Laser-Induced Breakdown Spectroscopy (LIBS) using optical fibers. Studies were performed to determine the optimal excitation and collection parameters for remote LIBS measurements of glasses, soils and paint. A number of fiber-optic LIBS probes were developed and used to characterize various samples by plasma emission spectroscopy. A novel method for launching high-power laser pulses into optical fibers without causing catastrophic failure is introduced. A systematic study of a number of commercially available optical fibers was performed to determine which optical fibers were best suited for delivering high-power laser pulses. The general design of an all fiber-optic LIBS probe is described and applied to the determination of Pb in soil. A fiber-optic probe was developed for the microanalysis of solid samples remotely by LIBS, Raman spectroscopy and Raman imaging. The design of the probe allows for real-time sample imaging in-situ using coherent imaging fibers. This allows for precise atomic emission and Raman measurements to be performed remotely on samples in hostile or inaccessible environments. A novel technique was developed for collecting spectral plasma images using an acousto-optic tunable filter (AOTF). The spatial and temporal characteristics of the plasma were studied as a function of delay time. From the plasma images the distribution of Pb emission could be determined and fiber-optic designs could be optimized for signal collection. The performance of a two fiber LIBS probe is demonstrated for the determination of the amount of lead in samples of dry paint. It is shown that dry paint samples can be analyzed for their Pb content in-situ using a fiber-optic LIBS probe with detection limits well below the levels currently regulated by the Consumer Products Safety Commission. It is also shown that these measurements can be performed on both latex and enamel paints, and that Pb containing paint can be detected even under layers of non-lead containing paint. Experiments were performed to determine the optimal measurement parameters for performing LIBS studies of Department of Energy "waste" glasses. Calibration data for a Al and Ti metals contained in the waste glass is presented. The effects of laser power on plasma temperature, emission intensity and mass of sample ablated are introduced.
Prioritizing and optimizing sustainable measures for food waste prevention and management.
Cristóbal, Jorge; Castellani, Valentina; Manfredi, Simone; Sala, Serenella
2018-02-01
Food waste has gained prominence in the European political debate thanks to the recent Circular Economy package. Currently the waste hierarchy, introduced by the Waste Framework Directive, has been the rule followed to prioritize food waste prevention and management measures according to the environmental criteria. But when considering other criteria along with the environmental one, such as the economic, other tools are needed for the prioritization and optimization. This paper addresses the situation in which a decision-maker has to design a food waste prevention programme considering the limited economic resources in order to achieve the highest environmental impact prevention along the whole food life cycle. A methodology using Life Cycle Assessment and mathematical programing is proposed and its capabilities are shown through a case study. Results show that the order established in the waste hierarchy is generally followed. The proposed methodology revealed to be especially helpful in identifying "quick wins" - measures that should be always prioritized since they avoid a high environmental impact at a low cost. Besides, in order to aggregate the environmental scores related to a variety of impact categories, different weighting sets were proposed. In general, results show that the relevance of the weighting set in the prioritization of the measures appears to be limited. Finally, the correlation between reducing food waste generation and reducing environmental impact along the Food Supply Chain has been studied. Results highlight that when planning food waste prevention strategies, it is important to set the targets at the level of environmental impact instead of setting the targets at the level of avoided food waste generation (in mass). Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Using geostatistics to evaluate cleanup goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcon, M.F.; Hopkins, L.P.
1995-12-01
Geostatistical analysis is a powerful predictive tool typically used to define spatial variability in environmental data. The information from a geostatistical analysis using kriging, a geostatistical. tool, can be taken a step further to optimize sampling location and frequency and help quantify sampling uncertainty in both the remedial investigation and remedial design at a hazardous waste site. Geostatistics were used to quantify sampling uncertainty in attainment of a risk-based cleanup goal and determine the optimal sampling frequency necessary to delineate the horizontal extent of impacted soils at a Gulf Coast waste site.
Summary appraisals of the Nation's ground-water resources; Caribbean region
Gómez-Gómez, Fernando; Heisel, James E.
1980-01-01
Ground-water resources will continue to be important within the region. In order to meet future needs, it is necessary that hydrologic principles be applied in managing the total water resource. Optimal use of the water resources can be accomplished through conjunctive use of surface and ground waters and through conservation practices. Optimal use may involve artificial recharge, ground-water salvage, saline-ground-water mining, use of seawater, desalination of saline ground water, waste-water reuse, and use of underground space for temporary storage of wastes, which could otherwise contaminate valuable water supplies.
A novel process for recovering valuable metals from waste nickel-cadmium batteries.
Huang, Kui; Li, Jia; Xu, Zhenming
2009-12-01
The environment is seriously polluted due to improper and inefficient recycling of waste nickel-cadmium (Ni-Cd) batteries in China. The aim of this work is aimed to seek an environmentally friendly recycling process for resolving the negative impacts on environmental and human health resulting from waste Ni-Cd batteries. This work investigates the fundamentals of waste Ni-Cd batteries recycling through vacuum metallurgy separation (VMS) and magnetic separation (MS). The results obtained demonstrate that the optimal temperature, the addition of carbon powder, and heating time in VMS are 1023 K, 1 wt %, 1.5 h, respectively. More than 99.2 wt % Cd is recovered under the optimal experimental condition, and the Cd purity is 99.98%. Around 98.0 wt % ferromagnetic materials are recovered through MS under 60 rpm rotational speed and the recovery ratios of Fe, Ni and Co are 99.2 wt %, 96.1 wt %, and 86.4 wt %, respectively. The composition of ferromagnetic fractions in the residue after VMS increases from 82.3 to 99.6%. Based on these results, a process (including dismantling and crushing, VMS and MS) for recycling of waste Ni-Cd batteries is proposed. This novel process provides a possibility for recycling waste Ni-Cd batteries in a large industrial scale.
USDA-ARS?s Scientific Manuscript database
Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...
WASTE-TO-RESOURCE: NOVEL MEMBRANE SYSTEMS FOR SAFE AND SUSTAINABLE BRINE MANAGEMENT
Decentralized waste-to-reuse systems will be optimized to maximize resource and energy recovery and minimize chemicals and energy use. This research will enhance fundamental knowledge on simultaneous heat and mass transport through membranes, lower process costs, and furthe...
PRELIMINARY ASSESSMENT OF LIFE-CYCLE COSTS OF PROTECTIVE CLOTHING
Many different types of chemical protective clothing (CPC) are used to isolate workers at hazardous waste sites from contact with the potential hazards posed by chemical wastes. he goal in selecting the appropriate clothing for a particular occupational situation is to optimize w...
A case study of tuning MapReduce for efficient Bioinformatics in the cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Lizhen; Wang, Zhong; Yu, Weikuan
The combination of the Hadoop MapReduce programming model and cloud computing allows biological scientists to analyze next-generation sequencing (NGS) data in a timely and cost-effective manner. Cloud computing platforms remove the burden of IT facility procurement and management from end users and provide ease of access to Hadoop clusters. However, biological scientists are still expected to choose appropriate Hadoop parameters for running their jobs. More importantly, the available Hadoop tuning guidelines are either obsolete or too general to capture the particular characteristics of bioinformatics applications. In this paper, we aim to minimize the cloud computing cost spent on bioinformatics datamore » analysis by optimizing the extracted significant Hadoop parameters. When using MapReduce-based bioinformatics tools in the cloud, the default settings often lead to resource underutilization and wasteful expenses. We choose k-mer counting, a representative application used in a large number of NGS data analysis tools, as our study case. Experimental results show that, with the fine-tuned parameters, we achieve a total of 4× speedup compared with the original performance (using the default settings). Finally, this paper presents an exemplary case for tuning MapReduce-based bioinformatics applications in the cloud, and documents the key parameters that could lead to significant performance benefits.« less
Zhang, Yong; Jiang, Yunjian
2017-02-01
Waste cooking oil (WCO)-for-biodiesel conversion is regarded as the "waste-to-wealthy" industry. This paper addresses the design of a WCO-for-biodiesel supply chain at both strategic and tactical levels. The supply chain of this problem is studied, which is based on a typical mode of the waste collection (from restaurants' kitchen) and conversion in the cities. The supply chain comprises three stakeholders: WCO supplier, integrated bio-refinery and demand zone. Three key problems should be addressed for the optimal design of the supply chain: (1) the number, sizes and locations of bio-refinery; (2) the sites and amount of WCO collected; (3) the transportation plans of WCO and biodiesel. A robust mixed integer linear model with muti-objective (economic, environmental and social objectives) is proposed for these problems. Finally, a large-scale practical case study is adopted based on Suzhou, a city in the east of China, to verify the proposed models. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Treatment of organic waste gas by adsorption rotor].
Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De
2013-12-01
The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Götze, R; Pivnenko, K; Boldrin, A; Scheutz, C; Astrup, T Fruergaard
2016-08-01
Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable fractions within one material type were observed. This indicates that careful planning and performance evaluation of recycling schemes are important to ensure a high quality of collected recyclables. Rare earth elements (REE) were quantified in all waste fractions analysed, with the highest concentrations of REE found in fractions with high content of mineral raw materials, soil materials and dust. The observed REE concentrations represent the background concentration level in non-hazardous waste materials that may serve as a reference point for future investigations related to hazardous waste management. The detailed dataset provided here can be used for assessments of waste management solutions in Denmark and for the evaluation of the quality of recyclable materials in waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hartono, Djoko M.; Andari Kristanto, Gabriel; Gusniani Sofian, Irma; Fauzan, Ahmad; Mahdiana, Ghanis
2018-03-01
This study was conducted as a response to address the problem of land availability for Cipayung landfill that no longer able to accommodate waste generation Depok City and to protect water pollution in receiving water body. Law No. 8/2008 explained that local governments and cities are required to create a sanitary landfill as a final waste processing system to replace open dumping that had been done by almost all the final processing of waste in cities in Indonesia. Sanitary landfill is the final waste processing system that works best and is environmentally friendly. The sanitary landfill will generate leachate. Leachate is the result of precipitation, evaporation, surface runoff, water infiltration into the waste, and also including the water contained in the waste. The purpose of this study was to determine the utilization of leachate generated by three years aged reactor.This study use a modeling tools as bioreactor landfill tank or so called lysimetric, that made of the polymer material that susceptible to high heat and pressure. This bioreactor landfill tank has a diameter of 0.83 m, with a surface area of 0.54 m2 and a height of 2.02 m, with the examination duration of 115 days. This tank consists of several layer, such as sand layer, solid waste layer, water layer and piping system. These layer has 3 year aged. The In this research, leachate recirculation in bioreactor landfills was conducted with waste layered loading systems with percolation system. This research has been conducted since the beginning of 2016, sampling, field measurement and analysis of leachate and waste quality carried out for approximately 115 days of field measurements.Several parameter were measured such as pH, BOD, COD, nitrate, nitrite and TSS. From the analysis of the leachate quality parameters of pH, BOD, COD, nitrite, TSS, showed a reduction in the concentration of the three reactors. The concentration of parameters measured at the initial stage until the final stage, showed a reduction in the concentration of the parameters, even reaching 90% reduction for BOD (biological oxygen demand), COD, (chemical oxygen demand) nitrite, and TSS (total solid suspended) parameters. So it can be concluded that the recirculation of leachate of the sanitary landfill can reduce the concentration of pollutants in the leachate that will be discharged into water bodies, thereby reducing the pollution of the receiving water body. This research is funding by PUPT Kemristekdikti and DRPM UI
Biodiesel production process from microalgae oil by waste heat recovery and process integration.
Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi
2015-10-01
In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biogas Production: Microbiology and Technology.
Schnürer, Anna
Biogas, containing energy-rich methane, is produced by microbial decomposition of organic material under anaerobic conditions. Under controlled conditions, this process can be used for the production of energy and a nutrient-rich residue suitable for use as a fertilising agent. The biogas can be used for production of heat, electricity or vehicle fuel. Different substrates can be used in the process and, depending on substrate character, various reactor technologies are available. The microbiological process leading to methane production is complex and involves many different types of microorganisms, often operating in close relationships because of the limited amount of energy available for growth. The microbial community structure is shaped by the incoming material, but also by operating parameters such as process temperature. Factors leading to an imbalance in the microbial community can result in process instability or even complete process failure. To ensure stable operation, different key parameters, such as levels of degradation intermediates and gas quality, are often monitored. Despite the fact that the anaerobic digestion process has long been used for industrial production of biogas, many questions need still to be resolved to achieve optimal management and gas yields and to exploit the great energy and nutrient potential available in waste material. This chapter discusses the different aspects that need to be taken into consideration to achieve optimal degradation and gas production, with particular focus on operation management and microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peace, Gerald; Goering, Timothy James; Knight, Paul J.
A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant speciesmore » is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.« less
3D Printed Scintillators For Use in Field Emission Detection and Other Nuclear Physics Experiments
NASA Astrophysics Data System (ADS)
Ficenec, Karen
2015-10-01
In accelerator cavities, field emission electrons - electrons that get stripped away from the cavity walls due to the high electromagnetic field necessary to accelerate the main beam - are partially accelerated and can crash into the cavity walls, adding to the heat-load of the cryogenic system. Because these field electrons emit gamma rays when bent by the electromagnetic field, a scintillator, if made to fit the cavity enclosure, can detect their presence. Eliminating the waste of subtractive manufacturing techniques and allowing for the production of unique, varied shapes, 3D printing of scintillators may allow for an efficient detection system. UV light is used to start a chemical polymerization process that links the monomers of the liquid resin together into larger, intertwined molecules, forming the solid structure. Each shape requires slightly different calibration of its optimal printing parameters, such as slice thickness and exposure time to UV light. Thus far, calibration parameters have been optimized for cylinders of 20 mm diameter, cones of 30 mm diameter and 30 mm height, rectangular prisms 30 by 40 by 10 mm, and square pyramids 20 mm across. Calibration continues on creating holes in the prints (for optical fibers), as well as shapes with overhangs. Scintill This work was supported in part by the National Science Foundation under Grant No. PHY-1405857.
Radioactive waste disposal in the marine environment
NASA Astrophysics Data System (ADS)
Anderson, D. R.
In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.
One size fits all? An assessment tool for solid waste management at local and national levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broitman, Dani, E-mail: danib@techunix.technion.ac.il; Ayalon, Ofira; Kan, Iddo
2012-10-15
Highlights: Black-Right-Pointing-Pointer Waste management schemes are generally implemented at national or regional level. Black-Right-Pointing-Pointer Local conditions characteristics and constraints are often neglected. Black-Right-Pointing-Pointer We developed an economic model able to compare multi-level waste management options. Black-Right-Pointing-Pointer A detailed test case with real economic data and a best-fit scenario is described. Black-Right-Pointing-Pointer Most efficient schemes combine clear National directives with local level flexibility. - Abstract: As environmental awareness rises, integrated solid waste management (WM) schemes are increasingly being implemented all over the world. The different WM schemes usually address issues such as landfilling restrictions (mainly due to methane emissions and competingmore » land use), packaging directives and compulsory recycling goals. These schemes are, in general, designed at a national or regional level, whereas local conditions and constraints are sometimes neglected. When national WM top-down policies, in addition to setting goals, also dictate the methods by which they are to be achieved, local authorities lose their freedom to optimize their operational WM schemes according to their specific characteristics. There are a myriad of implementation options at the local level, and by carrying out a bottom-up approach the overall national WM system will be optimal on economic and environmental scales. This paper presents a model for optimizing waste strategies at a local level and evaluates this effect at a national level. This is achieved by using a waste assessment model which enables us to compare both the economic viability of several WM options at the local (single municipal authority) level, and aggregated results for regional or national levels. A test case based on various WM approaches in Israel (several implementations of mixed and separated waste) shows that local characteristics significantly influence WM costs, and therefore the optimal scheme is one under which each local authority is able to implement its best-fitting mechanism, given that national guidelines are kept. The main result is that strict national/regional WM policies may be less efficient, unless some type of local flexibility is implemented. Our model is designed both for top-down and bottom-up assessment, and can be easily adapted for a wide range of WM option comparisons at different levels.« less
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
NASA Astrophysics Data System (ADS)
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
Hill, Mary C.; Faunt, Claudia C.; Belcher, Wayne; Sweetkind, Donald; Tiedeman, Claire; Kavetski, Dmitri
2013-01-01
This work demonstrates how available knowledge can be used to build more transparent and refutable computer models of groundwater systems. The Death Valley regional groundwater flow system, which surrounds a proposed site for a high level nuclear waste repository of the United States of America, and the Nevada National Security Site (NNSS), where nuclear weapons were tested, is used to explore model adequacy, identify parameters important to (and informed by) observations, and identify existing old and potential new observations important to predictions. Model development is pursued using a set of fundamental questions addressed with carefully designed metrics. Critical methods include using a hydrogeologic model, managing model nonlinearity by designing models that are robust while maintaining realism, using error-based weighting to combine disparate types of data, and identifying important and unimportant parameters and observations and optimizing parameter values with computationally frugal schemes. The frugal schemes employed in this study require relatively few (10–1000 s), parallelizable model runs. This is beneficial because models able to approximate the complex site geology defensibly tend to have high computational cost. The issue of model defensibility is particularly important given the contentious political issues involved.
Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S
2014-10-01
This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture
Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S
2014-01-01
BACKGROUND This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. RESULTS An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. CONCLUSION This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25506115
Realm of Thermoalkaline Lipases in Bioprocess Commodities
2018-01-01
For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article. PMID:29666707
Space disposal of nuclear wastes
NASA Technical Reports Server (NTRS)
Priest, C. C.; Nixon, R. F.; Rice, E. E.
1980-01-01
The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.
Data analytics approach to create waste generation profiles for waste management and collection.
Niska, Harri; Serkkola, Ari
2018-04-30
Extensive monitoring data on waste generation is increasingly collected in order to implement cost-efficient and sustainable waste management operations. In addition, geospatial data from different registries of the society are opening for free usage. Novel data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. In this paper, a data-based approach based on the self-organizing map (SOM) and the k-means algorithm is developed for creating a set of waste generation type profiles. The approach is demonstrated using the extensive container-level waste weighting data collected in the metropolitan area of Helsinki, Finland. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information e.g. for the basis of tailored feedback services for waste producers and the planning and optimization of waste collection and recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biodegradation of nicotine by a newly isolated Pseudomonas stutzeri JZD
NASA Astrophysics Data System (ADS)
Petricevic, Jelena; Gujanicic, Vera; Radic, Danka; Jovicic Petrovic, Jelena; Jovic, Jelena; Raicevic, Vera
2013-04-01
The tobacco-manufacturing process and all activities that use tobacco, produce solid or liquid wastes with high concentrations of nicotine. Nicotine is a significant toxic waste product in tobacco industry. This waste is classified as 'toxic and hazardous' by European Union regulations when the nicotine content exceeds 500 milligrams per kilogram dry weight. Therefore, there is a major environmental requirement to remove nicotine from tobacco wastes. Bioremediation techniques which involve nicotine degradation by microorganisms have attracted attention during the last years, because microorganisms have the potential to reduce nicotine levels in tobacco and to detoxify tobacco wastes. The aim of this study is isolation and identification of nicotine degraded bacteria and optimization of nicotine degradation in laboratory conditions. An aerobic bacterial strain capable of effectively degrading nicotine was isolated from the tobacco industry waste, Serbia. After isolation, the liquid culture was spread onto the solid plates of the nicotine inorganic salt medium using the dilution plate method. Cell morphology of strain was observed by a light microscope and physiological characteristics were determined by Api technique and sequence analyzes of 16S rDNA. This isolate was identified as Pseudomonas stutzeri based on morphology, physiological characteristics, and Apiweb technique. Comparison with sequences available in data library showed the 99% similarity with 16S rDNA gene sequence of the species Pseudomonas stutzeri ( GenBank Acc. No. CP003725). We analyzed the effect of initial nicotine concentration (1g/L, 1.5 g/L, 2.5 g/L) on microbial activity in aim to optimize biodegradation. The effect of cultivation temperature (25°C; 30°C; 37°C) on nicotine degradation by P. stutzeri was evaluated after 24 h of cultivation, with 1.5 g/L nicotine added as the sole carbon source. Effect of biodegradation has depended on initial concentration. During incubation, number of bacteria was increased in all variants of initial concentrations. Nicotine degradation rate increased with increasing cultivation temperature. The optimal temperature was 37°C. The results suggest that the P. stutzeri may be useful for bioremediation of nicotine-polluted waste and confirms its possible application in solving of nicotine contamination problems. Key words: Pseudomonas stutzeri, biodegradation; nicotine; waste
NASA Astrophysics Data System (ADS)
Zakiyya, Nida Maisa; Sarli, Prasanti Widyasih; Soewondo, Prayatni
2017-11-01
In developing countries the awareness on the importance of sanitation facilities, whether it is for municipal solid waste or domestic wastewater treatment, is still very low. Jodipan and Ksatrian Village, in Malang, East Java, are two slum areas that have recently been improved visually by using simple colorful paints. The visual improvement was expected to increase the resident's awareness on the importance of keeping the area clean; adjacent to the project, a new municipal waste management system was also put in place, changing the president's behaviour towards municipal solid waste. This study focuses on the relationship between community awareness in municipal solid waste management and domestic wastewater management. The result is expected to be an input for the government to enhance wastewater infrastructure program and its sustainability, related to its awareness on municipal solid waste. A descriptive model through questionnaire to 48 households of Jodipan sub district in Kampung Warna-warni and 69 households of Ksatrian sub district in Kampung 3D by random sampling, with an error of 0.1, was used to conduct this research. A nonlinear relationship between the change in awareness in municipal solid waste management (MSW) and domestic wastewater management was observed, with only 0.1312 of determination coefficient. Weak Spearman correlation coefficient number was found, ranging from 0.284 to 0.39, indicating another parameter turned into a role on affecting the awareness of wastewater. Further study about another parameter (eg. social and economic parameter) intervension on sanitation awareness could be investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsky, K.J.; Miller, D.L.; Cernansky, N.P.
1994-09-01
A methodology was introduced for modeling the devolatilization characteristics of refuse-derived fuel (RFD) in terms of temperature-dependent weight loss. The basic premise of the methodology is that RDF is modeled as a combination of select municipal solid waste (MSW) components. Kinetic parameters are derived for each component from thermogravimetric analyzer (TGA) data measured at a specific set of conditions. These experimentally derived parameters, along with user-derived parameters, are inputted to model equations for the purpose of calculating thermograms for the components. The component thermograms are summed to create a composite thermogram that is an estimate of the devolatilization for themore » as-modeled RFD. The methodology has several attractive features as a thermal analysis tool for waste fuels. 7 refs., 10 figs., 3 tabs.« less
A bio-hybrid anaerobic treatment of papaya processing wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, P.Y.; Chou, C.Y.
1987-01-01
Hybrid anaerobic treatment of papaya processing wastes is technically feasible. At 30/sup 0/C, the optimal organic loading rates for maximizing organic removal efficiency and methane production are 1.3 and 4.8 g TCOD/1/day, respectively. Elimination of post-handling and treatment of digested effluent can also be achieved. The system is more suitable for those processing plants with a waste amount of more than 3,000 metric tons per year.
Optimization and characterization of gelatin and chitosan extracted from fish and shrimp waste
NASA Astrophysics Data System (ADS)
Ait Boulahsen, M.; Chairi, H.; Laglaoui, A.; Arakrak, A.; Zantar, S.; Bakkali, M.; Hassani, M.
2018-05-01
Fish and seafood processing industries generate large quantities of waste which are at the origin of several environmental, economic and social problems. However fish waste could contain high value-added substances such as biopolymers. This work focuses on optimizing the gelatin and chitosan extraction from tilapia fish skins and shrimp shells respectively. The gelatin extraction process was optimized using alkali acid treatment prior to thermal hydrolysis. Three different acids were tested at different concentrations. Chitosan was obtained after acid demineralization followed by simultaneous hydrothermal deproteinization and deacetylation by an alkali treatment with different concentrations of HCl and NaOH. The extracted gelatin and chitosan with the highest yield were characterized by determining their main physicochemical properties (Degree of deacetylation, viscosity, pH, moisture and ash content). Results show a significant influence of the acid type and concentration on the extraction yield of gelatin and chitosan, with an average yield of 12.24% and 3.85% respectively. Furthermore, the obtained physicochemical properties of both extracted gelatin and chitosan were within the recommended standard values of the commercial ones used in the industry.
Zhang, Lu; Sun, Xiangyang
2016-02-01
A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste.
Poojary, Mahesha M; Passamonti, Paolo
2015-12-01
The aim of this work was to optimize the extraction of pure all-trans-lycopene from the pulp fractions of tomato processing waste. A full factorial design (FFD) consisting of four independent variables including extraction temperature (30-50 °C), time (1-60 min), percentage of acetone in n-hexane (25-75%, v/v) and solvent volume (10-30 ml) was used to investigate the effects of process variables on the extraction. The absolute amount of lycopene present in the pulp waste was found to be 0.038 mg/g. The optimal conditions for extraction were as follows: extraction temperature 20 °C, time 40 min, a solvent composition of 25% acetone in n-hexane (v/v) and solvent volume 40 ml. Under these conditions, the maximal recovery of lycopene was 94.7%. The HPLC-DAD analysis demonstrated that, lycopene was obtained in the all-trans-configuration at a very high purity grade of 98.3% while the amount of cis-isomers and other carotenoids were limited. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhattacharjya, Rajib Kumar
2018-05-01
The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.
USDA-ARS?s Scientific Manuscript database
Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system p...
Challenges to diagnosis of HIV-associated wasting.
Kotler, Donald
2004-12-01
There is a wide variability in the clinical presentation of the protein energy malnutrition often characterized as wasting in patients infected with HIV. Moreover, the clinical presentation has evolved over time. Initially, protein energy malnutrition was characterized by profound weight loss and depletion of body cell mass (BCM). Recently, unrelated concurrent metabolic abnormalities, such as lipodystrophy, may complicate the diagnosis of HIV wasting. Although measures of BCM are relatively accurate for the diagnosis of HIV wasting, the optimal tools for assessing BCM are not necessarily available to the clinician. From the practical standpoint, HIV wasting may be a self-evident diagnosis in advanced stages, but effective interpretation of the early signs of HIV wasting requires familiarity with other complications included in the differential diagnosis.
Ebner, Jacqueline H; Labatut, Rodrigo A; Lodge, Jeffrey S; Williamson, Anahita A; Trabold, Thomas A
2016-06-01
Anaerobic digestion of commercial food waste is a promising alternative to landfilling commercial food waste. This study characterized 11 types of commercial food wastes and 12 co-digestion blends. Bio-methane potential, biodegradable fraction, and apparent first-order hydrolysis rate coefficients were reported based upon biochemical methane potential (BMP) assays. Food waste bio-methane potentials ranged from 165 to 496 mL CH4/g VS. Substrates high in lipids or readily degradable carbohydrates showed the highest methane production. Average bio-methane potential observed for co-digested substrates was -5% to +20% that of the bio-methane potential of the individual substrates weighted by VS content. Apparent hydrolysis rate coefficients ranged from 0.19d(-1) to 0.65d(-1). Co-digested substrates showed an accelerated apparent hydrolysis rate relative to the weighted average of individual substrate rates. These results provide a database of key bio-digestion parameters to advance modeling and utilization of commercial food waste in anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja
2016-04-01
European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.
Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven
2016-09-01
Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.
Erfani, Seyed Mohammad Hassan; Danesh, Shahnaz; Karrabi, Seyed Mohsen; Shad, Rouzbeh
2017-07-01
One of the major challenges in big cities is planning and implementation of an optimized, integrated solid waste management system. This optimization is crucial if environmental problems are to be prevented and the expenses to be reduced. A solid waste management system consists of many stages including collection, transfer and disposal. In this research, an integrated model was proposed and used to optimize two functional elements of municipal solid waste management (storage and collection systems) in the Ahmadabad neighbourhood located in the City of Mashhad - Iran. The integrated model was performed by modelling and solving the location allocation problem and capacitated vehicle routing problem (CVRP) through Geographic Information Systems (GIS). The results showed that the current collection system is not efficient owing to its incompatibility with the existing urban structure and population distribution. Application of the proposed model could significantly improve the storage and collection system. Based on the results of minimizing facilities analyses, scenarios with 100, 150 and 180 m walking distance were considered to find optimal bin locations for Alamdasht, C-metri and Koohsangi. The total number of daily collection tours was reduced to seven as compared to the eight tours carried out in the current system (12.50% reduction). In addition, the total number of required crews was minimized and reduced by 41.70% (24 crews in the current collection system vs 14 in the system provided by the model). The total collection vehicle routing was also optimized such that the total travelled distances during night and day working shifts was cut back by 53%.
Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization.
Kong, Xin; Xu, Shuang; Liu, Jianguo; Li, Huan; Zhao, Ke; He, Liang
2016-01-15
The inoculation for extruded food waste anaerobic digestion (AD) was optimized to improve methane (CH4) yield. The inoculum of acclimated anaerobic sludge resulted in high biodegradability, producing CH4 yields from 580 mLCH4 g(-1)·VSadded to 605 mLCH4 g(-1)·VSadded, with corresponding BDCH4 ranging from 90% to 94%. We also investigated inoculum to substrate ratios (ISRs). With regards to digested slurry as inoculum, we found that a decrease in ISR improved CH4 yield, while a lower ISR prolonged the lag time of the initial AD stage due to lipid inhibition caused by excessive food waste. These results demonstrate that minimal inocula are required to start the AD system for high-pressure extruded food waste because it is easily biodegraded. High ammonia concentration had a negative effect on CH4 production (i.e., when free ammonia nitrogen [FAN] increased from 20 to 30 mg L(-1) to 120-140 mg L(-1), the CH4 yield decreased by 25%), suggesting that FAN was a significant inhibitor in CH4 yield reduction. In terms of CH4 yield and lag time of the AD process, the optimal inoculation of digested slurry for the extruded food waste had an ISR of 0.33 with CH4 yield of 505 mLCH4 g(-1)VSadded, which was 20% higher than what was found for higher ISR controls of 2, 1 and 0.5. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of liquid-to-solid ratio on semi-solid Fenton process in hazardous solid waste detoxication.
Hu, Li-Fang; Feng, Hua-Jun; Long, Yu-Yang; Zheng, Yuan-Ge; Fang, Cheng-Ran; Shen, Dong-Sheng
2011-01-01
The liquid-to-solid ratio (L/S) of semi-solid Fenton process (SSFP) designated for hazardous solid waste detoxication was investigated. The removal and minimization effects of o-nitroaniline (ONA) in simulate solid waste residue (SSWR) from organic arsenic industry was evaluated by total organic carbon (TOC) and ONA removal efficiency, respectively. Initially, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the key factors of SSFP. Results showed that the removal rates of TOC and ONA decreased as L/S increased. Subsequently, four target initial ONA concentrations including 100 mg kg(-1), 1 g kg(-1), 10 g kg(-1), and 100 gk g(-1) on a dry basis were evaluated for the effect of L/S. A significant cubic empirical model between the initial ONA concentration and L/S was successfully developed to predict the optimal L/S for given initial ONA concentration for SSFP. Moreover, an optimized operation strategy of multi-SSFP for different cases was determined based on the residual target pollutant concentration and the corresponding environmental conditions. It showed that the total L/S of multi-SSFP in all tested scenarios was no greater than 3.8, which is lower than the conventional slurry systems (L/S ≥ 5). The multi-SSFP is environment-friendly when it used for detoxication of hazardous solid waste contaminated by ONA and provides a potential method for the detoxication of hazardous solid waste contaminated by organics. Copyright © 2010 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Synthetic gasoline and diesel fuels were prepared via catalytic and noncatalytic pyrolysis of waste polyethylene and polypropylene plastics followed by distillation of plastic crude oils. Reaction conditions optimized using a 2 L batch reactor were applied to pilot-scale production of plastic crude ...
Construction materials as a waste management solution for cellulose sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.
2011-02-15
Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less
Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter
2015-06-01
Methane (CH₄) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required categories. In general, the single-phase model, LandGEM, significantly overestimated CH₄generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH₄potential (BMP) and CH₄generation rate constant (k-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH₄generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only the total disposed waste amount, but also various waste categories. By using laboratory-determined BMPs and k-values for shredder, sludge, mixed bulky waste, and street-cleaning waste, the Afvalzorg model was revised. The revised model estimated smaller cumulative CH₄generation results at the four Danish landfills (from the start of disposal until 2020 and until 2100). Through a CH₄mass balance approach, fugitive CH₄emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field measurements, indicating that the revised Afvalzorg model could provide practical and accurate estimation for Danish LFG emissions. This study is valuable for both researchers and engineers aiming to predict, control, and mitigate fugitive CH₄emissions from landfills receiving low-organic waste. Landfill operators use the first-order decay (FOD) models to estimate methane (CH₄) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in overestimation when handling a low-organic waste scenario. Site-specific data were important and capable of calibrating key parameter values in FOD models. The comparison study of the revised Afvalzorg model outcomes and field measurements at four Danish landfills provided a guideline for revising the Pollutants Release and Transfer Registers (PRTR) model, as well as indicating noteworthy waste fractions that could emit CH₄at modern landfills.
Functional relationships of landfill and landraise capacity with design and operation parameters.
Aivaliotis, Vassilis; Dokas, Ioannis; Hatzigiannakou, Maria; Panagiotakopoulos, Demetrios
2004-08-01
Solid waste management presses for effective landfill design and operation. While planning and operating a landfill (LF) or a landraise (LR), choices need to be made regarding: (1) LF-LR morphology (base shape, side slopes, final cover thickness, LR/LF height/depth); (2) cell geometry (height, length, slopes); and (3) operation parameters (waste density, working face length, cover thicknesses). These parameters affect LF/LR capacity, operation lifespan and construction/ operation costs. In this paper, relationships are generated between capacity (C, space available for waste) and the above parameters. Incorporating real data into simulation kgamma A1.38, runs, two types of functions are developed: first, C = where A is the LF/LR base area size and kgamma a base shape-dependent coefficient; and second, C = alpha(p,gamma,A) + delta(p,gamma,A)Xp for every parameter p, where Xp is the value of p and alpha(p,gamma,A) and delta(p,gamma,A) are parameter- and base (shape/size)-specific coefficients. Moreover, the relationship between LF depth and LR height that balances excavation volume with cover material, is identified. Another result is that, for a symmetrical combination of LF/LR, with base surface area shape between square and 1:2 orthogonal, and final density between 500 and 800 kg m(-3), waste quantity placed ranges from 1.76A1.38 to 2.55A1.38 tons. The significance of such functions is obvious, as they allow the analyst to investigate alternative LF/LR schemes and make trade-off analyses.
Stocking Density Optimization for Enhanced Bioconversion of Fly Ash Enriched Vermicompost.
Mupambwa, Hupenyu A; Mnkeni, Pearson N S
2016-05-01
Although it is widely agreed that stocking density critically affects the rate of vermicomposting, there is no established stocking density for mixtures of fly ash and other waste materials. This study sought to optimize (Savigny, 1826) stocking density for effective biodegradation and nutrient release in a fly ash-cow dung-waste paper (FCP) mixture. Four stocking densities of 0, 12.5, 25, and 37.5 g worms kg were evaluated. Although the 12.5, 25, and 37.5 g worms kg treatments all resulted in a mature vermicompost, stocking densities of 25 and 37.5 g worms kg resulted in faster maturity, higher humification parameters, and a significantly lower final C/N ratio (range 11.1-10.4). The activity of β-glucosidase and fluorescein diacetate hydrolysis enzymes showed faster stabilization at stocking densities of 25 and 37.5 g worms kg, indicating compost stability and maturity. Similarly, a stocking density of 25 g worms kg resulted in the highest release of Olsen-extractable P and (NO + NO)-N contents. The 0-, 12.5-, 25-, and 37.5-g treatments resulted in net Olsen P increases of 16.3, 38.9, 61.0, and 53.0%, respectively, after 10 wk. Although compost maturity could be attained at stocking densities of 12.5 g worms kg, for faster production of humified and nutrient-rich FCP vermicompost, a stocking density of 25 g worms kg seems most appropriate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Muguercia, Ivan
Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings.
Optimization of squalene produced from crude palm oil waste
NASA Astrophysics Data System (ADS)
Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.
2017-01-01
Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Sang
2015-03-02
The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less
A multi-echelon supply chain model for municipal solid waste management system.
Zhang, Yimei; Huang, Guo He; He, Li
2014-02-01
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.
A multi-echelon supply chain model for municipal solid waste management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yimei, E-mail: yimei.zhang1@gmail.com; Huang, Guo He; He, Li
2014-02-15
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions ofmore » the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.« less
Production of bio ethanol from waste potatoes
NASA Astrophysics Data System (ADS)
Jaber Noufal, Mohamad; Li, Baizhan; Maalla, Zena Ali
2017-03-01
In this research, production of ethanol from waste potatoes fermentation was studied using Saccharomyces cerevisiae. Potato Flour prepared from potato tubers after cooking and drying at 85°C. A homogenous slurry of potato flour prepared in water at solid-liquid ratio 1:10. Liquefaction of potato starch slurry was done with α-amylase at 80°C for 40 min followed by saccharification process which was done with glucoamylase at 65°C for two hr. Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in the production of 33 g/l ethanol. The following parameters have been analysed: temperature, time of fermentation and pH. It found that Saccharification process is affected by enzyme Amylase 300 concentration and concentration of 1000μl/100ml gives the efficient effect of the process. The best temperature for fermentation process was found to be about 35°C. Also, it noticed that ethanol production increased as a time of fermentation increased but after 48 hr further growth in fermentation time did not have an appreciable effect. Finally, the optimal value of pH for fermentation process was about 5 to 6.
Sivaprakasam, Senthilkumar; Dhandapani, Balaji; Mahadevan, Surianarayanan
2011-01-01
Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1–6 % NaCl by wt) makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater) was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax) were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v) protease addition was found to be the optimum dosage value. PMID:24031785
NASA Astrophysics Data System (ADS)
Valtseva, A. I.; Bibik, I. S.
2017-11-01
This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.
Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold
2016-12-01
In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.
Van Derlinden, E; Bernaerts, K; Van Impe, J F
2010-05-21
Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, K. M.; Li, Hua
2018-07-01
A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.
Lakshmikanthan, P; Sughosh, P; White, James; Sivakumar Babu, G L
2017-07-01
The performance of an anaerobic bioreactor in treating mechanically biologically treated municipal solid waste was investigated using experimental and modelling techniques. The key parameters measured during the experimental test period included the gas yield, leachate generation and settlement under applied load. Modelling of the anaerobic bioreactor was carried out using the University of Southampton landfill degradation and transport model. The model was used to simulate the actual gas production and settlement. A sensitivity analysis showed that the most influential model parameters are the monod growth rate and moisture. In this case, pH had no effect on the total gas production and waste settlement, and only a small variation in the gas production was observed when the heat transfer coefficient of waste was varied from 20 to 100 kJ/(m d K) -1 . The anaerobic bioreactor contained 1.9 kg (dry) of mechanically biologically treated waste producing 10 L of landfill gas over 125 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hay, Michael S.
Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had beenmore » pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.« less
Kavitha, Ganapathy; Kurinjimalar, Chidambaram; Sivakumar, Krishnan; Kaarthik, Muthukumar; Aravind, Rajamani; Palani, Perumal; Rengasamy, Ramasamy
2016-12-01
Investigations have been made to optimize various factors including pH, temperature, and substrate for enhanced polyhydroxybutyrate (PHB) production in Botryococcus braunii which serves as a pioneer for production of bioplastic (PHB). Polyhydroxybutyrate is a natural, decomposable polymers accumulated by the microorganism under different nutritional condition. Strain selection was done by staining method using Sudan black and Nile red dye. Using response surface methodology (RSM), three level- three variables Box Behnken design (BBD), the best potential combination of pH (4-11), temperature (30-50°C) and sewage waste water as substrate fed at different concentrations at 20%-100% for maximum PHB production was investigated. Maximum yield (247±0.42mg/L) of PHB dry weight was achieved from the 60% concentration of sewage waste water as a growth medium at pH 7.5 at 40°C. It was well in close agreement with the value predicted by RSM model yield (246± 0.32mg/L). Thus the study shows the production of PHB by B. braunii along with the basic characterization of PHB by using FTIR and TEM analysis. These preliminary studies indicated that PHB can also be produced by B. braunii utilizing waste water. There is no report on the optimization of PHB production in this microalgae have been documented. Copyright © 2016 Elsevier B.V. All rights reserved.
Environmental Management vitrification activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumrine, P.H.
1996-05-01
Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity formore » the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.« less
NASA Astrophysics Data System (ADS)
Crespo Amoros, Jose Enrique
PVC pastes or plasticized PVC offer great possibilities in the industrial field in which this research work has been developed since they show great relevance in plastic processing. On one hand, it is important to study these materials from different points of view: quality improvement, wide range of performance, high versatility, low costs,.... On the other hand, most of the industrial fields that usually employ these polymeric materials are characterized by developing products on which aesthetic considerations and surface finishing acquire special relevance. These industrial fields include all those on which new designs require complex shapes and new and novelty surface finishing such as interior design (furniture, wood products,...) toys industry, houseware, shoe industry,.... The main aim of this work is to improve the use of PVC plastisols in these industrial fields by optimizing formulations with new additives (low toxicity plasticizers) and fillers (lignocellulosic wastes) to obtain new materials that minimize damages to environment. In this work, we have developed new plastisol formulations based on the use of low toxicity plasticizers to obtain more ecological plastisols. We have used a biodegradable plasticizer DINCH which is a derivative of a dicarboxilate as substitute of traditional plasticizers based on phthalates. As we are working with relatively new plasticizers (specially at industrial level) we have performed a whole study of its properties by using different experimental analysis techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamical-mechanical analysis (DMA) and espectrofotometric techniques (visible and infrared). Furthermore a complete mechanical characterization has been carried out to analyze the most important parameters that influence on materials properties such as processing parameters (temperature and time) and plastisol formulations (mainly plasticizer content). We have also performed a comparative study regarding the results obtained with the most used plasticizer at industrial level, di-octyl phthalate (DOP). After this characterization, a study on the addition of cellulosic fillers was carried out to obtain materials with similar surface finishing than wood products. We used three different lignocellulosic fillers coming from wastes: almond husk residues since these wastes are quite abundant in our influence zone, rice husk and sawdust residues since they are produced everywhere in high amounts. It was studied the influence of the morphology and particle size on the final properties of the prepared mixtures to optimize formulations. These new plastisol formulations allow obtaining new materials in a wide range of mechanical properties, easy processing, interesting surface finishing and partially biodegradable, more careful with environment.
Reinik, Janek; Heinmaa, Ivo; Kirso, Uuve; Kallaste, Toivo; Ritamäki, Johannes; Boström, Dan; Pongrácz, Eva; Huuhtanen, Mika; Larsson, William; Keiski, Riitta; Kordás, Krisztián; Mikkola, Jyri-Pekka
2011-11-30
Environmentally friendly product, calcium-silica-aluminum hydrate, was synthesized from oil shale fly ash, which is rendered so far partly as an industrial waste. Reaction conditions were: temperature 130 and 160°C, NaOH concentrations 1, 3, 5 and 8M and synthesis time 24h. Optimal conditions were found to be 5M at 130°C at given parameter range. Original and activated ash samples were characterized by XRD, XRF, SEM, EFTEM, (29)Si MAS-NMR, BET and TGA. Semi-quantitative XRD and MAS-NMR showed that mainly tobermorites and katoite are formed during alkaline hydrothermal treatment. Physical adsorption of CO(2) on the surface of the original and activated ash samples was measured with thermo-gravimetric analysis. TGA showed that the physical adsorption of CO(2) on the oil shale fly ash sample increases from 0.06 to 3-4 mass% after alkaline hydrothermal activation with NaOH. The activated product has a potential to be used in industrial processes for physical adsorption of CO(2) emissions. Copyright © 2011 Elsevier B.V. All rights reserved.
Jana, Arijit; Maity, Chiranjit; Halder, Suman Kumar; Mondal, Keshab Chandra; Pati, Bikash Ranjan; Mohapatra, Pradeep Kumar Das
2012-07-01
Tannase production by newly isolated Penicillium purpurogenum PAF6 was investigated by 'one variable at a time' (OVAT) approach followed by response surface methodology (RSM). Tannin-rich plant residues were used as supporting solid substrate and sole carbon source and, among them, tamarind seed was found to be the most favorable substrate than haritaki, pomegranate, tea leaf waste and arjun fruit. Physicochemical parameters were initially optimized using OVAT methodology and some important factors like incubation time, incubation temperature, substrate:moisture ratio as well as carbon, nitrogen and phosphate concentrations were verified with Box-Behken design of response surface methodology. Phosphate source, nitrogen source and temperature were found as the most favorable variables in the maximization of production. Tannase production was enhanced from 1.536 U/g to 5.784 U/g using tamarind seed OVAT optimization and further enhancement up to 6.15 U/g following RSM. An overall 3.76- and 4.0-fold increases in tannase production were achieved in OVAT and RSM, respectively.
Optimal Load-Side Control for Frequency Regulation in Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Mallada, Enrique; Low, Steven
Frequency control rebalances supply and demand while maintaining the network state within operational margins. It is implemented using fast ramping reserves that are expensive and wasteful, and which are expected to become increasingly necessary with the current acceleration of renewable penetration. The most promising solution to this problem is the use of demand response, i.e., load participation in frequency control. Yet it is still unclear how to efficiently integrate load participation without introducing instabilities and violating operational constraints. In this paper, we present a comprehensive load-side frequency control mechanism that can maintain the grid within operational constraints. In particular, ourmore » controllers can rebalance supply and demand after disturbances, restore the frequency to its nominal value, and preserve interarea power flows. Furthermore, our controllers are distributed (unlike the currently implemented frequency control), can allocate load updates optimally, and can maintain line flows within thermal limits. We prove that such a distributed load-side control is globally asymptotically stable and robust to unknown load parameters. We illustrate its effectiveness through simulations.« less
Segregation of biomedical waste in an South Indian tertiary care hospital.
Sengodan, Vetrivel Chezian
2014-07-01
Hospital wastes pose significant public health hazard if not properly managed. Hence, it is necessary to develop and adopt optimal waste management systems in the hospitals. Biomedical waste generated in Coimbatore Medical College Hospital was color coded (blue, yellow, and red) and the data was analyzed retrospectively on a daily basis for 3 years (January 2010-December 2012). Effective segregation protocols significantly reduced biomedical waste generated from 2011 to 2012. While biomedical waste of red category was significantly higher (>50%), the category yellow was the least. Per unit (per bed per day) total biomedical waste generated was 68.5, 68.8, and 61.3 grams in 2010, 2011, and 2012, respectively. Segregation of biomedical waste at the source of generation is the first and essential step in biomedical waste management. Continuous training, fixing the responsibility on the nursing persons, and constant supervision are the key criteria's in implementing biomedical waste segregation process, which can significantly reduce per unit biomedical waste generated. We highly recommend all hospitals to adopt our protocol and effectively implement them to reduce generation of biomedical waste.
Life cycle assessment of electronic waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jinglan, E-mail: hongjing@sdu.edu.cn; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012; Shi, Wenxiao
Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies havemore » a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)« less
Milquez-Sanabria, Harvey; Blanco-Cocom, Luis; Alzate-Gaviria, Liliana
2016-10-03
Agro-industrial wastes are an energy source for different industries. However, its application has not reached small industries. Previous and current research activities performed on the acidogenic phase of two-phase anaerobic digestion processes deal particularly with process optimization of the acid-phase reactors operating with a wide variety of substrates, both soluble and complex in nature. Mathematical models for anaerobic digestion have been developed to understand and improve the efficient operation of the process. At present, lineal models with the advantages of requiring less data, predicting future behavior and updating when a new set of data becomes available have been developed. The aim of this research was to contribute to the reduction of organic solid waste, generate biogas and develop a simple but accurate mathematical model to predict the behavior of the UASB reactor. The system was maintained separate for 14 days during which hydrolytic and acetogenic bacteria broke down onion waste, produced and accumulated volatile fatty acids. On this day, two reactors were coupled and the system continued for 16 days more. The biogas and methane yields and volatile solid reduction were 0.6 ± 0.05 m 3 (kg VS removed ) -1 , 0.43 ± 0.06 m 3 (kg VS removed ) -1 and 83.5 ± 9.8 %, respectively. The model application showed a good prediction of all process parameters defined; maximum error between experimental and predicted value was 1.84 % for alkalinity profile. A linear predictive adaptive model for anaerobic digestion of onion waste in a two-stage process was determined under batch-fed condition. Organic load rate (OLR) was maintained constant for the entire operation, modifying effluent hydrolysis reactor feed to UASB reactor. This condition avoids intoxication of UASB reactor and also limits external buffer addition.
NASA Astrophysics Data System (ADS)
Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.
2014-09-01
The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m-2 s-1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m-2 s-1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m-2 s-1 to 1150 μmol m-2 s-1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.