Sample records for waste permit process

  1. Hazardous Waste Permitting

    EPA Pesticide Factsheets

    To provide RCRA hazardous waste permitting regulatory information and resources permitted facilities, hazardous waste generators, and permit writers. To provide the public with information on how they can be involved in the permitting process.

  2. A New Concept: Use of Negotiations in the Hazardous Waste Facility Permitting Process in New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.J.; Rose, W.M.; Domenici, P.V.

    This paper describes a unique negotiation process leading to authorization of the U.S. Department of Energy (DOE) to manage and dispose remote-handled (RH) transuranic (TRU) mixed wastes at the Waste Isolation Pilot Plant (WIPP). The negotiation process involved multiple entities and individuals brought together under authority of the New Mexico Environment Department (NMED) to discuss and resolve technical and facility operational issues flowing from an NMED-issued hazardous waste facility Draft Permit. The novel negotiation process resulted in numerous substantive changes to the Draft Permit, which were ultimately memorialised in a 'Draft Permit as Changed'. This paper discusses various aspects ofmore » the negotiation process, including events leading to the negotiations, regulatory basis for the negotiations, negotiation participants, and benefits of the process. (authors)« less

  3. WIPP Hazardous Waste Facility Permit Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehrman, B.; Most, W.

    2006-07-01

    dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)« less

  4. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL...-eligible wastes in permitted hazardous waste landfills. (a) The Regional Administrator with regulatory... hazardous waste landfills not located at the site from which the waste originated, without the wastes...

  5. Biogasification of papaya processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, P.Y.; Weitzenhoff, M.H.; Moy, J.H.

    1984-01-01

    Biogasification of papaya processing wastes for pollution control and energy utilization is feasible. The biogasification process with sludge recycling permits smaller reactor volume without any deterioration of CH4 production rate and CH4 content. Appropriate design and operational criteria for biogasification processing of papaya wastes were developed.

  6. Hanford facility dangerous waste permit application, general information portion. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit,more » which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units

  7. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  8. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  9. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  10. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  11. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  12. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2018-05-23

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  13. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81more » Water Services waste water.« less

  14. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  15. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  16. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  17. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  18. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  19. Hanford facility dangerous waste permit application, general information portion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, C.B.

    1998-05-19

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion ismore » broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report).« less

  20. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...

  1. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  2. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  3. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  4. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...

  5. Hanford Facility Dangerous Waste Permit Application for T Plant Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARNES, B.M.

    2002-09-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the T Plant Complex (this document, DOE/RL-95-36). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agencymore » (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the T Plant Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the T Plant Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text.« less

  6. 40 CFR 270.65 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... may issue a research, development, and demonstration permit for any hazardous waste treatment facility which proposes to utilize an innovative and experimental hazardous waste treatment technology or process...

  7. 40 CFR 270.65 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... may issue a research, development, and demonstration permit for any hazardous waste treatment facility which proposes to utilize an innovative and experimental hazardous waste treatment technology or process...

  8. Hanford facility dangerous waste permit application, PUREX storage tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, C. R.

    1997-09-08

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).

  9. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  10. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... initial introduction of hazardous waste to the incinerator and ending with initiation of the trial burn... standards of § 264.343, based on the Regional Administrator's engineering judgment. The Regional... Regional Administrator's engineering judgement. (4) For the remaining duration of the permit, the operating...

  11. State Waste Discharge Permit Application: Electric resistance tomography testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the arealmore » extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.« less

  12. WASTE ANALYSIS PLAN REVIEW ADVISOR - AN INTELLIGENT DATABASE TO ASSIST RCRA PERMIT REVIEWERS

    EPA Science Inventory

    The Waste Analysis Plan Review Advisor (WAPRA) system assists in the review of the Waste Analysis Plan Section of RCRA Part B facility permit applications. Specifically, this program automates two functions of the waste analysis plan review. First, the system checks all wastes wh...

  13. NPDES Permit for Transit Waste's Bondad Landfill in Colorado

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO-R050005, Transit Waste, LLC is authorized to discharge from the Bondad Landfill facility in La Plata County, Colorado, to an unnamed tributary of the Animas River.

  14. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, Jhon T.; Krenzien, Susan K.

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  15. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less

  16. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  17. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  18. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  19. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  20. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  1. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the

  2. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher

    2013-07-01

    install the necessary integrated systems to process the accumulated MVST Facilities SL inventory at the TWPC thus enabling safe and effective disposal of the waste. This BCP does not include work to support current MVST Facility Surveillance and Maintenance programs or the ORNL Building 3019 U-233 Disposition project, since they are not currently part of the TWPC prime contract. The purpose of the environmental compliance strategy is to identify the environmental permits and other required regulatory documents necessary for the construction and operation of the SL- PFB at the TWPC, Oak Ridge, TN. The permits and other regulatory documents identified are necessary to comply with the environmental laws and regulations of DOE Orders, and other requirements documented in the SL-PFB, Safety Design Strategy (SDS), SL-A-AD-002, R0 draft, and the Systems, Function and Requirements Document (SFRD), SL-X-AD-002, R1 draft. This compliance strategy is considered a 'living strategy' and it is anticipated that it will be revised as design progresses and more detail is known. The design basis on which this environmental permitting and compliance strategy is based is the Wastren Advantage, Inc., (WAI), TWPC, SL-PFB (WAI-BL-B.01.06) baseline. (authors)« less

  3. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Name, No

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in themore » initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.« less

  4. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less

  5. Wyoming's industrial siting permit process and environmental impact assessment

    NASA Astrophysics Data System (ADS)

    Hyman, Eric L.

    1982-01-01

    The problem of management of industrial residuals can be reduced through a rational system for siting and planning major industrial facilities. In the United States, Wyoming has moved in the direction of establishing a one-stop permitting system that provides important information for air and water quality planning and solid waste management with a minimum of regulatory overlap. This paper describes Wyoming's Industrial Development Information and Siting Act of 1975 and suggests ways in which the Wyoming permitting system can be improved and applied elsewhere.

  6. 40 CFR 74.14 - Opt-in permit process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Opt-in permit process. 74.14 Section 74.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Permitting Procedures § 74.14 Opt-in permit process. (a) Submission. The...

  7. 40 CFR 270.60 - Permits by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.60 Permits by... operator of a barge or other vessel which accepts hazardous waste for ocean disposal, if the owner or...

  8. 40 CFR 270.60 - Permits by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.60 Permits by... operator of a barge or other vessel which accepts hazardous waste for ocean disposal, if the owner or...

  9. Developing a methodology for real-time trading of water withdrawal and waste load discharge permits in rivers.

    PubMed

    Soltani, Maryam; Kerachian, Reza

    2018-04-15

    In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  11. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  12. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  13. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  14. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  15. 40 CFR 270.275 - What information must I submit to the permitting agency to support my standardized permit...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal laws required in § 270.3. (e) Solid waste management unit information required by § 270.14(d). (f... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM RCRA Standardized Permits for Storage and Treatment Units...

  16. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit applicationmore » guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than

  17. 40 CFR 124.4 - Consolidation of permit processing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consolidate processing a PSD permit with any other permit under paragraph (a) or (b) of this section when to do so would delay issuance of the PSD permit more than one year from the effective date of the...

  18. 40 CFR 124.4 - Consolidation of permit processing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consolidate processing a PSD permit with any other permit under paragraph (a) or (b) of this section when to do so would delay issuance of the PSD permit more than one year from the effective date of the...

  19. 40 CFR 124.4 - Consolidation of permit processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consolidate processing a PSD permit with any other permit under paragraph (a) or (b) of this section when to do so would delay issuance of the PSD permit more than one year from the effective date of the...

  20. 40 CFR 124.4 - Consolidation of permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consolidate processing a PSD permit with any other permit under paragraph (a) or (b) of this section when to do so would delay issuance of the PSD permit more than one year from the effective date of the...

  1. 40 CFR 124.4 - Consolidation of permit processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... processing a PSD permit with any other permit under paragraph (a) or (b) of this section when to do so would delay issuance of the PSD permit more than one year from the effective date of the application under...

  2. 40 CFR 270.61 - Emergency permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.61 Emergency... an imminent and substantial endangerment to human health or the environment the Director may issue a...

  3. 40 CFR 270.61 - Emergency permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.61 Emergency... an imminent and substantial endangerment to human health or the environment the Director may issue a...

  4. 40 CFR 270.61 - Emergency permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.61 Emergency... an imminent and substantial endangerment to human health or the environment the Director may issue a...

  5. 40 CFR 270.43 - Termination of permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Termination of permits. 270.43 Section 270.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Changes to Permit § 270.43...

  6. 40 CFR 270.43 - Termination of permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Termination of permits. 270.43 Section 270.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Changes to Permit § 270.43...

  7. 32 CFR 855.12 - Processing a permit application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Processing a permit application. 855.12 Section 855.12 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.12 Processing a...

  8. 32 CFR 855.12 - Processing a permit application.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Processing a permit application. 855.12 Section 855.12 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.12 Processing a...

  9. 21 CFR 108.12 - Manufacturing, processing, or packing without a permit, or in violation of a permit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Manufacturing, processing, or packing without a permit, or in violation of a permit. 108.12 Section 108.12 Food and Drugs FOOD AND DRUG ADMINISTRATION... General Provisions § 108.12 Manufacturing, processing, or packing without a permit, or in violation of a...

  10. 33 CFR Appendix A to Part 331 - Administrative Appeal Process for Permit Denials and Proffered Permits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Administrative Appeal Process for... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE APPEAL PROCESS Pt. 331, App. A Appendix A to Part 331—Administrative Appeal Process for Permit Denials and Proffered Permits ER28MR00.000 ...

  11. The recovery of waste and off-gas in Large Combustion Plants subject to IPPC National Permit in Italy.

    PubMed

    Di Marco, Giuseppe; Manuzzi, Raffaella

    2018-03-01

    The recovery of off-gas, waste, and biomass in Large Combustion Plants for energy production gives the opportunity to recycle waste and by-products and to recover materials produced in agricultural and industrial activities. The paper illustrates the Italian situation regarding the production of energy from off-gas, biomass, and waste in Large Combustion Plants subject to Integrated Pollution Prevention and Control (IPPC) National Permit. Moreover, it focuses on the 4 Italian Large Combustion Plants producing energy from biomass and waste. For these ones it illustrates the specific issues related to and provides a description of the solutions adopted in the 4 Italian plants. Given that air emission performance is the most relevant aspect of this kind of plants, the paper specifically focuses and reports results about this subject. In particular, in Italy among 113 LCPs subject to IPPC National Permit we have found that 4 plants use as fuel waste (i.e. solid or liquid biomasses and Solid Recovered Fuels), or a mixture of waste and traditional fuels (co-combustion of Solid Recovered Fuels and coal), and that 11 plants use as fuel off-gases listed in Annex X (i.e. Refinery Fuel Gas, Syngas, and gases produced in iron and steel industries). Moreover, there are 2 IPPC chemical plants that recovery energy from different off-gases not listed in Annex X. Regarding the 4 LCPs that produce energy from waste combustion or co-combustion, we find that they take into account all the specific issues related to this kind of plants (i.e. detailed waste characterization, waste acceptance procedures, waste handling and storage, waste pretreatment and emissions to air), and adopt solutions that are best available techniques to prevent pollution. Moreover for one of these plants, the only one for which we have a significant set of monitoring data because it obtained the IPPC National Permit in 2008, we find that energy efficiency and air emissions of the principal pollutants are in

  12. Central waste processing system

    NASA Technical Reports Server (NTRS)

    Kester, F. L.

    1973-01-01

    A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.

  13. 40 CFR 270.40 - Transfer of permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 270.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Changes to Permit § 270.40... Act. (b) Changes in the ownership or operational control of a facility may be made as a Class 1...

  14. 40 CFR 270.40 - Transfer of permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 270.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Changes to Permit § 270.40... Act. (b) Changes in the ownership or operational control of a facility may be made as a Class 1...

  15. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  16. Consolidated permit regulations and hazardous waste management system: Environmental Protection Agency. Notice of issuance of regulation interpretation memorandum.

    PubMed

    1981-12-10

    The Environmental Protection Agency (EPA) is issuing today a Regulation Interpretation Memorandum (RIM) which provides official interpretation of the issue of whether a generator who accumulates hazardous waste pursuant to 40 CFR 262.34, may qualify for interim status after November 19, 1980. This issue arose when the requirements for submitting a Part A permit application (one of the prerequisites to qualifying for interim status) were amended on November 19, 1980. The provisions interpreted today are part of the Consolidated Permit Regulations promulgated under Subtitle C of the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act, as amended (RCRA).

  17. Municipal waste processing apparatus

    DOEpatents

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  18. 40 CFR 220.3 - Categories of permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Marine Pollution by Dumping of Wastes and Other Matter that are likely to be affected by the dumping...) Permits for incineration at sea. Permits for incineration of wastes at sea will be issued only as research... where studies on the waste, the incineration method and vessel, and the site have been conducted and the...

  19. Listed waste determination report. Environmental characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idahomore » identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P & Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application.« less

  20. IT Solution to Improve the Permitting Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, Mary

    2013-02-14

    Over the past decade Houston has taken significant strides to implement and promote sustainability. Currently the City of Houston’s Green Building Resource Center stands testament to the determination of city officials to make Houston truly green. Houston was named a Solar America City by the Department of Energy (DOE) in 2008 and is part of the Texas Solar Collaboration as part of the DOE Rooftop Challenge Grant. In that time, Houston has made significant progress in addressing the challenges associated with installing solar in the City. One of the challenges related to soft costs of solar are the time andmore » associated costs related to the permitting process. From 2000 to 2010, the Houston area has witnessed unprecedented growth, with the population increasing by nearly 700,000. The City of Houston is working to address the needs of this growing population, including building the new One-Stop Code and Permitting building. The Houston Permitting Center opened in June 2011. It combines the majority of the City of Houston's permitting and licensing into one place with a mission to help customers achieve their goals while complying with the City’s regulations. The stated mission “requires a continuous pursuit of improving the customer experience. Providing excellent service, streamlining business processes, implementing innovative technologies, and proactively engaging customers are all cornerstones of this philosophy.”« less

  1. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2015-10-01

    Literature published in 2014 and early 2015 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  2. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  3. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2016-10-01

    Literature published in 2015 and early 2016 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  4. 40 CFR 270.13 - Contents of part A of the permit application.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Permit..., and disposing of hazardous waste, and the design capacity of these items. (j) A specification of the hazardous wastes listed or designated under 40 CFR part 261 to be treated, stored, or disposed of at the...

  5. 40 CFR 270.13 - Contents of part A of the permit application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Permit..., and disposing of hazardous waste, and the design capacity of these items. (j) A specification of the hazardous wastes listed or designated under 40 CFR part 261 to be treated, stored, or disposed of at the...

  6. 45 CFR 671.8 - Permit administration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Permit administration. 671.8 Section 671.8 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.8 Permit administration. (a) Issuance of permits. The Director may approve an application...

  7. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  8. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  9. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  10. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  11. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  12. 45 CFR 671.8 - Permit administration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Permit administration. 671.8 Section 671.8 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.8 Permit administration. (a) Issuance of permits. The Director may approve an application for a permit in whole or in part, and may...

  13. 45 CFR 671.8 - Permit administration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Permit administration. 671.8 Section 671.8 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.8 Permit administration. (a) Issuance of permits. The Director may approve an application for a permit in whole or in part, and may...

  14. 45 CFR 671.8 - Permit administration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Permit administration. 671.8 Section 671.8 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.8 Permit administration. (a) Issuance of permits. The Director may approve an application for a permit in whole or in part, and may...

  15. 45 CFR 671.8 - Permit administration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Permit administration. 671.8 Section 671.8 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.8 Permit administration. (a) Issuance of permits. The Director may approve an application for a permit in whole or in part, and may...

  16. Petroleum Processing Wastes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1978-01-01

    Presents a literature review of the petroleum processing wastes, covering publications of 1977. This review covers studies such as the use of activated carbon in petroleum and petrochemical waste treatment. A list of 15 references is also presented. (HM)

  17. Soil Sample Report in Support of the Site 300 EWTF Ecological Risk Assessment and Permit Renewal-September 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terusaki, Stanley; Gallegos, Gretchen; MacQueen, Donald

    2012-10-02

    LLNL Site 300 has applied to renew the permits for its Explosives Waste Treatment Facility (EWTF), Explosives Waste Storage Facility (EWSF) and Building 883 Storage Facility. As a part of the permit renewal process, the Department of Toxic Substances Control (DTSC) requested LLNL to obtain soil samples in order to conduct a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. As stated in the guidance document, the scoping-level ecological risk assessment provides a framework to determine the potentialmore » interaction ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF.« less

  18. Meat, Fish, and Poultry Processing Wastes.

    ERIC Educational Resources Information Center

    Litchfield, J. H.

    1978-01-01

    Presents a literature review of industrial wastes, covering publications of 1976-77. This review includes studies on: (1) meat industry wastes; (2) fish-processing waste treatment; and (3) poultry-processing waste treatment. A list of 76 references is also presented. (HM)

  19. WIPP Remote-Handled TRU Waste Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Most, W.; Kehrman, B.

    2006-07-01

    There are two major regulatory approval milestones necessary in order to commence disposal operations for remote-handled transuranic (RH TRU) waste at the Waste Isolation Pilot Plant (WIPP)-the RH TRU hazardous waste permit modification request [1] and the radiological characterization plan [2]. One of those milestones has been achieved. The US Environmental Protection Agency (EPA) issued its final decision to approve the Department of Energy's (DOE) RH TRU radiological characterization plan along with the RH TRU Waste Characterization Program Implementation Plan [3], on March 26, 2004. The RH TRU hazardous waste permit modification request still awaits agency approval. In EPA's decisionmore » to approve the DOE's RH TRU radiological characterization plan, the EPA also set forth the process for approving site-specific RH TRU waste characterization programs. Included in the March 29, 2005, RH TRU second Notice of Deficiency [4] (NOD) on the Class 3 Permit Modification Request for RH TRU Waste, the New Mexico Environment Department (NMED) requested that the Permittees combine their responses for the RH TRU Waste NOD with the Section 311 permit modification request NOD. The Combined Response Document was submitted April 28, 2005 [5]. Another NOD [6] was issued by the NMED on September 1, 2005, to clarify the Permittees' proposal and submit these clarifications to the administrative record. Combining both the chap. 311 [7] and RH TRU waste permit modification requests allows for both the regulator and Permittees to expedite action on the modification requests. The Combined Response Document preserves human resources and costs by having only one administrative process for both modification requests. Facility readiness requirements of the RH TRU waste final permit [8] must be implemented to declare that the WIPP is ready to receive RH TRU waste for storage and disposal. To demonstrate readiness, the WIPP is preparing for an Operational Readiness Review (ORR) of the RH

  20. 45 CFR 671.6 - Applications for permits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Applications for permits. 671.6 Section 671.6 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.6 Applications for permits. (a) General content of permit applications. Each application for a permit shall be dated and signed...

  1. 45 CFR 671.6 - Applications for permits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Applications for permits. 671.6 Section 671.6 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.6 Applications for permits. (a) General content of permit applications. Each application for a permit shall be dated and signed...

  2. 45 CFR 671.6 - Applications for permits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Applications for permits. 671.6 Section 671.6 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.6 Applications for permits. (a) General content of permit applications. Each application for a permit shall be dated and signed...

  3. Process Waste Assessment - Paint Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are mademore » for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.« less

  4. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  5. Consolidation process for producing ceramic waste forms

    DOEpatents

    Hash, Harry C.; Hash, Mark C.

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  6. RCRA, superfund and EPCRA hotline training module. Introduction to: Permits and interim status (40 cfr part 270) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    Owners/operators of facilities that treat, store, or dispose of hazardous waste must obtain an operating permit, as required by Subtitle C of the Resource Conservation and Recovery Act (RCRA). The module presents an overview of the RCRA permitting process and the requirements that apply to TSDFs operating under interim status until a permit is issued. The regulations governing the permit process are found in 40 CFR Parts 124 through 270.

  7. 45 CFR 671.9 - Conditions of permit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Conditions of permit. 671.9 Section 671.9 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.9 Conditions of permit. (a) Conditions. All permits issued pursuant to subpart C of this...

  8. Waste processing building with incineration technology

    NASA Astrophysics Data System (ADS)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  9. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  10. Food waste and food processing waste for biohydrogen production: a review.

    PubMed

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. 30 CFR 947.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulations: (1) Department of Ecology: Surface Water Rights Permit, RCW 90.03.250 Dam Safety Approval, RCW 90... deny a permit application to the Washington Department of Natural Resources, the Department of Ecology...

  12. 30 CFR 947.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regulations: (1) Department of Ecology: Surface Water Rights Permit, RCW 90.03.250 Dam Safety Approval, RCW 90... deny a permit application to the Washington Department of Natural Resources, the Department of Ecology...

  13. 45 CFR 671.9 - Conditions of permit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Conditions of permit. 671.9 Section 671.9 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.9 Conditions of permit. (a) Conditions. All permits issued pursuant to subpart C of this part shall be conditioned upon compliance...

  14. 45 CFR 671.9 - Conditions of permit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Conditions of permit. 671.9 Section 671.9 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.9 Conditions of permit. (a) Conditions. All permits issued pursuant to subpart C of this part shall be conditioned upon compliance...

  15. 45 CFR 671.9 - Conditions of permit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Conditions of permit. 671.9 Section 671.9 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.9 Conditions of permit. (a) Conditions. All permits issued pursuant to subpart C of this part shall be conditioned upon compliance...

  16. 45 CFR 671.9 - Conditions of permit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Conditions of permit. 671.9 Section 671.9 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Permits § 671.9 Conditions of permit. (a) Conditions. All permits issued pursuant to subpart C of this part shall be conditioned upon compliance...

  17. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  18. 40 CFR 239.6 - Permitting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR part 257, subpart B or 40 CFR part 258 federal revised criteria. (e) For municipal solid waste... solid waste landfill units shall have a permit incorporating the conditions identified in paragraph (e... solid waste landfill units which achieve compliance with 40 CFR part 258, subpart E; (vi) Closure and...

  19. 40 CFR 239.6 - Permitting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR part 257, subpart B or 40 CFR part 258 federal revised criteria. (e) For municipal solid waste... solid waste landfill units shall have a permit incorporating the conditions identified in paragraph (e... solid waste landfill units which achieve compliance with 40 CFR part 258, subpart E; (vi) Closure and...

  20. 40 CFR 239.6 - Permitting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CFR part 257, subpart B or 40 CFR part 258 federal revised criteria. (e) For municipal solid waste... solid waste landfill units shall have a permit incorporating the conditions identified in paragraph (e... solid waste landfill units which achieve compliance with 40 CFR part 258, subpart E; (vi) Closure and...

  1. 40 CFR 74.14 - Opt-in permit process.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion or process source withdraws its application, in order to re-apply, it must submit a new opt-in...) [Reserved] (d) Entry into Acid Rain Program—(1) Effective date. The effective date of the opt-in permit...

  2. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  3. Operating Permits Program Review Process

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  4. Defense Waste Processing Facility Process Enhancements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bricker, Jonathan

    2010-11-01

    Jonathan Bricker provides an overview of process enhancements currently being done at the Defense Waste Processing Facility (DWPF) at SRS. Some of these enhancements include: melter bubblers; reduction in water use, and alternate reductant.

  5. 78 FR 41960 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... with the various excursions are typically air emissions, waste water (urine, grey-water) and solid waste (food waste, human solid waste, and packaging materials). Human waste and grey water would be..., Santa Cruz, CA. Activity for Which Permit Is Requested Waste Permit; A small expedition would use an ice...

  6. Coal Producer's Rubber Waste Processing Development

    NASA Astrophysics Data System (ADS)

    Makarevich, Evgeniya; Papin, Andrey; Nevedrov, Alexander; Cherkasova, Tatyana; Ignatova, Alla

    2017-11-01

    A large amount of rubber-containing waste, the bulk of which are worn automobile tires and conveyor belts, is produced at coal mining and coal processing enterprises using automobile tires, conveyor belts, etc. The volume of waste generated increases every year and reaches enormous proportions. The methods for processing rubber waste can be divided into three categories: grinding, pyrolysis (high and low temperature), and decomposition by means of chemical solvents. One of the known techniques of processing the worn-out tires is their regeneration, aimed at producing the new rubber substitute used in the production of rubber goods. However, the number of worn tires used for the production of regenerate does not exceed 20% of their total quantity. The new method for processing rubber waste through the pyrolysis process is considered in this article. Experimental data on the upgrading of the carbon residue of pyrolysis by the methods of heavy media separation, magnetic and vibroseparation, and thermal processing are presented.

  7. 77 FR 58217 - Notice of Delays in Processing of Special Permits Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Notice of Delays in Processing of Special Permits Applications AGENCY: Pipeline and Hazardous Materials Safety.... FOR FURTHER INFORMATION CONTACT: Ryan Paquet, Director, Office of Hazardous Materials Special Permits...

  8. 77 FR 64846 - Notice of Delays in Processing of Special Permits Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Notice of Delays in Processing of Special Permits Applications AGENCY: Pipeline and Hazardous Materials Safety.... FOR FURTHER INFORMATION CONTACT: Ryan Paquet, Director, Office of Hazardous Materials Special Permits...

  9. Processing of palm oil mill wastes based on zero waste technology

    NASA Astrophysics Data System (ADS)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  10. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Frank; Hwan Seo Park; Yung Zun Cho

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration betweenmore » US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.« less

  11. Development studies of a novel wet oxidation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dhooge, P.M.

    1995-12-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. There is a need for non-combustion processes with a wide application range to treat the large majority of these waste forms. The non-combustion process should also be safe, effective, cost-competitive, permit-able, and preferrably mobile. This paper describes the DETOX processmore » of organic waste oxidation.« less

  12. 75 FR 36069 - Clean Air Act Operating Permit Program; Petition for Objection to a Federal Operating Permit for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9167-5] Clean Air Act Operating Permit Program; Petition for Objection to a Federal Operating Permit for Waste Management of Louisiana L.L.C., Woodside Landfill and Recycling Center (WLRC), Walker, Livingston Parish, LA AGENCY: Environmental Protection Agency (EPA). ACTION...

  13. Oversize/overweight vehicle unified permitting process (UPP) : phase I.

    DOT National Transportation Integrated Search

    2017-08-01

    Multiple jurisdictions within Minnesota process oversize/overweight (OSOW) permits for the movement of freight on state roadways, county roads, and municipal and township streets. Movement of freight has increased in recent years to help support econ...

  14. Process Waste Assessment, Mechanics Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-05-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags andmore » spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.« less

  15. Hanford solid-waste handling facility strategy

    NASA Astrophysics Data System (ADS)

    Albaugh, J. F.

    1982-05-01

    Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.

  16. 40 CFR 270.65 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Research, development, and... Special Forms of Permits § 270.65 Research, development, and demonstration permits. (a) The Administrator may issue a research, development, and demonstration permit for any hazardous waste treatment facility...

  17. 40 CFR 270.65 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Research, development, and... Special Forms of Permits § 270.65 Research, development, and demonstration permits. (a) The Administrator may issue a research, development, and demonstration permit for any hazardous waste treatment facility...

  18. 77 FR 69769 - Solid Waste Rail Transfer Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    .... SUMMARY: These final rules govern land-use-exemption permits for solid waste rail transfer facilities. The... ``land-use-exemption permits'' in certain circumstances. Under the CRA, a solid waste rail transfer... grants a land-use-exemption permit for a solid waste rail transfer facility, such permit would only...

  19. Process Waste Assessment for the Diana Laser Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-12-01

    This Process Waste Assessment was conducted to evaluate the Diana Laser Laboratory, located in the Combustion Research Facility. It documents the hazardous chemical waste streams generated by the laser process and establishes a baseline for future waste minimization efforts. This Process Waste Assessment will be reevaluated in approximately 18 to 24 months, after enough time has passed to implement recommendations and to compare results with the baseline established in this assessment.

  20. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, S.M.

    1997-04-30

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  1. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term

  2. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  3. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.

  4. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  5. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  6. Mineral Processing Sector

    EPA Pesticide Factsheets

    Find environmental regulatory and compliance information for the nonmetallic mineral processing sector (NAICS 327), including NESHAPs for asbestos and hazardous waste, and wastewater permit information.

  7. Canyon Day Sand and Gravel Wash Process Plant: Draft NPDES Permit AZ0024511

    EPA Pesticide Factsheets

    EPA is issuing a notice of proposed action under the Clean Water Act to issue NPDES Permit No.permit renewal (No. AZ0024511) to White Mountain Apache Tribe Canyon Day Sand and Gravel Wash Process Plant, Greer, Arizona.

  8. 76 FR 16538 - Solid Waste Rail Transfer Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... circumstances. Upon receiving a land-use-exemption permit issued by the Board, a solid waste rail transfer... new application for a land-use-exemption permit if the rail line associated with the solid waste rail... transportation of solid waste by rail. (2) The Board will not grant a land-use-exemption permit for a solid waste...

  9. 40 CFR 239.4 - Narrative description of state permit program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hazardous waste disposal units that receive CESQG hazardous waste, January 1, 1998. (e) A discussion of... WASTES REQUIREMENTS FOR STATE PERMIT PROGRAM DETERMINATION OF ADEQUACY State Program Application § 239.4...; (d) The number of facilities within the state's jurisdiction that received waste on or after the...

  10. 40 CFR 124.15 - Issuance and effective date of permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administrator shall issue a final permit decision (or a decision to deny a permit for the active life of a RCRA... final permit decision (or a decision to deny a permit for the active life of a RCRA hazardous waste... decision unless: (1) A later effective date is specified in the decision; or (2) Review is requested on the...

  11. 40 CFR 124.15 - Issuance and effective date of permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrator shall issue a final permit decision (or a decision to deny a permit for the active life of a RCRA... final permit decision (or a decision to deny a permit for the active life of a RCRA hazardous waste... decision unless: (1) A later effective date is specified in the decision; or (2) Review is requested on the...

  12. Hazardous Waste Cleanup: Frontier Chemical Waste Process Incorporated in Pendleton, New York

    EPA Pesticide Factsheets

    Frontier Chemical Waste Process, Inc. is located at 7025 Townline Road, Pendleton, New York. This site was used for the treatment of industrial wastes from 1959 to 1974, with many wastes being discharged to the lake on the property (Quarry Lake).

  13. Plasma Processing of Model Residential Solid Waste

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  14. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  15. Watershed-based point sources permitting strategy and dynamic permit-trading analysis.

    PubMed

    Ning, Shu-Kuang; Chang, Ni-Bin

    2007-09-01

    Permit-trading policy in a total maximum daily load (TMDL) program may provide an additional avenue to produce environmental benefit, which closely approximates what would be achieved through a command and control approach, with relatively lower costs. One of the important considerations that might affect the effective trading mechanism is to determine the dynamic transaction prices and trading ratios in response to seasonal changes of assimilative capacity in the river. Advanced studies associated with multi-temporal spatially varied trading ratios among point sources to manage water pollution hold considerable potential for industries and policy makers alike. This paper aims to present an integrated simulation and optimization analysis for generating spatially varied trading ratios and evaluating seasonal transaction prices accordingly. It is designed to configure a permit-trading structure basin-wide and provide decision makers with a wealth of cost-effective, technology-oriented, risk-informed, and community-based management strategies. The case study, seamlessly integrating a QUAL2E simulation model with an optimal waste load allocation (WLA) scheme in a designated TMDL study area, helps understand the complexity of varying environmental resources values over space and time. The pollutants of concern in this region, which are eligible for trading, mainly include both biochemical oxygen demand (BOD) and ammonia-nitrogen (NH3-N). The problem solution, as a consequence, suggests an array of waste load reduction targets in a well-defined WLA scheme and exhibits a dynamic permit-trading framework among different sub-watersheds in the study area. Research findings gained in this paper may extend to any transferable dynamic-discharge permit (TDDP) program worldwide.

  16. Electrochemical processing of solid waste

    NASA Technical Reports Server (NTRS)

    Bockris, J. OM.; Hitchens, G. D.; Kaba, L.

    1988-01-01

    The investigation into electrolysis as a means of waste treatment and recycling on manned space missions is described. The electrochemical reactions of an artificial fecal waste mixture was examined. Waste electrolysis experiments were performed in a single compartment reactor, on platinum electrodes, to determine conditions likely to maximize the efficiency of oxidation of fecal waste material to CO2. The maximum current efficiencies for artificial fecal waste electrolysis to CO2 was found to be around 50 percent in the test apparatus. Experiments involving fecal waste oxidation on platinum indicates that electrodes with a higher overvoltage for oxygen evolution such as lead dioxide will give a larger effective potential range for organic oxidation reactions. An electrochemical packed column reactor was constructed with lead dioxide as electrode material. Preliminary experiments were performed using a packed-bed reactor and continuous flow techniques showing this system may be effective in complete oxidation of fecal material. The addition of redox mediator Ce(3+)/Ce(4+) enhances the oxidation process of biomass components. Scientific literature relevant to biomass and fecal waste electrolysis were reviewed.

  17. Direct oxidation of strong waste waters, simulating combined wastes in extended-mission space cabins

    NASA Technical Reports Server (NTRS)

    Ross, L. W.

    1973-01-01

    The applications of modern technology to the resolution of the problem of solid wastes in space cabin environments was studied with emphasis on the exploration of operating conditions that would permit lowering of process temperatures in wet oxidation of combined human wastes. It was found that the ultimate degree of degradation is not enhanced by use of a catalyst. However, the rate of oxidation is increased, and the temperature of oxidation is reduced to 400 F.

  18. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez, Catherine L.; Funk, David John; Vigil-Holterman, Luciana R.

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide themore » basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.« less

  19. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  20. Processing industrial wastes with the liquid-phase reduction romelt process

    NASA Astrophysics Data System (ADS)

    Romenets, V.; Valavin, V.; Pokhvisnev, Yu.; Vandariev, S.

    1999-08-01

    The Romelt technology for liquid-phase reduction has been developed for processing metallurgical wastes containing nonferrousmetal components. Thermodynamic calculations were made to investigate the behavior of silver, copper, zinc, manganese, vanadium, chrome, and silicon when reduced from the slag melt into the metallic solution containing iron. The process can be applied to all types of iron-bearing wastes, including electric arc furnace dust. The distribution of elements between the phases can be controlled by adjusting the slag bath temperature. Experiments at a pilot Romelt plant proved the possibility of recovering the metallurgical wastes and obtaining iron.

  1. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Neville G.W.; Heuze, Francois E.; Miller, Hamish D.S.

    1993-03-01

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the referencemore » design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.« less

  2. Nitrate Waste Treatment Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.; Martinez, Patrick Thomas; Garcia, Terrence Kerwin

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  3. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  4. 77 FR 12497 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... and disposed in a Subtitle D landfill permitted, licensed, or otherwise authorized by a State to... satisfied. ConocoPhillips must dispose of this waste in a Subtitle D landfill permitted, licensed or... protection, Hazardous waste, Recycling, Reporting and recordkeeping requirements. Authority: RCRA 3001(f), 42...

  5. Waste Characterization Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Patrick E.

    2014-11-01

    The purpose is to provide guidance to the Radiological Characterization Reviewer to complete the radiological characterization of waste items. This information is used for Department of Transportation (DOT) shipping and disposal, typically at the Nevada National Security Site (NNSS). Complete characterization ensures compliance with DOT shipping laws and NNSS Waste Acceptance Criteria (WAC). The fines for noncompliance can be extreme. This does not include possible bad press, and endangerment to the public, employees and the environment. A Radiological Characterization Reviewer has an important role in the organization. The scope is to outline the characterization process, but does not to includemore » every possible situation. The Radiological Characterization Reviewer position requires a strong background in Health Physics; therefore, these concepts are minimally addressed. The characterization process includes many Excel spreadsheets that were developed by Michael Enghauser known as the WCT software suite. New Excel spreadsheets developed as part of this project include the Ra- 226 Decider and the Density Calculator by Jesse Bland, MicroShield Density Calculator and Molecular Weight Calculator by Pat Lambert.« less

  6. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SIMMONS, F.M.

    2000-03-29

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cellsmore » 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.« less

  7. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  8. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE PAGES

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; ...

    2017-04-26

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  9. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States.

    PubMed

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; Heath, Garvin

    2017-06-06

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain major source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called "major" or "minor") has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.

  10. Current and potential uses of bioactive molecules from marine processing waste.

    PubMed

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  11. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Wastemore » Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.« less

  12. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  13. Air quality assessment for land disposal of industrial wastes

    NASA Astrophysics Data System (ADS)

    Shen, Thomas T.

    1982-07-01

    Air pollution from hazardous waste landfills and lagoons is largely unknown. Routine monitoring of toxic air contaminants associated with hazardous waste facilities is difficult and very costly. The method presented in this paper would be useful for air quality assessment in the absence of monitoring data. It may be used as a screening process to examine the question of whether or not volatilization is considered to be significant for a given contaminant and also to evaluate permit applications for new hazardous waste facilities concerning waste volatilization problems.

  14. Waste Minimization Study on Pyrochemical Reprocessing Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boussier, H.; Conocar, O.; Lacquement, J.

    2006-07-01

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluoridesmore » previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an

  15. 30 CFR 912.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO... without permits issued and/or certificates required by the State of Idaho, pursuant to Idaho Code sections...

  16. 30 CFR 933.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...); an approval of dam construction (NCGS 143-215.108), an air pollution control permit (NCGS 143-215.26... in a soil conservation district (NCGS 139-9); and compliance with any county ordinance regarding...

  17. Bioprocessing of a stored mixed liquid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, J.H.; Rogers, R.D.; Finney, R.

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actualmore » mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.« less

  18. Approaches to Streamline Air Permitting for Combined Heat and Power: Permits by Rule and General Permits

    EPA Pesticide Factsheets

    This factsheet provides information about permit by rule (PBR) and general permit (GP) processes, including the factors that contributed to their development and lessons learned from their implementation.

  19. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... taking place identifies principal hazardous constitutes in such waste, in accordance with § 264.552(e)(4... following standards specified for CAMU-eligible wastes: (i) The treatment standards under § 264.552(e)(4)(iv... authorizes receipt of such waste. (e) For each remediation, CAMU-eligible waste may not be placed in an off...

  20. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... taking place identifies principal hazardous constitutes in such waste, in accordance with § 264.552(e)(4... following standards specified for CAMU-eligible wastes: (i) The treatment standards under § 264.552(e)(4)(iv... authorizes receipt of such waste. (e) For each remediation, CAMU-eligible waste may not be placed in an off...

  1. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... taking place identifies principal hazardous constitutes in such waste, in accordance with § 264.552(e)(4... following standards specified for CAMU-eligible wastes: (i) The treatment standards under § 264.552(e)(4)(iv... authorizes receipt of such waste. (e) For each remediation, CAMU-eligible waste may not be placed in an off...

  2. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... taking place identifies principal hazardous constitutes in such waste, in accordance with § 264.552(e)(4... following standards specified for CAMU-eligible wastes: (i) The treatment standards under § 264.552(e)(4)(iv... authorizes receipt of such waste. (e) For each remediation, CAMU-eligible waste may not be placed in an off...

  3. West Valley demonstration project: Alternative processes for solidifying the high-level wastes

    NASA Astrophysics Data System (ADS)

    Holton, L. K.; Larson, D. E.; Partain, W. L.; Treat, R. L.

    1981-10-01

    Two pretreatment approaches and several waste form processes for radioactive wastes were selected for evaluation. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  4. Evaluation of costs to process and manage utility and driveway permits.

    DOT National Transportation Integrated Search

    2014-10-01

    Reviewing and processing utility and driveway permits at the Texas Department of Transportation (TxDOT) : requires a considerable amount of involvement and coordination by TxDOT personnel, both at the district : and division levels. Currently, TxDOT ...

  5. 16 CFR 301.10 - Use of term “Broadtail-processed Lamb” permitted.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... “Broadtail-processed Lamb” permitted. The term Broadtail-processed Lamb may be used to describe the skin of a lamb which has been sheared, leaving a moire hair pattern on the pelt having the appearance of the true fur pattern of “Broadtail Lamb”; as for example: Dyed Broadtail-processed Lamb Fur origin: Argentina ...

  6. Catalytic processes for space station waste conversion

    NASA Technical Reports Server (NTRS)

    Schoonover, M. W.; Madsen, R. A.

    1986-01-01

    Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.

  7. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    EPA Science Inventory

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  8. Waste Isolation Pilot Plant (WIPP) fact sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all termsmore » and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.« less

  9. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  10. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  11. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  12. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  13. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  14. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  15. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  16. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  17. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  18. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  19. Secondary Waste Form Development and Optimization—Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  20. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  1. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  2. A pilot survey of the U.S. medical waste industry to determine training needs for safely handling highly infectious waste.

    PubMed

    Le, Aurora B; Hoboy, Selin; Germain, Anne; Miller, Hal; Thompson, Richard; Herstein, Jocelyn J; Jelden, Katelyn C; Beam, Elizabeth L; Gibbs, Shawn G; Lowe, John J

    2018-02-01

    The recent Ebola outbreak led to the development of Ebola virus disease (EVD) best practices in clinical settings. However, after the care of EVD patients, proper medical waste management and disposal was identified as a crucial component to containing the virus. Category A waste-contaminated with EVD and other highly infectious pathogens-is strictly regulated by governmental agencies, and led to only several facilities willing to accept the waste. A pilot survey was administered to determine if U.S. medical waste facilities are prepared to handle or transport category A waste, and to determine waste workers' current extent of training to handle highly infectious waste. Sixty-eight percent of survey respondents indicated they had not determined if their facility would accept category A waste. Of those that had acquired a special permit, 67% had yet to modify their permit since the EVD outbreak. This pilot survey underscores gaps in the medical waste industry to handle and respond to category A waste. Furthermore, this study affirms reports a limited number of processing facilities are capable or willing to accept category A waste. Developing the proper management of infectious disease materials is essential to close the gaps identified so that states and governmental entities can act accordingly based on the regulations and guidance developed, and to ensure public safety. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Designing and examining e-waste recycling process: methodology and case studies.

    PubMed

    Li, Jinhui; He, Xin; Zeng, Xianlai

    2017-03-01

    Increasing concerns on resource depletion and environmental pollution have largely obliged electrical and electronic waste (e-waste) should be tackled in an environmentally sound manner. Recycling process development is regarded as the most effective and fundamental to solve the e-waste problem. Based on global achievements related to e-waste recycling in the past 15 years, we first propose a theory to design an e-waste recycling process, including measuring e-waste recyclability and selection of recycling process. And we summarize the indicators and tools in terms of resource dimension, environmental dimension, and economic dimension, to examine the e-waste recycling process. Using the sophisticated experience and adequate information of e-waste management, spent lithium-ion batteries and waste printed circuit boards are chosen as case studies to implement and verify the proposed method. All the potential theory and obtained results in this work can contribute to future e-waste management toward best available techniques and best environmental practices.

  4. Experimental research of solid waste drying in the process of thermal processing

    NASA Astrophysics Data System (ADS)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  5. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed,more » include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.« less

  6. LEATHER TANNERY WASTE MANAGEMENT THROUGH PROCESS CHANGE, REUSE AND PRETREATMENT

    EPA Science Inventory

    Reduction of tannery waste, i.e., trivalent chromium, sulfide and oil and grease components has been accomplished by process change. Protein recovery and hydroclonic separation of solids was shown to be possible in tannery processing in reducing waste loading. All waste load redu...

  7. Environmental Factor{trademark} system: RCRA hazardous waste handler information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    Environmental Factor{trademark} RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information -- dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  8. Effects of biodrying process on municipal solid waste properties.

    PubMed

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Processing of basalt fiber production waste

    NASA Astrophysics Data System (ADS)

    Sevostyanov, V. S.; Shatalov, A. V.; Shatalov, V. A.; Golubeva, U. V.

    2018-03-01

    The production of mineral rock wool forms a large proportion of off-test waste products. In addition to the cost of their production, there are costs for processing and utilization, such as transportation, disposal and preservation. Besides, wastes have harmful effect on the environment. This necessitates research aimed to study the stress-related characteristics of materials, their recyclability and use in the production of heat-saving products.

  10. High-Level Waste System Process Interface Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d'Entremont, P.D.

    1999-01-14

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  11. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike lewis

    2013-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  12. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  13. 77 FR 15455 - Notice of Delays in Processing of Special Permits Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Notice of Delays in Processing of Special Permits Applications AGENCY: Pipeline and Hazardous Materials Safety... and Approvals, Pipeline and Hazardous Materials Safety Administration, U.S. Department of...

  14. Solid recovered fuel production from biodegradable waste in grain processing industry.

    PubMed

    Kliopova, Irina; Staniskis, Jurgis Kazimieras; Petraskiene, Violeta

    2013-04-01

    Management of biodegradable waste is one of the most important environmental problems in the grain-processing industry since this waste cannot be dumped anymore due to legal requirements. Biodegradable waste is generated in each stage of grain processing, including the waste-water and air emissions treatment processes. Their management causes some environmental and financial problems. The majority of Lithuanian grain-processing enterprises own and operate composting sites, but in Lithuania the demand for compost is not given. This study focused on the analysis of the possibility of using biodegradable waste for the production of solid recovered fuel, as a local renewable fuel with the purpose of increasing environmental performance and decreasing the direct costs of grain processing. Experimental research with regard to a pilot grain-processing plant has proven that alternative fuel production will lead to minimizing of the volume of biodegradable waste by 75% and the volume of natural gas for heat energy production by 62%. Environmental indicators of grain processing, laboratory analysis of the chemical and physical characteristics of biodegradable waste, mass and energy balances of the solid recovered fuel production, environmental and economical benefits of the project are presented and discussed herein.

  15. Process Waste Assessment Machine and Fabrication Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-03-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Machine and Fabrication Shop at Sandia National Laboratories, Bonding 913, Room 119. Spent machine coolant is the major hazardous chemical waste generated in this facility. The volume of spent coolant generated is approximately 150 gallons/month. It is sent off-site to a recycler, but a reclaiming system for on-site use is being investigated. The Shop`s line management considers hazardous waste minimization very important. A number of steps have already been taken to minimize wastes, including replacement of a hazardous solvent with biodegradable, non-caustic solution and filtration unit; wastemore » segregation; restriction of beryllium-copper alloy machining; and reduction of lead usage.« less

  16. Modeling of Solid Waste Processing Options in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Rodriguez, Luis F.; Finn, Cory; Kang, Sukwon; Hogan, John; Luna, Bernadette (Technical Monitor)

    2000-01-01

    BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered. Biological options include composting, aerobic digestion, and anaerobic digestion. Physicochemical options include pyrolysis, SCWO (supercritical water oxidation), various incineration configurations, microwave incineration, magnetically assisted gasification, and low temperature plasma reaction. Modeling of these options is a necessary step to assist in the design process. A previously developed top-level model of BIO-Plex implemented in MATLAB Simulink (r) for the use of systems analysis and design has been adopted for this analysis. Presently, this model only considered incineration for solid waste processing. Present work, reported here, includes the expansion of this model to include a wider array of solid waste processing options selected from the above options, bearing in mind potential, near term solid waste treatment systems. Furthermore, a trade study has also been performed among these solid waste processing technologies in an effort to determine the ideal technology for long-term life support

  17. 77 FR 46771 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... emissions and waste water (urine, grey- water, and human solid waste. All wastes would be packaged and... (NSF) has received a waste management permit application for Quark Expeditions' cruise ships to conduct...-8030. SUPPLEMENTARY INFORMATION: NSF's Antarctic Waste Regulation, 45 CFR Part 671, requires all U.S...

  18. 77 FR 42363 - Notice of Delays in Processing of Special Permits Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... publishing the following list of special permit applications that have been in process for 180 days or more... Austin Powder 4 10-31-2012 Company, Cleveland, OH. 13548-P Interstate Battery 4 08-31-2012 System of The...

  19. [Current status on storage, processing and risk communication of medical radioactive waste in Japan].

    PubMed

    Watanabe, Hiroshi; Yamaguchi, Ichiro; Kida, Tetsuo; Hiraki, Hitoshi; Fujibuchi, Toshioh; Maehara, Yoshiaki; Tsukamoto, Atsuko; Koizumi, Mitsue; Kimura, Yumi; Horitsugi, Genki

    2013-03-01

    Decay-in-storage for radioactive waste including that of nuclear medicine has not been implemented in Japan. Therefore, all medical radioactive waste is collected and stored at the Japan Radioisotope Association Takizawa laboratory, even if the radioactivity has already decayed out. To clarify the current situation between Takizawa village and Takizawa laboratory, we investigated the radiation management status and risk communication activities at the laboratory via a questionnaire and site visiting survey in June 2010. Takizawa laboratory continues to maintain an interactive relationship with local residents. As a result, Takizawa village permitted the acceptance of new medical radioactive waste containing Sr-89 and Y-90. However, the village did not accept any non-medical radioactive waste such as waste from research laboratories. To implement decay-in-storage in Japan, it is important to obtain agreement with all stakeholders. We must continue to exert sincere efforts to acquire the trust of all stakeholders.

  20. 78 FR 22451 - Cost Recovery for Permit Processing, Administration, and Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Parts 701, 736, 737, 738, and 750 [Docket ID OSM-2012-0003] RIN 1029-AC65 Cost Recovery for Permit Processing, Administration, and Enforcement Correction In proposed rule document R1-2013-06950, appearing on pages 20394...

  1. Nuclear Waste: Defense Waste Processing Facility-Cost, Schedule, and Technical Issues.

    DTIC Science & Technology

    1992-06-17

    gallons of high-level radioactive waste stored in underground tanks at the savannah major facility involved Is the Defense Waste Processing Facility ( DwPF ...As a result of concerns about potential problems with the DWPF and delays in its scheduled start-up, the Chairman of the Environment, Energy, and...Natural Resources Subcommittee, House Committee on Government Operations, asked GAO to review the status of the DWPF and other facilities. This report

  2. Technology Readiness Assessment of a Large DOE Waste Processing Facility

    DTIC Science & Technology

    2007-09-12

    Waste Generation at Hanford – Waste Treatment and Immobilization Plant ( WTP ) Project • Motivation to Conduct TRA • TRA Approach • Actions to ensure...Hanford’s WTP will be the world’s largest radioactive waste treatment plant to treat Hanford’s underground tank waste Waste Treatment Plant ( WTP ) Major...Mass Maximize Activity WTP Flow Sheet – Key Process Flows Hanford Tank Waste 10 How is the Vitrified Waste Dispositioned? High Level Waste Canisters

  3. Resource Conservation and Recovery Act (RCRA) Part B Permit Application for Production Associated Units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.

  4. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, C.; Givens, C.; Bhatt, R.

    2003-02-24

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less

  5. Preliminary evaluation of waste processing in a CELSS

    NASA Technical Reports Server (NTRS)

    Jacquez, Ricardo B.

    1990-01-01

    Physical/chemical, biological, and hybrid methods can be used in a space environment for processing wastes generated by a Closed Ecological Life Support System (CELSS). Two recycling scenarios are presented. They reflect differing emphases on and responses to the waste system formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system.

  6. Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling

    DTIC Science & Technology

    2008-09-01

    ER D C/ CE R L TR -0 8 -1 3 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling Gary L. Gerdes, Deborah...release; distribution is unlimited. ERDC/CERL TR-08-13 September 2008 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling...a technology to process domestic solid waste using a unique hydrothermal system. The process was successfully demonstrated at Forts Benning and

  7. 76 FR 9772 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ...) permit program to allow the State to issue research, development, and demonstration (RD&D) permits for... environment. The Director may provide a variance from existing requirements of MSWLF criteria for run-on... demonstrate that compliance with the RD&D permit will not increase risk to human heath and the environment...

  8. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2974 Am I required to apply for and obtain a title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber...

  9. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2974 Am I required to apply for and obtain a title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber...

  10. 45 CFR 671.6 - Applications for permits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Applications for permits. 671.6 Section 671.6 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE... Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230. (c) Sufficiency of application. The...

  11. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  12. Waste heat utilization in industrial processes

    NASA Technical Reports Server (NTRS)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  13. Eliminating Medical Waste Liabilities Through Mobile Maceration and Disinfection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. A. Rankin; N. R. Soelberg; K. M. Klingler

    2006-02-01

    Commercial medical waste treatment technologies include incineration, melting, autoclaving, and chemical disinfection. Incineration disinfects, destroys the original nature of medical waste, and reduces the waste volume by converting organic waste content to carbon dioxide and water, leaving only residual inorganic ash. However, medical waste incinerator numbers have plummeted from almost 2,400 in 1995 to 115 in 2003 and to about 62 in 2005, due to negative public perception and escalating compliance costs associated with increasingly strict regulations. High-temperature electric melters have been designed and marketed as incinerator alternatives, but they are also costly and generally must comply with the samemore » incinerator emissions regulations and permitting requirements. Autoclave processes disinfect medical waste at much lower operating temperatures than incinerators operate at, but are sometimes subject to limitations such as waste segregration requirements to be effective. Med-Shred, Inc. has developed a patented mobile shredding and chemical disinfecting process for on-site medical waste treatment. Medical waste is treated on-site at customer facilities by shredding and disinfecting the waste. The treated waste can then be transported in compliance with Health Insurance Portability and Accountability Act of 1996 (HIPAA) requirements to a landfill for disposal as solid municipal waste. A team of Idaho National Laboratory engineers evaluated the treatment process design. The process effectiveness has been demonstrated in mycobacterium tests performed by Analytical Services Incorporated. A process description and the technical and performance evaluation results are presented in the paper. A treatment demonstration and microbiological disinfecting tests show that the processor functions as it was intended.« less

  14. 75 FR 5167 - Office of Hazardous Materials Safety; Notice of Delays In Processing of Special Permits Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Notice of Delays In Processing of Special Permits Applications AGENCY: Pipeline..., Office of Hazardous Materials Special Permits and Approvals, Pipeline and Hazardous Materials Safety...

  15. 75 FR 78800 - Office of Hazardous Materials Safety; Notice of Delays in Processing of Special Permits Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Notice of Delays in Processing of Special Permits Applications AGENCY: Pipeline..., Office of Hazardous Materials Special Permits and Approvals, Pipeline and Hazardous Materials Safety...

  16. Thermoelectric energy harvesting for a solid waste processing toilet

    NASA Astrophysics Data System (ADS)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  17. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  18. Radioactive waste processing apparatus

    DOEpatents

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  19. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  20. Modeling the economics of landfilling organic processing waste streams

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2005-11-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector are many examples of various liquid, sludge, and solid biological and organic waste streams that require remediation. Alternative disposal methods for food and other bio-organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. Landfilling, the traditional approach to waste remediation, however, should not be dismissed entirely. It does provide a baseline to which all other recycling and reprocessing options should be compared. This paper discusses the implementation of a computer model designed to examine the economics of landfilling bio-organic processing waste streams. Not only are these results applicable to food processing operations, but any industrial or manufacturing firm would benefit from examining the trends discussed here.

  1. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  2. 78 FR 73893 - Notice of Permit Modification Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... on September 18, 2013 . The issued permit allows the applicant to conduct waste management activities... spills. Now the applicant proposes a modification to his permit to allow for the conduct of waste... and land (Detaille Island, Stonington Island, or Horseshoe Island). Quark staff would maintain a watch...

  3. Minimally processed beetroot waste as an alternative source to obtain functional ingredients.

    PubMed

    Costa, Anne Porto Dalla; Hermes, Vanessa Stahl; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann

    2017-06-01

    Large amounts of waste are generated by the minimally processed vegetables industry, such as those from beetroot processing. The aim of this study was to determine the best method to obtain flour from minimally processed beetroot waste dried at different temperatures, besides producing a colorant from such waste and assessing its stability along 45 days. Beetroot waste dried at 70 °C originates flour with significant antioxidant activity and higher betalain content than flour produced from waste dried at 60 and 80 °C, while chlorination had no impact on the process since microbiological results were consistent for its application. The colorant obtained from beetroot waste showed color stability for 20 days and potential antioxidant activity over the analysis period, thus it can be used as a functional additive to improve nutritional characteristics and appearance of food products. These results are promising since minimally processed beetroot waste can be used as an alternative source of natural and functional ingredients with high antioxidant activity and betalain content.

  4. Recent development of anaerobic digestion processes for energy recovery from wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  5. Transboundary hazardous waste management. Part I: Waste management policy of importing countries.

    PubMed

    Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa

    2005-12-01

    Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement.

  6. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., at the request of the applicant when good cause is shown. The permit may be modified to reflect the...) Stack gas monitoring and pollution control equipment. (H) Nozzle and burner design. (I) Construction... imminent hazard to human health or the environment; (iii) The trial burn will help the Director to...

  7. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., at the request of the applicant when good cause is shown. The permit may be modified to reflect the...) Stack gas monitoring and pollution control equipment. (H) Nozzle and burner design. (I) Construction... imminent hazard to human health or the environment; (iii) The trial burn will help the Director to...

  8. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., at the request of the applicant when good cause is shown. The permit may be modified to reflect the...) Stack gas monitoring and pollution control equipment. (H) Nozzle and burner design. (I) Construction... imminent hazard to human health or the environment; (iii) The trial burn will help the Director to...

  9. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., at the request of the applicant when good cause is shown. The permit may be modified to reflect the...) Stack gas monitoring and pollution control equipment. (H) Nozzle and burner design. (I) Construction... imminent hazard to human health or the environment; (iii) The trial burn will help the Director to...

  10. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  11. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  12. 75 FR 52038 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... wastes (aerosol cans, paints, solvents, etc.) will be brought ashore. Conditions of the permit would... permit is made by: Ralph Fedor, 2337 Granite View Road, Waite Park, MN 56387. Location: Signy Island...

  13. Bio-hydrogen production from tempeh and tofu processing wastes via fermentation process using microbial consortium: A mini-review

    NASA Astrophysics Data System (ADS)

    Rengga, Wara Dyah Pita; Wati, Diyah Saras; Siregar, Riska Yuliana; Wulandari, Ajeng Riswanti; Lestari, Adela Ayu; Chafidz, Achmad

    2017-03-01

    One of alternative energies that can replace fossil fuels is hydrogen. Hydrogen can be used to generate electricity and to power combustion engines for transportation. Bio-hydrogen produced from tempeh and tofu processing waste can be considered as a renewable energy. Bio-hydrogen produced from tempeh and tofu processing waste is beneficial because the waste of soybean straw and tofu processing waste is plentiful, cheap, renewable and biodegradable. Specification of tempeh and tofu processing waste were soybean straw and sludge of tofu processing. They contain carbohydrates (cellulose, hemicellulose, and lignin) and methane. This paper reviews the optimal condition to produce bio-hydrogen from tempeh and tofu processing waste. The production of bio-hydrogen used microbial consortium which were enriched from cracked cereals and mainly dominated by Clostridium butyricum and Clostridium roseum. The production process of bio-hydrogen from tempeh and tofu processing waste used acid pre-treatment with acid catalyzed hydrolysis to cleave the bond of hemicellulose and cellulose chains contained in biomass. The optimal production of bio-hydrogen has a yield of 6-6.8 mL/g at 35-60 °C, pH 5.5-7 in hydraulic retention time (HRT) less than 16 h. The production used a continuous system in an anaerobic digester. This condition can be used as a reference for the future research.

  14. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayancsik, B.A.

    1994-10-13

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less

  15. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1988-07-12

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  16. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.

    1989-01-01

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  17. Laboratory plant study on the melting process of asbestos waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Shinichi; Terazono, Atsushi; Takatsuki, Hiroshi

    The melting process was studied as a method of changing asbestos into non-hazardous waste and recovering it as a reusable resource. In an initial effort, the thermal behaviors of asbestos waste in terms of physical and chemical structure have been studied. Then, 10 kg/h-scale laboratory plant experiments were carried out. By X-ray diffraction analysis, the thermal behaviors of sprayed-on asbestos waste revealed that chrysotile asbestos waste change in crystal structure at around 800 C, and becomes melted slag, mainly composed of magnesium silicate, at around 1,500 C. Laboratory plant experiments on the melting process of sprayed-on asbestos have shown thatmore » melted slag can be obtained. X-ray diffraction analysis of the melted slag revealed crystal structure change, and SEM analysis showed the slag to have a non-fibrous form. And more, TEM analysis proved the very high treatment efficiency of the process, that is, reduction of the asbestos content to 1/10{sup 6} as a weight basis. These analytical results indicate the effectiveness of the melting process for asbestos waste treatment.« less

  18. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W. L.; Jerden, J. L.

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  19. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  20. Distribution of human waste samples in relation to sizing waste processing in space

    NASA Technical Reports Server (NTRS)

    Parker, Dick; Gallagher, S. K.

    1992-01-01

    Human waste processing for closed ecological life support systems (CELSS) in space requires that there be an accurate knowledge of the quantity of wastes produced. Because initial CELSS will be handling relatively few individuals, it is important to know the variation that exists in the production of wastes rather than relying upon mean values that could result in undersizing equipment for a specific crew. On the other hand, because of the costs of orbiting equipment, it is important to design the equipment with a minimum of excess capacity because of the weight that extra capacity represents. A considerable quantity of information that had been independently gathered on waste production was examined in order to obtain estimates of equipment sizing requirements for handling waste loads from crews of 2 to 20 individuals. The recommended design for a crew of 8 should hold 34.5 liters per day (4315 ml/person/day) for urine and stool water and a little more than 1.25 kg per day (154 g/person/day) of human waste solids and sanitary supplies.

  1. 50 CFR 648.6 - Dealer/processor permits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... herring, Atlantic sea scallop, Atlantic deep-sea red crab, spiny dogfish, summer flounder, Atlantic surf... permitted vessel of the United States. (ii) Atlantic herring at-sea processing permit. A vessel of the... eligible to obtain an Atlantic herring at-sea processing permit to receive and process Atlantic herring...

  2. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-03-21

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  3. Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge.

    PubMed

    Mo, Wing Yin; Man, Yu Bon; Wong, Ming Hung

    2018-02-01

    China's aquaculture industry is growing dramatically in recent years and now accounts for 60.5% of global aquaculture production. Fish protein is expected to play an important role in China's food security. Formulated feed has become the main diet of farmed fish. The species farmed have been diversified, and a large amount of 'trash fish' is directly used as feed or is processed into fishmeal for fish feed. The use of locally available food waste as an alternative protein source for producing fish feed has been suggested as a means of tackling the problem of sourcing safe and sustainable feed. This paper reviews the feasibility of using locally available waste materials, including fish waste, okara and food waste. Although the fishmeal derived from fish waste, okara or food waste is less nutritious than fishmeal from whole fish or soybean meal, most fish species farmed in China, such as tilapia and various Chinese carp, grow well on diets with minimal amounts of fishmeal and 40% digestible carbohydrate. It can be concluded that food waste is suitable as a component of the diet of farmed fish. However, it will be necessary to revise regulations on feed and feed ingredients to facilitate the use of food waste in the manufacture of fish feed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sustainable solutions for solid waste management in Southeast Asian countries.

    PubMed

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  5. Sustainable solutions for solid waste management in Southeast Asian countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-06-15

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less

  6. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... blended, and blending ratios. (3) A detailed engineering description of the boiler or industrial furnace... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Permits for boilers and industrial... PROGRAM Special Forms of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous...

  7. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... blended, and blending ratios. (3) A detailed engineering description of the boiler or industrial furnace... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Permits for boilers and industrial... PROGRAM Special Forms of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous...

  8. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... blended, and blending ratios. (3) A detailed engineering description of the boiler or industrial furnace... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Permits for boilers and industrial... PROGRAM Special Forms of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous...

  9. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... blended, and blending ratios. (3) A detailed engineering description of the boiler or industrial furnace... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Permits for boilers and industrial... PROGRAM Special Forms of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous...

  10. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... blended, and blending ratios. (3) A detailed engineering description of the boiler or industrial furnace... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Permits for boilers and industrial... PROGRAM Special Forms of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous...

  11. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less

  12. Hanford's Simulated Low Activity Waste Cast Stone Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process asmore » this time and could not be concluded.« less

  13. 40 CFR 256.63 - Requirements for public participation in the permitting of facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for public participation in the permitting of facilities. 256.63 Section 256.63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...

  14. 40 CFR 256.63 - Requirements for public participation in the permitting of facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for public participation in the permitting of facilities. 256.63 Section 256.63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...

  15. 40 CFR 256.63 - Requirements for public participation in the permitting of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirements for public participation in the permitting of facilities. 256.63 Section 256.63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...

  16. 40 CFR 256.63 - Requirements for public participation in the permitting of facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for public participation in the permitting of facilities. 256.63 Section 256.63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...

  17. 78 FR 38555 - Importer Permit Requirements for Tobacco Products and Processed Tobacco, and Other Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...This temporary rule amends the regulations of the Alcohol and Tobacco Tax and Trade Bureau (TTB) pertaining to permits for importers of tobacco products and processed tobacco by extending the duration of new permits from three years to five years. Based on its experience in the administration and enforcement of importer permits over the past decade, TTB believes that it can gain administrative efficiencies and reduce the burden on industry members, while still meeting the purposes of the limited-duration permit, by extending the permit duration to five years. This temporary rule also makes several technical corrections by amending the definition of ``Manufacturer of tobacco products'' to reflect a recent statutory change, and by amending a reference to the sale price of large cigars to incorporate a clarification published in a prior TTB temporary rule. Finally, this temporary rule incorporates and reissues TTB regulations pertaining to importer permit requirements for tobacco products, and minimum manufacturing and marking requirements for tobacco products and cigarette papers and tubes, and, as a result, these temporary regulations replace temporary regulations originally published in 1999. TTB is soliciting comments from all interested parties on these regulatory provisions through a notice of proposed rulemaking published elsewhere in this issue of the Federal Register.

  18. 76 FR 48182 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    .... Designated pollutants would be associated with camp operations [typically air emissions and waste water... (NSF) has received a waste management permit application for operation of a field research camp located...: NSF's Antarctic Waste Regulation, 45 CFR part 671, requires all U.S. citizens and entities to obtain a...

  19. Environmental Factor(tm) system: RCRA hazardous waste handler information (on cd-rom). Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    Environmental Factor(tm) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information - dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  20. 30 CFR 921.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Laws Ch. 132, sections 40-46; of the Wetlands Protection Act Ch. 131, sections 40-46; statutes and... the State of Massachusetts, including: The Historic and Scenic Rivers Act, Mass. Ann. Laws Ch. 21... Massachusetts Hazardous Waste Management Act Ch. 21C, sections 1-14; the Massachusetts Clean Water Act Ch. 21...

  1. 30 CFR 921.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Laws Ch. 132, sections 40-46; of the Wetlands Protection Act Ch. 131, sections 40-46; statutes and... the State of Massachusetts, including: The Historic and Scenic Rivers Act, Mass. Ann. Laws Ch. 21... Massachusetts Hazardous Waste Management Act Ch. 21C, sections 1-14; the Massachusetts Clean Water Act Ch. 21...

  2. 30 CFR 921.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Laws Ch. 132, sections 40-46; of the Wetlands Protection Act Ch. 131, sections 40-46; statutes and... the State of Massachusetts, including: The Historic and Scenic Rivers Act, Mass. Ann. Laws Ch. 21... Massachusetts Hazardous Waste Management Act Ch. 21C, sections 1-14; the Massachusetts Clean Water Act Ch. 21...

  3. 30 CFR 921.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Laws Ch. 132, sections 40-46; of the Wetlands Protection Act Ch. 131, sections 40-46; statutes and... the State of Massachusetts, including: The Historic and Scenic Rivers Act, Mass. Ann. Laws Ch. 21... Massachusetts Hazardous Waste Management Act Ch. 21C, sections 1-14; the Massachusetts Clean Water Act Ch. 21...

  4. 30 CFR 921.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Laws Ch. 132, sections 40-46; of the Wetlands Protection Act Ch. 131, sections 40-46; statutes and... the State of Massachusetts, including: The Historic and Scenic Rivers Act, Mass. Ann. Laws Ch. 21... Massachusetts Hazardous Waste Management Act Ch. 21C, sections 1-14; the Massachusetts Clean Water Act Ch. 21...

  5. 30 CFR 905.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 42 U.S.C. 7401 et seq California Air Pollution Control Laws, Cal. Health & Safety Code section 39000... (11) Noise Control Act, 42 U.S.C. 4903 California Noise Control Act of 1973, Cal. Health & Safety Code... Pollution Control Laws, Cal. Health & Safety Code section 39000 et seq.; the Hazardous Waste Control Law...

  6. Scientific Background for Processing of Aluminum Waste

    NASA Astrophysics Data System (ADS)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  7. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  8. Public input in the permitting process: the Section 404 example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripp, J.T.B.

    Section 404 of the Clean Water Act illustrates the potential effectiveness of public input in the permitting process. Section 404 should, if strictly applied, reduce wetland loss, but the federal administrative agency's traditional role has been development rather than protection of these areas. As a result of citizen group activities, the Corps of Engineers has not been able to restrict the scope of Clean Water Act jurisdiction as much as they would have without the citizen input. One problem with the Corp's approach is with the specific descriptions of alternatives that often preclude a practical alternative. Public input is amore » necessary part of the democratic process by which the public establishes its values and preferences through persuasion and, when necessary, legal action.« less

  9. A bio-hybrid anaerobic treatment of papaya processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, P.Y.; Chou, C.Y.

    1987-01-01

    Hybrid anaerobic treatment of papaya processing wastes is technically feasible. At 30/sup 0/C, the optimal organic loading rates for maximizing organic removal efficiency and methane production are 1.3 and 4.8 g TCOD/1/day, respectively. Elimination of post-handling and treatment of digested effluent can also be achieved. The system is more suitable for those processing plants with a waste amount of more than 3,000 metric tons per year.

  10. Commonwealth of Pennsylvania. [Establishment of hazardous waste facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Environmental Resources Secretary Arthur A. Davis and Commerce Secretary Raymond R. Christman have announced a joint initiative to establish commercial hazardous waste treatment and disposal facilities Pennsylvania. The state Hazardous Sites Cleanup Act, which Gov. Robert P. Casey signed into law last October, called for accelerated efforts in this regard. These included an expedited permitting process for facilities, requiring the Department of Environmental Resources (DER) to appoint a special sitting team to review permit applications, and designation of sitting coordinator within the Department of Commerce to identify potential developers of the facilities and encourage them to operate within Pennsylvania.

  11. Processing liquid organic wastes at the NNL Preston laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppersthwaite, Duncan; Greenwood, Howard; Docrat, Tahera

    2013-07-01

    Organic compounds of various kinds have been used in the nuclear industry for numerous duties in uranium chemical, metal and ceramic processing plants. In the course of the various operations undertaken, these organic compounds have become contaminated with uranic material, either accidentally or as an inevitable part of the process. Typically, the chemical/physical form and/or concentration of the uranic content of the organics has prevented disposal. In order to address the issue of contaminated liquid organic wastes, the National Nuclear Laboratory (NNL) has developed a suite of treatments designed to recover uranium and to render the waste suitable for disposal.more » The developed processes are operated at industrial scale via the NNL Preston Laboratory Residue Processing Plant. The Oil Waste Leaching (OWL) Process is a fully industrialised process used for the treatment of contaminated oils with approximately 200 tonnes of uranium contaminated oil being treated to date. The process was originally developed for the treatment of contaminated tributyl phosphate and odourless kerosene which had been adsorbed onto sawdust. However, over the years, the OWL process has been refined for a range of oils including 'water emulsifiable' cutting oils, lubricating oils, hydraulic oils/fluids and 'Fomblin' (fully fluorinated) oils. Chemically, the OWL process has proved capable of treating solvents as well as oils but the highly volatile/flammable nature of many solvents has required additional precautions compared with those required for oil treatment. These additional precautions led to the development of the Solvent Treatment Advanced Rig (STAR), an installation operated under an inert atmosphere. STAR is a small 'module' (100 dm{sup 3} volume) which allows the treatment of both water miscible and immiscible solvents. This paper discusses the challenges associated with the treatment of liquid organic wastes and the process developments which have allowed a wide range

  12. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and

  13. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  14. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  15. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  16. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  17. 9 CFR 130.4 - User fees for processing import permit applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., vectors, or germ plasm (embryos or semen) or to transport organisms or vectors1 Initial permit Per... Transit Permit (Animals, Animal Semen, Animal Embryos, Birds, Poultry, or Hatching Eggs).” 2 Permits to...

  18. Bio-ethanol production from wet coffee processing waste in Ethiopia.

    PubMed

    Woldesenbet, Asrat Gebremariam; Woldeyes, Belay; Chandravanshi, Bhagwan Singh

    2016-01-01

    Large amounts of coffee residues are generated from coffee processing plants in Ethiopia. These residues are toxic and possess serious environmental problems following the direct discharge into the nearby water bodies which cause serious environmental and health problems. This study was aimed to quantify wet coffee processing waste and estimate its bio-ethanol production. The study showed that the wastes are potential environmental problems and cause water pollution due to high organic component and acidic nature. The waste was hydrolyzed by dilute H 2 SO 4 (0.2, 0.4, 0.6, 0.8 and 1 M) and distilled water. Total sugar content of the sample was determined titrimetrically and refractometry. Maximum value (90%) was obtained from hydrolysis by 0.4 M H 2 SO 4 . Ethanol production was monitored by gas chromatography. The optimum yield of ethanol (78%) was obtained from the sample hydrolyzed by 0.4 M H 2 SO 4 for 1 h at hydrolysis temperature of 100 °C and after fermentation for 24 h and initial pH of 4.5. Based on the data, it was concluded that reuse of the main coffee industry wastes is of significant importance from environmental and economical view points. In conclusion, this study has proposed to utilize the wet coffee processing waste to produce bio-ethanol which provides the alternative energy source from waste biomass and solves the environmental waste disposal as well as human health problem.

  19. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been

  20. Updraft gasification of salmon processing waste

    USDA-ARS?s Scientific Manuscript database

    The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

  1. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  2. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: Defense waste processing facility

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Wright, W. V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.

  3. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures andmore » are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The

  4. Evaluation of mercury in the liquid waste processing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  5. Waste processing: new near infrared technologies for material identification and selection

    NASA Astrophysics Data System (ADS)

    Cesetti, M.; Nicolosi, P.

    2016-09-01

    The awareness of environmental issues on a global scale increases the opportunities for waste handling companies. Recovery is set to become all the more important in areas such as waste selection, minerals processing, electronic scrap, metal and plastic recycling, refuse and the food industry. Effective recycling relies on effective sorting. Sorting is a fundamental step of the waste disposal/recovery process. The big players in the sorting market are pushing for the development of new technologies to cope with literally any type of waste. The purpose of this tutorial is to gain an understanding of waste management, frameworks, strategies, and components that are current and emerging in the field. A particular focus is given to spectroscopic techniques that pertains the material selection process with a greater emphasis placed on the NIR technology for material identification. Three different studies that make use of NIR technology are shown, they are an example of some of the possible applications and the excellent results that can be achieved with this technique.

  6. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1989-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

  7. Environmental factor(tm) system: RCRA hazardous waste handler information (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    Environmental Factor(trademark) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity, and compliance history for facilities found in the EPA Research Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management, and minimization by companies who are large quantity generators; and (3) Data on the waste management practices of treatment, storage, and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action, or violation information, TSD status, generator and transporter status, and more. (2) View compliance information - dates of evaluation, violation, enforcement, and corrective action. (3) Lookup facilities by waste processing categories of marketing, transporting, processing, and energy recovery. (4) Use owner/operator information and names, titles, and telephone numbers of project managers for prospecting. (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving, and exporting.« less

  8. Industrial Fuel Gas Demonstration Plant Program: environmental permit compliance plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodamer, Jr., James W.; Bocchino, Robert M.

    1979-11-01

    This Environmental Permit Compliance Plan is intended to assist the Memphis Light, Gas and Water Division in acquiring the necessary environmental permits for their proposed Industrial Fuel Gas Demonstration Plant in a time frame consistent with the construction schedule. Permits included are those required for installation and/or operation of gaseous, liquid and solid waste sources and disposal areas. Only those permits presently established by final regulations are described. The compliance plan describes procedures for obtaining each permit from identified federal, state and local agencies. The information needed for the permit application is presented, and the stepwise procedure to follow whenmore » filing the permit application is described. Information given in this plan was obtained by reviewing applicable laws and regulations and from telephone conversations with agency personnel on the federal, state and local levels. This Plan also presents a recommended schedule for beginning the work necessary to obtain the required environmental permits in order to begin dredging operations in October, 1980 and construction of the plant in September, 1981. Activity for several key permits should begin as soon as possible.« less

  9. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Allemann, R.T.; Johnson, B.M. Jr.

    1961-10-31

    A process for concentrating fission-product-containing waste solutions from fuel element processing is described. The process comprises the addition of sugar to the solution, preferably after it is made alkaline; spraying the solution into a heated space whereby a dry powder is formed; heating the powder to at least 220 deg C in the presence of oxygen whereby the powder ignites, the sugar is converted to carbon, and the salts are decomposed by the carbon; melting the powder at between 800 and 900 deg C; and cooling the melt. (AEC) antidiuretic hormone from the blood by the liver. Data are summarized from the following: tracer studies on cardiovascular functions; the determination of serum protein-bound iodine; urinary estrogen excretion in patients with arvanced metastatic mammary carcinoma; the relationship between alheroclerosis aad lipoproteins; the physical chemistry of lipoproteins; and factors that modify the effects of densely ionizing radia

  10. Medication waste reduction in pediatric pharmacy batch processes.

    PubMed

    Toerper, Matthew F; Veltri, Michael A; Hamrock, Eric; Mollenkopf, Nicole L; Holt, Kristen; Levin, Scott

    2014-04-01

    To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste.

  11. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  12. Biochemical process of low level radioactive liquid simulation waste containing detergent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive elementmore » in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of

  13. Torrefaction Processing for Human Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  14. Race, Wealth, and Solid Waste Facilities in North Carolina

    PubMed Central

    Norton, Jennifer M.; Wing, Steve; Lipscomb, Hester J.; Kaufman, Jay S.; Marshall, Stephen W.; Cravey, Altha J.

    2007-01-01

    Background Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Objective Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. Methods We used census block groups to obtain racial and economic characteristics, and information on solid waste facilities was abstracted from solid waste facility permit records. We used logistic regression to compute prevalence odds ratios for 2003, and Cox regression to compute hazard ratios of facilities issued permits between 1990 and 2003. Results The adjusted prevalence odds of a solid waste facility was 2.8 times greater in block groups with ≥50% people of color compared with block groups with < 10% people of color, and 1.5 times greater in block groups with median house values < $60,000 compared with block groups with median house values ≥$100,000. Among block groups that did not have a previously permitted solid waste facility, the adjusted hazard of a new permitted facility was 2.7 times higher in block groups with ≥50% people of color compared with block groups with < 10% people of color. Conclusion Solid waste facilities present numerous public health concerns. In North Carolina solid waste facilities are disproportionately located in communities of color and low wealth. In the absence of action to promote environmental justice, the continued need for new facilities could exacerbate this environmental injustice. PMID:17805426

  15. Evaluation Criteria for Solid Waste Processing Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, J. A.; Alazraki, M. P.

    2001-01-01

    A preliminary list of criteria is proposed for evaluation of solid waste processing technologies for research and technology development (R&TD) in the Advanced Life Support (ALS) Program. Completion of the proposed list by current and prospective ALS technology developers, with regard to specific missions of interest, may enable identification of appropriate technologies (or lack thereof) and guide future development efforts for the ALS Program solid waste processing area. An attempt is made to include criteria that capture information about the technology of interest as well as its system-wide impacts. Some of the criteria in the list are mission-independent, while the majority are mission-specific. In order for technology developers to respond to mission-specific criteria, critical information must be available on the quantity, composition and state of the waste stream, the wast processing requirements, as well as top-level mission scenario information (e.g. safety, resource recovery, planetary protection issues, and ESM equivalencies). The technology readiness level (TRL) determines the degree to which a technology developer is able to accurately report on the list of criteria. Thus, a criteria-specific minimum TRL for mandatory reporting has been identified for each criterion in the list. Although this list has been developed to define criteria that are needed to direct funding of solid waste processing technologies, this list processes significant overlap in criteria required for technology selection for inclusion in specific tests or missions. Additionally, this approach to technology evaluation may be adapted to other ALS subsystems.

  16. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types ofmore » commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.« less

  17. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    PubMed

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  18. Radioactive waste processing apparatus

    DOEpatents

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  19. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls formore » the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)« less

  20. Medication Waste Reduction in Pediatric Pharmacy Batch Processes

    PubMed Central

    Veltri, Michael A.; Hamrock, Eric; Mollenkopf, Nicole L.; Holt, Kristen; Levin, Scott

    2014-01-01

    OBJECTIVES: To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. METHODS: A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. RESULTS: Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. CONCLUSIONS: The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste. PMID:25024671

  1. The Impact of City-level Permitting Processes on Residential Photovoltaic Installation Prices and Development Times: An Empirical Analysis of Solar Systems in California Cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Dong, Changgui

    Business process or “soft” costs account for well over 50% of the installed price of residential photovoltaic (PV) systems in the United States, so understanding these costs is crucial for identifying PV cost-reduction opportunities. Among these costs are those imposed by city-level permitting processes, which may add both expense and time to the PV development process. Building on previous research, this study evaluates the effect of city-level permitting processes on the installed price of residential PV systems and on the time required to develop and install those systems. The study uses a unique dataset from the U.S. Department of Energy’smore » Rooftop Solar Challenge Program, which includes city-level permitting process “scores,” plus data from the California Solar Initiative and the U.S. Census. Econometric methods are used to quantify the price and development-time effects of city-level permitting processes on more than 3,000 PV installations across 44 California cities in 2011. Results indicate that city-level permitting processes have a substantial and statistically significant effect on average installation prices and project development times. The results suggest that cities with the most favorable (i.e., highest-scoring) permitting practices can reduce average residential PV prices by $0.27–$0.77/W (4%–12% of median PV prices in California) compared with cities with the most onerous (i.e., lowest-scoring) permitting practices, depending on the regression model used. Though the empirical models for development times are less robust, results suggest that the most streamlined permitting practices may shorten development times by around 24 days on average (25% of the median development time). These findings illustrate the potential price and development-time benefits of streamlining local permitting procedures for PV systems.« less

  2. Development of a novel wet oxidation process for hazardous and mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1994-12-31

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process usesmore » a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described.« less

  3. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  4. Lean in Air Permitting Guide

    EPA Pesticide Factsheets

    The Lean in Air Permitting Guide is designed to help air program managers at public agencies better understand the potential value and results that can be achieved by applying Lean improvement methods to air permitting processes.

  5. Bio-processing of solid wastes and secondary resources for metal extraction - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less

  6. Investigation of solid organic waste processing by oxidative pyrolysis

    NASA Astrophysics Data System (ADS)

    Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.

    2017-11-01

    A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.

  7. Investigation of copper sorption by sugar beet processing lime waste.

    PubMed

    Ippolito, J A; Strawn, D G; Scheckel, K G

    2013-01-01

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (∼250,000 Mg yr) that has little liming value in the region's calcareous soils. This area has recently experienced an increase in dairy production, with dairies using copper (Cu)-based hoof baths to prevent hoof diseases. A concern exists regarding soil Cu accumulation because spent hoof baths may be disposed of in waste ponds, with pond waters being used for irrigation. The objective of this preliminary study was to evaluate the ability of lime waste to sorb Cu. Lime waste was mixed with increasing Cu-containing solutions (up to 100,000 mg Cu kg lime waste) at various buffered pH values (pH 6, 7, 8, and 9) and shaken over various time periods (up to 30 d). Copper sorption phenomenon was quantified using sorption maximum fitting, and the sorption mechanism was investigated using X-ray absorption spectroscopy. Results showed that sorption onto lime waste increased with decreasing pH and that the maximum Cu sorption of ∼45,000 mg kg occurred at pH 6. X-ray absorption spectroscopy indicated that Cu(OH) was the probable species present, although the precipitate existed as small multinuclear precipitates on the surface of the lime waste. Such structures may be precursors for larger surface precipitates that develop over longer incubation times. Findings suggest that sugar beet processing lime waste can viably sorb Cu from liquid waste streams, and thus it may have the ability to remove Cu from spent hoof baths. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.

  9. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to themore » Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  10. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were dischargedmore » to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  11. Steam generation by combustion of processed waste fats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudel, F.; Lengenfeld, P.

    1993-12-31

    The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.

  12. An Evaluation of the Functionality of Advanced Fuel Research Prototype Dry Pyrolyzer for Destruction of Solid Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Wignarajah, K.; Howard, Kevin; Serio, Mike; Kroo, Eric

    2004-01-01

    The prototype dry pyrolyser delivered to Ames Research Center is the end-product of a Phase I1 Small Business Initiative Research (SBIR) project. Some of the major advantages of pyrolysis for processing solid wastes are that it can process solid wastes, it permits elemental recycling while conserving oxygen use, and it can function as a pretreatment for combustion processes. One of the disadvantages of pyrolysis is the formation of tars. By controlling the rate of heating, tar formation can be minimized. This paper presents data on the pyrolysis of various space station wastes. The performance of the pyrolyser is also discussed and appropriate modifications suggested to improve the performance of the dry pyrolyzer.

  13. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  14. 50 CFR 665.13 - Permits and fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... service incurred in processing the permit. The fee may not exceed such costs and is specified with each.... (ii) Mau Zone limited access permit. (iii) Coral reef ecosystem special permit. (iv) American Samoa...

  15. 50 CFR 665.13 - Permits and fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... service incurred in processing the permit. The fee may not exceed such costs and is specified with each.... (ii) Mau Zone limited access permit. (iii) Coral reef ecosystem special permit. (iv) American Samoa...

  16. 50 CFR 665.13 - Permits and fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... service incurred in processing the permit. The fee may not exceed such costs and is specified with each.... (ii) Mau Zone limited access permit. (iii) Coral reef ecosystem special permit. (iv) American Samoa...

  17. LEACHING OF METALS FROM MINERAL PROCESSING WASTE

    EPA Science Inventory

    The purpose of this project is to test the leaching of Mineral processing Waste (MPW) contaminated with heavy metals using scientifically defendable leaching tests other than TCLP. Past experience and literature have shown that TCLP underestiates the levels of metals such as oxoa...

  18. LEACHING OF METALS FROM MINERAL PROCESSING WASTE

    EPA Science Inventory

    The purpose of this project is to test the leaching of Mineral Processing Waste (MPW) contaminated with heavy metals using scientifically defendable leaching tests other than TCLP. Past experience and literature have shown that TCLP underestimates the levels of metals such as oxo...

  19. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components,more » antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).« less

  20. Benchmarking of DFLAW Solid Secondary Wastes and Processes with UK/Europe Counterparts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Elvie E.; Swanberg, David J.; Surman, J.

    This report provides information and background on UK solid wastes and waste processes that are similar to those which will be generated by the Direct-Feed Low Activity Waste (DFLAW) facilities at Hanford. The aim is to further improve the design case for stabilizing and immobilizing of solid secondary wastes, establish international benchmarking and review possibilities for innovation.

  1. 40 CFR 227.12 - Insoluble wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.12 Insoluble wastes. (a) Solid wastes consisting of inert natural minerals or materials compatible with the ocean...

  2. Bio-processing of solid wastes and secondary resources for metal extraction - A review.

    PubMed

    Lee, Jae-Chun; Pandey, Banshi Dhar

    2012-01-01

    Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  4. Evaluating the toxicity of food processing wastes as co-digestion substrates with dairy manure.

    PubMed

    Lisboa, Maria Sol; Lansing, Stephanie

    2014-07-01

    Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  6. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  7. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged tomore » the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  8. Experimental evaluation of main emissions during coal processing waste combustion.

    PubMed

    Dmitrienko, Margarita A; Legros, Jean C; Strizhak, Pavel A

    2018-02-01

    The total volume of the coal processing wastes (filter cakes) produced by Russia, China, and India is as high as dozens of millions of tons per year. The concentrations of CO and CO 2 in the emissions from the combustion of filter cakes have been measured directly for the first time. They are the biggest volume of coal processing wastes. There have been many discussions about using these wastes as primary or secondary components of coal-water slurries (CWS) and coal-water slurries containing petrochemicals (CWSP). Boilers have already been operationally tested in Russia for the combustion of CWSP based on filter cakes. In this work, the concentrations of hazardous emissions have been measured at temperatures ranging from 500 to 1000°С. The produced CO and CO 2 concentrations are shown to be practically constant at high temperatures (over 900°С) for all the coal processing wastes under study. Experiments have shown the feasibility to lowering the combustion temperatures of coal processing wastes down to 750-850°С. This provides sustainable combustion and reduces the CO and CO 2 emissions 1.2-1.7 times. These relatively low temperatures ensure satisfactory environmental and energy performance of combustion. Using CWS and CWSP instead of conventional solid fuels significantly reduces NO x and SO x emissions but leaves CO and CO 2 emissions practically at the same level as coal powder combustion. Therefore, the environmentally friendly future (in terms of all the main atmospheric emissions: CO, CO 2 , NO x , and SO x ) of both CWS and CWSP technologies relies on low-temperature combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electrochemical processing of solid waste

    NASA Technical Reports Server (NTRS)

    Bockris, John OM.

    1987-01-01

    An investigation of electrochemical waste treatment methods suitable for closed, or partially closed, life support systems for manned space exploration is discussed. The technique being investigated involves the electrolysis of solid waste where the aim is to upgrade waste material (mainly fecal waste) to generate gases that can be recycled in a space station or planetary space environment.

  10. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  11. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium

    NASA Astrophysics Data System (ADS)

    Putri, D.; Ulhidayati, A.; Musthofa, I. A.; Wardani, A. K.

    2018-03-01

    The aim of this study was to investigate the effect of various food processing wastes on the production of single cell protein by Chlorella sp. Three various food processing wastes i.e. tofu waste, tempeh waste and cheese whey waste were used as cultivation medium for Chlorella sp. growth. Sea water was used as a control of cultivation medium. The addition of waste into cultivation medium was 10%, 20%, 30%, 40%, and 50%. The result showed that the highest yield of cell mass and protein content was found in 50% tofu waste cultivation medium was 47.8 × 106 cell/ml with protein content was 52.24%. The 50% tofu waste medium showed improved cell yield as nearly as 30% than tempeh waste medium. The yield of biomass and protein content when 30% tempeh waste was used as cultivation medium was 37.1 × 106 cell/ml and 52%, respectively. Thus, food processing waste especially tofu waste would be a promising candidate for cultivation medium for single cell production from Chlorella sp. Moreover, the utilization of waste can reduce environmental pollution and increase protein supply for food supplement or animal feed.

  12. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    PubMed

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Use of Microwave Incineration to Process Biological Wastes

    NASA Technical Reports Server (NTRS)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)

    1994-01-01

    The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.

  14. Liquid fuels from food waste: An alternative process to co-digestion

    NASA Astrophysics Data System (ADS)

    Sim, Yoke-Leng; Ch'ng, Boon-Juok; Mok, Yau-Cheng; Goh, Sok-Yee; Hilaire, Dickens Saint; Pinnock, Travis; Adams, Shemlyn; Cassis, Islande; Ibrahim, Zainab; Johnson, Camille; Johnson, Chantel; Khatim, Fatima; McCormack, Andrece; Okotiuero, Mary; Owens, Charity; Place, Meoak; Remy, Cristine; Strothers, Joel; Waithe, Shannon; Blaszczak-Boxe, Christopher; Pratt, Lawrence M.

    2017-04-01

    Waste from uneaten, spoiled, or otherwise unusable food is an untapped source of material for biofuels. A process is described to recover the oil from mixed food waste, together with a solid residue. This process includes grinding the food waste to an aqueous slurry, skimming off the oil, a combined steam treatment of the remaining solids concurrent with extrusion through a porous cylinder to release the remaining oil, a second oil skimming step, and centrifuging the solids to obtain a moist solid cake for fermentation. The water, together with any resulting oil from the centrifuging step, is recycled back to the grinding step, and the cycle is repeated. The efficiency of oil extraction increases with the oil content of the waste, and greater than 90% of the oil was collected from waste containing at least 3% oil based on the wet mass. Fermentation was performed on the solid cake to obtain ethanol, and the dried solid fermentation residue was a nearly odorless material with potential uses of biochar, gasification, or compost production. This technology has the potential to enable large producers of food waste to comply with new laws which require this material to be diverted from landfills.

  15. 77 FR 47441 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... (NSF) has received a waste management permit application for Dr. Harry Anderson to conduct a flight... George Island where he will land, refuel, and take off for return to Punta Arenas. The application by Dr... address or (703) 292-8030. SUPPLEMENTARY INFORMATION: NSF's Antarctic Waste Regulation, 45 CFR part 671...

  16. Inspection of Forrestal parking permit allocation and assignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-16

    The purpose of this inspection was to review the process cr allocating and assigning parking permits at the Forrestal building. Specifically, we sought to determine the roles and responsibilities of Department of Energy (DOE) officials involved in the administration of the Forrestal parking permit process during the period June 1, 1991 to February 1, 1992. We also sought to determine if the allocation and assignment of Forrestal building parking spaces was implemented in accordance with Federal and DOE requirements. For our review, we interviewed the Headquarters officials involved in the administration of the parking permit allocation and assignment process. Wemore » also reviewed parking permit files and associated documentation for the period June 1, 1991 through February 1, 1992. In addition, we conducted a limited sampling of parking permits that were revoked during July and August 1991 to assess if they were processed in compliance with applicable regulations. We found no evidence that the actions by the Special Assistant to the Secretary (White House Liaison) and the other members of the parking committee regarding the issuance and revocation of parking permits were for any reason other than a desire to ensure that only individuals having a legitimate basis for a parking permit were issued a permit. However, we found that decisions by the parking committee regarding revocation of permits and appeals of revocation decisions were not always documented, nor were there written guidelines or procedures to govern the activities of the committee. In our view, the lack of written guidelines and procedures resulted in the use of invalidated personal knowledge by the parking committee in making decisions involving the revocation of parking permits and led to inconsistencies in the notification of individuals about the associated appeal process.« less

  17. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finucane, K.G.; Thompson, L.E.; Abuku, T.

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements.more » However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear

  18. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    ERIC Educational Resources Information Center

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  19. Federal Register Notice: Final Rule Establishing Consolidated Permit Program Requirements Under Several Environmental Statutes

    EPA Pesticide Factsheets

    This final rule establishes consolidated permit program requirements governing the Hazardous Waste Management program under the Resource Conservation and Recovery Act (RCRA) and other related programs.

  20. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  1. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  2. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  3. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  4. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  5. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  6. Processing waste fats into a fuel oil substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudel, F.; Lengenfeld, P.

    1993-12-31

    Waste fats have a high energy potential. They also contain impurities. For example, fats used for deep-frying contain high contents of solids, water, and chlorides. The process described in this paper removes the impurities by simple processing such as screening, washing, separating, drying, and filtering. The final quality of processed fat allows its use as a fuel oil substitute, and also as a raw material for chemical production.

  7. Data requirements for valuing externalities: The role of existing permitting processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.D.; Baechler, M.C.; Callaway, J.M.

    1990-08-01

    While the assessment of externalities, or residual impacts, will place new demands on regulators, utilities, and developers, existing processes already require certain data and information that may fulfill some of the data needs for externality valuation. This paper examines existing siting, permitting, and other processes and highlights similarities and differences between their data requirements and the data required to value environmental externalities. It specifically considers existing requirements for siting new electricity resources in Oregon and compares them with the information and data needed to value externalities for such resources. This paper also presents several observations about how states can takemore » advantage of data acquired through processes already in place as they move into an era when externalities are considered in utility decision-making. It presents other observations on the similarities and differences between the data requirements under existing processes and those for valuing externalities. This paper also briefly discusses the special case of cumulative impacts. And it presents recommendations on what steps to take in future efforts to value externalities. 35 refs., 2 tabs.« less

  8. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  9. 30 CFR 773.10 - Review of permit history.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Review of permit history. 773.10 Section 773.10... REQUIREMENTS FOR PERMITS AND PERMIT PROCESSING § 773.10 Review of permit history. (a) We, the regulatory authority, will rely upon the permit history information you, the applicant, submit under § 778.12 of this...

  10. 30 CFR 773.10 - Review of permit history.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Review of permit history. 773.10 Section 773.10... REQUIREMENTS FOR PERMITS AND PERMIT PROCESSING § 773.10 Review of permit history. (a) We, the regulatory authority, will rely upon the permit history information you, the applicant, submit under § 778.12 of this...

  11. 30 CFR 773.10 - Review of permit history.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Review of permit history. 773.10 Section 773.10... REQUIREMENTS FOR PERMITS AND PERMIT PROCESSING § 773.10 Review of permit history. (a) We, the regulatory authority, will rely upon the permit history information you, the applicant, submit under § 778.12 of this...

  12. 30 CFR 773.10 - Review of permit history.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Review of permit history. 773.10 Section 773.10... REQUIREMENTS FOR PERMITS AND PERMIT PROCESSING § 773.10 Review of permit history. (a) We, the regulatory authority, will rely upon the permit history information you, the applicant, submit under § 778.12 of this...

  13. 30 CFR 773.10 - Review of permit history.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Review of permit history. 773.10 Section 773.10... REQUIREMENTS FOR PERMITS AND PERMIT PROCESSING § 773.10 Review of permit history. (a) We, the regulatory authority, will rely upon the permit history information you, the applicant, submit under § 778.12 of this...

  14. Economic evaluation of an electrochemical process for the recovery of metals from electronic waste.

    PubMed

    Diaz, Luis A; Lister, Tedd E

    2018-04-01

    As the market of electronic devices continues to evolve, the waste stream generated from antiquated technology is increasingly view as an alternative to substitute primary sources of critical a value metals. Nevertheless, the sustainable recovery of materials can only be achieved by environmentally friendly processes that are economically competitive with the extraction from mineral ores. Hence, This paper presents the techno-economic assessment for a comprehensive process for the recovery of metals and critical materials from e-waste, which is based in an electrochemical recovery (ER) technology. Economic comparison is performed with the treatment of e-waste via smelting, which is currently the primary route for recycling metals from electronics. Results indicate that the electrochemical recovery process is a competitive alternative for the recovery of value from electronic waste when compared with the traditional black Cu smelting process. A significantly lower capital investment, 2.9 kg e-waste per dollar of capital investment, can be achieved with the ER process vs. 1.3 kg per dollar in the black Cu smelting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sustainability of cement kiln co-processing of wastes in India: a pilot study.

    PubMed

    Baidya, Rahul; Ghosh, Sadhan Kumar; Parlikar, Ulhas V

    2017-07-01

    Co-processing in cement kiln achieves effective utilization of the material and energy value present in the wastes, thereby conserving the natural resources by reducing the use of virgin material. In India, a number of multifolded initiatives have been taken that take into account the potential and volume of waste generation. This paper studies the factors which might influence the sustainability of co-processing of waste in cement kilns as a business model, considering the issues and challenges in the supply chain framework in India in view of the four canonical pillars of sustainability. A pilot study on co-processing was carried out in one of the cement plant in India to evaluate the environmental performance, economical performance, operational performance and social performance. The findings will help India and other developing countries to introduce effective supply chain management for co-processing while addressing the issues and challenges during co-processing of different waste streams in the cement kilns.

  16. Process for treating waste water having low concentrations of metallic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  17. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  18. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  19. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  20. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  1. Economic evaluation of radiation processing in urban solid wastes treatment

    NASA Astrophysics Data System (ADS)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  2. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.

    PubMed

    Kaya, Muammer

    2016-11-01

    This paper reviews the existing and state of art knowledge for electronic waste (e-waste) recycling. Electrical and/or electronic devices which are unwanted, broken or discarded by their original users are known as e-waste. The main purpose of this article is to provide a comprehensive review of e-waste problem, strategies of e-waste management and various physical, chemical and metallurgical e-waste recycling processes, their advantages and disadvantages towards achieving a cleaner process of waste utilization, with special attention towards extraction of both metallic values and nonmetallic substances. The hazards arise from the presence of heavy metals Hg, Cd, Pb, etc., brominated flame retardants (BFRs) and other potentially harmful substances in e-waste. Due to the presence of these substances, e-waste is generally considered as hazardous waste and, if improperly managed, may pose significant human and environmental health risks. This review describes the potential hazards and economic opportunities of e-waste. Firstly, an overview of e-waste/printed circuit board (PCB) components is given. Current status and future perspectives of e-waste/PCB recycling are described. E-waste characterization, dismantling methods, liberation and classification processes are also covered. Manual selective dismantling after desoldering and metal-nonmetal liberation at -150μm with two step crushing are seen to be the best techniques. After size reduction, mainly physical separation processes employing gravity, electrostatic, magnetic separators, froth floatation, etc. have been critically reviewed here for separation of metals and nonmetals, along with useful utilizations of the nonmetallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining. Suitable PCB recycling flowsheets for industrial applications are also given

  3. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation.more » Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.« less

  4. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation.more » Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.« less

  5. Visible and infrared remote imaging of hazardous waste: A review

    USGS Publications Warehouse

    Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry

    2010-01-01

    One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  6. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Edwards, T.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.« less

  7. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  8. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  9. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  10. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  11. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  12. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  13. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  14. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  15. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  16. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  17. Solid-state fermentation and composting as alternatives to treat hair waste: A life-cycle assessment comparative approach.

    PubMed

    Catalán, Eva; Komilis, Dimitrios; Sánchez, Antoni

    2017-07-01

    One of the wastes associated with leather production in tannery industries is the hair residue generated during the dehairing process. Hair wastes are mainly dumped or managed through composting but recent studies propose the treatment of hair wastes through solid-state fermentation (SSF) to obtain proteases and compost. These enzymes are suitable for its use in an enzymatic dehairing process, as an alternative to the current chemical dehairing process. In the present work, two different scenarios for the valorization of the hair waste are proposed and assessed by means of life-cycle assessment: composting and SSF for protease production. Detailed data on hair waste composting and on SSF protease production are gathered from previous studies performed by our research group and from a literature survey. Background inventory data are mainly based on Ecoinvent version 3 from software SimaPro® 8. The main aim of this study was to identify which process results in the highest environmental impact. The SSF process was found to have lower environmental impacts than composting, due to the fact that the enzyme use in the dehairing process prevents the use of chemicals traditionally used in the dehairing process. This permits to reformulate an industrial process from the classical approach of waste management to a novel alternative based on circular economy.

  18. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    EPA Science Inventory

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  19. 50 CFR 648.5 - Operator permits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... portion of the Skate Management Unit; or Atlantic deep-sea red crab harvested in or from the EEZ portion of the Red Crab Management Unit, issued a permit, including carrier and processing permits, for these...

  20. 50 CFR 648.5 - Operator permits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... portion of the Skate Management Unit; or Atlantic deep-sea red crab harvested in or from the EEZ portion of the Red Crab Management Unit, issued a permit, including carrier and processing permits, for these...

  1. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  2. Municipal waste processing apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayberry, J L

    1987-01-15

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feedmore » plate which shakes the materials so that they tend to lie flat.« less

  3. Critical Protection Item classification for a waste processing facility at Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ades, M.J.; Garrett, R.J.

    1993-10-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are notmore » required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.« less

  4. The Advancement of Public Awareness, Concerning TRU Waste Characterization, Using a Virtual Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, T. B.; Burns, T. P.; Estill, W. G.

    2002-02-28

    Building public trust and confidence through openness is a goal of the DOE Carlsbad Field Office for the Waste Isolation Pilot Plant (WIPP). The objective of the virtual document described in this paper is to give the public an overview of the waste characterization steps, an understanding of how waste characterization instrumentation works, and the type and amount of data generated from a batch of drums. The document is intended to be published on a web page and/or distributed at public meetings on CDs. Users may gain as much information as they desire regarding the transuranic (TRU) waste characterization program,more » starting at the highest level requirements (drivers) and progressing to more and more detail regarding how the requirements are met. Included are links to: drivers (which include laws, permits and DOE Orders); various characterization steps required for transportation and disposal under WIPP's Hazardous Waste Facility Permit; physical/chemical basis for each characterization method; types of data produced; and quality assurance process that accompanies each measurement. Examples of each type of characterization method in use across the DOE complex are included. The original skeleton of the document was constructed in a PowerPoint presentation and included descriptions of each section of the waste characterization program. This original document had a brief overview of Acceptable Knowledge, Non-Destructive Examination, Non-Destructive Assay, Small Quantity sites, and the National Certification Team. A student intern was assigned the project of converting the document to a virtual format and to discuss each subject in depth. The resulting product is a fully functional virtual document that works in a web browser and functions like a web page. All documents that were referenced, linked to, or associated, are included on the virtual document's CD. WIPP has been engaged in a variety of Hazardous Waste Facility Permit modification activities. During

  5. 46 CFR 2.01-45 - Excursion permit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., on Coast Guard Form CG-950, Application for Excursion Permit. If, after inspection, permission is... the application process for excursion permits for inspected passenger vessels are contained in §§ 71.10, 115.204, or 176.204 of this chapter. Details concerning the application process for special...

  6. Method for processing coal-enrichment waste with solid and volatile fuel inclusions

    NASA Astrophysics Data System (ADS)

    Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.

    2017-10-01

    The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.

  7. Process Improvements: Aerobic Food Waste Composting at ISF Academy

    NASA Astrophysics Data System (ADS)

    Lau, Y. K.

    2015-12-01

    ISF Academy, a school with 1500 students in Hong Kong, installed an aerobic food waste composting system in November of 2013. The system has been operational for over seven months; we will be making improvements to the system to ensure the continued operational viability and quality of the compost. As a school we are committed to reducing our carbon footprint and the amount of waste we send to the local landfill. Over an academic year we produce approximately 27 metric tons of food waste. Our system processes the food waste to compost in 14 days and the compost is used by our primary school students in a organic farming project.There are two areas of improvement: a) if the composting system becomes anaerobic, there is an odor problem that is noticed by the school community; we will be testing the use of a bio-filter to eliminate the odor problem and, b) we will be working with an equipment vendor from Australia to install an improved grease trap system. The grease and oil that is collected will be sold to a local company here in Hong Kong that processes used cooking oil for making biofuels. This system will include a two stage filtration system and a heated vessel for separating the oil from the waste water.The third project will be to evaluate biodegradable cutlery for the compositing in the system. Currently, we use a significant quantity of non-biodegradable cutlery that is then thrown away after one use. Several local HK companies are selling biodegradable cutlery, but we need to evaluate the different products to determine which ones will work with our composting system. The food waste composting project at ISF Academy demonstrates the commitment of the school community to a greener environment for HK, the above listed projects will improve the operation of the system.

  8. Minimizing excess air could be wasting energy in process heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, N.P.

    1988-02-01

    Operating a process heater simply to achieve a minimum excess oxygen target in the flue gas may be wasting energy in some process heaters. That's because the real minimum excess oxygen percentage is that required to reach the point of absolute combustion in the furnace. The oxygen target required to achieve absolute combustion may be 1%, or it may be 6%, depending on the operating characteristics of the furnace. Where natural gas is burned, incomplete combustion can occur, wasting fuel dollars. Energy can be wasted because of some misconceptions regarding excess air control. These are: 2-3% excess oxygen in themore » flue gas is a universally good target, too little excess oxygen will always cause the evolution of black smoke in the stack, and excess air requirements are unaffected by commissioning an air preheater.« less

  9. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (in Chin3se; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used inmore » petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.« less

  10. Implementation of an evaporative oxidation process for treatment of aqueous mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bounini, L.; Stelmach, J.

    1995-12-31

    The US Department of Energy and Rust Geotech conducted treatability tests for mixed wastes with a pilot-scale evaporative oxidation unit known as the mini-PO*WW*ER unit. In the evaporative oxidation process, water and volatile organic compounds are vaporized and passed through a catalytic oxidizer to destroy the organic compounds. Nonvolatiles are concentrated into a brine that may be solidified. Ten experiment runs were made. The oxidation of the unit was calculated using total organic carbon analyses of feed and composite product condensate samples. These data indicate that the technology is capable of achieving oxidation efficiencies as high as 99.999 percent onmore » mixed wastes when the bed temperature is near 600 C, residence times are about 0.2 seconds, and adequate oxygen flow is maintained. Concentrations of the tested volatile organic compounds in the product-condensate composite samples were well below standards for wastewaters. Combined gross alpha and beta radioactivity levels in the samples were below detection limites of 12.5 pico-Cu/l, so the liquid would not qualify as a radioactive waste. Thus, the product condensate process by the process is not restricted as either hazardous or mixed waste and is suitable for direct disposal. The brines produced were not considered mixed waste and could be handled and disposed of as radioactive waste.« less

  11. 40 CFR 122.63 - Minor modifications of permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Minor modifications of permits. 122.63..., Revocation and Reissuance, and Termination of Permits § 122.63 Minor modifications of permits. Upon the.... Any permit modification not processed as a minor modification under this section must be made for...

  12. 300 Area waste acid treatment system closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less

  13. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, V.; Occhipinti, J.; Shah, H.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  14. Evaluation of mercury in liquid waste processing facilities - Phase I report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, V.; Occhipinti, J. E.; Shah, H.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  15. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO 2 containing glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO 2, Na 2O, Li 2O and Fe 2O 3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).« less

  16. Waste-to-methanol: Process and economics assessment.

    PubMed

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-11-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Channell, J.K.; Walker, B.A.

    2000-05-01

    Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations.

  18. Processing Plan for Potentially Reactive/Ignitable Remote Handled Transuranic Waste at the Idaho Cleanup Project - 12090

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troescher, Patrick D.; Hobbes, Tammy L.; Anderson, Scott A.

    Remote Handle Transuranic (RH-TRU) Waste generated at Argonne National Laboratory - East, from the examination of irradiated and un-irradiated fuel pins and other reactor materials requires a detailed processing plan to ensure reactive/ignitable material is absent to meet WIPP Waste Acceptance Criteria prior to shipping and disposal. The Idaho Cleanup Project (ICP) approach to repackaging Lot 2 waste and how we ensure prohibited materials are not present in waste intended for disposal at Waste Isolation Pilot Plant 'WIPP' uses an Argon Repackaging Station (ARS), which provides an inert gas blanket. Opening of the Lot 2 containers under an argon gasmore » blanket is proposed to be completed in the ARS. The ARS is an interim transition repackaging station that provides a mitigation technique to reduce the chances of a reoccurrence of a thermal event prior to rendering the waste 'Safe'. The consequences, should another thermal event be encountered, (which is likely) is to package the waste, apply the reactive and or ignitable codes to the container, and store until the future treatment permit and process are available. This is the same disposition that the two earlier containers in the 'Thermal Events' were assigned. By performing the initial handling under an inert gas blanket, the waste can sorted and segregate the fines and add the Met-L-X to minimize risk before it is exposed to air. The 1-gal cans that are inside the ANL-E canister will be removed and each can is moved to the ARS for repackaging. In the ARS, the 1-gal can is opened in the inerted environment. The contained waste is sorted, weighed, and visually examined for non compliant items such as unvented aerosol cans and liquids. The contents of the paint cans are transferred into a sieve and manipulated to allow the fines, if any, to be separated into the tray below. The fines are weighed and then blended with a minimum 5:1 mix of Met-L-X. Other debris materials found are segregated from the cans into

  19. Vitrification of waste with conitnuous filling and sequential melting

    DOEpatents

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  20. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  1. The Tompkins County Solid Waste Annual Fee: Background and overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penniman, P.W.

    1995-05-01

    This report outlines the development by Tompkins County of a new revenue source for solid waste programs -- The Solid Waste Annual Fee. Over the past two decades in New York State, regulatory demands and the decline in available landfill space have combined to cause a rapid escalation in the cost of solid waste disposal. While the New York State Department of Environmental Conservation (NYSDEC) has implemented tighter regulations for the siting of solid waste landfills, they have also mandated the permitting or closure of all existing landfills in the state. The result is that all communities have been requiredmore » to invest millions of dollars in landfill siting, closure and solid waste processing facilities. In addition, programs for reducing and recycling solid wastes have been mandated to reduce the outflow to landfills. Until recent years, solid waste services in most New York counties have been funded almost entirely through a collection of property taxes. During the past six years, fiscal stress has stimulated a movement toward funding solid waste programs by other means. Alternatives to the property tax include: (1) special assessment taxes or fees; (2) user charges (including tipping fees); and (3) intergovernment grants.« less

  2. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu; Mohee, Romeela; Kowlesser, Prakash

    2014-10-15

    Highlights: • Scrap metal processing wastes. • Areas of applications for slag, electric arc furnace dust, mill scale and wastewater sludge. • Waste generation factor of 349.3 kg per ton of steel produced. • Waste management model. - Abstract: This paper presents an assessment on the wastes namely slag, dust, mill scale and sludge resulting from scrap metal processing. The aim of this study is to demonstrate that there are various ways via which scrap metal processing wastes can be reused or recycled in other applications instead of simply diverting them to the landfill. These wastes are briefly described andmore » an overview on the different areas of applications is presented. Based on the results obtained, the waste generation factor developed was 349.3 kg per ton of steel produced and it was reported that slag represents 72% of the total wastes emanating from the iron and steel industry in Mauritius. Finally the suitability of the different treatment and valorisation options in the context of Mauritius is examined.« less

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less

  4. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  5. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, J.L.

    1990-07-10

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  6. PROCESS DEVELOPMENT FOR THE RECOVERY OF CRITICAL MATERIALS FROM ELECTRONIC WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lister, T. E.; Diaz, L. A.; Clark, G. G.

    As electronic technology continues to evolve there is a growing need to develop processes which recover valuable material from antiquated technology. This need follows from the environmental challenges associated with the availability of raw materials and fast growing generation of electronic waste. Although just present in small quantities in electronic devices, the availability of raw materials, such as rare earths and precious metals, becomes critical for the production of high tech electronic devices and the development of green technologies (i.e. wind turbines, electric motors, and solar panels). Therefore, the proper recycling and processing of increasing volumes of electronic waste presentmore » an opportunity to stabilize the market of critical materials, reducing the demand of mined products, and providing a proper disposal and treatment of a hazardous waste stream. This paper will describe development and techno-economic assessment of a comprehensive process for the recovery of value and critical materials from electronic waste. This hydrometallurgical scheme aims to selectively recover different value segments in the materials streams (base metals, precious metals, and rare earths). The economic feasibility for the recovery of rare earths from electronic waste is mostly driven by the efficient recovery of precious metals, such as Au and Pd (ca. 80 % of the total recoverable value). Rare earth elements contained in magnets (speakers, vibrators and hard disk storage) can be recovered as a mixture of rare earths oxides which can later be reduced to the production of new magnets.« less

  7. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  8. RH-TRU Waste Inventory Characterization by AK and Proposed WIPP RH-TRU Waste Characterization Objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Most, W. A.; Kehrman, R.; Gist, C.

    2002-02-26

    The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. Themore » DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay

  9. A novel process for recovering valuable metals from waste nickel-cadmium batteries.

    PubMed

    Huang, Kui; Li, Jia; Xu, Zhenming

    2009-12-01

    The environment is seriously polluted due to improper and inefficient recycling of waste nickel-cadmium (Ni-Cd) batteries in China. The aim of this work is aimed to seek an environmentally friendly recycling process for resolving the negative impacts on environmental and human health resulting from waste Ni-Cd batteries. This work investigates the fundamentals of waste Ni-Cd batteries recycling through vacuum metallurgy separation (VMS) and magnetic separation (MS). The results obtained demonstrate that the optimal temperature, the addition of carbon powder, and heating time in VMS are 1023 K, 1 wt %, 1.5 h, respectively. More than 99.2 wt % Cd is recovered under the optimal experimental condition, and the Cd purity is 99.98%. Around 98.0 wt % ferromagnetic materials are recovered through MS under 60 rpm rotational speed and the recovery ratios of Fe, Ni and Co are 99.2 wt %, 96.1 wt %, and 86.4 wt %, respectively. The composition of ferromagnetic fractions in the residue after VMS increases from 82.3 to 99.6%. Based on these results, a process (including dismantling and crushing, VMS and MS) for recycling of waste Ni-Cd batteries is proposed. This novel process provides a possibility for recycling waste Ni-Cd batteries in a large industrial scale.

  10. Modern technologies of processing municipal solid waste: investing in the future

    NASA Astrophysics Data System (ADS)

    Rumyantseva, A.; Berezyuk, M.; Savchenko, N.; Rumyantseva, E.

    2017-06-01

    The problem of effective municipal solid waste (MSW) management is known to all the municipal entities of the Russian Federation. The problem is multifaceted and complex. The article analyzes the dynamics of municipal solid waste formation and its utilization within the territory of the EU and Russia. The authors of the paper suggest a project of a plant for processing municipal solid waste into a combustible gas with the help of high temperature pyrolysis. The main indicators of economic efficiency are calculated.

  11. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  12. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  13. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  14. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  15. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  16. Waste receiving and processing facility module 1 data management system software project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.E.

    1994-11-02

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  17. A U-bearing composite waste form for electrochemical processing wastes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases.

  18. Reducing concentrated animal feeding operations permitting requirements.

    PubMed

    Centner, T J; Newton, G L

    2011-12-01

    Many owners and operators of concentrated animal feeding operations (CAFO) need to secure National Pollutant Discharge Elimination System permits from the federal or state permitting authority. Because of the expense and inconvenience of permit applications, farm groups have challenged revisions to the federal CAFO Rule as well as state regulations claiming selected provisions exceeded the authority of the permitting agency. In 2011, 2 courts responded with decisions that clarify federal and state permitting regulations. Another goal of agricultural groups is to change the regulatory authority of the state from an environmental agency to a department of agriculture. These developments suggest that by altering the permitting authority, CAFO owners and operators may alleviate some of the burdens of the permitting process.

  19. A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunsell, D.A.

    2008-07-01

    Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that,more » when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed

  20. Voluntary approaches to solid waste management in small towns: a case study of community involvement in household hazardous waste recycling.

    PubMed

    Massawe, Ephraim; Legleu, Tye; Vasut, Laura; Brandon, Kelly; Shelden, Greg

    2014-06-01

    An enormous amount of household hazardous waste (HHW) is generated as part of municipal solid waste. This scenario presents problems during disposal, including endangering human health and the environment if improperly disposed. This article examines current HHW recycling efforts in Hammond, Louisiana, with the following objectives: (a) analyze factors and attitudes that motivate residents to participate in the program; (b) quantify various types of HHW; and (c) analyze the e-waste stream in the HHW. Residents and city officials who were surveyed and interviewed cited that commitment shown by local authorities and passion to protect the environment and human health were part of their active participation in the program. An awareness program has played a key role in the success of the program. A legislation specific to e-waste is encouraged. While knowledge and information on laws and permit application processes and the promotion of greener products are encouraged, provision of storage or collection facilities and communal transportation will further motivate more residents to participate in the recycling program.

  1. 40 CFR 68.85 - Hot work permit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Hot work permit. 68.85 Section 68.85... ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner or operator shall issue a hot work permit for hot work operations conducted on or near a covered process. (b...

  2. 40 CFR 68.85 - Hot work permit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Hot work permit. 68.85 Section 68.85... ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner or operator shall issue a hot work permit for hot work operations conducted on or near a covered process. (b...

  3. 40 CFR 68.85 - Hot work permit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Hot work permit. 68.85 Section 68.85... ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner or operator shall issue a hot work permit for hot work operations conducted on or near a covered process. (b...

  4. 40 CFR 68.85 - Hot work permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Hot work permit. 68.85 Section 68.85... ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner or operator shall issue a hot work permit for hot work operations conducted on or near a covered process. (b...

  5. Permitted water use in Iowa, 1985

    USGS Publications Warehouse

    Runkle, D.L.; Newman, J.L.; Shields, E.M.

    1985-01-01

    This report summarizes where, how much and for what purpose water is allocated for use in Iowa with permits issued by the Department of Water, Air and Waste Management. In Iowa, from a total permitted water use of 855,175.45 million gallons per year, about 58 percent is from surface-water sources and about 42 percent is from ground-water sources. Streams are 80.5 percent of the total surface-water use and wells make up 80.1 percent of the total ground-water use, with 65.4 percent of ground water coming from surficial aquifers. Power generation is the use category that is permitted the largest amount of total water use, 46.6 percent, with surface water being the source of 96.7 percent and 77.9 percent of the surface water is from streams. The public water suppliers' category is the next largest use type with 15.7 percent of the total permitted water. Ground water constitutes 74.4 percent of the public water supplier category with 51.7 percent from surficial aquifers. Surface water makes up 25.6 percent of this category with 83.0 percent of the surface water withdrawn from streams. Mining comprises 13.4 percent of the total water use and is the third largest water-use category. Ground water is the source of 63.3 percent of permitted mining water use with 94.3 percent of this from quarries and sand and gravel pits. Surface water is the source of 36.7 percent of the permitted mining water use with 97.6 percent from streams. Irrigation is the fourth largest permitted use type using 12.0 percent of the total water use. Eighty-eight percent of irrigation is from ground-water sources where surficial aquifers account for 94.7 percent. Streams are 81.1 percent of irrigational surface-water use. Self-supplied industrial users are permitted 10.6 percent of the total permitted water use with 85.5 percent of this from ground-water sources and 14.5 percent from surface-water sources. Of the self-supplied industrial ground-water use, 47.9 percent comes from surficial aquifers and

  6. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  7. 40 CFR 264.341 - Waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis. 264.341 Section 264... Incinerators § 264.341 Waste analysis. (a) As a portion of the trial burn plan required by § 270.62 of this chapter, or with part B of the permit application, the owner or operator must have included an analysis of...

  8. 40 CFR 264.341 - Waste analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis. 264.341 Section 264... Incinerators § 264.341 Waste analysis. (a) As a portion of the trial burn plan required by § 270.62 of this chapter, or with part B of the permit application, the owner or operator must have included an analysis of...

  9. 40 CFR 264.341 - Waste analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis. 264.341 Section 264... Incinerators § 264.341 Waste analysis. (a) As a portion of the trial burn plan required by § 270.62 of this chapter, or with part B of the permit application, the owner or operator must have included an analysis of...

  10. The National Solar Permitting Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunderson, Renic

    "The soft costs of solar — costs not associated with hardware — remain stubbornly high. Among the biggest soft costs are those associated with inefficiencies in local permitting and inspection. A study by the National Renewable Energy Laboratory and Lawrence Berkeley National Laboratory estimates that these costs add an average of $0.22/W per residential installation. This project helps reduce non-hardware/balance of system (BOS) costs by creating and maintaining a free and available site of permitting requirements and solar system verification software that installers can use to reduce time, capital, and resource investments in tracking permitting requirements. Software tools to identifymore » best permitting practices can enable government stakeholders to optimize their permitting process and remove superfluous costs and requirements. Like ""a Wikipedia for solar permitting"", users can add, edit, delete, and update information for a given jurisdiction. We incentivize this crowdsourcing approach by recognizing users for their contributions in the form of SEO benefits to their company or organization by linking back to users' websites."« less

  11. Characterization of radioactive wastes with respect to harmful materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugel, Karin; Steyer, Stefan; Brennecke, Peter

    In addendum 4 to the license of the German KONRAD repository, which considers mainly radiological aspects, a water law permit was issued in order to prevent the pollution of the near-surface groundwater. The water law permit stipulates limitations for 10 radionuclides and 2 groups of radionuclides as well as mass limitations for 94 substances and materials relevant for water protection issues. Two collateral clauses, i.e. additional requirements imposed by the licensing authority, include demands on the monitoring, registering and balancing of non-radioactive harmful substances and materials /1/. In order to fulfill the requirements of the water law permit the Germanmore » Federal Office for Radiation Protection (BfS) being the operator of the KONRAD repository has developed a concept, which ensures the compliance with all requirements of the water law permit and which provides standardized easy manageable guidance for the waste producers to describe their wastes. On 15 March 2011 the competent water authority, the 'Niedersaechsischer Landesbetrieb fuer Wasserwirtschaft, Kuesten- und Naturschutz' (NLWKN) issued the approval for this concept. Being the most essential part of this concept the procedural method and the developed description of nonradioactive waste package constituents by use of standardized lists of materials and containers is addressed and presented in this paper. The waste producer has to describe his waste package in a standardized way on the base of the lists of materials and containers. For each material in the list a comprehensive description is given comprising the composition, scope of application, quality control measures, thresholds and other data. Each entry in the list has to be approved by NLWKN. The scope of the lists is defined by the waste producers' needs. Using some particular materials as examples, the approval procedure for including materials in the list is described. The procedure of describing the material composition has to

  12. A U-bearing composite waste form for electrochemical processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phasesmore » that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.« less

  13. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gervasio, V.; Kim, D. S.; Vienna, J. D.

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints, and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increasemore » in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less

  14. Electromagnetic Processing as a Way of Increasing Microbiological Safety of Animal Waste

    NASA Astrophysics Data System (ADS)

    Soboleva, O. M.; Kolosova, M. M.; Filipovich, L. A.; Aksenov, V. A.

    2017-05-01

    The article shows the possibility of using the electromagnetic field of ultrahigh frequency (EMF UHF) for drying and disinfecting of such animal waste as pig manure and poultry droppings. The studied modes included the following options: processing exposure of 60, 90, 120 sec, the capacity of 60 kW, the frequency of 915 MHz. The method of UHF processing of manure and poultry droppings is environmentally safe and effective in neutralizing the pathogenic microflora, as well as larvae and eggs of worms. The following processing mode of animal waste in the electromagnetic field of ultrahigh frequency was recognized as optimal: exposure of 90 seconds, the capacity of 60 kW, the frequency of 915 MHz. This option leads to the complete destruction of pathogenic and conditionally pathogenic microorganisms, as well as the eggs and larvae of worms. As a result of this processing, a high level of microbiological safety of pig manure and poultry droppings is achieved that allows using them as organic fertilizers. The peculiarities of some species of pathogenic fungi developing on the surface of the wheat grain are shown. Pre-processed animal waste (pig manure and and poultry droppings) were applied in experimental variants. Used organic fertilizers underwent electromagnetic processing of ultra-high frequency. The qualitative composition of the microflora on the surface of the grain depends on the type of animal waste (manure or droppings) and used dose. The safest part of the microflora of grain was marked with the application of the UHF-processed pig manure and poultry droppings in doses of 10 t/ha.

  15. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  16. 40 CFR 124.41 - Definitions applicable to PSD permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Definitions applicable to PSD permits... PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.41 Definitions applicable to PSD permits. Whenever PSD permits are processed under this part, the following terms shall have...

  17. 40 CFR 124.41 - Definitions applicable to PSD permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Definitions applicable to PSD permits... PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.41 Definitions applicable to PSD permits. Whenever PSD permits are processed under this part, the following terms shall have...

  18. 40 CFR 124.41 - Definitions applicable to PSD permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Definitions applicable to PSD permits... PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.41 Definitions applicable to PSD permits. Whenever PSD permits are processed under this part, the following terms shall have...

  19. 40 CFR 124.41 - Definitions applicable to PSD permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Definitions applicable to PSD permits... PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.41 Definitions applicable to PSD permits. Whenever PSD permits are processed under this part, the following terms shall have...

  20. 40 CFR 124.41 - Definitions applicable to PSD permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Definitions applicable to PSD permits... PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to PSD Permits § 124.41 Definitions applicable to PSD permits. Whenever PSD permits are processed under this part, the following terms shall have...

  1. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materialsmore » in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.« less

  2. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.

    PubMed

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver

    2017-01-01

    Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are

  3. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to

  4. Centralized processing of contact-handled TRU waste feasibility analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-12-01

    This report presents work for the feasibility study of central processing of contact-handled TRU waste. Discussion of scenarios, transportation options, summary of cost estimates, and institutional issues are a few of the subjects discussed. (JDL)

  5. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste.

    PubMed

    Vodnar, Dan Cristian; Călinoiu, Lavinia Florina; Dulf, Francisc Vasile; Ştefănescu, Bianca Eugenia; Crişan, Gianina; Socaciu, Carmen

    2017-09-15

    The purpose of the research was to identify the bioactive compounds and to evaluate the antioxidant, antimutagenic and antimicrobial activities of the major Romanian agro-industrial wastes (apple peels, carrot pulp, white- and red-grape peels and red-beet peels and pulp) for the purpose of increasing the wastes' value. Each type of waste material was analyzed without (fresh) and with thermal processing (10min, 80°C). Based on the obtained results, the thermal process enhanced the total phenolic content. The highest antioxidant activity was exhibited by thermally processed red-grape waste followed by thermally processed red-beet waste. Linoleic acid was the major fatty acid in all analyzed samples, but its content decreased significantly during thermal processing. The carrot extracts have no antimicrobial effects, while the thermally processed red-grape waste has the highest antimicrobial effect against the studied strains. The thermally processed red-grape sample has the highest antimutagenic activity toward S. typhimurium TA98 and TA100. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. POLLUTION BALANCE: A NEW METHODOLOGY FOR MINIMIZING WASTE PRODUCTION IN MANUFACTURING PROCESSES.

    EPA Science Inventory

    A new methodolgy based on a generic pollution balance equation, has been developed for minimizing waste production in manufacturing processes. A "pollution index," defined as the mass of waste produced per unit mass of a product, has been introduced to provide a quantitative meas...

  7. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and

  8. 40 CFR 144.41 - Minor modifications of permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Minor modifications of permits. 144.41... (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Authorization by Permit § 144.41 Minor modifications of... part 124. Any permit modification not processed as a minor modification under this section must be made...

  9. Direction of CRT waste glass processing: Electronics recycling industry communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Julia R., E-mail: mueller.143@osu.edu; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, andmore » the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass

  10. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  11. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  12. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  13. Methane fermentation process for utilization of organic waste

    NASA Astrophysics Data System (ADS)

    Frąc, M.; Ziemiński, K.

    2012-07-01

    Biogas is a renewable and sustainable energy carrier generated via anaerobic digestion of biomass. This fuel is derived from various biomass resources and depending on its origin it contains methane (40-75%), carbon dioxide (20-45%) and some other compounds. The aim of this paper is to present the current knowledge and prospects of using the methane fermentation process to dispose of various types of organic wastes as well as conditions and factors affecting the methane fermentation process.

  14. Description of Defense Waste Processing Facility reference waste form and canister. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, R.G.

    1983-08-01

    The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. Leachabilities of SRP waste glasses are expected to approach 10/sup -8/ g/m/sup 2/-day basedmore » upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references.« less

  15. Recovery and characterization of proteins from pangas (Pangasius pangasius) processing waste obtained through pH shift processing.

    PubMed

    Surasani, Vijay Kumar Reddy; Kudre, Tanaji; Ballari, Rajashekhar V

    2018-04-01

    Study was conducted to recover proteins from pangas (Pangasius pangasius) processing waste (fillet frames) using pH shift method and to characterize the recovered isolates. pH 2.0 from acidic range and pH 13.0 from alkaline range were found to have maximum protein recovery (p < 0.05). During the recovery process, acidic pH (pH 2.0) was found to have minimal effect on proteins resulting in more stable isolates and strong protein gels. Alkaline pH (pH 13.0) caused protein denaturation resulting in less stable proteins and poor gel network. Both acidic and alkaline-aided processing caused significant (p < 0.05) reductions in total lipid, myoglobin, and pigment content thus by resulting in whiter protein isolates and gels. The content of total essential amino acids increased during pH shift processing, indicating the enrichment of essential amino acids. No microbial counts were detected in any of the isolates prepared using acid and alkaline extraction methods. pH shift processing was found to be promising in the utilization of fish processing waste for the recovery of functional proteins from pangas processing waste thus by reducing the supply demand gap as well pollution problems.

  16. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  17. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needsmore » to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.« less

  18. Natural diatomite process for removal of radioactivity from liquid waste.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  19. Development of a novel wet oxidation process for hazardous and mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1994-11-01

    This article describes and evaluates the DETOX{sup sm} process for processing of mixed wastes. Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides, often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The DETOX{sup sm} process, patented by Delphi Research, uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. Included are the following subject areas: project description (phases I-IV); results of all phases; and future work. 5 figs., 1 tab.

  20. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  1. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  2. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  3. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  4. 36 CFR 6.8 - National Park Service solid waste responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.8 National Park Service solid waste responsibilities. (a) Beginning one year after January 23, 1995, a Superintendent will not permit or allow a person to dispose of solid waste at a National Park Service operated...

  5. 36 CFR 6.8 - National Park Service solid waste responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.8 National Park Service solid waste responsibilities. (a) Beginning one year after January 23, 1995, a Superintendent will not permit or allow a person to dispose of solid waste at a National Park Service operated...

  6. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  7. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.

    PubMed

    Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens

    2007-01-01

    In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.

  8. 78 FR 5288 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... issue Research, Development, and Demonstration (RD&D) Permits to owners and operators of MSWLF in accordance with its State law. On March 22, 2004, EPA issued final regulations allowing research, development...

  9. Comminution and sizing processes of concrete block waste as recycled aggregates.

    PubMed

    Gomes, P C C; Ulsen, C; Pereira, F A; Quattrone, M; Angulo, S C

    2015-11-01

    Due to the environmental impact of construction and demolition waste (CDW), recycling is mandatory. It is also important that recycled concrete aggregates (RCA) are used in concrete to meet market demands. In the literature, the influence of RCAs on concrete has been investigated, but very limited studies have been conducted on how the origin of concrete waste and comminution processes influence RCA characteristics. This paper aims to investigate the influence of three different comminution and sizing processes (simple screening, crushing and grinding) on the composition, shape and porosity characteristics of RCA obtained from concrete block waste. Crushing and grinding implies a reduction of RCA porosity. However, due to the presence of coarse quartz rounded river pebbles in the original concrete block mixtures, the shape characteristics deteriorated. A large amount of powder (<0.15 mm) without detectable anhydrous cement was also generated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste

    NASA Astrophysics Data System (ADS)

    Ishak, Aulia; Ali, Amir Yazid bin

    2017-12-01

    The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.

  11. Mathematical Modeling to Reduce Waste of Compounded Sterile Products in Hospital Pharmacies

    PubMed Central

    Dobson, Gregory; Haas, Curtis E.; Tilson, David

    2014-01-01

    Abstract In recent years, many US hospitals embarked on “lean” projects to reduce waste. One advantage of the lean operational improvement methodology is that it relies on process observation by those engaged in the work and requires relatively little data. However, the thoughtful analysis of the data captured by operational systems allows the modeling of many potential process options. Such models permit the evaluation of likely waste reductions and financial savings before actual process changes are made. Thus the most promising options can be identified prospectively, change efforts targeted accordingly, and realistic targets set. This article provides one example of such a datadriven process redesign project focusing on waste reduction in an in-hospital pharmacy. A mathematical model of the medication prepared and delivered by the pharmacy is used to estimate the savings from several potential redesign options (rescheduling the start of production, scheduling multiple batches, or reordering production within a batch) as well as the impact of information system enhancements. The key finding is that mathematical modeling can indeed be a useful tool. In one hospital setting, it estimated that waste could be realistically reduced by around 50% by using several process changes and that the greatest benefit would be gained by rescheduling the start of production (for a single batch) away from the period when most order cancellations are made. PMID:25477580

  12. Review and revision of overload permit classification.

    DOT National Transportation Integrated Search

    2013-02-01

    The Michigan Department of Transportation (MDOT) allows trucks that exceed their legal loads to cross : bridges if they apply and are approved for a permit. More than 30,000 permits have been processed each : year since 2002, providing a vital servic...

  13. Water recovery and solid waste processing for aerospace and domestic applications

    NASA Technical Reports Server (NTRS)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  14. 78 FR 18418 - Notice of Application for Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Application for Special Permits AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: List of Applications for Special Permits. SUMMARY: In accordance with the procedures governing the application for, and the processing of, special permits from the Department of Transportation's...

  15. Technology Readiness Assessment of Department of Energy Waste Processing Facilities

    DTIC Science & Technology

    2007-09-11

    Must Be Reliable, Robust, Flexible, and Durable 6 EM Is Piloting the TRA/AD2 Process Hanford Waste Treatment Plant ( WTP ) – The Initial Pilot Project...Evaluation WTP can only treat ~ ½ of the LAW in the time it will take to treat all the HLW. • There is a need for tank space that will get more urgent with...Facility before the WTP Pretreatment and High-Level Waste (HLW) Vitrification Facilities are available (Requires tank farm pretreatment capability) TRAs

  16. Development of cement solidification process for sodium borate waste generated from PWR plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirofumi Okabe; Tatsuaki Sato; Yuichi Shoji

    2013-07-01

    A cement solidification process for treating sodium borate waste produced in pressurized water reactor (PWR) plants was studied. To obtain high volume reduction and high mechanical strength of the waste, simulated concentrated borate liquid waste with a sodium / boron (Na/B) mole ratio of 0.27 was dehydrated and powdered by using a wiped film evaporator. To investigate the effect of the Na/B mole ratio on the solidification process, a sodium tetraborate decahydrate reagent with a Na/B mole ratio of 0.5 was also used. Ordinary portland cement (OPC) and some additives were used for the solidification. Solidified cement prepared from powderedmore » waste with a Na/B mole ratio 0.24 and having a high silica sand content (silica sand/cement>2) showed to improved uniaxial compressive strength. (authors)« less

  17. Enzymes and microorganisms in food industry waste processing and conversion to useful products: a review of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1976-12-01

    Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins, and fats. Solid wastes are generally cellulosic, but may contain other biopolymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

  18. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  19. 76 FR 60933 - Antarctic Conservation Act Permit Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ...Notice is hereby given that the National Science Foundation (NSF) has received a waste management permit application for a flight by a Beechcraft Queen Air 65 ``Excaliber'' to depart Punta Arenas, Chile, fly over the South Pole, land at Teniente Marsh Base (Frei Base) where it will overnight, and return to Punta Arenas, Chile. The application is submitted by World Flyers of Buena Vista, CO and submitted to NSF pursuant to regulations issued under the Antarctic Conservation Act of 1978.

  20. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammablemore » gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.« less