Developing models for the prediction of hospital healthcare waste generation rate.
Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe
2016-01-01
An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals. © The Author(s) 2015.
E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries.
Resmi, N G; Fasila, K A
2017-10-01
This paper proposes a novel algorithm for establishing a standard methodology to manage and refurbish e-waste called E-waste Management And Refurbishment Prediction (EMARP), which can be adapted by refurbishing industries in order to improve their performance. Waste management, particularly, e-waste management is a serious issue nowadays. Computerization has been into waste management in different ways. Much of the computerization has happened in planning the waste collection, recycling and disposal process and also managing documents and reports related to waste management. This paper proposes a computerized model to make predictions for e-waste refurbishment. All possibilities for reusing the common components among the collected e-waste samples are predicted, thus minimizing the wastage. Simulation of the model has been done to analyse the accuracy in the predictions made by the system. The model can be scaled to accommodate the real-world scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.
Azadi, Sama; Karimi-Jashni, Ayoub
2016-02-01
Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Translating landfill methane generation parameters among first-order decay models.
Krause, Max J; Chickering, Giles W; Townsend, Timothy G
2016-11-01
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.
Mathematical modeling to predict residential solid waste generation.
Benítez, Sara Ojeda; Lozano-Olvera, Gabriela; Morelos, Raúl Adalberto; Vega, Carolina Armijo de
2008-01-01
One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R(2) were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total.
Forecasting municipal solid waste generation using prognostic tools and regression analysis.
Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria
2016-11-01
For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ma, Jun; Liu, Lei; Ge, Sai; Xue, Qiang; Li, Jiangshan; Wan, Yong; Hui, Xinminnan
2018-03-01
A quantitative description of aerobic waste degradation is important in evaluating landfill waste stability and economic management. This research aimed to develop a coupling model to predict the degree of aerobic waste degradation. On the basis of the first-order kinetic equation and the law of conservation of mass, we first developed the coupling model of aerobic waste degradation that considered temperature, initial moisture content and air injection volume to simulate and predict the chemical oxygen demand in the leachate. Three different laboratory experiments on aerobic waste degradation were simulated to test the model applicability. Parameter sensitivity analyses were conducted to evaluate the reliability of parameters. The coupling model can simulate aerobic waste degradation, and the obtained simulation agreed with the corresponding results of the experiment. Comparison of the experiment and simulation demonstrated that the coupling model is a new approach to predict aerobic waste degradation and can be considered as the basis for selecting the economic air injection volume and appropriate management in the future.
Kumar, Atul; Samadder, S R
2017-10-01
Accurate prediction of the quantity of household solid waste generation is very much essential for effective management of municipal solid waste (MSW). In actual practice, modelling methods are often found useful for precise prediction of MSW generation rate. In this study, two models have been proposed that established the relationships between the household solid waste generation rate and the socioeconomic parameters, such as household size, total family income, education, occupation and fuel used in the kitchen. Multiple linear regression technique was applied to develop the two models, one for the prediction of biodegradable MSW generation rate and the other for non-biodegradable MSW generation rate for individual households of the city Dhanbad, India. The results of the two models showed that the coefficient of determinations (R 2 ) were 0.782 for biodegradable waste generation rate and 0.676 for non-biodegradable waste generation rate using the selected independent variables. The accuracy tests of the developed models showed convincing results, as the predicted values were very close to the observed values. Validation of the developed models with a new set of data indicated a good fit for actual prediction purpose with predicted R 2 values of 0.76 and 0.64 for biodegradable and non-biodegradable MSW generation rate respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prediction of the amount of urban waste solids by applying a gray theoretical model.
Li, Xiao-Ming; Zeng, Guang-Ming; Wang, Ming; Liu, Jin-Jin
2003-01-01
Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non-linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0, 0.21(2)), and the probability of the residual within the range ( -0.17, 0.19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.
A novel methodology to estimate the evolution of construction waste in construction sites.
Katz, Amnon; Baum, Hadassa
2011-02-01
This paper focuses on the accumulation of construction waste generated throughout the erection of new residential buildings. A special methodology was developed in order to provide a model that will predict the flow of construction waste. The amount of waste and its constituents, produced on 10 relatively large construction sites (7000-32,000 m(2) of built area) was monitored periodically for a limited time. A model that predicts the accumulation of construction waste was developed based on these field observations. According to the model, waste accumulates in an exponential manner, i.e. smaller amounts are generated during the early stages of construction and increasing amounts are generated towards the end of the project. The total amount of waste from these sites was estimated at 0.2m(3) per 1m(2) floor area. A good correlation was found between the model predictions and actual data from the field survey. Copyright © 2010 Elsevier Ltd. All rights reserved.
Modelling of Two-Stage Methane Digestion With Pretreatment of Biomass
NASA Astrophysics Data System (ADS)
Dychko, A.; Remez, N.; Opolinskyi, I.; Kraychuk, S.; Ostapchuk, N.; Yevtieieva, L.
2018-04-01
Systems of anaerobic digestion should be used for processing of organic waste. Managing the process of anaerobic recycling of organic waste requires reliable predicting of biogas production. Development of mathematical model of process of organic waste digestion allows determining the rate of biogas output at the two-stage process of anaerobic digestion considering the first stage. Verification of Konto's model, based on the studied anaerobic processing of organic waste, is implemented. The dependencies of biogas output and its rate from time are set and may be used to predict the process of anaerobic processing of organic waste.
Forecasting municipal solid waste generation using artificial intelligence modelling approaches.
Abbasi, Maryam; El Hanandeh, Ali
2016-10-01
Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solid waste forecasting using modified ANFIS modeling.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; K N A, Maulud
2015-10-01
Solid waste prediction is crucial for sustainable solid waste management. Usually, accurate waste generation record is challenge in developing countries which complicates the modelling process. Solid waste generation is related to demographic, economic, and social factors. However, these factors are highly varied due to population and economy growths. The objective of this research is to determine the most influencing demographic and economic factors that affect solid waste generation using systematic approach, and then develop a model to forecast solid waste generation using a modified Adaptive Neural Inference System (MANFIS). The model evaluation was performed using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the coefficient of determination (R²). The results show that the best input variables are people age groups 0-14, 15-64, and people above 65 years, and the best model structure is 3 triangular fuzzy membership functions and 27 fuzzy rules. The model has been validated using testing data and the resulted training RMSE, MAE and R² were 0.2678, 0.045 and 0.99, respectively, while for testing phase RMSE =3.986, MAE = 0.673 and R² = 0.98. To date, a few attempts have been made to predict the annual solid waste generation in developing countries. This paper presents modeling of annual solid waste generation using Modified ANFIS, it is a systematic approach to search for the most influencing factors and then modify the ANFIS structure to simplify the model. The proposed method can be used to forecast the waste generation in such developing countries where accurate reliable data is not always available. Moreover, annual solid waste prediction is essential for sustainable planning.
Methods of Predicting Solid Waste Characteristics.
ERIC Educational Resources Information Center
Boyd, Gail B.; Hawkins, Myron B.
The project summarized by this report involved a preliminary design of a model for estimating and predicting the quantity and composition of solid waste and a determination of its feasibility. The novelty of the prediction model is that it estimates and predicts on the basis of knowledge of materials and quantities before they become a part of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, K. J.; Capson, D. D.
2004-03-29
Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y
2016-09-01
Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.
This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. Itmore » was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.« less
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.
2014-09-12
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
NASA Astrophysics Data System (ADS)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan
2014-09-01
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari
2009-11-15
Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less
Prediction of the compression ratio for municipal solid waste using decision tree.
Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed
2014-01-01
The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.
AN ISOMER PREDICTION MODEL FOR PCNS, PCDD/FS, AND PCBS FROM MUNICIPAL WASTE INCINERATORS
Isomer patterns of polychlorinated naphthalenes (PCNs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated biphenyls (PCBs) from municipal waste incinerators (MWIs) were predicted by a model based on dechlorination kinetics from the most-chlorinated species. Successfu...
NASA Astrophysics Data System (ADS)
Pauzi, Nur Irfah Mohd; Shariffuddin, Ahmad Sulaimi; Omar, Husaini; Misran, Halina
2017-07-01
In Malaysia, the most common method of disposal is landfill/open dumping. The soil at the dumping area are mixed with waste and soil. Thus, it was called as waste soil. Due to its heterogeneity properties, waste soil has a different settlement rate because different types of waste tends to settle differently. The Hussein and Gabr model which used empirical model was proposed to compute the long-term settlement. This Hussein and Gabr model is one of the soil settlement model that can be used to predict the long-term settlement at the dumping area. The model relates between the compression index and the time factor. The time factor are t1, t2, t3 and t4. The compression index is Cα1=compression index and Cβ is biodegradation index. The duration for initial compression, the compression, the biological compression and time creep are included in the model. The sample of waste soil is taken from closed dumping area in Lukut, Negeri Sembilan with the height of waste approximately 1 to 3 meters. The sample is tested using consolidation test for determining the geotechnical parameters and compressibility index. Based on the Hossein and Gabr model, the predicted long-term settlement for 20 years (ΔH) for the waste height of 1 to 3 meters are 0.21m, 0.42m and 0.63m respectively and are below the percentages of proposed maximum settlement for waste soil which is acceptable for new development to takes place.. The types of deep or shallow foundation are proposed based on the predicted settlement. The abandoned open dumping area can now be reused for the new development after the long-term settlement are predicted and some of the precaution measures has been taken as a safety measures.
Brandstätter, Christian; Laner, David; Prantl, Roman; Fellner, Johann
2014-12-01
Municipal solid waste landfills pose a threat on environment and human health, especially old landfills which lack facilities for collection and treatment of landfill gas and leachate. Consequently, missing information about emission flows prevent site-specific environmental risk assessments. To overcome this gap, the combination of waste sampling and analysis with statistical modeling is one option for estimating present and future emission potentials. Optimizing the tradeoff between investigation costs and reliable results requires knowledge about both: the number of samples to be taken and variables to be analyzed. This article aims to identify the optimized number of waste samples and variables in order to predict a larger set of variables. Therefore, we introduce a multivariate linear regression model and tested the applicability by usage of two case studies. Landfill A was used to set up and calibrate the model based on 50 waste samples and twelve variables. The calibrated model was applied to Landfill B including 36 waste samples and twelve variables with four predictor variables. The case study results are twofold: first, the reliable and accurate prediction of the twelve variables can be achieved with the knowledge of four predictor variables (Loi, EC, pH and Cl). For the second Landfill B, only ten full measurements would be needed for a reliable prediction of most response variables. The four predictor variables would exhibit comparably low analytical costs in comparison to the full set of measurements. This cost reduction could be used to increase the number of samples yielding an improved understanding of the spatial waste heterogeneity in landfills. Concluding, the future application of the developed model potentially improves the reliability of predicted emission potentials. The model could become a standard screening tool for old landfills if its applicability and reliability would be tested in additional case studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Denes, Jeremy; Tremier, Anne; Menasseri-Aubry, Safya; Walter, Christian; Gratteau, Laurette; Barrington, Suzelle
2015-02-01
Composting wastes permits the reuse of organic matter (OM) as agricultural amendments. The fate of OM during composting and the subsequent degradation of composts in soils largely depend on waste OM quality. The proposed study aimed at developing a model to predict the evolution in organic matter quality during the aerobic degradation of organic waste, based on the quantification of the various OM fractions contained in the wastes. The model was calibrated from data gathered during the monitoring of four organic wastes (two non-treated wastes and their digestates) exposed to respirometric tests. The model was successfully fitted for all four wastes and permitted to predict respiration kinetics, expressed as CO2 production rates, and the evolution of OM fractions. The calibrated model demonstrated that hydrolysis rates of OM fractions were similar for all four wastes whereas the parameters related to microbial activity (eg. growth and death rates) were specific to each substrate. These later parameters have been estimated by calibration on respirometric data, thus demonstrating that coupling analyses of OM fractions in initial wastes and respirometric tests permit the simulation of the biodegradation of various type of waste. The biodegradation model presented in this paper could thereafter be integrated in a composting model by implementing mass and heat balance equations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sel, İlker; Çakmakcı, Mehmet; Özkaya, Bestamin; Suphi Altan, H
2016-10-01
Main objective of this study was to develop a statistical model for easier and faster Biochemical Methane Potential (BMP) prediction of landfilled municipal solid waste by analyzing waste composition of excavated samples from 12 sampling points and three waste depths representing different landfilling ages of closed and active sections of a sanitary landfill site located in İstanbul, Turkey. Results of Principal Component Analysis (PCA) were used as a decision support tool to evaluation and describe the waste composition variables. Four principal component were extracted describing 76% of data set variance. The most effective components were determined as PCB, PO, T, D, W, FM, moisture and BMP for the data set. Multiple Linear Regression (MLR) models were built by original compositional data and transformed data to determine differences. It was observed that even residual plots were better for transformed data the R(2) and Adjusted R(2) values were not improved significantly. The best preliminary BMP prediction models consisted of D, W, T and FM waste fractions for both versions of regressions. Adjusted R(2) values of the raw and transformed models were determined as 0.69 and 0.57, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geographic patterns of cigarette butt waste in the urban environment.
Marah, Maacah; Novotny, Thomas E
2011-05-01
This reports the initial phase of a study to quantify the spatial pattern of cigarette butt waste in an urban environment. Geographic Information Systems (GIS) was used to create a weighted overlay analysis model which was then applied to the locations of businesses where cigarettes are sold or are likely to be consumed and venues where higher concentrations of butts may be deposited. The model's utility was tested using a small-scale litter audit in three zip codes of San Diego, California. We found that cigarette butt waste is highly concentrated around businesses where cigarettes are sold or consumed. The mean number of butts for predicted high waste sites was 38.1 (SD 18.87), for predicted low waste sites mean 4.8 (SD 5.9), p<0.001. Cigarette butt waste is not uniformly distributed in the urban environment, its distribution is linked to locations and patterns of sales and consumption. A GIS and weighted overlay model may be a useful tool in predicting urban locations of greater and lesser amounts of cigarette butt waste. These data can in turn be used to develop economic cost studies and plan mitigation strategies in urban communities.
Geographic patterns of cigarette butt waste in the urban environment
Novotny, Thomas E
2011-01-01
Background This reports the initial phase of a study to quantify the spatial pattern of cigarette butt waste in an urban environment. Methods Geographic Information Systems (GIS) was used to create a weighted overlay analysis model which was then applied to the locations of businesses where cigarettes are sold or are likely to be consumed and venues where higher concentrations of butts may be deposited. The model's utility was tested using a small-scale litter audit in three zip codes of San Diego, California. Results We found that cigarette butt waste is highly concentrated around businesses where cigarettes are sold or consumed. The mean number of butts for predicted high waste sites was 38.1 (SD 18.87), for predicted low waste sites mean 4.8 (SD 5.9), p<0.001. Conclusions Cigarette butt waste is not uniformly distributed in the urban environment, its distribution is linked to locations and patterns of sales and consumption. A GIS and weighted overlay model may be a useful tool in predicting urban locations of greater and lesser amounts of cigarette butt waste. These data can in turn be used to develop economic cost studies and plan mitigation strategies in urban communities. PMID:21504924
Curcio, Stefano; Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele
2014-01-01
The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.
Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele
2014-01-01
The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved. PMID:24516363
Prediction of municipal solid waste generation using nonlinear autoregressive network.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A
2015-12-01
Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.
NASA Astrophysics Data System (ADS)
Iden, S. C.; Durner, W.; Delay, M.; Frimmel, F. H.
2009-04-01
Contaminated porous materials, like soils, dredged sediments or waste materials must be tested before they can be used as filling materials in order to minimize the risk of groundwater pollution. We applied a multiple batch extraction test at varying liquid-to-solid (L/S) ratios to a demolition waste material and a municipal waste incineration product and investigated the release of chloride, sulphate, sodium, copper, chromium and dissolved organic carbon from both waste materials. The liquid phase test concentrations were used to estimate parameters of a relatively simple mass balance model accounting for equilibrium partitioning. The model parameters were estimated within a Bayesian framework by applying an efficient MCMC sampler and the uncertainties of the model parameters and model predictions were quantified. We tested isotherms of the linear, Freundlich and Langmuir type and selected the optimal isotherm model by use of the Deviance Information Criterion (DIC). Both the excellent fit to the experimental data and a comparison between the model-predicted and independently measured concentrations at the L/S ratios of 0.25 and 0.5 L/kg demonstrate the applicability of the model for almost all studied substances and both waste materials. We conclude that batch extraction tests at varying L/S ratios provide, at moderate experimental cost, a powerful complement to established test designs like column leaching or single batch extraction tests. The method constitutes an important tool in risk assessments, because concentrations at soil water contents representative for the field situation can be predicted from easier-to-obtain test concentrations at larger L/S ratios. This helps to circumvent the experimental difficulties of the soil saturation extract and eliminates the need to apply statistical approaches to predict such representative concentrations which have been shown to suffer dramatically from poor correlations.
Natural geochemical analogues of the near field of high-level nuclear waste repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apps, J.A.
1995-09-01
United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.« less
DECHLORINATION-CONTROLLED POLYCHLORINATED DIBENZOFURAN FROM MUNICIPAL WASTE INCINERATORS
The ability to predict polychlorinated dibenzofuran (PCDF) isomer patterns from municipal waste incinerators (MWIs) enables an understanding of PCDF formation that may provide preventive measures. This work develops a model for the pattern prediction, assuming that the peak rati...
Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Reid A.; Buck, Edgar C.; Chun, Jaehun
This paper reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy’s Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micron scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiationmore » fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and must be reduced prior to vitrification, but dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations lack true predictive capabilities. Recent advances in in situ microscopy, aberration corrected TEM, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.« less
Johnson, Nicholas E; Ianiuk, Olga; Cazap, Daniel; Liu, Linglan; Starobin, Daniel; Dobler, Gregory; Ghandehari, Masoud
2017-04-01
Historical municipal solid waste (MSW) collection data supplied by the New York City Department of Sanitation (DSNY) was used in conjunction with other datasets related to New York City to forecast municipal solid waste generation across the city. Spatiotemporal tonnage data from the DSNY was combined with external data sets, including the Longitudinal Employer Household Dynamics data, the American Community Survey, the New York City Department of Finance's Primary Land Use and Tax Lot Output data, and historical weather data to build a Gradient Boosting Regression Model. The model was trained on historical data from 2005 to 2011 and validation was performed both temporally and spatially. With this model, we are able to accurately (R2>0.88) forecast weekly MSW generation tonnages for each of the 232 geographic sections in NYC across three waste streams of refuse, paper and metal/glass/plastic. Importantly, the model identifies regularity of urban waste generation and is also able to capture very short timescale fluctuations associated to holidays, special events, seasonal variations, and weather related events. This research shows New York City's waste generation trends and the importance of comprehensive data collection (especially weather patterns) in order to accurately predict waste generation. Copyright © 2017. Published by Elsevier Ltd.
Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold
2015-03-01
A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yu, Meijuan; Zhao, Mingxing; Huang, Zhenxing; Xi, Kezhong; Shi, Wansheng; Ruan, Wenquan
2018-02-01
A model based on feature objects (FOs) aided strategy was used to evaluate the methane generation from food waste by anaerobic digestion. The kinetics of feature objects was tested by the modified Gompertz model and the first-order kinetic model, and the first-order kinetic hydrolysis constants were used to estimate the reaction rate of homemade and actual food waste. The results showed that the methane yields of four feature objects were significantly different. The anaerobic digestion of homemade food waste and actual food waste had various methane yields and kinetic constants due to the different contents of FOs in food waste. Combining the kinetic equations with the multiple linear regression equation could well express the methane yield of food waste, as the R 2 of food waste was more than 0.9. The predictive methane yields of the two actual food waste were 528.22 mL g -1 TS and 545.29 mL g -1 TS with the model, while the experimental values were 527.47 mL g -1 TS and 522.1 mL g -1 TS, respectively. The relative error between the experimental cumulative methane yields and the predicted cumulative methane yields were both less than 5%. Copyright © 2017 Elsevier Ltd. All rights reserved.
UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayer, M.J.; Jones, T.L.
1990-04-01
This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet thismore » need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.« less
NASA Astrophysics Data System (ADS)
Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.
2017-11-01
The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.
Modeling of urban solid waste management system: The case of Dhaka city
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sufian, M.A.; Bala, B.K.
2007-07-01
This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collectionmore » and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.« less
Li, Shuliang; Meng, Wei; Xie, Yufeng
2017-01-01
With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517
Li, Shuliang; Meng, Wei; Xie, Yufeng
2017-12-23
With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.
A data base approach for prediction of deforestation-induced mass wasting events
NASA Technical Reports Server (NTRS)
Logan, T. L.
1981-01-01
A major topic of concern in timber management is determining the impact of clear-cutting on slope stability. Deforestation treatments on steep mountain slopes have often resulted in a high frequency of major mass wasting events. The Geographic Information System (GIS) is a potentially useful tool for predicting the location of mass wasting sites. With a raster-based GIS, digitally encoded maps of slide hazard parameters can be overlayed and modeled to produce new maps depicting high probability slide areas. The present investigation has the objective to examine the raster-based information system as a tool for predicting the location of the clear-cut mountain slopes which are most likely to experience shallow soil debris avalanches. A literature overview is conducted, taking into account vegetation, roads, precipitation, soil type, slope-angle and aspect, and models predicting mass soil movements. Attention is given to a data base approach and aspects of slide prediction.
Milquez-Sanabria, Harvey; Blanco-Cocom, Luis; Alzate-Gaviria, Liliana
2016-10-03
Agro-industrial wastes are an energy source for different industries. However, its application has not reached small industries. Previous and current research activities performed on the acidogenic phase of two-phase anaerobic digestion processes deal particularly with process optimization of the acid-phase reactors operating with a wide variety of substrates, both soluble and complex in nature. Mathematical models for anaerobic digestion have been developed to understand and improve the efficient operation of the process. At present, lineal models with the advantages of requiring less data, predicting future behavior and updating when a new set of data becomes available have been developed. The aim of this research was to contribute to the reduction of organic solid waste, generate biogas and develop a simple but accurate mathematical model to predict the behavior of the UASB reactor. The system was maintained separate for 14 days during which hydrolytic and acetogenic bacteria broke down onion waste, produced and accumulated volatile fatty acids. On this day, two reactors were coupled and the system continued for 16 days more. The biogas and methane yields and volatile solid reduction were 0.6 ± 0.05 m 3 (kg VS removed ) -1 , 0.43 ± 0.06 m 3 (kg VS removed ) -1 and 83.5 ± 9.8 %, respectively. The model application showed a good prediction of all process parameters defined; maximum error between experimental and predicted value was 1.84 % for alkalinity profile. A linear predictive adaptive model for anaerobic digestion of onion waste in a two-stage process was determined under batch-fed condition. Organic load rate (OLR) was maintained constant for the entire operation, modifying effluent hydrolysis reactor feed to UASB reactor. This condition avoids intoxication of UASB reactor and also limits external buffer addition.
Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.
Peterson, Reid A; Buck, Edgar C; Chun, Jaehun; Daniel, Richard C; Herting, Daniel L; Ilton, Eugene S; Lumetta, Gregg J; Clark, Sue B
2018-01-16
This Critical Review reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micro scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and the high aluminum content must be reduced prior to vitrification for the manufacture of waste glass of acceptable durability. However, caustic leaching indicates that boehmite dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations generally only describe material balances and have not effectively predicted process performance. Recent advances in the areas of in situ microscopy, aberration-corrected transmission electron microscopy, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.
Edwards, Joel; Othman, Maazuza; Burn, Stewart; Crossin, Enda
2016-10-01
The collection of source separated kerbside municipal FW (SSFW) is being incentivised in Australia, however such a collection is likely to increase the fuel and time a collection truck fleet requires. Therefore, waste managers need to determine whether the incentives outweigh the cost. With literature scarcely describing the magnitude of increase, and local parameters playing a crucial role in accurately modelling kerbside collection; this paper develops a new general mathematical model that predicts the energy and time requirements of a collection regime whilst incorporating the unique variables of different jurisdictions. The model, Municipal solid waste collect (MSW-Collect), is validated and shown to be more accurate at predicting fuel consumption and trucks required than other common collection models. When predicting changes incurred for five different SSFW collection scenarios, results show that SSFW scenarios require an increase in fuel ranging from 1.38% to 57.59%. There is also a need for additional trucks across most SSFW scenarios tested. All SSFW scenarios are ranked and analysed in regards to fuel consumption; sensitivity analysis is conducted to test key assumptions. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Development of numerical model for predicting heat generation and temperatures in MSW landfills.
Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A
2013-10-01
A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Van Geel, Paul J; Murray, Kathleen E
2015-12-01
Twelve instrument bundles were placed within two waste profiles as waste was placed in an operating landfill in Ste. Sophie, Quebec, Canada. The settlement data were simulated using a three-component model to account for primary or instantaneous compression, secondary compression or mechanical creep and biodegradation induced settlement. The regressed model parameters from the first waste layer were able to predict the settlement of the remaining four waste layers with good agreement. The model parameters were compared to values published in the literature. A MSW landfill scenario referenced in the literature was used to illustrate how the parameter values from the different studies predicted settlement. The parameters determined in this study and other studies with total waste heights between 15 and 60 m provided similar estimates of total settlement in the long term while the settlement rates and relative magnitudes of the three components varied. The parameters determined based on studies with total waste heights less than 15m resulted in larger secondary compression indices and lower biodegradation induced settlements. When these were applied to a MSW landfill scenario with a total waste height of 30 m, the settlement was overestimated and provided unrealistic values. This study concludes that more field studies are needed to measure waste settlement during the filling stage of landfill operations and more field data are needed to assess different settlement models and their respective parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Robert; Seniow, Kendra
The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with severalmore » important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self-consistent set known as the HTWOS Pitzer database. Using Microsoft Excel to formulate the Gibbs energy minimization method and the multi-component Pitzer ion interaction equations, several predictions of the solubility of solute mixtures at various temperatures were made using the HTWOS Pitzer database coefficients. Examples of these predictions are shown in Figure 3 and Figure 4. A listing of the entire HTWOS Pitzer database can be found in RPP-RPT-50703. Currently, work is underway to install the Pitzer ion interaction model in HTWOS as the mechanism for determining the solid-liquid phase distributions of select waste constituents during tank retrievals and subsequent washing and leaching of the waste. Validation of the Pitzer ion interaction model in HTWOS will be performed with analytical laboratory data of actual tank waste. This change in HTWOS is expected to elicit shifts in mission criteria, such as mission end date and quantity of high-level waste glass produced by WTP, as predicted by HTWOS. These improvements to the speciation calculations in HTWOS, however, will establish a better planning basis and facilitate more effective and efficient future operations of the WTP. (authors)« less
Lewis, Barney D.; Goldstein, Flora J.
1982-01-01
Aqueous chemical and radioactive wastes discharged to shallow ponds and to shallow or deep wells on the Idaho National Engineering Laboratory (INEL) since 1952 have affected the quality of the ground water in the underlying Snake River Plain aquifer. The aqueous wastes have created large and laterally dispersed concentration plumes within the aquifer. The waste plumes with the largest areal distribution are those of chloride , tritium, and with high specific conductance values. The data from eight wells drilled near the southern INEL boundary during the summer of 1980 were used to evaluate the accuracy of a predictive modeling study completed in 1973, and to simulate 1980 positions of chloride and tritium plumes. Data interpretation from the drilling program indicates that the hydrogeologic characteristics of the subsurface rocks have marked effects on the regional ground-water flow regimen and, therefore, the movement of aqueous wastes. As expected, the waste plumes projected by the computer model for 1980, extended somewhat further downgradient than indicated by well data due to conservative worst-case assumptions in the model input and inacurate approximations of subsequent waste discharge and aquifer recharge conditions. (USGS)
Thermal modeling of tanks 241-AW-101 and 241-AN-104 with the TEMPEST code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.; Recknagle, K.P.
The TEMPEST code was exercised in a preliminary study of double-shell Tanks 241 -AW-101 and 241-AN-104 thermal behavior. The two-dimensional model used is derived from our earlier studies on heat transfer from Tank 241-SY-101. Several changes were made to the model to simulate the waste and conditions in 241-AW-101 and 241-AN-104. The nonconvective waste layer was assumed to be 254 cm (100 in.) thick for Tank 241-AW-101, and 381 cm (150 in.) in Tank 241-AN-104. The remaining waste was assumed, for each tank, to consist of a convective layer with a 7.6-cm (3-inch) crust on top. The waste heat loadsmore » for 241-AW-101 and 241-AN-104 were taken to be 10 kW (3.4E4 Btu/hr) and 12 kW (4.0E4 Btu/hr), respectively. Present model predictions of maximum and convecting waste temperatures are within 1.7{degrees}C (3{degrees}F) of those measured in Tanks 241-AW-101 and 241-AN-104. The difference between the predicted and measured temperature is comparable to the uncertainty of the measurement equipment. These models, therefore, are suitable for estimating the temperatures within the tanks in the event of changing air flows, waste levels, and/or waste configurations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.
We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less
Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; ...
2017-08-30
We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less
Fitamo, T; Triolo, J M; Boldrin, A; Scheutz, C
2017-08-01
The anaerobic digestibility of various biomass feedstocks in biogas plants is determined with biochemical methane potential (BMP) assays. However, experimental BMP analysis is time-consuming, costly and challenging to optimise stock management and feeding to achieve improved biogas production. The aim of the present study is to develop a fast and reliable model based on near-infrared reflectance spectroscopy (NIRS) for the BMP prediction of urban organic waste (UOW). The model comprised 87 UOW samples. Additionally, 88 plant biomass samples were included, to develop a combined model predicting BMP. The coefficient of determination (R 2 ) and root mean square error in prediction (RMSE P ) of the UOW model were 0.88 and 44 mL CH 4 /g VS, while the combined model was 0.89 and 50 mL CH 4 /g VS. Improved model performance was obtained for the two individual models compared to the combined version. The BMP prediction with NIRS was satisfactory and moderately successful. Copyright © 2017 Elsevier Ltd. All rights reserved.
Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras
2018-05-01
The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.
A study of waste liquid crystal display generation in mainland China.
Liu, Zhifeng; Xu, Zeying; Huang, Haihong; Li, Bingbing
2016-01-01
The generation of liquid crystal display waste is becoming a serious social problem. Predicting liquid crystal display waste status is the foundation for establishing a recycling network; however, the difficulty in predicting liquid crystal display waste quantity lies in data mining. In order to determine the quantity and the distribution of liquid crystal display waste in China, the four top-selling liquid crystal display products (liquid crystal display TVs, desktop PCs, notebook PCs, and mobile phones) were selected as study objects. Then, the extended logistic model and market supply A method was used to predict the quantity of liquid crystal display waste products. Moreover, the distribution of liquid crystal display waste products in different regions was evaluated by examining the consumption levels of household equipment. The results revealed that the quantity of waste liquid crystal displays would increase rapidly in the next decade. In particular, the predicted quantity of waste liquid crystal displays would rise to approximately 4.262 × 10(9) pieces in 2020, and the total display area (i.e. the surface area of liquid crystal display panels) of waste liquid crystal displays would reach 5.539 × 10(7) m(2). The prediction on the display area of waste liquid crystal display TVs showed that it would account for 71.5% of the total display area by 2020. Meanwhile, the quantity of waste mobile phones would significantly grow, increasing 5.8 times from 2012 to 2020. In terms of distribution, Guangdong is the top waste liquid crystal display-generating province in China, followed by Jiangsu, Shandong, Henan, Zhejiang, and Sichuan. Considering its regional characteristics, Guangdong has been proposed to be the most important location of the recycling network. © The Author(s) 2015.
Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.
Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P
2014-06-01
In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.
Purcell, M; Magette, W L
2009-04-01
Both planning and design of integrated municipal solid waste management systems require accurate prediction of waste generation. This research predicted the quantity and distribution of biodegradable municipal waste (BMW) generation within a diverse 'landscape' of residential areas, as well as from a variety of commercial establishments (restaurants, hotels, hospitals, etc.) in the Dublin (Ireland) region. Socio-economic variables, housing types, and the sizes and main activities of commercial establishments were hypothesized as the key determinants contributing to the spatial variability of BMW generation. A geographical information system (GIS) 'model' of BMW generation was created using ArcMap, a component of ArcGIS 9. Statistical data including socio-economic status and household size were mapped on an electoral district basis. Historical research and data from scientific literature were used to assign BMW generation rates to residential and commercial establishments. These predictions were combined to give overall BMW estimates for the region, which can aid waste planning and policy decisions. This technique will also aid the design of future waste management strategies, leading to policy and practice alterations as a function of demographic changes and development. The household prediction technique gave a more accurate overall estimate of household waste generation than did the social class technique. Both techniques produced estimates that differed from the reported local authority data; however, given that local authority reported figures for the region are below the national average, with some of the waste generated from apartment complexes being reported as commercial waste, predictions arising from this research are believed to be closer to actual waste generation than a comparison to reported data would suggest. By changing the input data, this estimation tool can be adapted for use in other locations. Although focusing on waste in the Dublin region, this method of waste prediction can have significant potential benefits if a universal method can be found to apply it effectively.
Lee, Boknam; Kullman, Seth W; Yost, Erin E; Meyer, Michael T; Worley-Davis, Lynn; Williams, C Michael; Reckhow, Kenneth H
2015-11-01
Animal feeding operations (AFOs) have been implicated as potentially major sources of estrogenic contaminants into the aquatic environment due to the relatively minimal treatment of waste and potential mobilization and transport of waste components from spray fields. In this study a Bayesian network (BN) model was developed to inform management decisions and better predict the transport and fate of natural steroidal estrogens from these sites. The developed BN model integrates processes of surface runoff and sediment loss with the modified universal soil loss equation (MUSLE) and the soil conservation service curve number (SCS-CN) runoff model. What-if scenario simulations of lagoon slurry wastes to the spray fields were conducted for the most abundant natural estrogen estrone (E1) observed in the system. It was found that E1 attenuated significantly after 2 months following waste slurry application in both spring and summer seasons, with the overall attenuation rate predicted to be higher in the summer compared to the spring. Using simulations of rainfall events in conjunction with waste slurry application rates, it was predicted that the magnitude of E1 runoff loss is significantly higher in the spring as compared to the summer months, primarily due to spray field crop management plans. Our what-if scenario analyses suggest that planting Bermuda grass in the spray fields is likely to reduce runoff losses of natural estrogens near the water bodies and ecosystems, as compared to planting of soybeans. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Boknam; Kullman, Seth W.; Yost, Erin E.; Meyer, Michael T.; Worley-Davis, Lynn; Williams, C. Michael; Reckhow, Kenneth H.
2017-01-01
Animal feeding operations (AFOs) have been implicated as potentially major sources of estrogenic contaminants into the aquatic environment due to the relatively minimal treatment of waste and potential mobilization and transport of waste components from spray fields. In this study a Bayesian network (BN) model was developed to inform management decisions and better predict the transport and fate of natural steroidal estrogens from these sites. The developed BN model integrates processes of surface runoff and sediment loss with the modified universal soil loss equation (MUSLE) and the soil conservation service curve number (SCS-CN) runoff model. What-if scenario simulations of lagoon slurry wastes to the spray fields were conducted for the most abundant natural estrogen estrone (E1) observed in the system. It was found that E1 attenuated significantly after 2 months following waste slurry application in both spring and summer seasons, with the overall attenuation rate predicted to be higher in the summer compared to the spring. Using simulations of rainfall events in conjunction with waste slurry application rates, it was predicted that the magnitude of E1 runoff loss is significantly higher in the spring as compared to the summer months, primarily due to spray field crop management plans. Our what-if scenario analyses suggest that planting Bermuda grass in the spray fields is likely to reduce runoff losses of natural estrogens near the water bodies and ecosystems, as compared to planting of soybeans. PMID:26102057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.Y.; Batchelor, B.
1999-03-01
Chemical equilibrium models are useful to evaluate stabilized/solidified waste. A general equilibrium model, SOLTEQ, a modified version of MINTEQA2 for S/S, was applied to predict the chemical speciations in the stabilized/solidified waste form. A method was developed to prepare SOLTEQ input data that can chemically represent various stabilized/solidified binders. Taylor`s empirical model was used to describe partitioning of alkali ions. As a result, SOLTEQ could represent chemical speciation in pure binder systems such as ordinary Portland cement and ordinary Portland cement + fly ash. Moreover, SOLTEQ could reasonably describe the effects on the chemical speciation due to variations in water-to-cement,more » fly ash contents, and hydration times of various binder systems. However, this application of SOLTEQ was not accurate in predicting concentrations of Ca, Si, and SO{sub 4} ions, due to uncertainties in the CSH solubility model and K{sub sp} values of cement hydrates at high pH values.« less
Development and validation of a building design waste reduction model.
Llatas, C; Osmani, M
2016-10-01
Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana
2015-05-01
Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi
2015-12-01
Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .
Waste tyre pyrolysis: modelling of a moving bed reactor.
Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M
2010-12-01
This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ren, Jingzheng
2018-01-01
Anaerobic digestion process has been recognized as a promising way for waste treatment and energy recovery in a sustainable way. Modelling of anaerobic digestion system is significantly important for effectively and accurately controlling, adjusting, and predicting the system for higher methane yield. The GM(1,N) approach which does not need the mechanism or a large number of samples was employed to model the anaerobic digestion system to predict methane yield. In order to illustrate the proposed model, an illustrative case about anaerobic digestion of municipal solid waste for methane yield was studied, and the results demonstrate that GM(1,N) model can effectively simulate anaerobic digestion system at the cases of poor information with less computational expense. Copyright © 2017 Elsevier Ltd. All rights reserved.
A BIM-based system for demolition and renovation waste estimation and planning.
Cheng, Jack C P; Ma, Lauren Y H
2013-06-01
Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.
The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in themore » predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)« less
Kafle, Gopi Krishna; Kim, Sang Hun; Sung, Kyung Ill
2013-01-01
Fish waste (FW) obtained from a fish processor was ensiled for biogas production. The FW silages were prepared by mixing FW with bread waste (BW) and brewery grain waste (BGW), and the quality of the prepared silages were evaluated. The biogas potentials of BW, BGW, three different types of FW, and FW silages were measured. A first-order kinetic model and the modified Gompertz model were also used to predict methane yield. The biogas and methane yield for FW silages after 96 days was calculated to be 671-763 mL/g VS and 441-482 mL/g VS, respectively. There were smaller differences between measured and predicted methane yield for FW silages when using a modified Gompertz model (1.1-4.3%) than when using a first-order kinetic model (22.5-32.4%). The critical HRTs and technical digestion times (T(80-90)) for the FW silages were calculated to be 21.0-23.8 days and 40.5-52.8 days, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Creating Economic Incentives for Waste Disposal in Developing Countries Using the MixAlco Process.
Lonkar, Sagar; Fu, Zhihong; Wales, Melinda; Holtzapple, Mark
2017-01-01
In rapidly growing developing countries, waste disposal is a major challenge. Current waste disposal methods (e.g., landfills and sewage treatment) incur costs and often are not employed; thus, wastes accumulate in the environment. To address this challenge, it is advantageous to create economic incentives to collect and process wastes. One approach is the MixAlco process, which uses methane-inhibited anaerobic fermentation to convert waste biomass into carboxylate salts, which are chemically converted to industrial chemicals and fuels. In this paper, humanure (raw human feces and urine) is explored as a possible nutrient source for fermentation. This work focuses on fermenting municipal solid waste (energy source) and humanure (nutrient source) in batch fermentations. Using the Continuum Particle Distribution Model (CPDM), the performance of continuous countercurrent fermentation was predicted at different volatile solid loading rates (VSLR) and liquid residence times (LRT). For a four-stage countercurrent fermentation system at VSLR = 4 g/(L∙day), LRT = 30 days, and solids concentration = 100 g/L liquid, the model predicts carboxylic acid concentration of 68 g/L and conversion of 78.5 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.; Smith, F.; Aleman, S.
2013-05-16
This report documents the development and application of computer models to describe the sorption of pertechnetate [TcO₄⁻], and its surrogate perrhenate [ReO₄⁻], on SuperLig® 639 resin. Two models have been developed: 1) A thermodynamic isotherm model, based on experimental data, that predicts [TcO₄⁻] and [ReO₄⁻] sorption as a function of solution composition and temperature and 2) A column model that uses the isotherm calculated by the first model to simulate the performance of a full-scale sorption process. The isotherm model provides a synthesis of experimental data collected from many different sources to give a best estimate prediction of the behaviormore » of the pertechnetate-SuperLig® 639 system and an estimate of the uncertainty in this prediction. The column model provides a prediction of the expected performance of the plant process by determining the volume of waste solution that can be processed based on process design parameters such as column size, flow rate and resin physical properties.« less
NASA Astrophysics Data System (ADS)
Davis, Rebecca Anne
The increase in waste disposal and energy costs has provided an incentive to convert carbohydrate-rich food waste streams into fuel. For example, dining halls and restaurants discard foods that require tipping fees for removal. An effective use of food waste may be the enzymatic hydrolysis of the waste to simple sugars and fermentation of the sugars to ethanol. As these wastes have complex compositions which may change day-to-day, experiments were carried out to test fermentability of two different types of food waste at 27° C using Saccharomyces cerevisiae yeast (ATCC4124) and Genencor's STARGEN™ enzyme in batch simultaneous saccharification and fermentation (SSF) experiments. A mathematical model of SSF based on experimentally matched rate equations for enzyme hydrolysis and yeast fermentation was developed in Matlab Simulink®. Using Simulink® parameter estimation 1.1.3, parameters for hydrolysis and fermentation were estimated through modified Michaelis-Menten and Monod-type equations with the aim of predicting changes in the levels of ethanol and glycerol from different initial concentrations of glucose, fructose, maltose, and starch. The model predictions and experimental observations agree reasonably well for the two food waste streams and a third validation dataset. The approach of using Simulink® as a dynamic visual model for SSF represents a simple method which can be applied to a variety of biological pathways and may be very useful for systems approaches in metabolic engineering in the future.
IONSIV(R) IE-911 Performance in Savannah River Site Radioactive Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, D.D.
2001-06-04
This report describes cesium sorption from high-level radioactive waste solutions onto IONSIV(R) IE-911 at ambient temperature. Researchers characterized six radioactive waste samples from five high-level waste tanks in the Savannah River Site tank farm, diluted the wastes to 5.6 M Na+, and made equilibrium and kinetic measurements of cesium sorption. The equilibrium measurements were compared to ZAM (Zheng, Anthony, and Martin) model predictions. The kinetic measurements were compared to simulant solutions whose column performance has been measured.
IN-PACKAGE CHEMISTRY ABSTRACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Thomas
2005-07-14
This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less
Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management
NASA Astrophysics Data System (ADS)
Tan, S. T.; Hashim, H.
2014-02-01
Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.
Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K
2005-01-01
Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MACKEY, T.C.
M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Themore » overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis reported in Carpenter et al. (2006), the results of the two investigations will be compared to help determine if a more refined sub-model of the primary tank is necessary to capture the important fluid-structure interaction effects in the tank and if so, how to best utilize a refined sub-model of the primary tank. Both rigid tank and flexible tank configurations were analyzed with ANSYS. The response parameters of interest are total hydrodynamic reaction forces, impulsive and convective mode frequencies, waste pressures, and slosh heights. To a limited extent: tank stresses are also reported. The results of this study demonstrate that the ANSYS model has the capability to adequately predict global responses such as frequencies and overall reaction forces. Thus, the model is suitable for predicting the global response of the tank and contained waste. On the other hand, while the ANSYS model is capable of adequately predicting waste pressures and primary tank stresses in a large portion of the waste tank, the model does not accurately capture the convective behavior of the waste near the free surface, nor did the model give accurate predictions of slosh heights. Based on the ability of the ANSYS benchmark model to accurately predict frequencies and global reaction forces and on the results presented in Abatt, et al. (2006), the global ANSYS model described in Carpenter et al. (2006) is sufficient for the seismic evaluation of all tank components except for local areas of the primary tank. Due to the limitations of the ANSYS model in predicting the convective response of the waste, the evaluation of primary tank stresses near the waste free surface should be supplemented by results from an ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions. However, the primary tank is expected to have low demand to capacity ratios in the upper wall. Moreover, due to the less than desired mesh resolution in the primary tank knuckle of the global ANSYS model, the evaluation of the primary tank stresses in the lower knuckle should be supplemented by results from a more refined ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions.« less
NASA Astrophysics Data System (ADS)
Xu, Xijin; Tang, Qian; Xia, Haiyue; Zhang, Yuling; Li, Weiqiu; Huo, Xia
2016-04-01
Chaotic time series prediction based on nonlinear systems showed a superior performance in prediction field. We studied prenatal exposure to polychlorinated biphenyls (PCBs) by chaotic time series prediction using the least squares self-exciting threshold autoregressive (SEATR) model in umbilical cord blood in an electronic waste (e-waste) contaminated area. The specific prediction steps basing on the proposal methods for prenatal PCB exposure were put forward, and the proposed scheme’s validity was further verified by numerical simulation experiments. Experiment results show: 1) seven kinds of PCB congeners negatively correlate with five different indices for birth status: newborn weight, height, gestational age, Apgar score and anogenital distance; 2) prenatal PCB exposed group at greater risks compared to the reference group; 3) PCBs increasingly accumulated with time in newborns; and 4) the possibility of newborns suffering from related diseases in the future was greater. The desirable numerical simulation experiments results demonstrated the feasibility of applying mathematical model in the environmental toxicology field.
Xu, Xijin; Tang, Qian; Xia, Haiyue; Zhang, Yuling; Li, Weiqiu; Huo, Xia
2016-01-01
Chaotic time series prediction based on nonlinear systems showed a superior performance in prediction field. We studied prenatal exposure to polychlorinated biphenyls (PCBs) by chaotic time series prediction using the least squares self-exciting threshold autoregressive (SEATR) model in umbilical cord blood in an electronic waste (e-waste) contaminated area. The specific prediction steps basing on the proposal methods for prenatal PCB exposure were put forward, and the proposed scheme’s validity was further verified by numerical simulation experiments. Experiment results show: 1) seven kinds of PCB congeners negatively correlate with five different indices for birth status: newborn weight, height, gestational age, Apgar score and anogenital distance; 2) prenatal PCB exposed group at greater risks compared to the reference group; 3) PCBs increasingly accumulated with time in newborns; and 4) the possibility of newborns suffering from related diseases in the future was greater. The desirable numerical simulation experiments results demonstrated the feasibility of applying mathematical model in the environmental toxicology field. PMID:27118260
Finite element analysis of ion transport in solid state nuclear waste form materials
NASA Astrophysics Data System (ADS)
Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.
2017-09-01
Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.
Akulume, Martha; Kiwanuka, Suzanne N
2016-01-01
Objective . The goal of this study was to assess the appropriateness of the theory of planned behavior in predicting health care waste segregation behaviors and to examine the factors that influence waste segregation behaviors. Methodology . One hundred and sixty-three health workers completed a self-administered questionnaire in a cross-sectional survey that examined the theory of planned behavior constructs (attitudes, subjective norms, perceived behavioral control, and intention) and external variables (sociodemographic factors, personal characteristics, organizational characteristics, professional characteristics, and moral obligation). Results . For their most recent client 21.5% of the health workers reported that they most definitely segregated health care waste while 5.5% did not segregate. All the theory of planned behavior constructs were significant predictors of health workers' segregation behavior, but intention emerged as the strongest and most significant ( r = 0.524, P < 0.001). The theory of planned behavior model explained 52.5% of the variance in health workers' segregation behavior. When external variables were added, the new model explained 66.7% of the variance in behavior. Conclusion . Generally, health workers' health care waste segregation behavior was high. The theory of planned behavior significantly predicted health workers' health care waste segregation behaviors.
Optimization of waste combinations during in-vessel composting of agricultural waste.
Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh
2017-01-01
In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jack C.P., E-mail: cejcheng@ust.hk; Ma, Lauren Y.H., E-mail: yingzi@ust.hk
Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R wastemore » disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D and R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control.« less
Berlin, William H.; Brooke, L.T.; Stone, Linda J.
1977-01-01
The model was used to predict the effects of small temperature increases (caused by a hypothetical waste-heat discharge) on the rate of development and time of hatching of lake whitefish eggs. According to this simulation, continuous addition of waste heat sufficient to raise the temperature 1, 2, or 3 C above ambient on the spawning grounds during December-April would advance the time of hatching 8, 16, or 21 days, respectively. Possible effects of this advancement on the reproductive success of whitefish are discussed.
Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gervasio, V.; Kim, D. S.; Vienna, J. D.
Analyses were performed to evaluate the impacts of using the advanced glass models, constraints, and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increasemore » in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less
Predicting the Lifetimes of Nuclear Waste Containers
NASA Astrophysics Data System (ADS)
King, Fraser
2014-03-01
As for many aspects of the disposal of nuclear waste, the greatest challenge we have in the study of container materials is the prediction of the long-term performance over periods of tens to hundreds of thousands of years. Various methods have been used for predicting the lifetime of containers for the disposal of high-level waste or spent fuel in deep geological repositories. Both mechanical and corrosion-related failure mechanisms need to be considered, although until recently the interactions of mechanical and corrosion degradation modes have not been considered in detail. Failure from mechanical degradation modes has tended to be treated through suitable container design. In comparison, the inevitable loss of container integrity due to corrosion has been treated by developing specific corrosion models. The most important aspect, however, is to be able to justify the long-term predictions by demonstrating a mechanistic understanding of the various degradation modes.
The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...
Al-Khatib, Issam A; Eleyan, Derar; Garfield, Joy
2016-09-01
Hospitals and health centers provide a variety of healthcare services and normally generate hazardous waste as well as general waste. General waste has a similar nature to that of municipal solid waste and therefore could be disposed of in municipal landfills. However, hazardous waste poses risks to public health, unless it is properly managed. The hospital waste management system encompasses many factors, i.e., number of beds, number of employees, level of service, population, birth rate, fertility rate, and not in my back yard (NIMBY) syndrome. Therefore, this management system requires a comprehensive analysis to determine the role of each factor and its influence on the whole system. In this research, a hospital waste management simulation model is presented based on the system dynamics technique to determine the interaction among these factors in the system using a software package, ithink. This model is used to estimate waste segregation as this is important in the hospital waste management system to minimize risk to public health. Real data has been obtained from a case study of the city of Nablus, Palestine to validate the model. The model exhibits wastes generated from three types of hospitals (private, charitable, and government) by considering the number of both inpatients and outpatients depending on the population of the city under study. The model also offers the facility to compare the total waste generated among these different types of hospitals and anticipate and predict the future generated waste both infectious and non-infectious and the treatment cost incurred.
Garitte, B.; Shao, H.; Wang, X. R.; ...
2017-01-09
Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garitte, B.; Shao, H.; Wang, X. R.
Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less
Targeted intervention strategies to optimise diversion of BMW in the Dublin, Ireland region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purcell, M., E-mail: mary.purcell@cit.ie; Centre for Water Resources Research, School of Architecture, Landscape and Civil Engineering, University College Dublin, Newstead, Belfield, Dublin 4; Magette, W.L.
Highlights: > Previous research indicates that targeted strategies designed for specific areas should lead to improved diversion. > Survey responses and GIS model predictions from previous research were the basis for goal setting. > Then logic modelling and behavioural research were employed to develop site-specific management intervention strategies. > Waste management initiatives can be tailored to specific needs of areas rather than one size fits all means currently used. - Abstract: Urgent transformation is required in Ireland to divert biodegradable municipal waste (BMW) from landfill and prevent increases in overall waste generation. When BMW is optimally managed, it becomes amore » resource with value instead of an unwanted by-product requiring disposal. An analysis of survey responses from commercial and residential sectors for the Dublin region in previous research by the authors proved that attitudes towards and behaviour regarding municipal solid waste is spatially variable. This finding indicates that targeted intervention strategies designed for specific geographic areas should lead to improved diversion rates of BMW from landfill, a requirement of the Landfill Directive 1999/31/EC. In the research described in this paper, survey responses and GIS model predictions from previous research were the basis for goal setting, after which logic modelling and behavioural research were employed to develop site-specific waste management intervention strategies. The main strategies devised include (a) roll out of the Brown Bin (Organics) Collection and Community Workshops in Dun Laoghaire Rathdown, (b) initiation of a Community Composting Project in Dublin City (c) implementation of a Waste Promotion and Motivation Scheme in South Dublin (d) development and distribution of a Waste Booklet to promote waste reduction activities in Fingal (e) region wide distribution of a Waste Booklet to the commercial sector and (f) Greening Irish Pubs Initiative. Each of these strategies was devised after interviews with both the residential and commercial sectors to help make optimal waste management the norm for both sectors. Strategy (b), (e) and (f) are detailed in this paper. By integrating a human element into accepted waste management approaches, these strategies will make optimal waste behaviour easier to achieve. Ultimately this will help divert waste from landfill and improve waste management practice as a whole for the region. This method of devising targeted intervention strategies can be adapted for many other regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.
The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction ofmore » accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.« less
Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamecnik, J.; Edwards, T.
The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) statemore » of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.« less
Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.
Yang, Yongxiang; Pijnenborg, Marc J A; Reuter, Markus A; Verwoerd, Joep
2005-01-01
Hazardous wastes have complex physical forms and chemical compositions and are normally incinerated in rotary kilns for safe disposal and energy recovery. In the rotary kiln, the multifeed stream and wide variation of thermal, physical, and chemical properties of the wastes cause the incineration system to be highly heterogeneous, with severe temperature fluctuations and unsteady combustion chemistry. Incomplete combustion is often the consequence, and the process is difficult to control. In this article, modeling of the waste combustion is described by using computational fluid dynamics (CFD). Through CFD simulation, gas flow and mixing, turbulent combustion, and heat transfer inside the incinerator were predicted and visualized. As the first step, the waste in various forms was modeled to a hydrocarbon-based virtual fuel mixture. The combustion of the simplified waste was then simulated with a seven-gas combustion model within a CFD framework. Comparison was made with previous global three-gas combustion model with which no chemical behavior can be derived. The distribution of temperature and chemical species has been investigated. The waste combustion model was validated with temperature measurements. Various operating conditions and the influence on the incineration performance were then simulated. Through this research, a better process understanding and potential optimization of the design were attained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.; Kawase, Y.
2006-07-01
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less
The potential role of aerobic biological waste treatment in regenerative life support systems
NASA Technical Reports Server (NTRS)
Shuler, M. L.; Nafis, D.; Sze, E.
1981-01-01
The purpose of the paper is to make a preliminary assessment of the feasibility of using aerobic biological waste treatment in closed systems. Issues that are addressed in this paper are: (1) how high a degree of material balance is possible, (2) how much might such a system weigh, and (3) how would system closure and weight be affected if animals were included in the system. A computer model has been developed to calculate for different scenarios the compositions and amounts of the streams entering or leaving the waste treatment system and to estimate the launch weight of such a system. A bench scale apparatus has been built to mimic the proposed waste treatment system; the experiments are used to verify model predictions and to improve model parameter estimations.
Estimation of methane emission rate changes using age-defined waste in a landfill site.
Ishii, Kazuei; Furuichi, Toru
2013-09-01
Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample's methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.0501/y and 0.0621/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35×10(4)m(3)-CH(4), which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34×10(5)t-CO(2)/y). Copyright © 2013 Elsevier Ltd. All rights reserved.
Cementitious Barriers Partnership - FY2015 End-Year Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, H. H.; Flach, G. P.; Langton, C. A.
2015-09-17
The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis)more » for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.« less
Model calibration and validation for OFMSW and sewage sludge co-digestion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, G., E-mail: giovanni.esposito@unicas.it; Frunzo, L., E-mail: luigi.frunzo@unina.it; Panico, A., E-mail: anpanico@unina.it
2011-12-15
Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Watermore » Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.« less
Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Aguilar
This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less
Mathematical modeling of heavy metals contamination from MSW landfill site in Khon Kaen, Thailand.
Tantemsapya, N; Naksakul, Y; Wirojanagud, W
2011-01-01
Kham Bon landfill site is one of many municipality waste disposal sites in Thailand which are in an unsanitary condition. The site has been receiving municipality wastes without separating hazardous waste since 1968. Heavy metals including, Pb, Cr and Cd are found in soil and groundwater around the site, posing a health risk to people living nearby. In this research, contamination transport modelling of Pb, Cr and Cd was simulated using MODFLOW for two periods, at the present (2010) and 20 years prediction (2030). Model results showed that heavy metals, especially Pb and Cr migrated toward the north-eastern and south-eastern direction. The 20 years prediction showed that, heavy metals tend to move from the top soil to the deeper aquifer. The migration would not exceed 500 m radius from the landfill centre in the next 20 years, which is considered to be a slow process. From the simulation model, it is recommended that a mitigation measure should be performed to reduce the risk from landfill contamination. Hazardous waste should be separated for proper management. Groundwater contamination in the aquifer should be closely monitored. Consumption of groundwater in a 500 m radius must be avoided. In addition, rehabilitation of the landfill site should be undertaken to prevent further mobilization of pollutants.
Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank
Lee, S. Y.; Smith, III, F. G.
2014-07-25
A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermalmore » response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.« less
Liang, Sai; Zhang, Tianzhu
2012-01-01
Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter
2015-06-01
Methane (CH₄) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required categories. In general, the single-phase model, LandGEM, significantly overestimated CH₄generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH₄potential (BMP) and CH₄generation rate constant (k-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH₄generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only the total disposed waste amount, but also various waste categories. By using laboratory-determined BMPs and k-values for shredder, sludge, mixed bulky waste, and street-cleaning waste, the Afvalzorg model was revised. The revised model estimated smaller cumulative CH₄generation results at the four Danish landfills (from the start of disposal until 2020 and until 2100). Through a CH₄mass balance approach, fugitive CH₄emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field measurements, indicating that the revised Afvalzorg model could provide practical and accurate estimation for Danish LFG emissions. This study is valuable for both researchers and engineers aiming to predict, control, and mitigate fugitive CH₄emissions from landfills receiving low-organic waste. Landfill operators use the first-order decay (FOD) models to estimate methane (CH₄) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in overestimation when handling a low-organic waste scenario. Site-specific data were important and capable of calibrating key parameter values in FOD models. The comparison study of the revised Afvalzorg model outcomes and field measurements at four Danish landfills provided a guideline for revising the Pollutants Release and Transfer Registers (PRTR) model, as well as indicating noteworthy waste fractions that could emit CH₄at modern landfills.
Thermodynamic model of natural, medieval and nuclear waste glass durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.M.; Plodinec, M.J.
1983-01-01
A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt frommore » the Hanford Reservation (10/sup 6/ years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table.« less
NASA Astrophysics Data System (ADS)
Pruess, K.; Wang, J. S. Y.; Tsang, Y. W.
1990-06-01
We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated, fractured porous rock. Formation parameters were chosen as representative of the potential nuclear waste repository site in the Topopah Spring unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects believed to be important in multiphase fluid and heat flow. It has provisions for handling the extreme nonlinearities that arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. Thermohydrologic conditions in the vicinity of the waste packages are found to depend strongly on relative permeability and capillary pressure characteristics of the fractures, which are unknown at the present time. If liquid held on the rough walls of drained fractures is assumed to be mobile, strong heat pipe effects are predicted. Under these conditions the host rock will remain in two-phase conditions right up to the emplacement hole, and formation temperatures will peak near 100°C. If it is assumed that liquid cannot move along drained fractures, the region surrounding the waste packages is predicted to dry up, and formation temperatures will rise beyond 200°C. A substantial fraction of waste heat can be removed if emplacement holes are left open and ventilated, as opposed to backfilled and sealed emplacement conditions. Comparing our model predictions with observations from in situ heater experiments reported by Zimmerman and coworkers, some intriguing similarities are noted. However, for a quantitative evaluation, additional carefully controlled laboratory and field experiments will be needed.
Radioactive waste disposal in the marine environment
NASA Astrophysics Data System (ADS)
Anderson, D. R.
In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.
NASA Astrophysics Data System (ADS)
Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.
2006-12-01
For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need existed to simulate the failure processes of the waste containers, with subsequent leaching of the waste form to the underlying host rock. The Breach, Leach, and Transport Multiple Species (BLT-MS) code was selected to meet these needs. BLT-MS also has a 2-D finite-element advective-dispersive transport module, with radionuclide in-growth and decay. BLT-MS does not solve the groundwater flow equation, but instead requires the input of Darcy flow velocity terms. These terms were abstracted from a groundwater flow model using the FEHM code. For the shallow land burial site, the HELP code was also used to evaluate the performance of the protective cover. The GoldSim code was used for two purposes: quantifying uncertainties in the predictions, and providing a platform to evaluate an alternative conceptual model involving matrix-diffusion transport. Results of the preliminary performance assessment analyses using examples to illustrate the computational framework will be presented. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
Review of concrete biodeterioration in relation to nuclear waste.
Turick, Charles E; Berry, Christopher J
2016-01-01
Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. Copyright © 2015. Published by Elsevier Ltd.
2012-03-22
Fabric 3.85% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 1.32% Yard waste 5.67% PVC (Class 3...plastics, milk jugs) 1.23% Cardboard 31.33% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 0.62
Gaseous emissions from the combustion of a waste mixture containing a high concentration of N2O.
Dong, Changqing; Yang, Yongping; Zhang, Junjiao; Lu, Xuefeng
2009-01-01
This paper is focused on reducing the emissions from the combustion of a waste mixture containing a high concentration of N2O. A rate model and an equilibrium model were used to predict gaseous emissions from the combustion of the mixture. The influences of temperature and methane were considered, and the experimental research was carried out in a tabular reactor and a pilot combustion furnace. The results showed that for the waste mixture, the combustion temperature should be in the range of 950-1100 degrees C and the gas residence time should be 2s or higher to reduce emissions.
Geochemical transformations and modeling of two deep-well injected hazardous wastes
Roy, W.R.; Seyler, B.; Steele, J.D.; Mravik, S.C.; Moore, D.M.; Krapac, I.G.; Peden, J.M.; Griffin, R.A.
1991-01-01
Two liquid hazardous wastes (an alkaline brine-like solution and a dilute acidic waste) were mixed with finely ground rock samples of three injection-related lithologies (sandstone, dolomite, and siltstone) for 155 to 230 days at 325??K-10.8 MPa. The pH and inorganic chemical composition of the alkaline waste were not significantly altered by any of the rock samples after 230 days of mixing. The acidic waste was neutralized as a consequence of carbonate dissolution, ion exchange, or clay-mineral dissolution, and hence was transformed into a nonhazardous waste. Mixing the alkaline waste with the solid phases yielded several reaction products: brucite, Mg(OH)2; calcite, CaCO3; and possibly a type of sodium metasilicate. Clay-like minerals formed in the sandstone, and hydrotalcite, Mg6Al2-CO3(OH)16??4H2O, may have formed in the siltstone at trace levels. Mixing the alkaline waste with a synthetic brine yielded brucite, calcite, and whewellite (CaC2O4??H2O). The thermodynamic model PHRQPITZ predicted that brucite and calcite would precipitate from solution in the dolomite and siltstone mixtures and in the alkaline waste-brine system. The dilute acidic waste did not significantly alter the mineralogical composition of the three rock types after 155 days of contact. The model PHREEQE indicated that the calcite was thermodynamically stable in the dolomite and siltstone mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Heather; Flach, Greg; Smith, Frank
2015-01-27
The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods andmore » data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance assessments, and Nuclear Regulatory Commission reviews of commercial nuclear power plant (NPP) structures which are part of the overall US Energy Security program to extend the service life of NPPs. In addition, the CBP experimental programs have had a significant impact on the DOE complex by providing specific data unique to DOE sodium salt wastes at Hanford and SRS which are not readily available in the literature. Two recent experimental programs on cementitious phase characterization and on technetium (Tc) mobility have provided significant conclusions as follows: recent mineralogy characterization discussed in this paper illustrates that sodium salt waste form matrices are somewhat similar to but not the same as those found in blended cement matrices which to date have been used in long-term thermodynamic modeling and contaminant sequestration as a first approximation. Utilizing the CBP generated data in long-term performance predictions provides for a more defensible technical basis in performance evaluations. In addition, recent experimental studies related to technetium mobility indicate that conventional leaching protocols may not be conservative for direct disposal of Tc-containing waste forms in vadose zone environments. These results have the potential to influence the current Hanford supplemental waste treatment flow sheet and disposal conceptual design.« less
Al-Khatib, Issam A; Abu Fkhidah, Ismail; Khatib, Jumana I; Kontogianni, Stamatia
2016-03-01
Forecasting of hospital solid waste generation is a critical challenge for future planning. The composition and generation rate of hospital solid waste in hospital units was the field where the proposed methodology of the present article was applied in order to validate the results and secure the outcomes of the management plan in national hospitals. A set of three multiple-variable regression models has been derived for estimating the daily total hospital waste, general hospital waste, and total hazardous waste as a function of number of inpatients, number of total patients, and number of beds. The application of several key indicators and validation procedures indicates the high significance and reliability of the developed models in predicting the hospital solid waste of any hospital. Methodology data were drawn from existent scientific literature. Also, useful raw data were retrieved from international organisations and the investigated hospitals' personnel. The primal generation outcomes are compared with other local hospitals and also with hospitals from other countries. The main outcome, which is the developed model results, are presented and analysed thoroughly. The goal is this model to act as leverage in the discussions among governmental authorities on the implementation of a national plan for safe hospital waste management in Palestine. © The Author(s) 2016.
The impacts of NAFTA on U.S. and Canadian forest product exports to Mexico
Jeffrey P. Prestemon; Joseph Buongiorno
1996-01-01
The North American Free Trade Agreement (NAFTA) will lower barriers to trade and investment across the continent. This paper presents predictions of the effects of NAFTA on Mexico's imports of intermediate wood products, scrap and waste paper, pulp, and newsprint from the United States and Canada. Predictions were made with a partial equilibrium model. Model...
An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification.
Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás
2016-02-04
Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R²) and root mean square errors of prediction (RMSEP) were determined as R² > 0.944 and RMSEP < 1.782 for PLS and R² > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step.
Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.W.
1979-01-04
Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric andmore » 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
JACKSON VL
2011-08-31
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance atmore » full-scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, Kyle; Bordia, Rajendra; Reifsnider, Kenneth
This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.
Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, E., E-mail: evelien.martens@csiro.a; Jacques, D.; Van Gerven, T.
2010-08-15
Results from extraction tests on cement-waste samples were simulated with a thermodynamic equilibrium model using a consistent database, to which lead data were added. Subsequent diffusion tests were modeled by means of a 3D diffusive transport model combined with the geochemical model derived from the extraction tests. Modeling results of the leached major element concentrations for both uncarbonated and (partially) carbonated samples agreed well with the extraction test using the set of pure minerals and solid solutions present in the database. The observed decrease in Ca leaching with increasing carbonation level was qualitatively predicted. Simulations also revealed that Pb leachingmore » is not controlled by dissolution/precipitation only. The addition of the calcite-cerrusite solid solution and adsorption reactions on amorphous Fe- and Al-oxides improved the predictions and are considered to control the Pb leaching during the extractions tests. The dynamic diffusive leaching tests were appropriately modeled for Na, K, Ca and Pb.« less
Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huckman, M.E.; Latheef, I.M.; Anthony, R.G.
1999-04-01
The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferablemore » because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.« less
Yousefi Kebria, D; Ghavami, M; Javadi, S; Goharimanesh, M
2017-12-16
In the contemporary world, urbanization and progressive industrial activities increase the rate of waste material generated in many developed countries. Municipal solid waste landfills (MSWs) are designed to dispose the waste from urban areas. However, discharged landfill leachate, the soluble water mixture that filters through solid waste landfills, can potentially migrate into the soil and affect living organisms by making harmful biological changes in the ecosystem. Due to well-documented landfill problems involving contamination, it is necessary to investigate the long-term influence of discharged leachate on the consistency of the soil beds beneath MSW landfills. To do so, the current study collected vertical deep core samples from different locations in the same unlined landfill. The impacts of effluent leachate on physical and chemical properties of the soil and its propagation depth were studied, and the leachate-transport pattern between successive boreholes was predicted by a developed mathematical model using an adaptive neuro-fuzzy inference system (ANFIS). The decomposition of organic leachate admixtures in the landfill yield is to produce organic acids as well as carbon dioxide, which diminishes the pH level of the landfill soil. The chemical analysis of discharged leachate in the soil samples showed that the concentrations of heavy metals are much lower than those of chloride, COD, BOD 5 , and bicarbonate. Using linear regression and mean square errors between the measured and predicted data, the accuracy of the proposed ANFIS model has been validated. Results show a high correlation between observed and predicated data.
Seal Formation Mechanism Beneath Animal Waste Holding Ponds
NASA Astrophysics Data System (ADS)
Cihan, A.; Tyner, J. S.; Wright, W. C.
2005-12-01
Infiltration of animal waste from holding ponds can cause contamination of groundwater. Typically, the initial flux from a pond decreases rapidly as a seal of animal waste particulates is deposited at the base of the pond. The purpose of this study was to investigate the mechanism of the seal formation. Twenty-four soil columns (10-cm diameter by 43-cm long) were hand-packed with sand, silty loam or clay soils. A 2.3 m column of dairy or swine waste was applied to the top of the each column. The leakage rate from each column was measured with respect to time to analyze the effect of seal formation on different soil textures and animal waste types. We tested our hypothesis that seal growth and the subsequent decrease of leachate production adheres to a filter cake growth model. Said model predicts that the cumulative leakage rate is proportional to the square root of time and to the square root of the height of the waste.
Dhussa, Anil K; Sambi, Surinder S; Kumar, Shashi; Kumar, Sandeep; Kumar, Surendra
2014-10-01
In waste-to-energy plants, there is every likelihood of variations in the quantity and characteristics of the feed. Although intermediate storage tanks are used, but many times these are of inadequate capacity to dampen the variations. In such situations an anaerobic digester treating waste slurry operates under dynamic conditions. In this work a special type of dynamic Artificial Neural Network model, called Nonlinear Autoregressive Exogenous model, is used to model the dynamics of anaerobic digesters by using about one year data collected on the operating digesters. The developed model consists of two hidden layers each having 10 neurons, and uses 18days delay. There are five neurons in input layer and one neuron in output layer for a day. Model predictions of biogas production rate are close to plant performance within ±8% deviation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C; Berry, C.
Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in thismore » field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.« less
Analysis of solid waste from ships and modeling of its generation on the river Danube in Serbia.
Ulniković, Vladanka Presburger; Vukić, Marija; Milutinović-Nikolić, Aleksandra
2013-06-01
This study focuses on the issues related to the waste management in river ports in general and, particularly, in ports on the river Danube's flow through Serbia. The ports of Apatin, Bezdan, Backa Palanka, Novi Sad, Belgrade, Smederevo, Veliko Gradiste, Prahovo and Kladovo were analyzed. The input data (number of watercrafts, passengers and crew members) were obtained from harbor authorities for the period 2005-2009. The quantities of solid waste generated on both cruise and cargo ships are considered in this article. As there is no strategy for waste treatment in the ports in Serbia, these data are extremely valuable for further design of equipment for waste treatment and collection. Trends in data were analyzed and regression models were used to predict the waste quantities in each port in next 3 years. The obtained trends could be utilized as the basis for the calculation of the equipment capacities for waste selection, collection, storage and treatment. The results presented in this study establish the need for an organized management system for this type of waste, as well as suggest where the terminals for collection, storage and treatment of solid waste from ships should be located.
Danon-Schaffer, Monica N; Mahecha-Botero, Andrés; Grace, John R; Ikonomou, Michael
2013-09-01
Previous research on brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) has largely focussed on their concentrations in the environment and their adverse effects on human health. This paper explores their transfer from waste streams to water and soil. A comprehensive mass balance model is developed to track polybrominated diphenyl ethers (PBDEs), originating from e-waste and non-e-waste solids leaching from a landfill. Stepwise debromination is assumed to occur in three sub-systems (e-waste, aqueous leachate phase, and non-e-waste solids). Analysis of landfill samples and laboratory results from a solid-liquid contacting chamber are used to estimate model parameters to simulate an urban landfill system, for past and future scenarios. Sensitivity tests to key model parameters were conducted. Lower BDEs require more time to disappear than high-molecular weight PBDEs, since debromination takes place in a stepwise manner, according to the simplified reaction scheme. Interphase mass transfer causes the decay pattern to be similar in all three sub-systems. The aqueous phase is predicted to be the first sub-system to eliminate PBDEs if their input to the landfill were to be stopped. The non-e-waste solids would be next, followed by the e-waste sub-system. The model shows that mass transfer is not rate-limiting, but the evolution over time depends on the kinetic degradation parameters. Experimental scatter makes model testing difficult. Nevertheless, the model provides qualitative understanding of the influence of key variables. Copyright © 2013 Elsevier B.V. All rights reserved.
Precipitation of nitrate-cancrinite in Hanford Tank Sludge.
Buck, E C; McNamara, B K
2004-08-15
The chemistry of underground storage tanks containing high-level waste at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford tanks, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na8(K,Cs)(AlSiO4)6(NO3)2 x nH2O] extracted from a Hanford tank 241-AP-101 sample that was evaporated to 6, 8, and 10 M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 microm in diameter) that consisted of platy hexagonal crystals (approximately 0.2 microm thick). Cesium-137 was concentrated in these aluminosilicate structures. These phases possessed a morphology identical to that of nitrate-cancrinite synthesized using simulant tests of nonradioactive tank waste, supporting the contention that it is possible to develop nonradioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO3-cancrinite and related phases. Knowledge of the detailed structure of actual phases in the tank waste helps with thermodynamic modeling of tank conditions and waste processing.
Co-digestion of solid waste: Towards a simple model to predict methane production.
Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme
2018-04-01
Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A
2004-10-01
After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.
NASA Astrophysics Data System (ADS)
Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi
2017-06-01
Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.
Forecasting of municipal solid waste quantity in a developing country using multivariate grey models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intharathirat, Rotchana, E-mail: rotchana.in@gmail.com; Abdul Salam, P., E-mail: salam@ait.ac.th; Kumar, S., E-mail: kumar@ait.ac.th
Highlights: • Grey model can be used to forecast MSW quantity accurately with the limited data. • Prediction interval overcomes the uncertainty of MSW forecast effectively. • A multivariate model gives accuracy associated with factors affecting MSW quantity. • Population, urbanization, employment and household size play role for MSW quantity. - Abstract: In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developingmore » countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435–44,994 tonnes per day in 2013 to 55,177–56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period.« less
Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system.
Yu, Liang; Zhao, Quanbao; Ma, Jingwei; Frear, Craig; Chen, Shulin
2012-11-01
This study established a comprehensive model to configure a new two-stage high solid anaerobic digester (HSAD) system designed for highly degradable organic fraction of municipal solid wastes (OFMSW). The HSAD reactor as the first stage was naturally separated into two zones due to biogas floatation and low specific gravity of solid waste. The solid waste was retained in the upper zone while only the liquid leachate resided in the lower zone of the HSAD reactor. Continuous stirred-tank reactor (CSTR) and advective-diffusive reactor (ADR) models were constructed in series to describe the whole system. Anaerobic digestion model No. 1 (ADM1) was used as reaction kinetics and incorporated into each reactor module. Compared with the experimental data, the simulation results indicated that the model was able to well predict the pH, volatile fatty acid (VFA) and biogas production. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horng, Jao-Jia; Lee, R.F.; Liao, K.Y.
2004-03-31
Using a system dynamic model (SDM), such as STELLA, to analyze the waste management policy is a new trial for Taiwan's research communities. We have developed an easy and relatively accurate model for analyzing the greenhouse gases emission for the wastes from animal farming and municipalities. With the local research data of the past decade, we extract the most prominent factors and assemble the SDM. The results and scenarios were compared with the national inventory. By comparing to the past data, we found these models reasonably represent the situation in Taiwan. However, SDM can program many scenarios and produce amore » lot of prediction data. With the development of many program control tools on STELLA, we believe the models could be further used by researchers or policy-makers to find the needed research topics, to set the future scenarios and to determine the management tools.« less
NASA Astrophysics Data System (ADS)
MacDonald, D. D.; Saleh, A.; Lee, S. K.; Azizi, O.; Rosas-Camacho, O.; Al-Marzooqi, A.; Taylor, M.
2011-04-01
The prediction of corrosion damage of canisters to experimentally inaccessible times is vitally important in assessing various concepts for the disposal of High Level Nuclear Waste. Such prediction can only be made using deterministic models, whose predictions are constrained by the time-invariant natural laws. In this paper, we describe the measurement of experimental electrochemical data that will allow the prediction of damage to the carbon steel overpack of the super container in Belgium's proposed Boom Clay repository by using the Point Defect Model (PDM). PDM parameter values are obtained by optimizing the model on experimental, wide-band electrochemical impedance spectroscopy data.
Demolition waste generation for development of a regional management chain model.
Bernardo, Miguel; Gomes, Marta Castilho; de Brito, Jorge
2016-03-01
Even though construction and demolition waste (CDW) is the bulkiest waste stream, its estimation and composition in specific regions still faces major difficulties. Therefore new methods are required especially when it comes to make predictions limited to small areas, such as counties. This paper proposes one such method, which makes use of data collected from real demolition works and statistical information on the geographical area under study. Based on a correlation analysis between the demolition waste estimates and indicators such as population density, buildings ageing index, buildings density and land occupation type, relationships are established that can be used to determine demolition waste outputs in a given area. The derived models are presented and explained. This methodology is independent from the specific region with which it is exemplified (the Lisbon Metropolitan Area) and can therefore be applied to any region of the world, from the country to the county level. Generation of demolition waste data at the county level is the basis of the design of a systemic model for CDW management in a region. Future developments proposed include a mixed-integer linear programming formulation of such recycling network. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorover, Jon; Mueller, Karl; O'Day, Peggy
2016-04-02
Objectives of the project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses tested: - Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments frommore » the same formations. - Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media. - Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling capabilities developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering. Experimental design: Hypotheses were tested by comparing (with a similar set of techniques) the geochemical transformations and transport behaviors that occured in bench-scale studies of waste-sediment interaction with parallel model systems studies of homogeneous nucleation and neo-phase dissolution. Initial plans were to compare results with core sample extractions from the acid uranium waste impacted U-8 and U-12 Cribs at Hanford (see original proposal and letter of collaboration from J. Zachara). However, this part of the project was impossible because funding for core extractions were eliminated from the DoE budget. Three distinct crib waste aqueous simulants (whose composition is based on the most up-to-date information from field site investigations) were reacted with Hanford sediments in batch and column systems. Coupling of contaminant uptake to mineral weathering was monitored using a suite of methods both during waste-sediment interaction, and after, when waste-weathered sediments were subjected to infusion with circumneutral background pore water solutions. Our research was designed to adapt as needed to maintain a strong dialogue between laboratory and modeling investigations so that model development was increasingly constrained by emergent data and understanding. Potential impact of the project to DOE: Better prediction of contaminant uranium transport was achieved by employing multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. By focusing multiple lines and scales of observation on a common experimental design, our collaborative team revealed non-linear and emergent behavior in contaminated weathering systems. A goal of the current project was to expand our modeling capabilities, originally focused on hyperalkaline legacy waste streams, to include acidic weathering reactions that, as described above, were expected to result in profoundly different products. We were able to achieve this goal, and showed that these products nonetheless undergo analogous silicate and non-silicate transformation, ripening and aging processes. Our prediction that these weathering reactions would vary with waste stimulant chemistry resulted in data that was incorporated directly into a reactive transport model structure.« less
BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills
NASA Astrophysics Data System (ADS)
Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier
2015-04-01
One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.
Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza
2016-09-01
Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Chen; Zhao, Wu; Wang, Jie; Chen, Ling; Luo, Chun-Jing
2016-06-01
The printed circuit boards basis of electronic equipment have seen a rapid growth in recent years and played a significant role in modern life. Nowadays, the fact that electronic devices upgrade quickly necessitates a proper management of waste printed circuit boards. Non-destructive desoldering of waste printed circuit boards becomes the first and the most crucial step towards recycling electronic components. Owing to the diversity of materials and components, the separation process is difficult, which results in complex and expensive recovery of precious materials and electronic components from waste printed circuit boards. To cope with this problem, we proposed an innovative approach integrating Theory of Inventive Problem Solving (TRIZ) evolution theory and technology maturity mapping system to forecast the evolution trends of desoldering technology of waste printed circuit boards. This approach can be applied to analyse the technology evolution, as well as desoldering technology evolution, then research and development strategy and evolution laws can be recommended. As an example, the maturity of desoldering technology is analysed with a technology maturity mapping system model. What is more, desoldering methods in different stages are analysed and compared. According to the analysis, the technological evolution trends are predicted to be 'the law of energy conductivity' and 'increasing the degree of idealisation'. And the potential technology and evolutionary state of waste printed circuit boards are predicted, offering reference for future waste printed circuit boards recycling. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Bacon, Diana H.
2009-09-21
The interest in the long-term durability of waste glass stems from the need to predict radionuclide release rates from the corroding glass over geologic time-scales. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)]. Currently, the PUF test is the only method that can mimic the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitor the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior.more » One dimensional reactive chemical transport simulations of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases (STORM) code. Results show that parameterization of the computer model by combining direct laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over geologic-time scales.« less
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Reed, D. T.
2015-12-01
The Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM is the only operating nuclear waste repository in the US and has been accepting transuranic (TRU) waste since 1999. The WIPP is located in a salt deposit approximately 650 m below the surface and performance assessment (PA) modeling for a 10,000 year period is required to recertify the operating license with the US EPA every five years. The main pathway of concern for environmental release of radioactivity is a human intrusion caused by drilling into a pressurized brine reservoir below the repository. This could result in the flooding of the repository and subsequent transport in the high transmissivity layer (dolomite-rich Culebra formation) above the waste disposal rooms. We evaluate the degree of conservatism in the estimated sorption partition coefficients (Kds) ranges used in the PA based on an approach developed with granite rock and actinides (Dittrich and Reimus, 2015; Dittrich et al., 2015). Sorption onto the waste storage material (Fe drums) may also play a role in mobile actinide concentrations. We will present (1) a conceptual overview of how Kds are used in the PA model, (2) technical background of the evolution of the ranges and (3) results from batch and column experiments and model predictions for Kds with WIPP dolomite and clays, brine with various actinides, and ligands (e.g., acetate, citrate, EDTA) that could promote transport. The current Kd ranges used in performance models are based on oxidation state and are 5-400, 0.5-10,000, 0.03-200, and 0.03-20 mL g-1 for elements with oxidation states of III, IV, V, and VI, respectively. Based on redox conditions predicted in the brines, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will also discuss the challenges of upscaling from lab experiments to field scale predictions, the role of colloids, and the effect of engineered barrier materials (e.g., MgO) on transport conditions. Dittrich, T.M., Reimus, P.W. 2015. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling. J Contam Hydrol 175-176: 44-59. Dittrich, T.M., Boukhalfa, H., Ware, S.D., Reimus, P.W. 2015. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids. J Environ Radioactiv 148: 170-182.
RESULTS OF THE FY09 ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, F.; Edwards, T.
2010-06-23
High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this task is to develop data, assess property models, and refine or develop the necessary models to support increased WL of HLW at SRS. It is a continuationmore » of the studies initiated in FY07, but is under the specific guidance of a Task Change Request (TCR)/Work Authorization received from DOE headquarters (Project Number RV071301). Using the data generated in FY07, FY08 and historical data, two test matrices (60 glasses total) were developed at the Savannah River National Laboratory (SRNL) in order to generate data in broader compositional regions. These glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), viscosity, liquidus temperature (TL) measurement and durability as defined by the Product Consistency Test (PCT). The results of this study are summarized below: (1) In general, the current durability model predicts the durabilities of higher waste loading glasses quite well. A few of the glasses exhibited poorer durability than predicted. (2) Some of the glasses exhibited anomalous behavior with respect to durability (normalized leachate for boron (NL [B])). The quenched samples of FY09EM21-02, -07 and -21 contained no nepheline or other wasteform affecting crystals, but have unacceptable NL [B] values (> 10 g/L). The ccc sample of FY09EM21-07 has a NL [B] value that is more than one half the value of the quenched sample. These glasses also have lower concentrations of Al{sub 2}O{sub 3} and SiO{sub 2}. (3) Five of the ccc samples (EM-13, -14, -15, -29 and -30) completely crystallized with both magnetite and nepheline, and still had extremely low NL [B] values. These particular glasses have more CaO present than any of the other glasses in the matrix. It appears that while all of the glasses contain nepheline, the NL [B] values decrease as the CaO concentration increases from 2.3 wt% to 4.3 wt%. A different form of nepheline may be created at higher concentrations of CaO that does not significantly reduce glass durability. (4) The T{sub L} model appears to be under-predicting the measured values of higher waste loading glasses. Trends in T{sub L} with composition are not evident in the data from these studies. (5) A small number of glasses in the FY09 matrix have measured viscosities that are much lower than the viscosity range over which the current model was developed. The decrease in viscosity is due to a higher concentration of non-bridging oxygens (NBO). A high iron concentration is the cause of the increase in NBO. Durability, viscosity and T{sub L} data collected during FY07 and FY09 that specifically targeted higher waste loading glasses was compiled and assessed. It appears that additional data may be required to expand the coverage of the T{sub L} and viscosity models for higher waste loading glasses. In general, the compositional regions of the higher waste loading glasses are very different than those used to develop these models. On the other hand, the current durability model seems to be applicable to the new data. At this time, there is no evidence to modify this model; however additional experimental studies should be conducted to determine the cause of the anomalous durability data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedlunn, Benjamin
Room D was an in-situ, isothermal, underground experiment conducted at the Waste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under-predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under-predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedlunn, Benjamin
Room D was an in-situ, isothermal, underground experiment conducted at theWaste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less
Rosqvist, N H; Dollar, L H; Fourie, A B
2005-08-01
In this paper, we study and quantify pollutant concentrations after long-term leaching at relatively low flow rates and residual concentrations after heavy flushing of a 0.14 m3 municipal solid waste sample. Moreover, water flow and solute transport through preferential flow paths are studied by model interpretation of experimental break-through curves (BTCs), generated by tracer tests. In the study it was found that high concentrations of chloride remain after several pore volumes of water have percolated through the waste sample. The residual concentration was found to be considerably higher than can be predicted by degradation models. For model interpretations of the experimental BTCs, two probabilistic model approaches were applied, the transfer function model and the Lagrangian transport formulation. The experimental BTCs indicated the presence of preferential flow through the waste mass and the model interpretation of the BTCs suggested that between 19 and 41% of the total water content participated in the transport of solute through preferential flow paths. In the study, the occurrence of preferential flow was found to be dependent on the flow rate in the sense that a high flow rate enhances the preferential flow. However, to fully quantify the possible dependence between flow rate and preferential flow, experiments on a broader range of experimental conditions are suggested. The chloride washout curve obtained over the 4-year study period shows that as a consequence of the water flow in favoured flow paths, bypassing other parts of the solid waste body, the leachate quality may reflect only the flow paths and their surroundings. The results in this study thus show that in order to improve long-term prediction of the leachate quality and quantity the magnitude of the preferential water flow through a landfill must be taken into account.
Wang, Yan; Nowack, Bernd
2018-04-01
Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Conceptual models governing leaching behavior and their long-term predictive capability
Claassen, Hans C.
1981-01-01
Six models that may be used to describe the interaction of radioactive waste solids with aqueous solutions are as follows:Simple linear mass transfer;Simple parabolic mass transfer;Parabolic mass transfer with the formation of a diffusion-limiting surface layer at an arbitrary time;Initial parabolic mass transfer followed by linear mass transfer at an arbitrary time;Parabolic (or linear) mass transfer and concomitant surface sorption; andParabolic (or linear) mass transfer and concomitant chemical precipitation.Some of these models lead to either illogical or unrealistic predictions when published data are extrapolated to long times. These predictions result because most data result from short-term experimentation. Probably for longer times, processes will occur that have not been observed in the shorter experiments. This hypothesis has been verified by mass-transfer data from laboratory experiments using natural volcanic glass to predict the composition of groundwater. That such rate-limiting mechanisms do occur is reassuring, although now it is not possible to deduce a single mass-transfer limiting mechanism that could control the solution concentration of all components of all waste forms being investigated. Probably the most reasonable mechanisms are surface sorption and chemical precipitation of the species of interest. Another is limiting of mass transfer by chemical precipitation on the waste form surface of a substance not containing the species of interest, that is, presence of a diffusion-limiting layer. The presence of sorption and chemical precipitation as factors limiting mass transfer has been verified in natural groundwater systems, whereas the diffusion-limiting mechanism has not been verified yet.
An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification
Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás
2016-01-01
Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R2) and root mean square errors of prediction (RMSEP) were determined as R2 > 0.944 and RMSEP < 1.782 for PLS and R2 > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step. PMID:26861317
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn
Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less
Waste management activities and carbon emissions in Africa.
Couth, R; Trois, C
2011-01-01
This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries. Copyright © 2010 Elsevier Ltd. All rights reserved.
Song, Jingwei; He, Jiaying; Zhu, Menghua; Tan, Debao; Zhang, Yu; Ye, Song; Shen, Dingtao; Zou, Pengfei
2014-01-01
A simulated annealing (SA) based variable weighted forecast model is proposed to combine and weigh local chaotic model, artificial neural network (ANN), and partial least square support vector machine (PLS-SVM) to build a more accurate forecast model. The hybrid model was built and multistep ahead prediction ability was tested based on daily MSW generation data from Seattle, Washington, the United States. The hybrid forecast model was proved to produce more accurate and reliable results and to degrade less in longer predictions than three individual models. The average one-week step ahead prediction has been raised from 11.21% (chaotic model), 12.93% (ANN), and 12.94% (PLS-SVM) to 9.38%. Five-week average has been raised from 13.02% (chaotic model), 15.69% (ANN), and 15.92% (PLS-SVM) to 11.27%. PMID:25301508
A review of statistical updating methods for clinical prediction models.
Su, Ting-Li; Jaki, Thomas; Hickey, Graeme L; Buchan, Iain; Sperrin, Matthew
2018-01-01
A clinical prediction model is a tool for predicting healthcare outcomes, usually within a specific population and context. A common approach is to develop a new clinical prediction model for each population and context; however, this wastes potentially useful historical information. A better approach is to update or incorporate the existing clinical prediction models already developed for use in similar contexts or populations. In addition, clinical prediction models commonly become miscalibrated over time, and need replacing or updating. In this article, we review a range of approaches for re-using and updating clinical prediction models; these fall in into three main categories: simple coefficient updating, combining multiple previous clinical prediction models in a meta-model and dynamic updating of models. We evaluated the performance (discrimination and calibration) of the different strategies using data on mortality following cardiac surgery in the United Kingdom: We found that no single strategy performed sufficiently well to be used to the exclusion of the others. In conclusion, useful tools exist for updating existing clinical prediction models to a new population or context, and these should be implemented rather than developing a new clinical prediction model from scratch, using a breadth of complementary statistical methods.
Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M
2016-07-01
This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Eldridge, S M; Chen, C R; Xu, Z H; Nelson, P N; Boyd, S E; Meszaros, I; Chan, K Y
2013-11-01
Using solid state (13)C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.
1997-02-01
Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hang, T.
2003-07-16
The U.S. Department of Energy (DOE) and the Nuclear Energy Commission of Argentina (CNEA) have a collaborative project to separate cesium/strontium from waste resulting from the production of Mo-99. The Pacific Northwest National Laboratory (PNNL) is assisting DOE on this joint project by providing technical guidance to CNEA scientists. As part of the collaboration, PNNL staff works with staff at the Savannah River Technology Center (SRTC) to run the VERSE-LC model for removal of cesium from the Mo-99 waste using the crystalline silicotitanate (CST) material (IONSIV(R) IE-911, UOP LLC, DesPlaines, IL) based on technical data provided by CNEA. This reportmore » discusses the VERSE-LC ion-exchange-column model and the predicted results of CNEA test cases.« less
In-Package Chemistry Abstraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Thomas
2004-11-09
This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, amore » batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.« less
Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abitz, R.J.
1996-12-31
Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less
Hanandeh, Ali El; El-Zein, Abbas
2010-05-01
This paper describes the development and application of the Stochastic Integrated Waste Management Simulator (SIWMS) model. SIWMS provides a detailed view of the environmental impacts and associated costs of municipal solid waste (MSW) management alternatives under conditions of uncertainty. The model follows a life-cycle inventory approach extended with compensatory systems to provide more equitable bases for comparing different alternatives. Economic performance is measured by the net present value. The model is verified against four publicly available models under deterministic conditions and then used to study the impact of uncertainty on Sydney's MSW management 'best practices'. Uncertainty has a significant effect on all impact categories. The greatest effect is observed in the global warming category where a reversal of impact direction is predicted. The reliability of the system is most sensitive to uncertainties in the waste processing and disposal. The results highlight the importance of incorporating uncertainty at all stages to better understand the behaviour of the MSW system. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Vavilin, Vasily A; Qu, Xian; Mazéas, Laurent; Lemunier, Melanie; Duquennoi, Christian; He, Pinjing; Bouchez, Theodore
2008-11-01
Taking into account isotope (13)C value a mathematical model was developed to describe the dynamics of methanogenic population during mesophilic anaerobic digestion of putrescible solid waste and waste imitating Chinese municipal solid waste. Three groups of methanogens were considered in the model including unified hydrogenotrophic methanogens and two aceticlastic methanogens Methanosaeta sp. and Methanosarcina sp. It was assumed that Methanosaeta sp. and Methanosarcina sp. are inhibited by high volatile fatty acids concentration. The total organic and inorganic carbon concentrations, methane production, methane and carbon dioxide partial pressures as well as the isotope (13)C incorporation in PSW and CMSW were used for the model calibration and validation. The model showed that in spite of the high initial biomass concentration of Methanosaeta sp. Methanosarcina sp. became the dominant aceticlastic methanogens in the system. This prediction was confirmed by FISH. It is concluded that Methanosarcina sp. forming multicellular aggregates may resist to inhibition by volatile fatty acids (VFAs) because a slow diffusion rate of the acids limits the VFA concentrations inside the Methanosarcina sp. aggregates.
Analysis of energy recovery potential using innovative technologies of waste gasification.
Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea
2012-04-01
In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Schweiger, Michael J.; Bonham, Charles C.
Roughly half of the projected Hanford high-level waste batches will have waste loadings limited by relatively high concentration of Al2O3. Individual glasses have been formulated and tested to demonstrate that it is possible to increase the loading of these high-Al2O3 wastes in glass by as much as 50%. To implement such increases in waste loading in the Hanford Tank Waste Treatment and Immobilization Plant, the impact of composition on the properties of high-Al2O3 waste glasses must be quantified in the form of validated glass property-composition models. To collect the data necessary for glass property-composition models, a multi-phase experimental approach wasmore » developed. In the first phase of the study, a set of 46 glass compositions were statistically designed to most efficiently backfill existing data in the composition region for high-Al2O3 (15 to 30 wt%) waste glasses. The glasses were fabricated and key glass properties were tested: •Product Consistency Test (PCT) on quench (Q) and canister centerline cooled (CCC) samples •Toxicity Characteristic Leaching Procedure (TCLP) on Q and CCC samples •Crystallinity as a function of temperature (T) at equilibrium and of CCC samples •Viscosity and electrical conductivity as a function of T The measured properties of these glasses were compared to predictions from previously existing models developed over lower Al2O3 concentration ranges. Areas requiring additional testing and modeling were highlighted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soria, José, E-mail: jose.soria@probien.gob.ar; Gauthier, Daniel; Flamant, Gilles
2015-09-15
Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with themore » flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.« less
Zhang, Dongliang; Huang, Guangqing; Yin, Xiaoling; Gong, Qinghua
2015-01-01
Understanding the factors that affect residents’ waste separation behaviors helps in constructing effective environmental campaigns for a community. Using the theory of planned behavior (TPB), this study examines factors associated with waste separation behaviors by analyzing responses to questionnaires distributed in Guangzhou, China. Data drawn from 208 of 1000-field questionnaires were used to assess socio-demographic factors and the TPB constructs (i.e., attitudes, subjective norms, perceived behavioral control, intentions, and situational factors). The questionnaire data revealed that attitudes, subjective norms, perceived behavioral control, intentions, and situational factors significantly predicted household waste behaviors in Guangzhou, China. Through a structural equation modeling analysis, we concluded that campaigns targeting moral obligations may be particularly effective for increasing the participation rate in waste separation behaviors. PMID:26274969
Fate and transport of phenol in a packed bed reactor containing simulated solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saquing, Jovita M., E-mail: jmsaquing@gmail.com; Knappe, Detlef R.U., E-mail: knappe@ncsu.edu; Barlaz, Morton A., E-mail: barlaz@ncsu.edu
Highlights: Black-Right-Pointing-Pointer Anaerobic column experiments were conducted at 37 Degree-Sign C using a simulated waste mixture. Black-Right-Pointing-Pointer Sorption and biodegradation model parameters were determined from batch tests. Black-Right-Pointing-Pointer HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. Black-Right-Pointing-Pointer The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of {approx}2. Black-Right-Pointing-Pointer Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictivemore » models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls.« less
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2006-01-01
In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.
Combined Experimental and Computational Approach to Predict the Glass-Water Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Bacon, Diana H.
2011-10-01
The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic timescales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models be validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test B, and pressurized unsaturated flow (PUF)], thereby reducingmore » the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year-long PUF experiment was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code. Results show that parameterization of the computer model by combining direct bench scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year-long test duration, the rate decreased from 0.2 to 0.01 g/(m2 day) based on B release for low-activity waste glass LAWA44. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by four orders of magnitude) and suggests that the gel-layer properties are less protective under these dynamic conditions.« less
APPLICATION OF A WATER QUALITY ASSESSMENT MODELING SYSTEM AT A SUPERFUND SITE
Water quality modeling and related exposure assessments at a Superfund site, Silver Bow Creek-Clark Fork River in Montana, demonstrate the capability to predict the fate of mining waste pollutants in the environment. inked assessment system--consisting of hydrology and erosion, r...
Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.
The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubilitymore » data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ≈ TiO2 < CaO < P2O5 ≈ ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ≈ ZrO2 > Al2O3.« less
Development of a Sediment Transport Component for DHSVM
NASA Astrophysics Data System (ADS)
Doten, C. O.; Bowling, L. C.; Maurer, E. P.; Voisin, N.; Lettenmaier, D. P.
2003-12-01
The effect of forest management and disturbance on aquatic resources is a problem of considerable, contemporary, scientific and public concern in the West. Sediment generation is one of the factors linking land surface conditions with aquatic systems, with implications for fisheries protection and enhancement. Better predictive techniques that allow assessment of the effects of fire and logging, in particular, on sediment transport could help to provide a more scientific basis for the management of forests in the West. We describe the development of a sediment transport component for the Distributed Hydrology Soil Vegetation Model (DHSVM), a spatially distributed hydrologic model that was developed specifically for assessment of the hydrologic consequences of forest management. The sediment transport module extends the hydrologic dynamics of DHSVM to predict sediment generation in response to dynamic meteorological inputs and hydrologic conditions via mass wasting and surface erosion from forest roads and hillslopes. The mass wasting component builds on existing stochastic slope stability models, by incorporating distributed basin hydrology (from DHSVM), and post-failure, rule-based redistribution of sediment downslope. The stochastic nature of the mass wasting component allows specification of probability distributions that describe the spatial variability of soil and vegetation characteristics used in the infinite slope model. The forest roads and hillslope surface erosion algorithms account for erosion from rain drop impact and overland erosion. A simple routing scheme is used to transport eroded sediment from mass wasting and forest roads surface erosion that reaches the channel system to the basin outlet. A sensitivity analysis of the model input parameters and forest cover conditions is described for the Little Wenatchee River basin in the northeastern Washington Cascades.
Ahammad, S Ziauddin; Gomes, James; Sreekrishnan, T R
2011-09-01
Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.
Wei, Yaqiang; Dong, Yanhui; Yeh, Tian-Chyi J; Li, Xiao; Wang, Liheng; Zha, Yuanyuan
2017-11-01
There have been widespread concerns about solute transport problems in fractured media, e.g. the disposal of high-level radioactive waste in geological fractured rocks. Numerical simulation of particle tracking is gradually being employed to address these issues. Traditional predictions of radioactive waste transport using discrete fracture network (DFN) models often consider one particular realization of the fracture distribution based on fracture statistic features. This significantly underestimates the uncertainty of the risk of radioactive waste deposit evaluation. To adequately assess the uncertainty during the DFN modeling in a potential site for the disposal of high-level radioactive waste, this paper utilized the probabilistic distribution method (PDM). The method was applied to evaluate the risk of nuclear waste deposit in Beishan, China. Moreover, the impact of the number of realizations on the simulation results was analyzed. In particular, the differences between the modeling results of one realization and multiple realizations were demonstrated. Probabilistic distributions of 20 realizations at different times were also obtained. The results showed that the employed PDM can be used to describe the ranges of the contaminant particle transport. The high-possibility contaminated areas near the release point were more concentrated than the farther areas after 5E6 days, which was 25,400 m 2 .
NASA Astrophysics Data System (ADS)
Rautman, C. A.; Treadway, A. H.
1991-11-01
Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site. One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described. The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.
Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application
NASA Astrophysics Data System (ADS)
McNab, W. W.
2013-12-01
Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral precipitation and ion exchange. The calibrated model was then re-run assuming different evapotranspiration and crop growth regimes, and different seasonally-adjusted applied water compositions, to elucidate possible impacts to salt loading reactive chemistry. The results of the predictive modeling indicate the extent to which salts could be redistributed within the soil column as a consequence of climate change. The degree to which these findings are applicable to process waste land application operations at other sites was explored by varying the soil unsaturated flow parameters as a model sensitivity assessment. Taken together, the model results help to quantify operational changes to land application that may be necessary to avoid future adverse environmental impacts to soil and groundwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K. M.; Edwards, T. B.; Caldwell, M. E.
In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high-level waste glass compositions fabricated by the Pacific Northwest National Laboratory (PNNL). These data will be used in the development of improved models for the prediction of nepheline crystallization in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP).
Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria
2015-12-01
Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.
Monitoring and modeling of long-term settlements of an experimental landfill in Brazil.
Simões, Gustavo Ferreira; Catapreta, Cícero Antônio Antunes
2013-02-01
Settlement evaluation in sanitary landfills is a complex process, due to the waste heterogeneity, time-varying properties and influencing factors and mechanisms, such as mechanical compression due to load application and creep, and physical-chemical and biological processes caused by the wastes decomposition. Many empirical models for the analysis of long-term settlement in landfills are reported in the literature. This paper presents the results of a settlement monitoring program carried out during 6 years in Belo Horizonte experimental landfill. Different sets of field data were used to calibrate three long-term settlement prediction models (rheological, hyperbolic and composite). The parameters obtained in the calibration were used to predict the settlements and to compare with actual field data. During the monitoring period of 6 years, significant vertical strains were observed (of up to 31%) in relation to the initial height of the experimental landfill. The results for the long-term settlement prediction obtained by the hyperbolic and rheological models significantly underestimate the settlements, regardless the period of data used in the calibration. The best fits were obtained with the composite model, except when 1 year field data were used in the calibration. The results of the composite model indicate settlements stabilization at larger times and with larger final settlements when compared to the hyperbolic and rheological models. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds
NASA Astrophysics Data System (ADS)
Putri, Gitta Agnes; Sunarsih
2018-02-01
This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.
Estimating biogas production of biologically treated municipal solid waste.
Scaglia, Barbara; Confalonieri, Roberto; D'Imporzano, Giuliana; Adani, Fabrizio
2010-02-01
In this work, a respirometric approach, i.e., Dynamic Respiration Index (DRI), was used to predict the anaerobic biogas potential (ABP), studying 46 waste samples coming directly from MBT full-scale plants. A significant linear regression model was obtained by a jackknife approach: ABP=(34.4+/-2.5)+(0.109+/-0.003).DRI. The comparison of the model of this work with those of the previous works using a different respirometric approach (Sapromat-AT(4)), allowed obtaining similar results and carrying out direct comparison of different limits to accept treated waste in landfill, proposed in the literature. The results indicated that on an average, MBT treatment allowed 56% of ABP reduction after 4weeks of treatment, and 79% reduction after 12weeks of treatment. The obtainment of another regression model allowed transforming Sapromat-AT(4) limit in DRI units, and achieving a description of the kinetics of DRI and the corresponding ABP reductions vs. MBT treatment-time.
Simulation of mercury capture by sorbent injection using a simplified model.
Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping
2009-10-30
Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Kim, Dong-Sang; Skorski, Daniel C.
2013-07-01
Recent glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminarymore » in nature and will change in the coming years. Plus the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose. A fundamental tenet underlying the research reported in this document is to try to be less conservative than previous studies when developing constraints for estimating the glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that has to be considered along with other system uncertainties such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.« less
Gutiérrez, M C; Siles, J A; Diz, J; Chica, A F; Martín, M A
2017-01-01
The composting process of six different compostable substrates and one of these with the addition of bacterial inoculums carried out in a dynamic respirometer was evaluated. Despite the heterogeneity of the compostable substrates, cumulative oxygen demand (OD, mgO 2 kgVS) was fitted adequately to an exponential regression growing until reaching a maximum in all cases. According to the kinetic constant of the reaction (K) values obtained, the wastes that degraded more slowly were those containing lignocellulosic material (green wastes) or less biodegradable wastes (sewage sludge). The odor emissions generated during the composting processes were also fitted in all cases to a Gaussian regression with R 2 values within the range 0.8-0.9. The model was validated representing real odor concentration near the maximum value against predicted odor concentration of each substrate, (R 2 =0.9314; 95% prediction interval). The variables of maximum odor concentration (ou E /m 3 ) and the time (h) at which the maximum was reached were also evaluated statistically using ANOVA and a post-hoc Tukey test taking the substrate as a factor, which allowed homogeneous groups to be obtained according to one or both of these variables. The maximum oxygen consumption rate or organic matter degradation during composting was directly related to the maximum odor emission generation rate (R 2 =0.9024, 95% confidence interval) when only the organic wastes with a low content in lignocellulosic materials and no inoculated waste (HRIO) were considered. Finally, the composting of OFMSW would produce a higher odor impact than the other substrates if this process was carried out without odor control or open systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh.
Islam, M Rofiqul; Haniu, H; Fardoushi, J
2009-02-01
Pyrolysis kinetics of available bicycle/rickshaw, motorcycle and truck tire wastes in Bangladesh have been investigated thermogravimetrically in a nitrogen atmosphere at heating rates of 10 and 60 degrees C/min over a temperature range of 30-800 degrees C. The three tire wastes exhibited similar behaviors in that, when heating rate was increased, the initial reaction temperature decreased but the reaction range and reaction rate increased. The percentage of total weight loss was higher for truck tire waste and lower for bicycle/rickshaw tire waste. The pyrolysis of truck tire waste was found to be easier than that of bicycle/rickshaw and motorcycle tire wastes while it was comparatively more difficult for motorcycle tire waste. The overall rate equation for the three tire wastes has been modeled satisfactorily by one simplified equation from which the kinetic parameters of unreacted materials based on the Arrhenius form can be determined. The predicted rate equation compares fairly well with the measured TG and DTG data. DTA curves for all of the samples show that the degradation reactions are three main exotherms and one endotherm.
Potential effects of deep-well waste disposal in western New York
Waller, Roger Milton; Turk, John T.; Dingman, Robert James
1978-01-01
Mathematical and laboratory models were used to observe, respectively, the hydraulic and chemical reactions that may take place during proposed injection of a highly acidic, iron-rich waste pickle liquor into a deep waste-disposal well in western New York. Field temperature and pressure conditions were simulated in the tests. Hydraulic pressure in the middle stages of the initial (1968) injection test had probably hydraulically fractured the Cambrian sandstone-dolomite formation adjacent to the borehole. Transmissivity of the formation is 13 feet squared per day. The proposed rate of injection (72,000 gallons per day) of waste pickle liquor would approach a wellhead pressure of 600 pounds per square inch in about a year. Hydraulic fracturing would reoccur at about 580 pounds per square inch. The measurable cone of influence would extend about 22 miles after injection for 1 year. Chemical reactions between acidic wastes and brine-saturated dolomite would create precipitates that would drastically reduce the permeability of the unfractured part of the dolomite. Nondolomitic sandstone permeability would not be affected by chemical reactions, but the pores might be plugged by the iron-bearing waste. The digital model can be used for qualitative predictions on a regional scale. (Woodard-USGS)
Monitoring household waste recycling centres performance using mean bin weight analyses.
Maynard, Sarah; Cherrett, Tom; Waterson, Ben
2009-02-01
This paper describes a modelling approach used to investigate the significance of key factors (vehicle type, compaction type, site design, temporal effects) in influencing the variability in observed nett amenity bin weights produced by household waste recycling centres (HWRCs). This new method can help to quickly identify sites that are producing significantly lighter bins, enabling detailed back-end analyses to be efficiently targeted and best practice in HWRC operation identified. Tested on weigh ticket data from nine HWRCs across West Sussex, UK, the model suggests that compaction technique, vehicle type, month and site design explained 76% of the variability in the observed nett amenity weights. For each factor, a weighting coefficient was calculated to generate a predicted nett weight for each bin transaction and three sites were subsequently identified as having similar characteristics but returned significantly different mean nett bin weights. Waste and site audits were then conducted at the three sites to try and determine the possible sources of the remaining variability. Significant differences were identified in the proportions of contained waste (bagged), wood, and dry recyclables entering the amenity waste stream, particularly at one site where significantly less contaminated waste and dry recyclables were observed.
Breivik, Knut; Armitage, James M; Wania, Frank; Sweetman, Andrew J; Jones, Kevin C
2016-01-19
Elevated concentrations of various industrial-use Persistent Organic Pollutants (POPs), such as polychlorinated biphenyls (PCBs), have been reported in some developing areas in subtropical and tropical regions known to be destinations of e-waste. We used a recent inventory of the global generation and exports of e-waste to develop various global scale emission scenarios for industrial-use organic contaminants (IUOCs). For representative IUOCs (RIUOCs), only hypothetical emissions via passive volatilization from e-waste were considered whereas for PCBs, historical emissions throughout the chemical life-cycle (i.e., manufacturing, use, disposal) were included. The environmental transport and fate of RIUOCs and PCBs were then simulated using the BETR Global 2.0 model. Export of e-waste is expected to increase and sustain global emissions beyond the baseline scenario, which assumes no export. A comparison between model predictions and observations for PCBs in selected recipient regions generally suggests a better agreement when exports are accounted for. This study may be the first to integrate the global transport of IUOCs in waste with their long-range transport in air and water. The results call for integrated chemical management strategies on a global scale.
Uma, R N; Manjula, G; Meenambal, T
2007-04-01
The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, H.S.; Stone, C.M.; Krieg, R.D.
Several large scale in situ experiments in bedded salt formations are currently underway at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, USA. In these experiments, the thermal and creep responses of salt around several different underground room configurations are being measured. Data from the tests are to be compared to thermal and structural responses predicted in pretest reference calculations. The purpose of these comparisons is to evaluate computational models developed from laboratory data prior to fielding of the in situ experiments. In this paper, the computational models used in the pretest reference calculation for one of themore » large scale tests, The Overtest for Defense High Level Waste, are described; and the pretest computed thermal and structural responses are compared to early data from the experiment. The comparisons indicate that computed and measured temperatures for the test agree to within ten percent but that measured deformation rates are between two and three times greater than corresponsing computed rates. 10 figs., 3 tabs.« less
Gollapalli, Muralidhar; Kota, Sri Harsha
2018-03-01
Rapid urbanization and economic growth has led to significant increase in municipal solid waste generation in India during the last few decades and its management has become a major issue because of poor waste management practices. Solid waste generated is deposited into open dumping sites with hardly any segregation and processing. Carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) are the major greenhouse gases that are released from the landfill sites due to the biodegradation of organic matter. In this present study, CH 4 and CO 2 emissions from a landfill in north-east India are estimated using a flux chamber during September, 2015 to August, 2016. The average emission rates of CH 4 and CO 2 are 68 and 92 mg/min/m 2 , respectively. The emissions are highest in the summer whilst being lowest in winter. The diurnal variation of emissions indicated that the emissions follow a trend similar to temperature in all the seasons. Correlation coefficients of CH 4 and temperature in summer, monsoon and winter are 0.99, 0.87 and 0.97, respectively. The measured CH 4 in this study is in the range of other studies around the world. Modified Triangular Method (MTM), IPCC model and the USEPA Landfill gas emissions model (LandGEM) were used to predict the CH 4 emissions during the study year. The consequent simulation results indicate that the MTM, LandGEM-Clean Air Act, LandGEM-Inventory and IPCC models predict 1.9, 3.3, 1.6 and 1.4 times of the measured CH 4 emission flux in this study. Assuming that this higher prediction of CH 4 levels observed in this study holds well for other landfills in this region, a new CH 4 emission inventory (Units: Tonnes/year), with a resolution of 0.1 0 × 0.1 0 has been developed. This study stresses the importance of biodegradable composition of waste and meteorology, and also points out the drawbacks of the widely used landfill emission models. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, D.W.; Ridge, A.C.; Thaggard, M.
2006-07-01
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the Department of Energy (DOE) to consult with the Nuclear Regulatory Commission (NRC) about non-High Level Waste (HLW) determinations. In its consultative role, NRC performs technical reviews of DOE's waste determinations but does not have regulatory authority over DOE's waste disposal activities. The safety of disposal is evaluated by comparing predicted disposal facility performance to the performance objectives specified in NRC regulations for the disposal of low-level waste (10 CFR Part 61 Subpart C). The performance objectives contain criteria for protection of themore » public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. The potential radiological dose to receptors typically is evaluated with a performance assessment (PA) model that simulates the release of radionuclides from the disposal site, transport of radionuclides through the environment, and exposure of potential receptors to residual contamination for thousands of years. This paper describes NRC's development and use of independent performance assessment modeling to facilitate review of DOE's non-HLW determination for the Saltstone Disposal Facility (SDF) at the Savannah River Site. NRC's review of the safety of near-surface disposal of radioactive waste at the SDF was facilitated and focused by risk insights developed with an independent PA model. The main components of NRC's performance assessment model are presented. The development of risk insights that allow the staff to focus review efforts on those areas that are most important to satisfying the performance objectives is discussed. Uncertainty analysis was performed of the full stochastic model using genetic variable selection algorithms. The results of the uncertainty analysis were then used to guide the development of simulations of other scenarios to understand the key risk drivers and risk limiters of the SDF. Review emphasis was placed on those aspects of the disposal system that were expected to drive performance: the physical and chemical performance of the cementitious wasteform and concrete vaults. Refinement of the modeling of the degradation and release from the cementitious wasteform had a significant effect on the predicted dose to a member of the public. (authors)« less
Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold
2016-12-01
In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.
Constituent bioconcentration in rainbow trout exposed to a complex chemical mixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder, G.; Bergman, H.L.; Meyer, J.S.
1984-09-01
Classically, aquatic contaminant fate models predicting a chemical's bioconcentration factor (BCF) are based upon single-compound derived models, yet such BCF predictions may deviate from observed BCFs when physicochemical interactions or biological responses to complex chemical mixture exposures are not adequately considered in the predictive model. Rainbow trout were exposed to oil-shale retort waters. Such a study was designed to model the potential biological effects precluded by exposure to complex chemical mixtures such as solid waste leachates, agricultural runoff, and industrial process waste waters. Chromatographic analysis of aqueous and nonaqueous liquid-liquid reservoir components yielded differences in mixed extraction solvent HPLC profilesmore » of whole fish exposed for 1 and 3 weeks to the highest dilution of the complex chemical mixture when compared to their corresponding control, yet subsequent whole fish extractions at 6, 9, 12, and 15 weeks into exposure demonstrated no qualitative differences between control and exposed fish. Liver extractions and deproteinized bile samples from exposed fish were qualitatively different than their corresponding controls. These findings support the projected NOEC of 0.0045% dilution, even though the differences in bioconcentration profiles suggest hazard assessment strategies may be useful in evaluating environmental fate processes associated with complex chemical mixtures. 12 references, 4 figures, 2 tables.« less
Prediction of glass durability as a function of environmental conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C M
1988-01-01
A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medievalmore » window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.« less
An easy-to-use tool for the evaluation of leachate production at landfill sites.
Grugnaletti, Matteo; Pantini, Sara; Verginelli, Iason; Lombardi, Francesco
2016-09-01
A simulation program for the evaluation of leachate generation at landfill sites is herein presented. The developed tool is based on a water balance model that accounts for all the key processes influencing leachate generation through analytical and empirical equations. After a short description of the tool, different simulations on four Italian landfill sites are shown. The obtained results revealed that when literature values were assumed for the unknown input parameters, the model provided a rough estimation of the leachate production measured in the field. In this case, indeed, the deviations between observed and predicted data appeared, in some cases, significant. Conversely, by performing a preliminary calibration for some of the unknown input parameters (e.g. initial moisture content of wastes, compression index), in nearly all cases the model performances significantly improved. These results although showed the potential capability of a water balance model to estimate the leachate production at landfill sites also highlighted the intrinsic limitation of a deterministic approach to accurately forecast the leachate production over time. Indeed, parameters such as the initial water content of incoming waste and the compression index, that have a great influence on the leachate production, may exhibit temporal variation due to seasonal changing of weather conditions (e.g. rainfall, air humidity) as well as to seasonal variability in the amount and type of specific waste fractions produced (e.g. yard waste, food, plastics) that make their prediction quite complicated. In this sense, we believe that a tool such as the one proposed in this work that requires a limited number of unknown parameters, can be easier handled to quantify the uncertainties. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Shuler, M. L.
1986-01-01
An experimental system was developed to study the microbial growth kinetic of an undefined mixed culture in an erobic biological waste treatment process. The experimental results were used to develop a mathematical model that can predict the performance of a bioreactor. The bioreactor will be used to regeneratively treat waste material which is expected to be generated during a long term manned space mission. Since the presence of insoluble particles in the chemically undefined complex media made estimating biomass very difficult in the real system, a clean system was devised to study the microbial growth from the soluble substrate.
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Emerson, H. P.; Michael, D. P.; Reed, D. T.
2016-12-01
Bedded geologic salt formations have been shown to have many favorable properties for the disposal of radioactive waste (i.e., reducing conditions, fracture healing). Performance assessment (PA) modeling for a 10,000 year period for the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM have predicted an extremely low risk of radioactive material reaching the surrounding environment after the 100 year period required for creep to seal the waste panels and access shafts. Human intrusion caused by drilling operations for oil and gas exploration is the main pathway of concern for environmental release of radioactive material due to pressurized brine pockets located within the salt formation below the repository. Our work focuses on the long-term capability of salt repositories and the associated geologic media to safely isolate stored radioactive waste from the surrounding environment, even in the event of a human intrusion scenario such as a direct brine release (DBR) due to a drilling operation intersecting a brine pocket. In particular, we are revisiting the degree of conservatism in the estimated sorption partition coefficients (Kds) used in the PA model based on complementary batch and column experimental methods (Dittrich and Reimus, 2016). The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected in the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will present (1) a conceptual overview of Kd use in the PA model, (2) background and evolution of the Kd ranges used, and (3) results from batch and column experiments and model predictions for Kds with WIPP-relevant geologic media. We will also briefly discuss the challenges of upscaling from lab experiments to field scale predictions, the presence of ligands (e.g., acetate, citrate, EDTA), the role of colloids and microbes, and the effect of engineered barrier materials (e.g., MgO) on sorption and transport conditions. References: Dittrich, T.M., Reimus, P.W. 2016. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance. J Environ Manage 165, 124-132.
Mountain-Scale Coupled Processes (TH/THC/THM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides themore » necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The Mountain-Scale THM Model focuses on evaluating the changes in 3-D UZ flow fields arising out of thermal stress and rock deformation during and after the thermal periods.« less
Al-Anzi, Bader S; Al-Burait, Abdul Aziz; Thomas, Ashly; Ong, Chi Siang
2017-12-01
The present work assesses the production rate of cell phone e-waste in Kuwait by comparing the number of clients in three telecommunication service providers like Zain, Ooredoo, and Viva in the state of Kuwait over a period of 7 years from 2008 to 2015. An online survey was conducted to evaluate the growth in the number of clients in three cell phone companies, and the data analysis was carried out using statistical package for the social sciences (SPSS) software. The prediction of the growth percentage of the number of clients in each telecommunication company was analyzed using analysis of variance (ANOVA) test and followed by the regression model. The study shows that there is an increase in the number of clients in all three companies (Zain, Ooredoo, and Viva) between year 2008 and 2015, and it was estimated that approximately 7.9 million cell phone users would be achieved in the first quarter of 2015. Based on this predicted number of cell phone users, the production of e-waste would be 3 kt per year with an average growth of 12.7%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br
Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, T.; Kawasaki, T.; Sakamoto, H.
2003-02-27
We have been developing a radioactive waste package made of high-strength and ultra low-permeability concrete (HSULPC) for geological disposal of TRU wastes, which is expected to be much more impervious to water than conventional concrete. In this study, basic data for the HSULPC regarding its the impervious character and the thermodynamics during cement hydration were obtained through water permeability measurements using cold isostatic pressing (CIP) and adiabatic concrete hydration experiments, respectively. Then, a prediction tool to find concrete package construction conditions to avoid thermal cracking was developed, which could deal with coupled calculations of cement hydration, heat transfer, stress, andmore » cracking. The developed tool was applied to HSULPC hydration on a small-scale cylindrical model to examine whether there was any effect on cracking which depended on the ratio of concrete cylinder thickness to its inner diameter. The results were compared to experiments. For concrete with a compressive strength of 200MPa, the water permeability coefficient was 4 x 10{sup 19} m/s. Dependences of activation energy and frequency factor on degree of cement hydration had a sharp peaking due to the nucleation rate-determining step, and a gradual increase region due to the diffusion rate-determining step. From analyses of the small-scale cylindrical model, dependences of the maximum principal stress on the radius were obtained. When the ratio of the concrete thickness to the heater diameter was around 1, the risk of cracking was predicted to be minimized. These numerical predictions from the developed tool were verified by experiments.« less
Prediction on carbon dioxide emissions based on fuzzy rules
NASA Astrophysics Data System (ADS)
Pauzi, Herrini; Abdullah, Lazim
2014-06-01
There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.
Impact of iron redox chemistry on nuclear waste disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Carolyn I.; Rosso, Kevin M.; Pattrick, Richard
For the safe disposal of nuclear waste, the ability to predict the changes in oxidation states of redox active actinide elements and fission products, such as U, Pu, Tc and Np is a key factor in determining their long term mobility. Both in the Geological Disposal Facility (GDF) near-field and in the far-field subsurface environment, the oxidation states of radionuclides are closely tied to changes in the redox condition of other elements in the subsurface such as iron. Iron pervades all aspects of the waste package environment, from the steel in the waste containers, through corrosion products, to the ironmore » minerals present in the host rock. Over the long period required for nuclear waste disposal, the chemical conditions of the subsurface waste package will vary along the entire continuum from oxidizing to reducing conditions. This variability leads to the expectation that redox-active components such as Fe oxides can undergo phase transformations or dissolution; to understand and quantify such a system with respect to potential impacts on waste package integrity and radionuclide fate is clearly a serious challenge. Traditional GDF performance assessment models currently rely upon surface adsorption or single phase solubility experiments and do not deal with the incorporation of radionuclides into specific crystallographic sites within the evolving Fe phases. In this chapter, we focus on the iron-bearing phases that are likely to be present in both the near and far-field of a GDF, examining their potential for redox activity and interaction with radionuclides. To support this, thermodynamic and molecular modelling is particularly important in predicting radionuclide behaviour in the presence of Fe-phases. Examination of radionuclide contamination of the natural environment provides further evidence of the importance of Fe-phases in far-field processes; these can be augmented by experimental and analogue studies.« less
Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura; ...
2015-12-31
Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less
vEmbryo In Silico Models: Predicting Vascular Developmental Toxicity
The cardiovascular system is the first to function in the vertebrate embryo, reflecting the critical need for nutrient delivery and waste removal during organogenesis. Blood vessel development occurs by complex interacting signaling networks, including extra-cellular matrix remod...
Thermal Analysis for Ion-Exchange Column System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Si Y.; King, William D.
2012-12-20
Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models weremore » used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.« less
Development of a hybrid model to predict construction and demolition waste: China as a case study.
Song, Yiliao; Wang, Yong; Liu, Feng; Zhang, Yixin
2017-01-01
Construction and demolition waste (C&DW) is currently a worldwide issue, and the situation is the worst in China due to a rapid increase in the construction industry and the short life span of China's buildings. To create an opportunity out of this problem, comprehensive prevention measures and effective management strategies are urgently needed. One major gap in the literature of waste management is a lack of estimations on future C&DW generation. Therefore, this paper presents a forecasting procedure for C&DW in China that can forecast the quantity of each component in such waste. The proposed approach is based on a GM-SVR model that improves the forecasting effectiveness of the gray model (GM), which is achieved by adjusting the residual series by a support vector regression (SVR) method and a transition matrix that aims to estimate the discharge of each component in the C&DW. Through the proposed method, future C&DW volume are listed and analyzed containing their potential components and distribution in different provinces in China. Besides, model testing process provides mathematical evidence to validate the proposed model is an effective way to give future information of C&DW for policy makers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R
2016-09-01
Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of local acceptance of a radioactive waste disposal facility.
Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew
2008-08-01
Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.
Overview of waste stabilization with cement.
Batchelor, B
2006-01-01
Cement can treat a variety of wastes by improving physical characteristics (solidification) and reducing the toxicity and mobility of contaminants (stabilization). Potentially adverse waste-binder interactions are an important consideration because they can limit solidification. Stabilization occurs when a contaminant is converted from the dissolved (mobile) phase to a solid (immobile) phase by reactions, such as precipitation, sorption, or substitution. These reactions are often strongly affected by pH, so the presence of components of the waste that control pH are critical to stabilization reactions. Evaluating environmental impacts can be accomplished in a tiered strategy in which simplest approach would be to measure the maximum amount of contaminant that could be released. Alternatively, the sequence of release can be determined, either by microcosm tests that attempt to simulate conditions in the disposal zone or by mechanistic models that attempt to predict behavior using fundamental characteristics of the treated waste.
CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Marra, J.
2014-08-14
The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making itmore » difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values« less
Modelling the nitrogen loadings from large yellow croaker (Larimichthys crocea) cage aquaculture.
Cai, Huiwen; Ross, Lindsay G; Telfer, Trevor C; Wu, Changwen; Zhu, Aiyi; Zhao, Sheng; Xu, Meiying
2016-04-01
Large yellow croaker (LYC) cage farming is a rapidly developing industry in the coastal areas of the East China Sea. However, little is known about the environmental nutrient loadings resulting from the current aquaculture practices for this species. In this study, a nitrogenous waste model was developed for LYC based on thermal growth and bioenergetic theories. The growth model produced a good fit with the measured data of the growth trajectory of the fish. The total, dissolved and particulate nitrogen outputs were estimated to be 133, 51 and 82 kg N tonne(-1) of fish production, respectively, with daily dissolved and particulate nitrogen outputs varying from 69 to 104 and 106 to 181 mg N fish(-1), respectively, during the 2012 operational cycle. Greater than 80 % of the nitrogen input from feed was predicted to be lost to the environment, resulting in low nitrogen retention (<20 %) in the fish tissues. Ammonia contributed the greatest proportion (>85 %) of the dissolved nitrogen generated from cage farming. This nitrogen loading assessment model is the first to address nitrogenous output from LYC farming and could be a valuable tool to examine the effects of management and feeding practices on waste from cage farming. The application of this model could help improve the scientific understanding of offshore fish farming systems. Furthermore, the model predicts that a 63 % reduction in nitrogenous waste production could be achieved by switching from the use of trash fish for feed to the use of pelleted feed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.
2015-03-30
Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is justmore » getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.« less
ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Peeler, D.; Herman, C.
The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objectivemore » is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovley, Derek R
2012-12-28
The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.
FY15 Report on Thermomechanical Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Buchholz, Stuart
2015-08-01
Sandia is participating in the third phase of a United States (US)-German Joint Project that compares constitutive models and simulation procedures on the basis of model calculations of the thermomechanical behavior and healing of rock salt (Salzer et al. 2015). The first goal of the project is to evaluate the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Among the numerical modeling tools required to address this are constitutive models that are used in computer simulations for the description of the thermal, mechanical, and hydraulic behavior of the host rockmore » under various influences and for the long-term prediction of this behavior. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure disposal of radioactive wastes in rock salt. Results of the Joint Project may ultimately be used to make various assertions regarding stability analysis of an underground repository in salt during the operating phase as well as long-term integrity of the geological barrier in the post-operating phase A primary evaluation of constitutive model capabilities comes by way of predicting large-scale field tests. The Joint Project partners decided to model Waste Isolation Pilot Plant (WIPP) Rooms B & D which are full-scale rooms having the same dimensions. Room D deformed under natural, ambient conditions while Room B was thermally driven by an array of waste-simulating heaters (Munson et al. 1988; 1990). Existing laboratory test data for WIPP salt were carefully scrutinized and the partners decided that additional testing would be needed to help evaluate advanced features of the constitutive models. The German partners performed over 140 laboratory tests on WIPP salt at no charge to the US Department of Energy (DOE).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapol, Peter; Bourg, Ian; Criscenti, Louise Jacqueline
2011-10-01
This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers,more » classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.« less
Pulse Jet Mixing Tests With Noncohesive Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.
2012-02-17
This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure allmore » solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.« less
NASA Astrophysics Data System (ADS)
Doten, C. O.; Lanini, J. S.; Bowling, L. C.; Lettenmaier, D. P.
2004-12-01
Erosion and sediment transport in a temperate forested watershed are predicted with a new sediment module linked to the Distributed Hydrology-Soil-Vegetation Model (DHSVM). The DHSVM sediment module represents the main sources of sediment generation in forested environments: mass wasting, hillslope erosion and road surface erosion. It produces failures based on a factor-of-safety analysis with the infinite slope model through use of stochastically generated soil and vegetation parameters. Failed material is routed downslope with a rule-based scheme that determines sediment delivery to streams. Sediment from hillslopes and road surfaces is also transported to the channel network. Basin sediment yield is predicted with a simple channel sediment routing scheme. The model was applied to the Rainy Creek catchment, a tributary of the Wenatchee River which drains the east slopes of the Cascade Mountains, and Hard and Ware Creeks on the west slopes of the Cascades. In these initial applications, the model produced plausible sediment yield and ratios of landsliding and surface erosion , when compared to published rates for similar catchments in the Pacific Northwest. We have also used the model to examine the implications of fires and logging road removal on sediment generation in the Rainy Creek catchment. Generally, in absolute value, the predicted changes (increased sediment generation) following fires, which are primarily associated with increased slope failures, are much larger than the modest changes (reductions in sediment yield) associated with road obliteration, although the small sensitivity to forest road obliteration may be due in part to the relatively low road density in the Rainy Creek catchment, and to mechanisms, such as culvert failure, that are not represented in the model.
van der Sloot, H A; Kosson, D S; van Zomeren, A
2017-05-01
In spite of the known heterogeneity, wastes destined for landfilling can be characterised for their leaching behaviour by the same protocols as soil, contaminated soil, sediments, sludge, compost, wood, waste and construction products. Characterisation leaching tests used in conjunction with chemical speciation modelling results in much more detailed insights into release controlling processes and factors than single step batch leaching tests like TCLP (USEPA) and EN12457 (EU Landfill Directive). Characterisation testing also can provide the potential for mechanistic impact assessments by making use of a chemical speciation fingerprint (CSF) derived from pH dependence leaching test results. This CSF then forms the basis for subsequent chemical equilibrium and reactive transport modelling to assess environmental impact in a landfill scenario under relevant exposure conditions, including conditions not readily evaluated through direct laboratory testing. This approach has been applied to municipal solid waste (MSW) and predominantly non-degradable waste (PNW) that is representative of a significant part of waste currently being landfilled. This work has shown that a multi-element modelling approach provides a useful description of the release from each of these matrices because relevant release controlling properties and parameters (mineral dissolution/precipitation, sorption on Fe and Al oxides, clay interaction, interaction with dissolved and particulate organic carbon and incorporation in solid solutions) are taken into consideration. Inclusion of dissolved and particulate organic matter in the model is important to properly describe release of the low concentration trace constituents observed in the leachate. The CSF allows the prediction of release under different redox and degradation conditions in the landfill by modifying the redox status and level of dissolved and particulate organic matter in the model runs. The CSF for MSW provides a useful starting point for comparing leachate data from other MSW landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dilution physics modeling: Dissolution/precipitation chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Reid, H.C.; Trent, D.S.
This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affectmore » safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.« less
Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasstrom, John; Piggott, Tom; Simpson, Matthew
2015-07-22
This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report aremore » based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.« less
Intharathirat, Rotchana; Abdul Salam, P; Kumar, S; Untong, Akarapong
2015-05-01
In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435-44,994 tonnes per day in 2013 to 55,177-56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamic metabolic modeling of heterotrophic and mixotrophic microalgal growth on fermentative wastes
Baroukh, Caroline; Turon, Violette; Bernard, Olivier
2017-01-01
Microalgae are promising microorganisms for the production of numerous molecules of interest, such as pigments, proteins or triglycerides that can be turned into biofuels. Heterotrophic or mixotrophic growth on fermentative wastes represents an interesting approach to achieving higher biomass concentrations, while reducing cost and improving the environmental footprint. Fermentative wastes generally consist of a blend of diverse molecules and it is thus crucial to understand microalgal metabolism in such conditions, where switching between substrates might occur. Metabolic modeling has proven to be an efficient tool for understanding metabolism and guiding the optimization of biomass or target molecule production. Here, we focused on the metabolism of Chlorella sorokiniana growing heterotrophically and mixotrophically on acetate and butyrate. The metabolism was represented by 172 metabolic reactions. The DRUM modeling framework with a mildly relaxed quasi-steady-state assumption was used to account for the switching between substrates and the presence of light. Nine experiments were used to calibrate the model and nine experiments for the validation. The model efficiently predicted the experimental data, including the transient behavior during heterotrophic, autotrophic, mixotrophic and diauxic growth. It shows that an accurate model of metabolism can now be constructed, even in dynamic conditions, with the presence of several carbon substrates. It also opens new perspectives for the heterotrophic and mixotrophic use of microalgae, especially for biofuel production from wastes. PMID:28582469
Mor, Suman; Ravindra, Khaiwal; De Visscher, Alex; Dahiya, R P; Chandra, A
2006-12-01
There has been a significant increase in municipal solid waste (MSW) generation in India during the last few decades and its management has become a major issue because the poor waste management practices affect the health and amenity of the cities. In the present study, various physico-chemical parameters of the MSW were analyzed to characterize the waste dumped at Gazipur landfill site in Delhi, India, which shows that it contains a high fraction of degradable organic components. The decomposition of organic components produces methane, a significant contributor to global warming. Based on the waste composition, waste age and the total amount dumped, a first-order decay model (FOD) was applied to estimate the methane generation potential of the Gazipur landfill site, which yields an estimate of 15.3 Gg/year. This value accounts to about 1-3% of existing Indian landfill methane emission estimates. Based on the investigation of Gazipur landfill, we estimate Indian landfill methane emissions at 1.25 Tg/year or 1.68 Tg/year of methane generation potential. These values are within the range of existing estimates. A comparison of FOD with a recently proposed triangular model was also performed and it shows that both models can be used for the estimation of methane generation. However, the decrease of the emission after closure is more gradual in the case of the first-order model, leading to larger gas production predictions after more than 10 years of closure. The regional and global implications of national landfill methane emission are also discussed.
Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware.
Schumacher, Kelsea A; Schumacher, Thomas; Agbemabiese, Lawrence
2014-11-01
The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream. However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware's e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lopes, Carla; Herva, Marta; Franco-Uría, Amaya; Roca, Enrique
2011-07-01
In this work, an environmental risk assessment of reusing organic waste of differing origins and raw materials as agricultural fertilizers was carried out. An inventory of the heavy metal content in different organic wastes (i.e., compost, sludge, or manure) from more than 80 studies at different locations worldwide is presented. The risk analysis was developed by considering the heavy metal (primarily Cd, Cu, Ni, Pb, and Zn) concentrations in different organic residues to assess their potential environmental accumulation and biotransfer to the food chain and humans. A multi-compartment model was used to estimate the fate and distribution of metals in different environmental compartments, and a multi-pathway model was used to predict human exposure. The obtained hazard index for each waste was concerning in many cases, especially in the sludge samples that yielded an average value of 0.64. Among the metals, Zn was the main contributor to total risk in all organic wastes due to its high concentration in the residues and high biotransfer potential. Other more toxic metals, like Cd or Pb, represented a negligible contribution. These results suggest that the Zn content in organic waste should be reduced or more heavily regulated to guarantee the safe management and reuse of waste residues according to the current policies promoted by the European Union.
A degradation model for high kitchen waste content municipal solid waste.
Chen, Yunmin; Guo, Ruyang; Li, Yu-Chao; Liu, Hailong; Zhan, Tony Liangtong
2016-12-01
Municipal solid waste (MSW) in developing countries has a high content of kitchen waste (KW), and therefore contains large quantities of water and non-hollocellulose degradable organics. The degradation of high KW content MSW cannot be well simulated by the existing degradation models, which are mostly established for low KW content MSW in developed countries. This paper presents a two-stage anaerobic degradation model for high KW content MSW with degradations of hollocellulose, sugars, proteins and lipids considered. The ranges of the proportions of chemical compounds in MSW components are summarized with the recommended values given. Waste components are grouped into rapidly or slowly degradable categories in terms of the degradation rates under optimal water conditions for degradation. In the proposed model, the unionized VFA inhibitions of hydrolysis/acidogenesis and methanogenesis are considered as well as the pH inhibition of methanogenesis. Both modest and serious VFA inhibitions can be modeled by the proposed model. Default values for the parameters in the proposed method can be used for predictions of degradations of both low and high KW content MSW. The proposed model was verified by simulating two laboratory experiments, in which low and high KW content MSW were used, respectively. The simulated results are in good agreement with the measured data of the experiments. The results show that under low VFA concentrations, the pH inhibition of methanogenesis is the main inhibition to be considered, while the inhibitions of both hydrolysis/acidogenesis and methanogenesis caused by unionized VFA are significant under high VFA concentrations. The model is also used to compare the degradation behaviors of low and high KW content MSW under a favorable environmental condition, and it shows that the gas potential of high KW content MSW releases more quickly. Copyright © 2016 Elsevier Ltd. All rights reserved.
COMSOL Multiphysics Model for HLW Canister Filling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesterson, M. R.
2016-04-11
The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. Wastes containing high concentrations of Al 2O 3 and Na 2O can contribute to nepheline (generally NaAlSiO 4) crystallization, which can sharply reduce the chemical durability of high level waste (HLW) glass. Nepheline crystallization canmore » occur during slow cooling of the glass within the stainless steel canister. The purpose of this work was to develop a model that can be used to predict temperatures of the glass in a WTP HLW canister during filling and cooling. The intent of the model is to support scoping work in the laboratory. It is not intended to provide precise predictions of temperature profiles, but rather to provide a simplified representation of glass cooling profiles within a full scale, WTP HLW canister under various glass pouring rates. These data will be used to support laboratory studies for an improved understanding of the mechanisms of nepheline crystallization. The model was created using COMSOL Multiphysics, a commercially available software. The model results were compared to available experimental data, TRR-PLT-080, and were found to yield sufficient results for the scoping nature of the study. The simulated temperatures were within 60 ºC for the centerline, 0.0762m (3 inch) from centerline, and 0.2286m (9 inch) from centerline thermocouples once the thermocouples were covered with glass. The temperature difference between the experimental and simulated values reduced to 40 ºC, 4 hours after the thermocouple was covered, and down to 20 ºC, 6 hours after the thermocouple was covered. This level of precision is considered acceptable for the scoping nature of the model and the subsequent laboratory glass studies Using the model, two additional glass pouring cycles were conducted. Representative thermocouple data were plotted to show the variations between the two cycles. This provides preliminary data that will be used in laboratory experiments to determine the potential for controlling nepheline crystallization in glass by varying the glass pouring conditions.« less
NASA Astrophysics Data System (ADS)
Yanidar, R.; Hartono, D. M.; Moersidik, S. S.
2018-03-01
Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockhold, Mark L.; Zhang, Z. F.; Meyer, Philip D.
2015-02-28
Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parametersmore » for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.« less
Toward understanding the effect of low-activity waste glass composition on sulfur solubility
Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; ...
2014-07-24
The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO 3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, whichmore » in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO 3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li 2O > V 2O 5> CaO ≈ P 2O 5 > Na 2O ≈ B 2O 3 > K 2O. The components that most decrease sulfur solubility are Cl > Cr 2O 3 > Al 2O 3 > ZrO 2 ≈ SnO 2 > Others ≈ SiO 2. As a result, the order of component effects is similar to previous literature data, in most cases.« less
Almeida, Cristiane Aparecida; Oliveira, André Fernando de; Pacheco, Anderson Almeida; Lopes, Renata Pereira; Neves, Antônio Augusto; Lopes Ribeiro de Queiroz, Maria Eliana
2018-06-14
The Fundão dam collapsed releasing 60 million tons of mining waste into the environment. The mining wastes should be better studied, since some of them are deposited on the alluvial plains soil and at the bottom of the rivers, like sediments, of the region affected. Thus, this work aims to perform the chemical, physical and adsorptive characterization of the samples colleted in region de Paracatu de Baixo. The mining waste has uneven surface, with sizes ranging from 2 to 200 μm, pHPCZ in 6.0. Are composed predominantly by kaolinite, goethite, hematite, gibbsite and quartz. It has been classified as non-hazardous residues. The adsorption studies showed the mining waste have a low Cationic Exchange Capacity. The sorption process was occurs by ion exchange and the kinetics follows the pseudo second order model (R 2 > 0.78). The process is endothermic (ΔH in 29.33 kJ mol -1 ) and spontaneous (ΔG in -24.7 kJ mol -1 at 25 °C). The Langmuir model presented a better fit (R 2 > 0.995) to the experimental data. Therefore, the methylene blue can be used as a cation model to predict the behavior of cationic species on the mining waste, with maximum adsorption capacity of 4.42 mg g -1 at 25 °C. Copyright © 2018. Published by Elsevier Ltd.
Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses
Bingham, Paul A.; Vaishnav, Shuchi; Forder, Sue D.; ...
2016-11-10
In this paper, the capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO 4 2-) and total cation field strength index of the glass, Σ(z/a 2),more » with a high goodness-of-fit (R 2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λ th (R 2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R 2 ≈ 0.919), are used. Finally, results support the application of these models, and in particular Σ(z/a 2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, J.N.; Holderness, J.H.; James, D.W.
1992-12-01
Waste stream scaling factors based on sampling programs are vulnerable to one or more of the following factors: sample representativeness, analytic accuracy, and measurement sensitivity. As an alternative to sample analyses or as a verification of the sampling results, this project proposes the use of the RADSOURCE code, which accounts for the release of fuel-source radionuclides. Once the release rates of these nuclides from fuel are known, the code develops scaling factors for waste streams based on easily measured Cobalt-60 (Co-60) and Cesium-137 (Cs-137). The project team developed mathematical models to account for the appearance rate of 10CFR61 radionuclides inmore » reactor coolant. They based these models on the chemistry and nuclear physics of the radionuclides involved. Next, they incorporated the models into a computer code that calculates plant waste stream scaling factors based on reactor coolant gamma- isotopic data. Finally, the team performed special sampling at 17 reactors to validate the models in the RADSOURCE code.« less
Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, P. A.; Vaishnav, S.; Forder, S. D.
2017-02-01
The capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO 4 2-) and total cation field strength index of the glass, Σ(z/a 2), with a highmore » goodness-of-fit (R 2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λ th (R 2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R 2 ≈ 0.919), are used. Results support the application of these models, and in particular Σ(z/a 2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.« less
Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.
The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus,more » natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.« less
Buragohain, Poly; Garg, Ankit; Feng, Song; Lin, Peng; Sreedeep, S
2018-09-01
The concept of sponge city has become very popular with major thrust on design of waste containment systems such as biofilter and green roofs. Factors that may influence pollutant ions retention in these systems will be soil type and also their interactions. The study investigated single and competitive interaction of copper in two soils and its influence on the fate prediction. Freundlich and Langmuir nonlinear isotherms were selected to quantify the retention results. Series of numerical simulations were conducted to model 1 D advection-dispersion transport for the two soils and analyse the role of isotherms. The results indicated that contaminant fate prediction of copper-soil interaction based on the two non-linear isotherms was different for both single and that in competition. Retardation factor obtained from Freundlich (R F ) isotherm predicts more than Langmuir (R La ). This observation is more explicit at the higher range of equilibrium concentration. Fate prediction based on retardation value obtained from retention isotherms exhibited some anomalous trends contradicting the experimental findings due to inherent assumptions in governing equations. The necessity to have an approximate assessment of contaminant concentration in the field to effectively use contaminant retention results for accurate fate prediction is highlighted here. The study is important for modellers in design or analysis of biolfilter system (sponge city), where multiple ions tend to exist in waste water. Copyright © 2018 Elsevier B.V. All rights reserved.
Significant volume reduction of tank waste by selective crystallization: 1994 Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herting, D.L.; Lunsford, T.R.
1994-09-27
The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO{sub 3}) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects ofmore » crystallization parameters on the size and crystal habit of product NaNO{sub 3} crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO{sub 3} crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO{sub 3} in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet.« less
Household Food Insecurity May Predict Underweightand Wasting among Children Aged 24-59 Months.
Abdurahman, Ahmed A; Mirzaei, Khadijeh; Dorosty, Ahmed Reza; Rahimiforoushani, A; Kedir, Haji
2016-01-01
The aim of this study was to examine the association between household food insecurity and nutritional status among children aged 24-59 months in Haromaya District. Children (N = 453) aged 24-59 months were recruited in a community-based cross-sectional survey with a representative sample of households selected by a multistage sampling procedure in Haromaya District. Household Food Insecurity Access Scale and anthropometry were administered. Multinomial logistic regression models were applied to select variables that are candidate for multivariable model. The prevalences of stunting, underweight, and wasting among children aged 24-59 months were 61.1%, 28.1%, and 11.8%, respectively. The mean household food insecurity access scale score was 3.34, and 39.7% of households experienced some degree of food insecurity. By logistic regression analysis and after adjusting for the confounding factors, household food insecurity was significantly predictive of underweight (AOR = 2.48, CI = 1.17-5.24, p = .05) and chronic energy deficiency (AOR = 0.47, CI = 0.23-0.97, p = .04) and marginally significant for wasting (AOR = 0.53, CI = 0.27-1.03, p = .06). It is concluded that household food security improves child growth and nutritional status.
Permanent Disposal of Nuclear Waste in Salt
NASA Astrophysics Data System (ADS)
Hansen, F. D.
2016-12-01
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.
2015-04-15
Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictionsmore » about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.« less
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2008-03-01
Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.
NASA Astrophysics Data System (ADS)
Harahap, S. A. A.; Nazar, A.; Yunita, M.; Pasaribu, RA; Panjaitan, F.; Yanuar, F.; Misran, E.
2018-02-01
Adsorption of β-carotene in crude palm oil (CPO) was studied using activated carbon produced from tea waste (ACTW) an adsorbent. Isothermal studies were carried out at 60 °C with the ratio of activated carbon to CPO were 1:3, 1:4, 1:5, and 1:6, respectively. The ACTW showed excellent performance as the percentage of adsorption of β-carotene from CPO was > 99%. The best percentage removal (R) was achieved at ACTW to CPO ratio equal to 1:3, which was 99.61%. The appropriate isotherm model for this study was Freundlich isotherm model. The combination of Freundlich isotherm equation and mass balance equation showed a good agreement when validated to the experimental data. The equation subsequently executed to predict the removal efficiency under given sets of operating conditions. At a targetted R, CPO volume can be estimated for a certain initial concentration β-carotene in CPO C0 and mass of ACTW adsorbent M used.
Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poineau, Frederic; Tamalis, Dimitri
The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 10 5 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium wastemore » forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc ( 99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational modeling and simulations were performed to shed light on experimental results and explain structural and kinetics trends.« less
Monitoring coastal water properties and current circulation with ERTS-1. [Delaware Bay
NASA Technical Reports Server (NTRS)
Klemas, V.; Otley, M.; Wethe, C.; Rogers, R.
1974-01-01
Imagery and digital tapes from nine successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle have been analyzed with special emphasis on turbidity, current circulation, waste disposal plumes and convergent boundaries between different water masses. ERTS-1 image radiance correlated well with Secchi depth and suspended sediment concentration. Circulation patterns observed by ERTS-1 during different parts of the tidal cycle, agreed well with predicted and measured currents throughout Delaware Bay. Convergent shear boundaries between different water masses were observed from ERTS-1. In several ERTS-1 frames, waste disposal plumes have been detected 36 miles off Delaware's Atlantic coast. The ERTS-1 results are being used to extend and verify hydrodynamic models of the bay, developed for predicting oil slick movement and estimating sediment transport.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
A digital model calibrated to conditions in the Wabash River in Huntington County, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditons, summer and winter low flows. The major point-source waste load affecting the Wabash River in Huntington County is the Huntington wastewater-treatment facility. The most significnt factor potentially affecting the dissolved-oxygen concentration during summer low flows is nitrification. However, nitrification should not be a limiting factor on the allowable nitrogenous and carbonaceous waste loads for the Huntington wastewater-treatment facility during summer low flows if the ammonia-nitrogen toxicity standard for Indiana streams is met. The disolved-oxygen standard for Indiana stream, an average of 5.0 milligrams per liter, should be met during summer and winter low flows if the National Pollution Discharge Elimination System 's 5-day, carbonaceous biochemical-oxygen demands of a monthly average concentration of 30 milligrams per liter and a maximum weekly average of 45 milligrams per liter are not exceeded.
Drift-Scale Coupled Processes (DST and THC Seepage) Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Reportmore » is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC Seepage Model and is not used for calibration to measured data.« less
Modeling pure culture heterotrophic production of polyhydroxybutyrate (PHB).
Mozumder, Md Salatul Islam; Goormachtigh, Laurens; Garcia-Gonzalez, Linsey; De Wever, Heleen; Volcke, Eveline I P
2014-03-01
In this contribution a mechanistic model describing the production of polyhydroxybutyrate (PHB) through pure-culture fermentation was developed, calibrated and validated for two different substrates, namely glucose and waste glycerol. In both cases, non-growth-associated PHB production was triggered by applying nitrogen limitation. The occurrence of some growth-associated PHB production besides non-growth-associated PHB production was demonstrated, although it is inhibited in the presence of nitrogen. Other phenomena observed experimentally and described by the model included biomass growth on PHB and non-linear product inhibition of PHB production. The accumulated impurities from the waste substrate negatively affected the obtained maximum PHB content. Overall, the developed mathematical model provided an accurate prediction of the dynamic behavior of heterotrophic biomass growth and PHB production in a two-phase pure culture system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pulse Jet Mixing Tests With Noncohesive Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.
2009-05-11
This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important tomore » release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The HLP-022 vessel was also evaluated using 12 m/s pulse jet velocity with 6-in. nozzles, and this design also did not satisfy the criteria for all of the conditions evaluated.« less
Modeling Organic Contaminant Desorption from Municipal Solid Waste Components
NASA Astrophysics Data System (ADS)
Knappe, D. R.; Wu, B.; Barlaz, M. A.
2002-12-01
Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a low plastics content, the model predicted that 50% of the initially sorbed toluene desorbed over a period of 5.8 days. In contrast, the model predicted that 50% of the initially sorbed toluene desorbed over a period of 4 years for the newer MSW mixture. These results suggest that toluene desorption rates from old MSW mixtures exceed methanogenic toluene degradation rates (toluene half-lives of about 30 to 100 days have been reported for methanogenic systems) and thus imply that biodegradation kinetics control the rate at which sorbed toluene is mineralized in old landfills. For newer MSW mixtures with a larger plastics content, toluene desorption rates are substantially slower; therefore, toluene desorption kinetics likely control the rate at which sorbed toluene can be mineralized in new landfills.
Whitney, John W.; O'Leary, Dennis W.
1993-01-01
Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada, is needed to assess seismic and possible volcanic hazards that could affect the site during the preclosure (next 100 years) and the behavior of the hydrologic system during the postclosure (the following 10,000 years) periods. Tectonic characterization is based on assembling mapped geological structures in their chronological order of development and activity, and interpreting their dynamic interrelationships. Addition of mechanistic models and kinematic explanations for the identified tectonic processes provides one or more tectonic models having predictive power. Proper evaluation and application of tectonic models can aid in seismic design and help anticipate probable occurrence of future geologic events of significance to the repository and its design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang-Yang; Taylor, Christopher D.; Kim, Eunja
2014-07-31
This document meets Level 4 Milestone: Corrosion mechanisms for metal alloy waste forms - experiment and theory. A multiphysics model is introduces that will provide the framework for the quantitative prediction of corrosion rates of metallic waste forms incorporating the fission product Tc. The model requires a knowledge of the properties of not only the metallic waste form, but also the passive oxide films that will be generated on the waste form, and the chemistry of the metal/oxide and oxide/environment interfaces. in collaboration with experimental work, the focus of this work is on obtaining these properties from fundamental atomistic models.more » herein we describe the overall multiphysics model, which is based on MacDonald's point-defect model for passivity. We then present the results of detailed electronic-structure calculations for the determination of the compatibility and properties of Tc when incorporated into intermetallic oxide phases. This work is relevant to the formation of multi-component oxides on metal surfaces that will incorporate Tc, and provide a kinetic barrier to corrosion (i.e. the release of Tc to the environment). Atomistic models that build upon the electronic structure calculations are then described using the modified embedded atom method to simulate metallic dissolution, and Buckingham potentials to perform classical molecular dynamics and statics simulations of the technetium (and, later, iron-technetium) oxide phases. Electrochemical methods were then applied to provide some benchmark information of the corrosion and electrochemical properties of Technetium metal. The results indicate that published information on Tc passivity is not complete and that further investigation is warranted.« less
Kidgell, Joel T.; de Nys, Rocky; Paul, Nicholas A.; Roberts, David A.
2014-01-01
Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models. PMID:25061756
Reaction modeling of drainage quality in the Duluth Complex, northern Minnesota, USA
Seal, Robert; Lapakko, Kim; Piatak, Nadine; Woodruff, Laurel G.
2015-01-01
Reaction modeling can be a valuable tool in predicting the long-term behavior of waste material if representative rate constants can be derived from long-term leaching tests or other approaches. Reaction modeling using the REACT program of the Geochemist’s Workbench was conducted to evaluate long-term drainage quality affected by disseminated Cu-Ni-(Co-)-PGM sulfide mineralization in the basal zone of the Duluth Complex where significant resources have been identified. Disseminated sulfide minerals, mostly pyrrhotite and Cu-Fe sulfides, are hosted by clinopyroxene-bearing troctolites. Carbonate minerals are scarce to non-existent. Long-term simulations of up to 20 years of weathering of tailings used two different sets of rate constants: one based on published laboratory single-mineral dissolution experiments, and one based on leaching experiments using bulk material from the Duluth Complex conducted by the Minnesota Department of Natural Resources (MNDNR). The simulations included only plagioclase, olivine, clinopyroxene, pyrrhotite, and water as starting phases. Dissolved oxygen concentrations were assumed to be in equilibrium with atmospheric oxygen. The simulations based on the published single-mineral rate constants predicted that pyrrhotite would be effectively exhausted in less than two years and pH would rise accordingly. In contrast, only 20 percent of the pyrrhotite was depleted after two years using the MNDNR rate constants. Predicted pyrrhotite depletion by the simulation based on the MNDNR rate constant matched well with published results of laboratory tests on tailings. Modeling long-term weathering of mine wastes also can provide important insights into secondary reactions that may influence the permeability of tailings and thereby affect weathering behavior. Both models predicted the precipitation of a variety of secondary phases including goethite, gibbsite, and clay (nontronite).
NASA Astrophysics Data System (ADS)
Birkholzer, J. T.
2017-12-01
This presentation provides an overview of an international research and model comparison collaboration (DECOVALEX) for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. Prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel, and is also relevant for a range of other sub-surface engineering activities. DECOVALEX research activities have been supported by a large number of radioactive-waste-management organizations and regulatory authorities. Research teams from more than a dozen international partner organizations have participated in the comparative modeling evaluation of complex field and laboratory experiments in the UK, Switzerland, Japan, France and Sweden. Together, these tasks (1) have addressed a wide range of relevant issues related to engineered and natural system behavior in argillaceous, crystalline and other host rocks, (2) have yielded in-depth knowledge of coupled THM and THMC processes associated with nuclear waste repositories and wider geo-engineering applications, and (3) have advanced the capability, as well as demonstrated the suitability, of numerical simulation models for quantitative analysis.
Garcés, Diego; Díaz, Eva; Sastre, Herminio; Ordóñez, Salvador; González-LaFuente, José Manuel
2016-01-01
Solid recovered fuels constitute a valuable alternative for the management of those non-hazardous waste fractions that cannot be recycled. The main purpose of this research is to assess the suitability of three different wastes from the landfill of the local waste management company (COGERSA), to be used as solid recovered fuels in a cement kiln near their facilities. The wastes analyzed were: End of life vehicles waste, packaging and bulky wastes. The study was carried out in two different periods of the year: November 2013 and April 2014. In order to characterize and classify these wastes as solid recovered fuels, they were separated into homogeneous fractions in order to determine different element components, such as plastics, cellulosic materials, packagings or textile compounds, and the elemental analysis (including chlorine content), heavy metal content and the heating value of each fraction were determined. The lower heating value of the waste fractions on wet basis varies between 10 MJ kg(-1) and 42 MJ kg(-1). One of the packaging wastes presents a very high chlorine content (6.3 wt.%) due to the presence of polyvinylchloride from pipe fragments, being the other wastes below the established limits. Most of the wastes analyzed meet the heavy metals restrictions, except the fine fraction of the end of life vehicles waste. In addition, none of the wastes exceed the mercury limit content, which is one of the parameters considered for the solid recovered fuels classification. A comparison among the experimental higher heating values and empirical models that predict the heating value from the elemental analysis data was carried out. Finally, from the three wastes measured, the fine fraction of the end of life vehicles waste was discarded for its use as solid recovered fuels due to the lower heating value and its high heavy metals content. From the point of view of the heating value, the end of life vehicles waste was the most suitable residue with a lower heating value of 35.89 MJ kg(-1), followed by the packaging waste and the bulky waste, respectively. When mixing the wastes studied a global waste was obtained, whose classification as solid recovered fuels was NCV 1 Cl 3 Hg 3. From the empirical models used for calculating higher heating value from elemental content, Scheurer-Kestner was the model that best fit the experimental data corresponding to the wastes collected in November 2013, whereas Chang equation was the most approximate to the experimental heating values for April 2014 fractions. This difference is due to higher chlorine content of the second batch of wastes, since Chang equation is the only one that incorporates the chlorine content. Copyright © 2015 Elsevier Ltd. All rights reserved.
Costa, Vinicius Câmara; Aquino, Francisco Wendel Batista; Paranhos, Caio Marcio; Pereira-Filho, Edenir Rodrigues
2017-12-01
Due to the continual increase in waste generated from electronic devices, the management of plastics, which represents between 10 and 30% by weight of waste electrical and electronic equipment (WEEE or e-waste), becomes indispensable in terms of environmental and economic impacts. Considering the importance of acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and their blends in the electronics and other industries, this study presents a new application of laser-induced breakdown spectroscopy (LIBS) for the fast and direct determination of PC and ABS concentrations in blends of these plastics obtained from samples of e-waste. From the LIBS spectra acquired for the PC/ABS blend, multivariate calibration models were built using partial least squares (PLS) regression. In general, it was possible to infer that the relative errors between the theoretical or reference and predicted values for the spiked samples were lower than 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aging of vitrified wastes: An experimental and analogical approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterpenich, J.; Forestier, L. Le; Libourel, G.
1995-12-31
In order to tackle the problems of the longevity of vitrified wastes, the authors used two complementary approaches: an analogical approach to examine the leaching processes of vitreous matrices as a function of time and to evaluate the longevity of vitrified wastes, and an experimental approach based on leaching experiments which allowed the determination of the rate and the kinetics of release of each element under well known conditions. Despite the very different durations of alteration, around 1,000 years for the medieval stained glasses and several weeks for leaching experiments, the authors show that the results obtained in laboratory andmore » under natural conditions are comparable. Thus, studies of medieval stained glasses allow prediction of the alteration of vitreous matrices and in particular, of vitrified wastes, and can be used to determine the rates and kinetics of release of pollutants. Medieval stained glasses furnish an excellent model for understanding the aging of vitrified wastes over time periods of up to a thousand years.« less
Friedrich, Elena; Trois, Cristina
2011-07-01
The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind. Copyright © 2011 Elsevier Ltd. All rights reserved.
LISK-BROOM: A laser concept for clearing space junk
NASA Astrophysics Data System (ADS)
Phipps, Claude
1994-10-01
A mathematical model predicts the economical effectiveness of using powerful laser beams for cleaning space junk. The propelling force comes from the ablation caused by repetitive laser pulses. Lasers will use Earth-based power to de-orbit waste objects in cooperation with observatory telescopes. (AIP)
Applications of remote-sensing technology to environmental problems of Delaware and Delaware Bay
NASA Technical Reports Server (NTRS)
Bartlett, D.; Klemas, V.; Philpot, W.; Rogers, R.
1975-01-01
Digital processing of multispectral LANDSAT data was used to develop a computerized model for predicting oil slick movement within the Delaware Bay. LANDSAT imagery was also used to monitor offshore waste disposal sites for mapping of wetlands, and charting of tidal currents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.-W.; Chang, N.-B., E-mail: nchang@mail.ucf.ed; Chen, J.-C.
2010-07-15
Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19more » large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.« less
Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim
2018-02-01
This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.
Varadharajan, Venkatramanan; Vadivel, Sudhan Shanmuga; Ramaswamy, Arulvel; Sundharamurthy, Venkatesaprabhu; Chandrasekar, Priyadharshini
2017-01-01
Tannase production by Aspergillus oryzae using various agro-wastes as substrates by submerged fermentation was studied in this research. The microbe was isolated from degrading corn kernel obtained from the corn fields at Tiruchengode, India. The microbial identification was done using 18S rRNA gene analysis. The agro-wastes chosen for the study were pomegranate rind, Cassia auriculata flower, black gram husk, and tea dust. The process parameters chosen for optimization study were substrate concentration, pH, temperature, and incubation period. During one variable at a time optimization, the pomegranate rind extract produced maximum tannase activity of 138.12 IU/mL and it was chosen as the best substrate for further experiments. The quadratic model was found to be the effective model for prediction of tannase production by A. oryzae. The optimized conditions predicted by response surface methodology (RSM) with genetic algorithm (GA) were 1.996% substrate concentration, pH of 4.89, temperature of 34.91 °C, and an incubation time of 70.65 H with maximum tannase activity of 138.363 IU/mL. The confirmatory experiment under optimized conditions showed tannase activity of 139.22 IU/mL. Hence, RSM-GA pair was successfully used in this study to optimize the process parameters required for the production of tannase using pomegranate rind. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Analytical method of waste allocation in waste management systems: Concept, method and case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergeron, Francis C., E-mail: francis.b.c@videotron.ca
Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. Themore » conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste management in Geneva.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John
This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Streammore » Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.« less
Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation.
Chan, Wen Ning; Holtzapple, Mark T
2003-11-01
The purpose of this research is to generate carboxylic acids from the biodegradable fraction of municipal solid wastes (MSW) and municipal sewage sludge (MSS) by using a thermophilic (55 degrees C), anaerobic, high-solid fermentation. With terrestrial inocula, the highest total carboxylic acid concentration achieved was 20.5 g/L, the highest conversion obtained was 69%, and the highest acetic acid selectivity was 86.4%. Marine inocula were also used to compare against terrestrial sources. Continuum particle distribution modeling (CPDM) was used to predict the final acid product concentrations and substrate conversions at a wide range of liquid residence times (LRT) and volatile solid loading rates (VSLR). "Maps" showing the product concentration and conversion for various LRT and VSLR were generated from CPDM. The predictions were compared to the experimental results. On average, the difference between the predicted and experimental values were 13% for acid concentration and 10% for conversion. CPDM "maps" show that marine inocula produce higher concentrations than terrestrial inocula.
Pivel, María Alejandra Gómez; Dal Sasso Freitas, Carla Maria
2010-08-01
Numerical models that predict the fate of drilling discharges at sea constitute a valuable tool for both the oil industry and regulatory agencies. In order to provide reliable estimates, models must be validated through the comparison of predictions with field or laboratory observations. In this paper, we used the Offshore Operators Committee Model to simulate the discharges from two wells drilled at Campos Basin, offshore SE Brazil, and compared the results with field observations obtained 3 months after drilling. The comparison showed that the model provided reasonable predictions, considering that data about currents were reconstructed and theoretical data were used to characterize the classes of solids. The model proved to be a valuable tool to determine the degree of potential impact associated to drilling activities. However, since the accuracy of the model is directly dependent on the quality of input data, different possible scenarios should be considered when used for forecast modeling.
PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL
The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...
Validation of Groundwater Models: Meaningful or Meaningless?
NASA Astrophysics Data System (ADS)
Konikow, L. F.
2003-12-01
Although numerical simulation models are valuable tools for analyzing groundwater systems, their predictive accuracy is limited. People who apply groundwater flow or solute-transport models, as well as those who make decisions based on model results, naturally want assurance that a model is "valid." To many people, model validation implies some authentication of the truth or accuracy of the model. History matching is often presented as the basis for model validation. Although such model calibration is a necessary modeling step, it is simply insufficient for model validation. Because of parameter uncertainty and solution non-uniqueness, declarations of validation (or verification) of a model are not meaningful. Post-audits represent a useful means to assess the predictive accuracy of a site-specific model, but they require the existence of long-term monitoring data. Model testing may yield invalidation, but that is an opportunity to learn and to improve the conceptual and numerical models. Examples of post-audits and of the application of a solute-transport model to a radioactive waste disposal site illustrate deficiencies in model calibration, prediction, and validation.
Geohydrologic aspects for siting and design of low-level radioactive-waste disposal
Bedinger, M.S.
1989-01-01
The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.
A Bayesian Network Model for Assessing Estrogen Fate and Transport in a Swine Waste Lagoon
Lee, Boknam; Kullman, Seth W.; Yost, Erin; Meyer, Michael T.; Worley-Davis, Lynn; Reckhow, Kenneth H.
2017-01-01
Commercial swine waste lagoons are regarded as a major reservoir of natural estrogens, which have the potential to produce adverse physiological effects on exposed aquatic organisms and wildlife. However, there remains limited understanding of the complex mechanisms of physical, chemical, and biological processes that govern the fate and transport of natural estrogens within an anaerobic swine lagoon. To improve lagoon management and ultimately help control the offsite transport of these compounds from swine operations, a Bayesian network model was developed to predict estrogen fate and budget and compared against data collected from a commercial swine field site. In general, the model was able to predict the estrogen fate and budget in both the slurry and sludge stores within the swine lagoon. Sensitivity analysis within the model, demonstrated that the estrogen input loading from the associated barn facility was the most important factor in controlling estrogen concentrations within the lagoon slurry storage, while the settling rate was the most significant factor in the lagoon sludge storage. The degradation reactions were shown to be minor in both stores based on prediction of average total estrogen concentrations. Management scenario evaluations showed that the best possible management options to reduce estrogen levels in the lagoon are either to adjust the estrogen input loading from swine barn facilities or to effectively enhancing estrogen bonding with suspended solids through the use of organic polymers or inorganic coagulants. PMID:24798317
Modeling NAPL dissolution from pendular rings in idealized porous media
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.; Demond, Avery H.
2015-10-01
The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an organic-wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water-wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.
Robust predictive cruise control for commercial vehicles
NASA Astrophysics Data System (ADS)
Junell, Jaime; Tumer, Kagan
2013-10-01
In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.
Model for the separate collection of packaging waste in Portuguese low-performing recycling regions.
Oliveira, V; Sousa, V; Vaz, J M; Dias-Ferreira, C
2018-06-15
Separate collection of packaging waste (glass; plastic/metals; paper/cardboard), is currently a widespread practice throughout Europe. It enables the recovery of good quality recyclable materials. However, separate collection performance are quite heterogeneous, with some countries reaching higher levels than others. In the present work, separate collection of packaging waste has been evaluated in a low-performance recycling region in Portugal in order to investigate which factors are most affecting the performance in bring-bank collection system. The variability of separate collection yields (kg per inhabitant per year) among 42 municipalities was scrutinized for the year 2015 against possible explanatory factors. A total of 14 possible explanatory factors were analysed, falling into two groups: socio-economic/demographic and waste collection service related. Regression models were built in an attempt to evaluate the individual effect of each factor on separate collection yields and predict changes on the collection yields by acting on those factors. The best model obtained is capable to explain 73% of the variation found in the separate collection yields. The model includes the following statistically significant indicators affecting the success of separate collection yields: i) inhabitants per bring-bank; ii) relative accessibility to bring-banks; iii) degree of urbanization; iv) number of school years attended; and v) area. The model presented in this work was developed specifically for the bring-bank system, has an explanatory power and quantifies the impact of each factor on separate collection yields. It can therefore be used as a support tool by local and regional waste management authorities in the definition of future strategies to increase collection of recyclables of good quality and to achieve national and regional targets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Glass binder development for a glass-bonded sodalite ceramic waste form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Vienna, John D.; Frank, Steven M.
This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with high Na2O contents were designed to generate waste forms having higher sodalite contents and fewer stress fractures. The structural, mechanical, and thermal properties of the new glasses were measured using variety of analytical techniques. The glasses were then used to produce ceramic waste forms with surrogate salt waste. The materials made using the glasses developed during this study were formulated to generate more sodalite than materialsmore » made with previous baseline glasses used. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability. Additionally, a model generated during this study for predicting softening temperature of silicate binder glasses is presented.« less
Factors Influencing Fluid Milk Waste in a Breakfast in the Classroom School Breakfast Program.
Blondin, Stacy A; Goldberg, Jeanne P; Cash, Sean B; Griffin, Timothy S; Economos, Christina D
2018-04-01
To determine predictors of fluid milk waste in a Breakfast in the Classroom School Breakfast Program. Cross-sectional with 3 repeated measures/classroom. Elementary schools in a medium-sized, low-income, urban school district. Twenty third- through fourth-grade classrooms across 6 schools. Dependent variables include percentage of total and served milk wasted. Independent variables included observed daily menu offerings, program factors, and teacher and student behavior. Descriptive statistics were used to characterize variables across classrooms and schools. Multilevel mixed-effects models were used to test associations between predictors and outcomes of interest. P ≤ .05 was considered statistically significant. Total milk waste increased 12% when juice was offered and 3% for each additional carton of unserved milk. Teacher encouragement to take and/or consume breakfast was associated with a 5% and 9% increase in total and served milk waste, respectively. When students were engaged in other activities in addition to eating breakfast, total milk waste decreased 10%. Beverage offerings were predictive of greater total milk waste. Teacher and student behavior also appeared to influence milk consumption. Findings suggest that specific changes to School Breakfast Program implementation policies and practices could have an important role in waste mitigation. Copyright © 2018 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2007-05-08
Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mgl(-1) and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D(h), are 3.6 x 10(-8); 6.1 x 10(-8) and 2.4 x 10(-8)cm(2)s(-1), respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.
Thermal Predictions of the Cooling of Waste Glass Canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donna Post Guillen
2014-11-01
Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to themore » surrounding air are reported.« less
Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic
2014-04-15
Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Wenyi; Zeng, Weihua; Yao, Bo
2014-01-01
Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement.
Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás
2015-01-01
Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537
NASA Astrophysics Data System (ADS)
Koner, S.; Adak, A.
2012-09-01
The fixed bed column study was conducted for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide from synthetically prepared wastewater using surfactant modified silica gel waste (SMSGW) as an adsorbing media. The adsorbing media was prepared by treating silica gel waste (SGW) with cationic surfactant. The removal was due to adsolubilization of 2,4-D molecules within the admicelles formed on the surface of SGW. The column having 2.5 cm diameter, with different bed heights such as 20, 30 and 40 cm were used in the study. The different column design parameters like depth of exchange zone, time required for exchange zone to move its own height, adsorption rate constant, adsorption capacity constant were calculated using BDST model. The SMSGW was found to be a very efficient media for the removal of 2,4-D from wastewater. Column design parameters were modeled for different field conditions to predict the duration of column run for practical application.
NASA Astrophysics Data System (ADS)
Jordan, Amy
Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of opportunity for Xe-133 detection from a 1 kt UNE at Rainier Mesa, with and without matching the model to SF6 and He-3 data from the 1993 Non Proliferation Experiment. Results from the data-blind Monte Carlo simulations were similar, but were biased towards earlier arrival time and less likely to show detectable Xe-133. The second study, also related to nuclear nonproliferation compliance, considered the effect of barometric pumping on predicted Xe-133 breakthrough time in a Monte Carlo framework. Barometric pumping of gas through explosion-fractured rock was investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks for two rock types (granite and saturated tuff) and three depths of burial were integrated into a numerical model driven by surface pressure signals of differing amplitude and variability. Matrix porosity and maximum fracture aperture had the greatest impact on gas breakthrough time and window of opportunity for detection. Differences in model sensitivity for granite and tuff simulations highlight the importance of accurately simulating the fracture network. From Monte Carlo simulations using randomly generated hydrogeologic parameters, normalized probability of detection curves showed differences in optimal sampling time for granite and tuff. Granite breakthrough was earlier, as was breakthrough in realizations with greater variance of barometric pressure. Next, heat-generating nuclear waste (HGNW) disposal in bedded salt during the first two years after waste emplacement was explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265°C released water in amounts greater than 20% by mass of hydrous minerals and clays. Experimental data for water loss at several temperatures were averaged to produce a water source model that was then implemented in FEHM. Simulations using this dehydration model were used to predict temperature, moisture, and porosity after heating by 750W waste canisters, assuming hydrous mineral mass fractions from 0--10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back towards the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability and fluid mobility. In certain cases, dehydration of hydrous minerals provided sufficient additional moisture to push the system into a sustained heat pipe where simulations neglecting this process did not. A laboratory-scale experiment (˜1 m3) using granular salt was conducted to gain a better understanding of the complex coupled processes involved in liquid, vapor, and solid transport occurring around heated nuclear waste in crushed salt, which could be a mode of disposal for HGNW. The experiment was designed to study transport processes in the system that have not been satisfactorily quantified in prior work. Initial results from the experimental effort offer promising insights. (Abstract shortened by UMI.).
Drift-Scale Coupled Processes (DST and THC Seepage) Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Gonnenthal; N. Spyoher
The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THCmore » Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required to fully document and address the requirements of the TWPs.« less
Drift-Scale Coupled Processes (DST and THC Seepage) Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Sonnenthale
The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THCmore » seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required to fully document and address the requirements of the TWPs.« less
Species removal from aqueous radioactive waste by deep-bed filtration.
Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta
2018-05-26
Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.
ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. James Davis
1999-12-18
The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.
Wu, Jiang; Li, Jia; Xu, Zhenming
2009-08-15
Electrostatic separation presents an effective and environmentally friendly way for recycling metals and nonmetals from ground waste electrical and electronic equipment (WEEE). For this process, the trajectory of conductive particle is significant and some models have been established. However, the results of previous researches are limited by some simplifying assumptions and lead to a notable discrepancy between the model prediction and the experimental results. In the present research, a roll-type corona-electrostatic separator and ground printed circuit board (PCB) wastes were used to investigate the trajectory of the conductive particle. Two factors, the air drag force and the different charging situation, were introduced into the improved model. Their effects were analyzed and an improved model for the theoretical trajectory of conductive particle was established. Compared with the previous one, the improved model shows a good agreement with the experimental results. It provides a positive guidance for designing of separator and makes a progress for recycling the metals and nonmetals from WEEE.
A nanomaterial release model for waste shredding using a Bayesian belief network
NASA Astrophysics Data System (ADS)
Shandilya, Neeraj; Ligthart, Tom; van Voorde, Imelda; Stahlmecke, Burkhard; Clavaguera, Simon; Philippot, Cecile; Ding, Yaobo; Goede, Henk
2018-02-01
The shredding of waste of electrical and electronic equipment (WEEE) and other products, incorporated with nanomaterials, can lead to a substantial release of nanomaterials. Considering the uncertainty, complexity, and scarcity of experimental data on release, we present the development of a Bayesian belief network (BBN) model. This baseline model aims to give a first prediction of the release of nanomaterials (excluding nanofibers) during their mechanical shredding. With a focus on the description of the model development methodology, we characterize nanomaterial release in terms of number, size, mass, and composition of released particles. Through a sensitivity analysis of the model, we find the material-specific parameters like affinity of nanomaterials to the matrix of the composite and their state of dispersion inside the matrix to reduce the nanomaterial release up to 50%. The shredder-specific parameters like number of shafts in a shredder and input and output size of the material for shredding could minimize it up to 98%. The comparison with two experimental test cases shows promising outcome on the prediction capacity of the model. As additional experimental data on nanomaterial release becomes available, the model is able to further adapt and update risk forecasts. When adapting the model with additional expert beliefs, experts should be selected using criteria, e.g., substantial contribution to nanomaterial and/or particulate matter release-related scientific literature, the capacity and willingness to contribute to further development of the BBN model, and openness to accepting deviating opinions. [Figure not available: see fulltext.
An investigation of biodiesel production from wastes of seafood restaurants.
El-Gendy, Nour Sh; Hamdy, A; Abu Amr, Salem S
2014-01-01
This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield) and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst.
Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario
NASA Astrophysics Data System (ADS)
Ali, M. A.; Ireson, A. M.; Keim, D.
2015-12-01
A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.
Chen, Ho-Wen; Chang, Ni-Bin; Chen, Jeng-Chung; Tsai, Shu-Ju
2010-07-01
Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA)--a production economics tool--to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Liu, Chia-Nan; Chen, Rong-Her; Chen, Kuo-Sheng
2006-02-01
The understanding of long-term landfill settlement is important for landfill design and rehabilitation. However, suitable models that can consider both the mechanical and biodecomposition mechanisms in predicting the long-term landfill settlement are generally not available. In this paper, a model based on unsaturated consolidation theory and considering the biodegradation process is introduced to simulate the landfill settlement behaviour. The details of problem formulations and the derivation of the solution for the formulated differential equation of gas pressure are presented. A step-by-step analytical procedure employing this approach for estimating settlement is proposed. The proposed model can generally model the typical features of short-term and long-term behaviour. The proposed model also yields results that are comparable with the field measurements.
Wasserberg, Gideon; Osnas, Erik E; Rolley, Robert E; Samuel, Michael D
2009-04-01
Emerging wildlife diseases pose a significant threat to natural and human systems. Because of real or perceived risks of delayed actions, disease management strategies such as culling are often implemented before thorough scientific knowledge of disease dynamics is available. Adaptive management is a valuable approach in addressing the uncertainty and complexity associated with wildlife disease problems and can be facilitated by using a formal model.We developed a multi-state computer simulation model using age, sex, infection-stage, and seasonality as a tool for scientific learning and managing chronic wasting disease (CWD) in white-tailed deer Odocoileus virginianus. Our matrix model used disease transmission parameters based on data collected through disease management activities. We used this model to evaluate management issues on density- (DD) and frequency-dependent (FD) transmission, time since disease introduction, and deer culling on the demographics, epizootiology, and management of CWD.Both DD and FD models fit the Wisconsin data for a harvested white-tailed deer population, but FD was slightly better. Time since disease introduction was estimated as 36 (95% CI, 24-50) and 188 (41->200) years for DD and FD transmission, respectively. Deer harvest using intermediate to high non-selective rates can be used to reduce uncertainty between DD and FD transmission and improve our prediction of long-term epidemic patterns and host population impacts. A higher harvest rate allows earlier detection of these differences, but substantially reduces deer abundance.Results showed that CWD has spread slowly within Wisconsin deer populations, and therefore, epidemics and disease management are expected to last for decades. Non-hunted deer populations can develop and sustain a high level of infection, generating a substantial risk of disease spread. In contrast, CWD prevalence remains lower in hunted deer populations, but at a higher prevalence the disease competes with recreational hunting to reduce deer abundance.Synthesis and applications. Uncertainty about density- or frequency-dependent transmission hinders predictions about the long-term impacts of chronic wasting disease on cervid populations and the development of appropriate management strategies. An adaptive management strategy using computer modelling coupled with experimental management and monitoring can be used to test model predictions, identify the likely mode of disease transmission, and evaluate the risks of alternative management responses.
González-Sáiz, J M; Esteban-Díez, I; Sánchez-Gallardo, C; Pizarro, C
2008-08-01
Wastes and by-products of the onion-processing industry pose an increasing disposal and environmental problem and represent a loss of valuable sources of nutrients. The present study focused on the production of vinegar from worthless onions as a potential valorisation route which could provide a viable solution to multiple disposal and environmental problems, simultaneously offering the possibility of converting waste materials into a useful food-grade product and of exploiting the unique properties and health benefits of onions. This study deals specifically with the second and definitive step of the onion vinegar production process: the efficient production of vinegar from onion waste by transforming onion ethanol, previously produced by alcoholic fermentation, into acetic acid via acetic fermentation. Near-infrared spectroscopy (NIRS), coupled with multivariate calibration methods, has been used to monitor the concentrations of both substrates and products in acetic fermentation. Separate partial least squares (PLS) regression models, correlating NIR spectral data of fermentation samples with each kinetic parameter studied, were developed. Wavelength selection was also performed applying the iterative predictor weighting-PLS (IPW-PLS) method in order to only consider significant spectral features in each model development to improve the quality of the final models constructed. Biomass, substrate (ethanol) and product (acetic acid) concentration were predicted in the acetic fermentation of onion alcohol with high accuracy using IPW-PLS models with a root-mean-square error of the residuals in external prediction (RMSEP) lower than 2.5% for both ethanol and acetic acid, and an RMSEP of 6.1% for total biomass concentration (a very satisfactory result considering the relatively low precision and accuracy associated with the reference method used for determining the latter). Thus, the simple and reliable calibration models proposed in this study suggest that they could be implemented in routine applications to monitor and predict the key species involved in the acetic fermentation of onion alcohol, allowing the onion vinegar production process to be controlled in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Jacob G.
2013-01-11
Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a changemore » in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH{sub 4}H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.« less
Li, Zhen-shan; Fu, Hui-zhen; Qu, Xiao-yan
2011-09-15
Reliable and accurate determinations of the quantities and composition of wastes is required for the planning of municipal solid waste (MSW) management systems. A model, based on the interrelationships of expenditure on consumer goods, time distribution, daily activities, residents groups, and waste generation, was developed and employed to estimate MSW generation by different activities and resident groups in Beijing. The principle is that MSW is produced by consumption of consumer goods by residents in their daily activities: 'Maintenance' (meeting the basic needs of food, housing and personal care), 'Subsistence' (providing the financial requirements) and 'Leisure' (social and recreational pursuits) activities. Three series of important parameters - waste generation per unit of consumer expenditure, consumer expenditure distribution to activities in unit time, and time assignment to activities by different resident groups - were determined using a statistical analysis, a sampling survey and the Analytic Hierarchy Process, respectively. Data for analysis were obtained from the Beijing Statistical Yearbook (2004-2008) and questionnaire survey. The results reveal that 'Maintenance' activity produced the most MSW, distantly followed by 'Leisure' and 'Subsistence' activities. In 2008, in descending order of MSW generation the different resident groups were floating population, non-civil servants, retired people, civil servants, college students (including both undergraduates and graduates), primary and secondary students, and preschoolers. The new estimation model, which was successful in fitting waste generation by different activities and resident groups over the investigated years, was amenable to MSW prediction. Copyright © 2011 Elsevier B.V. All rights reserved.
Audebert, M; Clément, R; Moreau, S; Duquennoi, C; Loisel, S; Touze-Foltz, N
2016-09-01
Landfill bioreactors are based on an acceleration of in-situ waste biodegradation by performing leachate recirculation. To quantify the water content and to evaluate the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). In a previous study, the MICS (multiple inversions and clustering strategy) methodology was proposed to improve the hydrodynamic interpretation of ERT results by a precise delimitation of the infiltration area. In this study, MICS was applied on two ERT time-lapse data sets recorded on different waste deposit cells in order to compare the hydrodynamic behaviour of leachate flow between the two cells. This comparison is based on an analysis of: (i) the volume of wetted waste assessed by MICS and the wetting rate, (ii) the infiltration shapes and (iii) the pore volume used by the leachate flow. This paper shows that leachate hydrodynamic behaviour is comparable from one waste deposit cell to another with: (i) a high leachate infiltration speed at the beginning of the infiltration, which decreases with time, (ii) a horizontal anisotropy of the leachate infiltration shape and (iii) a very small fraction of the pore volume used by the leachate flow. This hydrodynamic information derived from MICS results can be useful for subsurface flow modelling used to predict leachate flow at the landfill scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina
2017-03-01
Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.
Leach test of cladding removal waste grout using Hanford groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serne, R.J.; Martin, W.J.; Legore, V.L.
1995-09-01
This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. Themore » semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.« less
Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Kelsea A., E-mail: kschum@udel.edu; Schumacher, Thomas, E-mail: schumact@udel.edu; Agbemabiese, Lawrence, E-mail: agbe@udel.edu
2014-11-15
Highlights: • We modeled the obsolescence of cathode ray tube devices in the State of Delaware. • 411,654 CRT units or ∼16,500 metric tons have been recycled in Delaware since 2002. • The peak of the CRT obsolescence in Delaware passed by 2012. • The Delaware average CRT recycling rate between 2002 and 13 was approximately 27.5%. • CRTs will continue to infiltrate the system likely until 2033. - Abstract: The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream.more » However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware’s e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033.« less
NASA Astrophysics Data System (ADS)
Pedretti, D.; Beckie, R. D.; Mayer, K. U.
2015-12-01
The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.R. Bryan
The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertainingmore » to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC submodel uses a drift-scale process model relying on the same conceptual model and many of the same input data (i.e., physical, hydrologic, thermodynamic, and kinetic) as the THC seepage model. The DST THC submodel is the primary means for validating the THC seepage model. The DST THC submodel compares predicted water and gas compositions, and mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC submodel is used solely for the validation of the THC seepage model and is not used for calibration to measured data.« less
Gunaseelan, Victor Nallathambi
2014-02-01
In this study, I investigated the chemical characteristics, biochemical methane potential, conversion kinetics and biodegradability of untreated and NaOH-treated Pongamia plant parts, and pod husk and press cake from the biodiesel industry to evaluate their suitability as an alternative feedstock for biogas production. The untreated Pongamia seeds exhibited the maximum CH4 yield of 473 ml g (-1) volatile solid (VS) added. Yellow, withered leaves gave a yield as low as 122 ml CH4 g (-1) VS added. There were significant variations in the CH4 production rate constants, which ranged from 0.02 to 0.15 d (-1), and biodegradability, which ranged from 0.25 to 0.98. NaOH treatment of leaf and pod husk, which were highly rich in fibers, increased the yields by 15-22% and CH4 production rate constants by 20-75%. Utilization of Pongamia wastes in biogas digesters not only influences the economics of biodiesel production but also yields CH4 fuel and protects the environment. The experimental data from this study were used to develop a multiple regression model, which could estimate biodegradability based on biochemical characteristics. The model predicted the biodegradability of previously published biomass wastes (r(2) = 0.88) from their biochemical composition. The theoretical CH4 yields estimated as 350 ml g(-1) chemical oxygen demand destroyed are much higher than the experimental yields as 100% biodegradability is assumed for each substrate. Upon correcting the theoretical CH4 yields with biodegradability data obtained from chemical analyses of substrates, their ultimate CH4 yields could be predicted rapidly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Heather; Flach, Greg; Smith, Frank
2014-01-10
The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The CBP Software Toolbox – “Version 1.0” was released early in FY2013 and was used to support DOE-EM performance assessments in evaluating various degradation mechanisms that included sulfate attack, carbonation and constituent leaching. The sulfate attackmore » analysis predicted the extent and damage that sulfate ingress will have on concrete vaults over extended time (i.e., > 1000 years) and the carbonation analysis provided concrete degradation predictions from rebar corrosion. The new release “Version 2.0” includes upgraded carbonation software and a new software module to evaluate degradation due to chloride attack. Also included in the newer version are a dual regime module allowing evaluation of contaminant release in two regimes – both fractured and un-fractured. The integrated software package has also been upgraded with new plotting capabilities and many other features that increase the “user-friendliness” of the package. Experimental work has been generated to provide data to calibrate the models to improve the credibility of the analysis and reduce the uncertainty. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox is and will continue to produce tangible benefits to the working DOE Performance Assessment (PA) community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyatt, Douglas
Planning for ultimate Decontamination and Decommissioning (D and D) of a nuclear facility is as much a part of a successful nuclear strategy as is the ultimate disposal of radioactive waste. As facilities, in this case radioactive waste disposal trenches, are closed and abandoned leading to ultimate decommissioning, long term monitoring may be required. However, preplanning by characterizing, modeling, and monitoring the environment around the facility prior to and during operations will allow a performance assessment to be made and future behavior predicted. In the radioactive waste burial grounds of the Savannah River Site new slit trenches were constructed tomore » receive demolition debris associated with site foot print reduction. Some of the construction debris and associated process waste contained small amounts of tritium. Since the trenches were constructed over an existing tritium groundwater plume the monitoring and performance assessment of the trench, particularly with respect to tritium contributions to the vadose zone and groundwater, were important. These disposal trenches vary in length and width but are typically constructed within the upper 7 to 8 meters (21 to 24 feet) of the local sediments. The unconfined aquifer (water table) typically underlies the area at depths varying from 20 to 24 meters (60 to 72 feet), depending on elevation. Therefore, with downward flow and 13 to 16 meters (40 to 48 feet) of unsaturated sediments separating the base of the waste trenches from the unconfined aquifer, there was potential for an environmental impact to the sediments within the vadose zone and to the underlying groundwater. Monitoring and predicting this impact can support ultimate D and D activities and future performance assessment evaluation. From this work several key observations were made that will support long term monitoring and subsequent D and D: - The observed lateral variation of thinly bedded sands and clays may be less than 20 meters particularly if lenticular sands are present. Ultimate D and D should consider monitoring and remedial activities that consider sampling on scales to address this issue. - The detailed modeling, when compared with the modeled depositional patterns, indicates flow paths for vadose zone fluids, therefore a plan should allow for these flow paths. - Detailed lithostratigraphic modeling, when based on correlations between soil properties, CPT soundings and borehole geophysical logs, can aid in precision placement of subsurface sensors and sample points for performance monitoring and D and D assessment.« less
Influence of effective stress and dry density on the permeability of municipal solid waste.
Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi
2018-05-01
A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.
Singh, Karamjit; Kadambala, Ravi; Jain, Pradeep; Xu, Qiyong; Townsend, Timothy G
2014-06-01
Waste hydraulic conductivity and anisotropy represent two important parameters controlling fluid movement in landfills, and thus are the key inputs in design methods where predictions of moisture movement are necessary. Although municipal waste hydraulic conductivity has been estimated in multiple laboratory and field studies, measurements of anisotropy, particularly at full scale, are rare, even though landfilled municipal waste is generally understood to be anisotropic. Measurements from a buried liquids injection well surrounded by pressure transducers at a full-scale landfill in Florida were collected and examined to provide an estimate of in-situ waste anisotropy. Liquids injection was performed at a constant pressure and the resulting pore pressures in the surrounding waste were monitored. Numerical fluid flow modeling was employed to simulate the pore pressures expected to occur under the conditions operated. Nine different simulations were performed at three different lateral hydraulic conductivity values and three different anisotropy values. Measured flowrate and pore pressures collected from conditions of approximate steady state were compared with the simulation results to assess the range of anisotropies. The results support that compacted municipal waste in landfills is anisotropic, provide anisotropy estimates greater than previous measurements, and suggest that anisotropy decreases with landfill depth. © The Author(s) 2014.
Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton
2013-10-15
Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)
Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foye, Kevin C.; Soong, Te-Yang
2012-07-01
The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the wastemore » mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.
2011-03-01
This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repositorymore » designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.« less
Yao, Bo
2014-01-01
Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement. PMID:24683332
Effects of scale and Froude number on the hydraulics of waste stabilization ponds.
Vieira, Isabela De Luna; Da Silva, Jhonatan Barbosa; Ide, Carlos Nobuyoshi; Janzen, Johannes Gérson
2018-01-01
This paper presents the findings from a series of computational fluid dynamics simulations to estimate the effect of scale and Froude number on hydraulic performance and effluent pollutant fraction of scaled waste stabilization ponds designed using Froude similarity. Prior to its application, the model was verified by comparing the computational and experimental results of a model scaled pond, showing good agreement and confirming that the model accurately reproduces the hydrodynamics and tracer transport processes. Our results showed that the scale and the interaction between scale and Froude number has an effect on the hydraulics of ponds. At 1:5 scale, the increase of scale increased short-circuiting and decreased mixing. Furthermore, at 1:10 scale, the increase of scale decreased the effluent pollutant fraction. Since the Reynolds effect cannot be ignored, a ratio of Reynolds and Froude numbers was suggested to predict the effluent pollutant fraction for flows with different Reynolds numbers.
EPA/Navy CERCLA Remedial Action Technology Guide
1993-11-01
Pollution 18:25-36, 1988. Control Association, August 19-21, 1985. 11. Nirmalakhandan, N. N. and R. E. Speece. QSAR Model for Predicting Henry’s...Las Vegas , Nevada. May 1988.. 6. Bergstrom, Wayne R., Gray, Donald H. Fly Ash Utilization 12. Handbook - Remedial Action at Waste Disposal Sites in...of the soil piles should be are needed to confirm that the contaminants of concern can be designed as a package. There are computer models available
Predictive Surface Complexation Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sverjensky, Dimitri A.
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO 2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall,more » my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.« less
NASA Astrophysics Data System (ADS)
Sali, D.; Fritz, B.; Clément, C.; Michau, N.
2003-04-01
Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical elements mobilised by the water-minerals interaction processes. To validate our model we simulated the compacted bentonite (MX80) studied for engineered barriers for radioactive waste confinement and mainly composed of Na-Ca-montmorillonite. The study of particles morphology and reactive surfaces evolutions reveals that aqueous ions have a complex behaviour, especially when competitions between various mineral phases occur. In that case, our model predicts a preferential precipitation of finest particles, favouring smectites instead of zeolites. This work is a part of a PhD Thesis supported by Andra, the French Radioactive Waste Management Agency.
NASA Astrophysics Data System (ADS)
Verma, A.; Pruess, K.
1988-02-01
Evaluation of the thermohydrological conditions near high-level nuclear waste packages is needed for the design of the waste canister and for overall repository design and performance assessment. Most available studies in this area have assumed that the hydrologic properties of the host rock are not changed in response to the thermal, mechanical, or chemical effects caused by waste emplacement. However, the ramifications of this simplifying assumption have not been substantiated. We have studied dissolution and precipitation of silica in liquid-saturated hydrothermal flow systems, including changes in formation porosity and permeability. Using numerical simulation, we compare predictions of thermohydrological conditions with and without inclusion of silica redistribution effects. Two cases were studied, namely, a canister-scale problem, and a repository-wide thermal convection problem and different pore models were employed for the permeable medium (fractures with uniform or nonuniform cross sections). We find that silica redistribution in water-saturated conditions does not have a sizeable effect on host rock and canister temperatures, pore pressures, or flow velocities.
Charnier, Cyrille; Latrille, Eric; Jimenez, Julie; Lemoine, Margaux; Boulet, Jean-Claude; Miroux, Jérémie; Steyer, Jean-Philippe
2017-01-01
The development of anaerobic digestion involves both co-digestion of solid wastes and optimization of the feeding recipe. Within this context, substrate characterisation is an essential issue. Although it is widely used, the biochemical methane potential is not sufficient to optimize the operation of anaerobic digestion plants. Indeed the biochemical composition in carbohydrates, lipids, proteins and the chemical oxygen demand of the inputs are key parameters for the optimisation of process performances. Here we used near infrared spectroscopy as a robust and less-time consuming tool to predict the solid waste content in carbohydrates, lipids and nitrogen, and the chemical oxygen demand. We built a Partial Least Square regression model with 295 samples and validated it with an independent set of 46 samples across a wide range of solid wastes found in anaerobic digestion units. The standard errors of cross-validation were 90mgO 2 ⋅gTS -1 carbohydrates, 2.5∗10 -2 g⋅gTS -1 lipids, 7.2∗10 -3 g⋅gTS -1 nitrogen and 99mgO 2 ⋅gTS -1 chemical oxygen demand. The standard errors of prediction were 53mgO 2 ⋅gTS -1 carbohydrates, 3.2∗10 -2 g⋅gTS -1 lipids, 8.6∗10 -3 g⋅gTS -1 nitrogen and 83mgO 2 ⋅gTS -1 chemical oxygen demand. These results show that near infrared spectroscopy is a new fast and cost-efficient way to characterize solid wastes content and improve their anaerobic digestion monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamecnik, J. R.; Edwards, T. B.
The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processingmore » Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.« less
Nelson, Andrew W; Eitrheim, Eric S; Knight, Andrew W; May, Dustin; Mehrhoff, Marinea A; Shannon, Robert; Litman, Robert; Burnett, William C; Forbes, Tori Z; Schultz, Michael K
2015-07-01
The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of "produced fluids" generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element-radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides.
Brown, David J.; Orelien, Jean; Gordon, John D.; Chu, Andrew C.; Chu, Michael D.; Nakamura, Masafumi; Handa, Hiroshi; Kayama, Fujio; Denison, Michael S.; Clark, George C.
2010-01-01
Remediation of hazardous waste sites requires efficient and cost-effective methods to assess the extent of contamination by toxic substances including dioxin-like chemicals. Traditionally, dioxin-like contamination has been assessed by gas chromatography/high-resolution mass spectrometry (GC/MS) analysis for specific polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyl congeners. Toxic equivalency factors for these congeners are then used to estimate the overall dioxin toxic equivalency (TEQ) of complex mixtures found in samples. The XDS-CALUX bioassay estimates contamination by dioxin-like chemicals in a sample extract by measuring expression of a sensitive reporter gene in genetically engineered cells. The output of the XDS-CALUX assay is a CALUX-TEQ value, calibrated based on TCDD standards. Soil samples taken from a variety of hazardous waste sites were measured using the XDS-CALUX bioassay and GC/MS. TEQ and CALUX-TEQ from these methods were compared, and a mathematical model was developed describing the relationship between these two data sets: log(TEQ) = 0.654 × log(CALUX-TEQ) + 0.058-(log(CALUX-TEQ))2. Applying this equation to these samples showed that predicted and GC/MS measured TEQ values strongly correlate (R2 = 0.876) and that TEQ values predicted from CALUX-TEQ were on average nearly identical to the GC/MS-TEQ. The ability of XDS-CALUX bioassay data to predict GC/MS-derived TEQ data should make this procedure useful in risk assessment and management decisions. PMID:17626436
Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline
2003-08-06
The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste inmore » a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.« less
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1978-01-01
A mathematical model package for thermal pollution analyses and prediction is presented. These models, intended as user's manuals, are three dimensional and time dependent using the primitive equation approach. Although they have sufficient generality for application at sites with diverse topographical features; they also present specific instructions regarding data preparation for program execution and sample problems. The mathematical formulation of these models is presented including assumptions, approximations, governing equations, boundary and initial conditions, numerical method of solution, and same results.
Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G
2013-03-15
The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.
Comparing field investigations with laboratory models to predict landfill leachate emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellner, Johann; Doeberl, Gernot; Allgaier, Gerhard
2009-06-15
Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore watermore » participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Keating; W.Statham
2004-02-12
The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the groundmore » surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.« less
NASA Astrophysics Data System (ADS)
Senapati, Pradipta Kumar; Mishra, Barada Kanta
2017-06-01
The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuckless, J. S.
2002-02-26
The general public needs to have a way to judge the predicted long-term performance of the potential high-level nuclear waste repository at Yucca Mountain. The applicability and reliability of mathematical models used to make this prediction are neither easily understood nor accepted by the public. Natural analogues can provide the average person with a tool to assess the predicted performance and other scientific conclusions. For example, hydrologists with the Yucca Mountain Project have predicted that most of the water moving through the unsaturated zone at Yucca Mountain, Nevada will move through the host rock and around tunnels. Thus, seepage intomore » tunnels is predicted to be a small percentage of available infiltration. This hypothesis can be tested experimentally and with some quantitative analogues. It can also be tested qualitatively using a variety of analogues such as (1) well-preserved Paleolithic to Neolithic paintings in caves and rock shelters, (2) biological remains preserved in caves and rock shelters, and (3) artifacts and paintings preserved in man-made underground openings. These examples can be found in materials that are generally available to the non-scientific public and can demonstrate the surprising degree of preservation of fragile and easily destroyed materials for very long periods of time within the unsaturated zone.« less
Combined Experimental and Computational Approach to Predict the Glass-Water Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M; Bacon, Diana
2011-01-01
The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic time-scales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models are validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)], thereby reducing themore » duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases code. Results show that parameterization of the computer model by combining direct bench-scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year long test duration, the rate decreased from 0.2 to 0.01 g/(m2 d) base on B release. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by 4 orders of magnitude) and suggest the gel-layer properties are less protective under these dynamic conditions.« less
MELiSSA Food Characterization general approach and current status
NASA Astrophysics Data System (ADS)
Weihreter, Martin; Chaerle, Laury; Secco, Benjamin; Molders, Katrien; van der Straeten, Dominique; Duliere, Eric; Pieters, Serge; Maclean, Heather; Dochain, Denis; Quinet, Muriel; Lutts, Stanley; Graham, Thomas; Stasiak, Michael; Rondeau Vuk, Theresa; Zheng, Youbin; Dixon, Mike; Laniau, Martine; Larreture, Alain; Timsit, Michel; Aronne, Giovanna; Barbieri, Giancarlo; Buonomo, Roberta; Veronica; Paradiso, Roberta; de Pascale, Stafania; Galbiati, Massimo; Troia, A. R.; Nobili, Matteo; Bucchieri, Lorenzo; Page, Valérie; Feller, Urs; Lasseur, Christophe
Higher plants play an important role in closed ecological life support systems as oxygen pro-ducers, carbon dioxide and water recyclers, and as a food source. For an integration of higher plant chambers into the MELiSSA (Micro Ecological Life Support System Alternative) loop, a detailed characterization and optimization of the full food production and preparation chain is needed. This implies the prediction and control of the nutritional quality of the final products consumed by the crew, the prediction of the wastes quality and quantity produced along the chain for further waste treatment (MELiSSA waste treatment) and the optimization of overall efficiencies. To reach this goal several issues have to be studied in an integrated manner: the physiological responses of crops to a range of environmental parameters, crop yield efficiencies and respective ratio and composition of edible and inedible biomass, the processability and storability of the produced food and last but not least composition of wastes in view of further degradation (fiber content). Within the Food Characterization (FC) project several compar-ative plant growth bench tests were carried out to obtain preliminary data regarding these aspects. Four pre-selected cultivars of each of the four energy-rich crops with worldwide usage -wheat, durum wheat, potato and soybean -were grown under well-characterized environmental conditions. The different cultivars of each species are screened for their performance in view of a closed loop application by parameter ranking. This comprises the characterization of edi-ble/inedible biomass ratio, nutritional quality, processability and overall performance under the specific conditions of hydroponic cultivation and artificial illumination. A second closely linked goal of the FC project is to develop a mechanistic physiological plant model, which will ease the integration of higher plants compartments in the MELiSSA concept by virtue of its predictive abilities. Available MELiSSA closed environment crop growth data were used to develop a first photosynthetic model representing the basic carbon fixation mechanisms. This model will be further elaborated in the course of this study to predict yield, oxygen production and transpi-ration. As an ultimate goal the model is intended to simulate the composition of the different plant organs (root, shoot, fruit/seed or tuber) for each crop under various conditions. For the validation of this model an extensive amount of data sets are needed. Current plant growth bench test setups will provide part of the required data. To gain more precise and detailed datasets, a highly closed plant growth chamber (Plant Characterization Unit, PCU) is under development. The PCU will provide accurate mass balances for carbon, water, oxygen and other elements with statistical reliability. This reliability is achieved through a high degree of closure and environment homogeneity. The PCU will also provide data for the above described plant characterization studies. The general work approach, the current status and future steps will be illustrated.
Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd
2016-12-01
Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.
Modeling Land Application of Food-Processing Wastewater in the Central Valley, California
NASA Astrophysics Data System (ADS)
Rubin, Y.; Benito, P.; Miller, G.; McLaughlin, J.; Hou, Z.; Hermanowicz, S.; Mayer, U.
2007-12-01
California's Central Valley contains over 640 food-processing plants, serving a multi-billion dollar agricultural industry. These processors consume approximately 7.9 x 107 m3 of water per year. Approximately 80% of these processors discharge the resulting wastewater, which is typically high in organic matter, nitrogen, and salts, to land, and many of these use land application as a treatment method. Initial investigations revealed elevated salinity levels to be the most common form of groundwater degradation near land application sites, followed by concentrations of nitrogen compounds, namely ammonia and nitrate. Enforcement actions have been taken against multiple food processors, and the regulatory boards have begun to re-examine the land disposal permitting process. This paper summarizes a study that was commissioned in support of these actions. The study has multiple components which will be reviewed briefly, including: (1) characterization of the food-processing related waste stream; (2) fate and transport of the effluent waste stream in the unsaturated zone at the land application sites; (3) fate and transport of the effluent waste stream at the regional scale; (4) predictive uncertainty due to spatial variability and data scarcity at the land application sites and at the regional scale; (5) problem mitigation through off-site and in-situ actions; (6) long-term solutions. The emphasis of the talk will be placed on presenting and demonstrating a stochastic framework for modeling the transport and attenuation of these wastes in the vadose zone and in the saturated zone, and the related site characterization needs, as affected by site conditions, water table depth, waste water application rate, and waste constituent concentrations.
Hayes, Robert
2002-10-01
An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.
NASA Astrophysics Data System (ADS)
Stuckless, J. S.
2003-04-01
Natural analogues can contribute to understanding and predicting the performance of subsystems and processes affecting a mined geologic repository for high-level radioactive waste in several ways. Most importantly, analogues provide tests for various aspects of systems of a repository at dimensional scales and time spans that cannot be attained by experimental study. In addition, they provide a means for the general public to judge the predicted performance of a potential high-level nuclear waste repository in familiar terms such that the average person can assess the anticipated long-term performance and other scientific conclusions. Hydrologists working on the Yucca Mountain Project (currently the U.S. Department of Energy's Office of Repository Development) have modeled the flow of water through the vadose zone at Yucca Mountain, Nevada and particularly the interaction of vadose-zone water with mined openings. Analogues from both natural and anthropogenic examples confirm the prediction that most of the water moving through the vadose zone will move through the host rock and around tunnels. This can be seen both quantitatively where direct comparison between seepage and net infiltration has been made and qualitatively by the excellent degree of preservation of archaeologic artifacts in underground openings. The latter include Paleolithic cave paintings in southwestern Europe, murals and artifacts in Egyptian tombs, painted subterranean Buddhist temples in India and China, and painted underground churches in Cappadocia, Turkey. Natural analogues also suggest that this diversion mechanism is more effective in porous media than in fractured media. Observations from natural analogues are also consistent with the modeled decrease in the percentage of infiltration that becomes seepage with a decrease in amount of infiltration. Finally, analogues, such as tombs that have ben partially filled by mud flows, suggest that the same capillary forces that keep water in the rock around underground openings will draw water towards buried waste packages if they are encased in backfill. Analogue work in support of the U.S. repository program continues in the U.S. Geological Survey, in cooperation with the U.S. Department of Energy.
Energy and nutrient recovery from anaerobic treatment of organic wastes
NASA Astrophysics Data System (ADS)
Henrich, Christian-Dominik
The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component and overall performance. The overall systems model software, ENRAT, predicted that a full-scale operation to treat 18,750 L leachate/day would need an Ammonia Recovery process consisting of 88,300 L of total gas transfer column volume, an activated sludge system of 74,417 L, and an algal post treatment raceway of 683 m2 (30 cm depth). The ARP would consume 262.5 L/day of 6N sulfuric acid and produce 16.12 kg-N/day ammonium sulfate. The activated sludge system and algal post treatment would produce 900 g-VS/day (or 44.6 L 2% sludge) and 6.83 kg-VS/day (or 341.6 L 2% sludge) of bacterial and algal biomass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. L. Abbott; K. N. Keck; R. E. Schindler
This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidifymore » (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.« less
NASA Astrophysics Data System (ADS)
gochis, David; hooper, Rick; parodi, Antonio; Jha, Shantenu; Yu, Wei; Zaslavsky, Ilya; Ganapati, Dinesh
2014-05-01
The community WRF-Hydro system is currently being used in a variety of flood prediction and regional hydroclimate impacts assessment applications around the world. Despite its increasingly wide use certain cyberinfrastructure bottlenecks exist in the setup, execution and post-processing of WRF-Hydro model runs. These bottlenecks result in wasted time, labor, data transfer bandwidth and computational resource use. Appropriate development and use of cyberinfrastructure to setup and manage WRF-Hydro modeling applications will streamline the entire workflow of hydrologic model predictions. This talk will present recent advances in the development and use of new open-source cyberinfrastructure tools for the WRF-Hydro architecture. These tools include new web-accessible pre-processing applications, supercomputer job management applications and automated verification and visualization applications. The tools will be described successively and then demonstrated in a set of flash flood use cases for recent destructive flood events in the U.S. and in Europe. Throughout, an emphasis on the implementation and use of community data standards for data exchange is made.
Foucan, Lydia; Merault, Henri; Velayoudom-Cephise, Fritz-Line; Larifla, Laurent; Alecu, Cosmin; Ducros, Jacques
2015-01-01
We assessed the prognostic value of protein-energy wasting (PEW) on mortality in Afro-Caribbean MHD patients and analysed how diabetes, cardiovascular disease (CVD) and inflammation modified the predictive power of a severe wasting state. A 3-year prospective study was conducted in 216 patients from December 2011. We used four criteria from the nomenclature for PEW proposed by the International Society of Renal Nutrition and Metabolism in 2008: serum albumin 38 g/L, body mass index (BMI) ≤23 kg/m(2), serum creatinine ≤818 µmol/L and protein intake assessed by nPCR ≤0.8 g/kg/day. PEW status was categorized according the number of criteria. Cox regression analyses were used. Forty deaths (18.5 %) occurred, 97.5 % with a CV cause. Deaths were distributed as follows: 7.4 % in normal nutritional status, 13.2 % in slight wasting (1 PEW criterion), 28 % in moderate wasting (2 criteria) and 50 % in severe wasting (3-4 criteria). Among the PEW markers, low serum albumin (HR 3.18; P = 0.001) and low BMI (HR 1.97; P = 0.034) were the most significant predictors of death. Among the PEW status categories, moderate wasting (HR 3.43; P = 0.021) and severe wasting (HR 6.59; P = 0.001) were significant predictors of death. Diabetes, CVD, and inflammation were all additives in predicting death in association with severe wasting with a strongest HR (7.76; P < 0.001) for diabetic patients. The nomenclature for PEW predicts mortality in our Afro-Caribbean MHD patients and help to identify patients at risk of severe wasting to provide adequate nutritional support.
Mathematical modeling of olive mill waste composting process.
Vasiliadou, Ioanna A; Muktadirul Bari Chowdhury, Abu Khayer Md; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Pavlou, Stavros; Vayenas, Dimitrios V
2015-09-01
The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Geomechanical/Geochemical Modeling Studies Conducted within theInternational DECOVALEX Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.
2005-10-19
The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less
Geomechanical/ Geochemical Modeling Studies onducted Within the International DECOVALEX Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal
2006-02-01
The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less
Chemical Transport in a Fissured Rock: Verification of a Numerical Model
NASA Astrophysics Data System (ADS)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress.
Geotechnical engineering for ocean waste disposal. An introduction
Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,
1990-01-01
As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Bamberger; L.M. Liljegren; P.S. Lowery
This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorover, Jon; Mueller, Karl; O'Day, Peggy Anne
2016-06-30
Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from themore » same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.« less
Kim, Christopher S; Stack, David H; Rytuba, James J
2012-07-01
As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.
Kim, Christopher S.; Slack, David H.; Rytuba, James J.
2012-01-01
As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.
Haque, M Aminul
2017-04-01
Landfill solid waste management system poses the potential source of silent wide-spread heavy metals like nickel poisoning in the entire ecosystem of nearby environment. Nickel containing demolish solid wastes are disposed at landfill zones to a great extent from where nickel migrate into the food chain through the surface water body as well as groundwater. Consequently, nickel exposure may cause different environmental problems. From this sense, it may be an attractive proposal to recycle the waste as a sustainable product. Herein is presented a long-term feasibility study on potential leaching behavioral pattern of nickel from different sizes and mixes based solidified landfill waste mixed mortar block. The calculated results revealed the larger sizes block entrapped more nickel content than the smaller in relation to the available for leaching. Moreover, the specimen bearing the higher amount of waste resulted the significant nickel immobilization within the crystalline structure. The study observed the fixation results 97.72%-99.35%, 97.08%-99.11%, 96.19%-98.58% and 95.86%-91.6% under the stabilizing agent to fine aggregate mixing combination 1:1, 1:1.5, 1:2 and 1:2.5 respectively where 30% of the total volume of fine aggregate was replaced by landfill waste. Although, mechanical strength test of all surrogate waste forms was also conducted that showed acceptable performance for land disposal, the current research pointing out that constructed green products were non-hazardous except the specimens having mixture ratio 1:2.5 because nickel ion release mechanism was observed under this ratio by surface decay or physical erosion of the monolithic matrices. Furthermore, semi-empirical based dominant leaching mechanism models were justified against the goodness of fit statistical parameters for interpreting the experimental observations of nickel transport profile where the adopted models possessed strong potential for predicting Ni content with high accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.
2005-12-01
Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the deep geological disposal concept, besides containing the wastes with engineering methods such as the glassification of the radioactive wastes, the geological formation itself is expected to serve as a natural barrier that retards migration of radionuclides. To evaluate the long-term safety of deep geological disposal, a better understanding of the fate and transport of radionuclides in a geologically heterogeneous environment is necessary. To meet such requirements, a new analog test sandbox model system was developed. This model system allows the pore fluid flows to be controlled during the model tests and permits the study of flow and transport phenomena in the deformed heterogeneous model. One- or two-dimensional fluid flow is controlled using a side-wall piston. Deformation processes can be observed through a transparent front panel, and pore fluid movement can be also visualized using a color tracer. In this study, the scaling requirements for analog modeling, including pore water pressure, are discussed based on the theory of dimensional analysis, supplemented by data from a series of laboratory shear tests, and a detailed description of the model system. Preliminary experimental results are presented.
Kinyoki, Damaris K; Berkley, James A; Moloney, Grainne M; Odundo, Elijah O; Kandala, Ngianga-Bakwin; Noor, Abdisalan M
2016-02-01
To determine the sub-national seasonal prevalence and trends in wasting from 2007 to 2010 among children aged 6-59 months in Somalia using remote sensing and household survey data from nutritional surveys. Bayesian hierarchical space-time model was implemented using a stochastic partial differential equation (SPDE) approach in integrated nested Laplace approximations (INLA) to produce risk maps of wasting at 1 × 1 km(2) spatial resolution and predict to seasons in each year of study from 2007 to 2010. The prevalence of wasting was generally at critical levels throughout the country, with most of the areas remaining in the upper classes of critical and very critical levels. There was minimal variation in wasting from year-to-year, but a well-defined seasonal variation was observed. The mean difference of the prevalence of wasting between the dry and wet season ranges from 0% to 5%. The risks of wasting in the South Central zone were highest in the Gedo (37%) and Bay (32%) regions. In North East zone the risk was highest in Nugaal (25%) and in the North West zone the risk was high in Awdal and Woqooyi Galbeed regions with 23%. There was a clear seasonal variation in wasting with minimal year-to-year variability from 2007 to 2010 in Somalia. The prevalence was high during the long dry season, which affects the prevalence in the preceding long rainy season. Understanding the seasonal fluctuations of wasting in different locations and at different times is important to inform timely interventions. Copyright © 2016. Published by Elsevier Ltd.
Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems
Meisner, Gregory P
2013-10-08
Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.
Ion Exchange Column Tests Supporting Technetium Removal Resin Maturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, C.; McCabe, D.; Hamm, L.
2013-12-20
The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant, currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed on site. There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Due to the soluble properties of pertechnetate and long half-life ofmore » 99Tc, effective management of 99Tc is important. Options are being explored to immobilize the supplemental LAW portion of the tank waste, as well as to examine the volatility of 99Tc during the vitrification process. Removal of 99Tc, followed by off-site disposal has potential to reduce treatment and disposal costs. A conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. SuperLig® 639 is an elutable ion exchange resin. In the tank waste, 99Tc is predominantly found in the tank supernate as pertechnetate (TcO 4 -). Perrhenate (ReO 4 -) has been shown to be a good non-radioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin. This report contains results of experimental ion exchange distribution coefficient and column resin maturation kinetics testing using the resin SuperLig® 639a to selectively remove perrhenate from simulated LAW. This revision includes results from testing to determine effective resin operating temperature range. Loading tests were performed at 45°C, and the computer modeling was updated to include the temperature effects. Equilibrium contact testing indicated that this batch of SuperLig® 639 resin has good performance, with an average perrhenate distribution coefficient of 291 mL/g at a 100:1 phase ratio. This slightly exceeds the computer-modeled equilibrium distribution. The modeling agreed well with the experimental data for perrhenate removal with minor adjustments. Predicted breakthrough performance was on average within about 20% of measured values.« less
NASA Astrophysics Data System (ADS)
Charlet, Laurent; Alt-Epping, Peter; Wersin, Paul; Gilbert, Benjamin
2017-08-01
Clay rocks are low permeability sedimentary formations that provide records of Earth history, influence the quality of water resources, and that are increasingly used for the extraction or storage of energy resources and the sequestration of waste materials. Informed use of clay rock formations to achieve low-carbon or carbon-free energy goals requires the ability to predict the rates of diffusive transport processes for chemically diverse dissolved and gaseous species over periods up to thousands of years. We survey the composition, properties and uses of clay rock and summarize fundamental science challenges in developing confident conceptual and quantitative gas and solute transport models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Jacob G.
2013-01-11
Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a changemore » in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Jacob G.
2013-07-01
Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a changemore » in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOHNaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components. (authors)« less
Analysis and modeling of metals release from MBT wastes through batch and up-flow column tests.
Pantini, Sara; Verginelli, Iason; Lombardi, Francesco
2015-04-01
The leaching behavior of wastes coming out from Mechanical Biological Treatment (MBT) plants is still poorly investigated in literature. This work presents an attempt to provide a deeper insight about the contaminants release from this type of waste. To this end, results of several batch and up-flow percolation tests, carried out on different biologically treated waste samples collected from an Italian MBT plant, are reported. The obtained results showed that, despite MBT wastes are characterized by relatively high heavy metals content, only a limited amount was actually soluble and thus bioavailable. Namely, the release percentage was generally lower than 5% of the total content with the only exception of dissolved organic carbon (DOC), Zn, Ni and Co with release percentages up to 20%. The information provided by the different tests also allowed to highlight some key factors governing the kinetics release of DOC and metals from this type of material. In particular, results of up-flow column percolation tests showed that metals such as Cr, Mg, Ni and Zn followed essentially the leaching trend of DOC suggesting that these elements were mainly released as organo-compounds. Actually, a strong linear correlation (R(2) > 0.8) between DOC and metals concentration in eluates was observed, especially for Cr, Ni and Zn (R(2)>0.94). Thus, combining the results of batch and up-flow column percolation tests, partition coefficients between DOC and metals concentration were derived. These data, coupled with a simplified screening model for DOC release, allowed to get a very good prediction of metal release during the different column tests. Finally, combining the experimental data with a simplified model provided some useful indications for the evaluation of long-term emissions from this type of waste in landfill disposal scenarios. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Doten, Colleen O.; Bowling, Laura C.; Lanini, Jordan S.; Maurer, Edwin P.; Lettenmaier, Dennis P.
2006-04-01
Erosion and sediment transport in a temperate forested watershed are predicted with a new sediment model that represents the main sources of sediment generation in forested environments (mass wasting, hillslope erosion, and road surface erosion) within the distributed hydrology-soil-vegetation model (DHSVM) environment. The model produces slope failures on the basis of a factor-of-safety analysis with the infinite slope model through use of stochastically generated soil and vegetation parameters. Failed material is routed downslope with a rule-based scheme that determines sediment delivery to streams. Sediment from hillslopes and road surfaces is also transported to the channel network. A simple channel routing scheme is implemented to predict basin sediment yield. We demonstrate through an initial application of this model to the Rainy Creek catchment, a tributary of the Wenatchee River, which drains the east slopes of the Cascade Mountains, that the model produces plausible sediment yield and ratios of landsliding and surface erosion when compared to published rates for similar catchments in the Pacific Northwest. A road removal scenario and a basin-wide fire scenario are both evaluated with the model.
Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier
2014-06-01
This study emphasizes different experimental approaches and provides perspectives to apprehend biocorrosion phenomena in the specific disposal environment by investigating microbial activity with regard to the modification of corrosion rate, which in turn can have an impact on the safety of radioactive waste geological disposal. It is found that iron-reducing bacteria are able to use corrosion products such as iron oxides and "dihydrogen" as new energy sources, especially in the disposal environment which contains low amounts of organic matter. Moreover, in the case of sulphate-reducing bacteria, the results show that mixed aerobic and anaerobic conditions are the most hazardous for stainless steel materials, a situation which is likely to occur in the early stage of a geological disposal. Finally, an integrated methodological approach is applied to validate the understanding of the complex processes and to design experiments aiming at the acquisition of kinetic data used in long term predictive modelling of biocorrosion processes. © 2013.
Ofei, K T; Holst, M; Rasmussen, H H; Mikkelsen, B E
2015-08-01
The trolley meal system allows hospital patients to select food items and portion sizes directly from the food trolley. The nutritional status of the patient may be compromised if portions selected do not meet recommended intakes for energy, protein and micronutrients. The aim of this study was to investigate: (1) the portion size served, consumed and plate waste generated, (2) the extent to which the size of meal portions served contributes to daily recommended intakes for energy and protein, (3) the predictive effect of the served portion sizes on plate waste in patients screened for nutritional risk by NRS-2002, and (4) to establish the applicability of the dietary intake monitoring system (DIMS) as a technique to monitor plate waste. A prospective observational cohort study was conducted in two hospital wards over five weekdays. The DIMS was used to collect paired before- and after-meal consumption photos and measure the weight of plate content. The proportion of energy and protein consumed by both groups at each meal session could contribute up to 15% of the total daily recommended intake. Linear mixed model identified a positive relationship between meal portion size and plate waste (P = 0.002) and increased food waste in patients at nutritional risk during supper (P = 0.001). Meal portion size was associated with the level of plate waste produced. Being at nutritional risk further increased the extent of waste, regardless of the portion size served at supper. The use of DIMS as an innovative technique might be a promising way to monitor plate waste for optimizing meal portion size servings and minimizing food waste. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chipps, S.R.; Einfalt, L.M.; Wahl, David H.
2000-01-01
We measured growth of age-0 tiger muskellunge as a function of ration size (25, 50, 75, and 100% C(max))and water temperature (7.5-25??C) and compared experimental results with those predicted from a bioenergetic model. Discrepancies between actual and predicted values varied appreciably with water temperature and growth rate. On average, model output overestimated winter consumption rates at 10 and 7.5??C by 113 to 328%, respectively, whereas model predictions in summer and autumn (20-25??C) were in better agreement with actual values (4 to 58%). We postulate that variation in model performance was related to seasonal changes in esocid metabolic rate, which were not accounted for in the bioenergetic model. Moreover, accuracy of model output varied with feeding and growth rate of tiger muskellunge. The model performed poorly for fish fed low rations compared with estimates based on fish fed ad libitum rations and was attributed, in part, to the influence of growth rate on the accuracy of bioenergetic predictions. Based on modeling simulations, we found that errors associated with bioenergetic parameters had more influence on model output when growth rate was low, which is consistent with our observations. In addition, reduced conversion efficiency at high ration levels may contribute to variable model performance, thereby implying that waste losses should be modeled as a function of ration size for esocids. Our findings support earlier field tests of the esocid bioenergetic model and indicate that food consumption is generally overestimated by the model, particularly in winter months and for fish exhibiting low feeding and growth rates.
Long-Term Temporal Trends of Polychlorinated Biphenyls and Their Controlling Sources in China.
Zhao, Shizhen; Breivik, Knut; Liu, Guorui; Zheng, Minghui; Jones, Kevin C; Sweetman, Andrew J
2017-03-07
Polychlorinated biphenyls (PCBs) are industrial organic contaminants identified as persistent, bioaccumulative, toxic (PBT), and subject to long-range transport (LRT) with global scale significance. This study focuses on a reconstruction and prediction for China of long-term emission trends of intentionally and unintentionally produced (UP) ∑ 7 PCBs (UP-PCBs, from the manufacture of steel, cement and sinter iron) and their re-emissions from secondary sources (e.g., soils and vegetation) using a dynamic fate model (BETR-Global). Contemporary emission estimates combined with predictions from the multimedia fate model suggest that primary sources still dominate, although unintentional sources are predicted to become a main contributor from 2035 for PCB-28. Imported e-waste is predicted to play an increasing role until 2020-2030 on a national scale due to the decline of intentionally produced (IP) emissions. Hypothetical emission scenarios suggest that China could become a potential source to neighboring regions with a net output of ∼0.4 t year -1 by around 2050. However, future emission scenarios and hence model results will be dictated by the efficiency of control measures.
Power, Christopher; Ramasamy, Murugan; MacAskill, Devin; Shea, Joseph; MacPhee, Joseph; Mayich, David; Baechler, Fred; Mkandawire, Martin
2017-12-01
Cover systems are commonly placed over waste rock piles (WRPs) to limit atmospheric water and oxygen ingress and control the generation and release of acid mine drainage (AMD) to the receiving environment. Although covers containing geomembranes such as high-density polyethylene (HDPE) exhibit the attributes to be highly effective, there are few, if any, published studies monitoring their performance at full-scale WRPs. In 2011, a HDPE cover was installed over the Scotchtown Summit WRP in Nova Scotia, Canada, and extensive field performance monitoring was conducted over the next five years. A range of parameters within the atmosphere, cover, waste rock, groundwater and surface water, were monitored and integrated into a comprehensive hydrogeochemical conceptual model to assess (i) atmospheric ingress to the waste rock, (ii) waste rock acidity and depletion and (iii) evolution of groundwater and surface water quality. Results demonstrate that the cover is effective and meeting site closure objectives. Depletion in oxygen influx resulted in slower sulphide oxidation and AMD generation, while a significant reduction in water influx (i.e. 512 to 50 mm/year) resulted in diminished AMD release. Consistent improvements in groundwater quality (decrease in sulphate and metals; increase in pH) beneath and downgradient of the WRP were observed. Protection and/or significant improvement in surface water quality was evident in all surrounding watercourses due to the improved groundwater plume and elimination of contaminated runoff over previously exposed waste rock. A variably saturated flow and contaminant transport model is currently being developed to predict long-term cover system performance.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1979-01-01
The Indiana State Board of Health is developing a water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand is the most significant factor affecting the dissolved-oxygen concentrations in Wildcat Creek during summer low flows. The Indiana stream dissolved-oxygen standard should not be violated if the Kokomo wastewater-treatment facility meets its current National Pollution Discharge Elimination System permit restrictions (average monthly 5-day biochemical-oxygen demand of 5 milligrams per liter and maximum weekly 5-day biochemical-oxygen demand of 7.5 milligrams per liter) and benthic-oxygen demand becomes negligible. Ammonia-nitrogen toxicity may also be a water-quality limitation in Wildcat Creek. Ammonia-nitrogen waste loads for the Kokomo wastewater-treatment facility, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State standard (2.5 milligrams per liter during summer months and 4.0 milligrams per liter during winter months). (Kosco-USGS)
Shehata, F A; Attallah, M F; Borai, E H; Hilal, M A; Abo-Aly, M M
2010-02-01
A novel impregnated polymeric resin was practically tested as adsorbent material for removal of some hazardous radionuclides from radioactive liquid waste. The applicability for the treatment of low-level liquid radioactive waste was investigated. The material was prepared by loading 4,4'(5')di-t-butylbenzo 18 crown 6 (DtBB18C6) onto poly(acrylamide-acrylic acid-acrylonitril)-N, N'-methylenediacrylamide (P(AM-AA-AN)-DAM). The removal of (134)Cs, (60)Co, (65)Zn , and ((152+154))Eu onto P(AM-AA-AN)-DAM/DtBB18C6 was investigated using a batch equilibrium technique with respect to the pH, contact time, and temperature. Kinetic models are used to determine the rate of sorption and to investigate the mechanism of sorption process. Five kinetics models, pseudo-first-order, pseudo-second-order, intra-particle diffusion, homogeneous particle diffusion (HPDM), and Elovich models, were used to investigate the sorption process. The obtained results of kinetic models predicted that, pseudo-second-order is applicable; the sorption is controlled by particle diffusion mechanism and the process is chemisorption. The obtained values of thermodynamics parameters, DeltaH degrees , DeltaS degrees , and DeltaG degrees indicated that the endothermic nature, increased randomness at the solid/solution interface and the spontaneous nature of the sorption processes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Experimental and modeling approaches for food waste composting: a review.
Li, Zhentong; Lu, Hongwei; Ren, Lixia; He, Li
2013-10-01
Composting has been used as a method to dispose food waste (FW) and recycle organic matter to improve soil structure and fertility. Considering the significance of composting in FW treatment, many researchers have paid their attention on how to improve FW composting efficiency, reduce operating cost, and mitigate the associated environmental damage. This review focuses on the overall studies of FW composting, not only various parameters significantly affecting the processes and final results, but also a number of simulation approaches that are greatly instrumental in well understanding the process mechanism and/or results prediction. Implications of many key ingredients on FW composting performance are also discussed. Perspects of effective laboratory experiments and computer-based simulation are finally investigated, demonstrating many demanding areas for enhanced research efforts, which include the screening of multi-functional additives, volatile organiccompound emission control, necessity of modeling and post-modeling analysis, and usefulness of developing more conjunctive AI-based process control techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modeling a solar-heated anaerobic digester for the developing world using system dynamics
NASA Astrophysics Data System (ADS)
Bentley, Johanna Lynn
Much of the developing world lacks access to a dependable source of energy. Agricultural societies such as Mozambique and Papua New Guinea could sustain a reliable energy source through the microbacterial decomposition of animal and crop waste. Anaerobic digestion produces methane, which can be used directly for heating, cooking, and lighting. Adding a solar component to the digester provides a catalyst for bacteria activity, accelerating digestion and increasing biogas production. Using methane decreases the amount of energy expended by collecting and preparing firewood, eliminates hazardous health effects linked to inhalation of particles, and provides energy close to where it is needed. The purpose of this work is two fold: initial efforts focus on the development and validation of a computer-based system dynamics model that combines elements of the anaerobic digestion process in order to predict methane output; second, the model is flexed to explore how the addition of a solar component increases robustness of the design, examines predicted biogas generation as a function of varying input conditions, and determines how best to configure such systems for use in varying developing world environments. Therefore, the central components of the system: solar insolation, waste feedstock, bacteria population and consumption rates, and biogas production are related both conceptually and mathematically through a serious of equations, conversions, and a causal loop and feedback diagram. Given contextual constraints and initial assumptions for both locations, it was determined that solar insolation and subsequent digester temperature control, amount of waste, and extreme weather patterns had the most significant impact on the system as a whole. Model behavior was both reproducible and comparable to that demonstrated in existing experimental systems. This tool can thus be flexed to fit specific contexts within the developing world to improve the standard of living of many people, without significantly altering everyday activities.
Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F
2017-08-01
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H 2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H 2 , often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H 2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H 2 consumption and retardation of radionuclide migration.
Numerical simulation of waste tyres gasification.
Janajreh, Isam; Raza, Syed Shabbar
2015-05-01
Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. © The Author(s) 2015.
Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)
NASA Astrophysics Data System (ADS)
Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar
2017-05-01
This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.
Cantuaria, Manuella Lech; Suh, Helen; Løfstrøm, Per; Blanes-Vidal, Victoria
2016-11-01
The assignment of exposure is one of the main challenges faced by environmental epidemiologists. However, misclassification of exposures has not been explored in population epidemiological studies on air pollution from biodegradable wastes. The objective of this study was to investigate the use of different approaches for assessing exposure to air pollution from biodegradable wastes by analyzing (1) the misclassification of exposure that is committed by using these surrogates, (2) the existence of differential misclassification (3) the effects that misclassification may have on health effect estimates and the interpretation of epidemiological results, and (4) the ability of the exposure measures to predict health outcomes using 10-fold cross validation. Four different exposure assessment approaches were studied: ammonia concentrations at the residence (Metric I), distance to the closest source (Metric II), number of sources within certain distances from the residence (Metric IIIa,b) and location in a specific region (Metric IV). Exposure-response models based on Metric I provided the highest predictive ability (72.3%) and goodness-of-fit, followed by IV, III and II. When compared to Metric I, Metric IV yielded the best results for exposure misclassification analysis and interpretation of health effect estimates, followed by Metric IIIb, IIIa and II. The study showed that modelled NH 3 concentrations provide more accurate estimations of true exposure than distances-based surrogates, and that distance-based surrogates (especially those based on distance to the closest point source) are imprecise methods to identify exposed populations, although they may be useful for initial studies. Copyright © 2016 Elsevier GmbH. All rights reserved.
E-Area Vault Concrete Material Property And Vault Durability/Degradation Projection Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phifer, M. A.
2014-03-11
Subsequent to the 2008 E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) (WSRC 2008), two additional E-Area vault concrete property testing programs have been conducted (Dixon and Phifer 2010 and SIMCO 2011a) and two additional E-Area vault concrete durability modeling projections have been made (Langton 2009 and SIMCO 2012). All the information/data from these reports has been evaluated and consolidated herein by the Savannah River National Laboratory (SRNL) at the request of Solid Waste Management (SWM) to produce E-Area vault concrete hydraulic and physical property data and vault durability/degradation projection recommendations that are adequately justified for use within associated Specialmore » Analyses (SAs) and future PA updates. The Low Activity Waste (LAW) and Intermediate Level (IL) Vaults structural degradation predictions produced by Carey 2006 and Peregoy 2006, respectively, which were used as the basis for the 2008 ELLWF PA, remain valid based upon the results of the E-Area vault concrete durability simulations reported by Langton 2009 and those reported by SIMCO 2012. Therefore revised structural degradation predictions are not required so long as the mean thickness of the closure cap overlying the vaults is no greater than that assumed within Carey 2006 and Peregoy 2006. For the LAW Vault structural degradation prediction (Carey 2006), the mean thickness of the overlying closure cap was taken as nine feet. For the IL Vault structural degradation prediction (Peregoy 2006), the mean thickness of the overlying closure cap was taken as eight feet. The mean closure cap thicknesses as described here for both E-Area Vaults will be included as a key input and assumption (I&A) in the next revision to the closure plan for the ELLWF (Phifer et al. 2009). In addition, it has been identified as new input to the PA model to be assessed in the ongoing update to the new PA Information UDQE (Flach 2013). Once the UDQE is approved, the SWM Key I&A database will be updated with this new information.« less
Arsenite and arsenate removal from wastewater using cationic polymer-modified waste tyre rubber.
Imyim, Apichat; Sirithaweesit, Thitayati; Ruangpornvisuti, Vithaya
2016-01-15
Waste tyre rubber (WTR) granulate was modified with a cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (p(APTMACl)). The resulting WTR/p(APTMACl) was utilized for the adsorption of arsenite, As(III) and arsenate, As(V) from aqueous medium in both batch and column methods. The level of adsorption increased gradually with increasing monomer concentration and contact time. The adsorption behavior obeyed the Freundlich model, and the rate of adsorption could be predicted by employing the pseudo-second order model. In the column method, As(V) could be adsorbed onto the sorbent more effectively than As(III). Remarkable desorption of As(III) and As(V) (99 and 92%, respectively) from the adsorbent was achieved using 0.10 M HCl as eluent. An approach of evaluation of adsorption capacity uncertainty is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon Chorover, University of Arizona; Peggy O'ÃÂÃÂDay, University of California, Merced; Karl Mueller, Penn State University
2012-10-01
Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of howmore » sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.« less
Modelling of cementitious backfill interactions with vitrified intermediate-level waste
NASA Astrophysics Data System (ADS)
Baston, Graham; Heath, Timothy; Hunter, Fiona; Swanton, Stephen
2017-06-01
New types of wasteform are being considered for the geological disposal of radioactive intermediate-level waste (ILW) in the UK. These include vitrified ILW products arising from the application of thermal treatment processes. For disposal of such wasteforms in a geological disposal facility, a range of concepts are under consideration, including those with a high-pH cementitious backfill (the NRVB, Nirex Reference Vault Backfill). Alternatively, a cement-based material that buffers to a less alkaline pH could be used (an LPB, Low-pH Backfill). To assess the compatibility of these potential new wasteforms with cement-based disposal concepts, it is necessary to understand their impacts on the long-term evolution of the backfill. A scoping thermodynamic modelling study was undertaken to help understand the possible effects of these wasteforms on the performance of the backfill. The model primarily considers the interactions occurring between the vitirified waste, the porewater and the backfill, within a static and (in most cases) totally closed system. The approach was simplified by assuming equilibrium between the backfill and the corroded glass available at selected times, rather than involving detailed, reactive transport modelling. The aim was to provide an understanding of whether the impacts of the vitrified wastes on backfill performance are sufficient to compromise disposal in such environments. The calculations indicated that for NRVB, the overall alkaline buffering capacity of the backfill is not expected to be impaired by interactions with vitrified waste; rather the buffering will be to less alkaline pH values (above pH 9) but for a longer period. For the LPB, slightly lower pH values were predicted in some cases. The sorption capacities of the backfills are unlikely to be impaired by interactions with vitrified ILW. Indeed they may be increased, due to the additional C-S-H phase formation. The results of this study suggest that disposal of vitrified ILW in a cement-based disposal system with a high-pH backfill is a potentially viable disposal option.
Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gervasio, Vivianaluxa; Vienna, John D.; Kim, Dong-Sang
Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable WOL was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of IHLW glass when no uncertainties were taken into accound. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimatedmore » glass mass 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). ILAW mass was predicted to be 282,350 MT without uncertainty and with weaste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MTG. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less
NASA Astrophysics Data System (ADS)
Arbilei, Marwan N.
2018-05-01
This paper aimed to recycle high power electrical wires west in prosthetics limbs manufacturing. The effect of grain size on mechanical properties (Hardness and Tensile Strength), and wear resistance of commercial 6026 T9 Aluminum alloys that used in electrical industry have been modeled to be predicted. Six sets of samples were prepared with different annealing heat treatment parameters, (300,350 and 400)°C with (1 and 2) hours. Each treatment gained different grain sizes (23-71) μm and evenly HV (61-169) values. The grain size that produced from heat treatments was ranged from. Tensile properties regarding HV have been reviewed and all data haven collected to create a mathematical model showing the relation between Tensile strength and Hardness. The Sliding wear tests applied with (3 and 8) N with five periods (20-100) minutes. Multiple regression model prepared for predicting the values of weight loss for wear process. The model was tested and validated for the properties. The main purpose of this research is to provide an effective and accurate way to predict weight loose rate in wear process.
NASA Astrophysics Data System (ADS)
Omidvarborna, Hamid; Kumar, Ashok; Kim, Dong-Shik
2017-03-01
A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO2) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H2/CO/C1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling.
Suzuki, Shinya; Part, Florian; Matsufuji, Yasushi; Huber-Humer, Marion
2018-02-01
To date construction materials that contain engineered nanomaterials (ENMs) are available at the markets, but at the same time very little is known about their environmental fate. Therefore, this study aimed at modeling the potential fate of ENMs by using the example of the Japanese construction sector and by conducting a dynamic material flow analysis. Expert interviews and national reports revealed that about 3920-4660 tons of ENMs are annually used for construction materials in Japan. Nanoscale TiO 2 , SiO 2 , Al 2 O 3 and carbon black have already been applied for decades to wall paints, road markings or concrete. The dynamic material flow model indicates that in 2016 about 95% of ENMs, which have been used since their year of market penetration, remained in buildings, whereas only 5% ended up in the Japanese waste management system or were diffusely released into the environment. Considering the current Japanese waste management system, ENMs were predicted to end up in recycled materials (40-47%) or in landfills (36-41%). It was estimated that only a small proportion was used in agriculture (5-7%, as ENM-containing sewage sludges) or was diffusely released into soils, surface waters or the atmosphere (5-19%). The results indicate that ENM release predominantly depend on their specific applications and characteristics. The model also highlights the importance of adequate collection and treatment of ENM-containing wastes. In future, similar dynamic flow models for other countries should consider, inasmuch as available, historical data on ENM production (e.g. like declaration reports that are annually published by relevant public authorities or associations), as such input data is very important regarding data reliability in order to decrease uncertainties and to continuously improve model accuracy. In addition, more environmental monitoring studies that aim at the quantification of ENM release and inadvertent transfer, particularly triggered by waste treatment processes, would be needed in order to validate such models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measuring the value of accurate link prediction for network seeding.
Wei, Yijin; Spencer, Gwen
2017-01-01
The influence-maximization literature seeks small sets of individuals whose structural placement in the social network can drive large cascades of behavior. Optimization efforts to find the best seed set often assume perfect knowledge of the network topology. Unfortunately, social network links are rarely known in an exact way. When do seeding strategies based on less-than-accurate link prediction provide valuable insight? We introduce optimized-against-a-sample ([Formula: see text]) performance to measure the value of optimizing seeding based on a noisy observation of a network. Our computational study investigates [Formula: see text] under several threshold-spread models in synthetic and real-world networks. Our focus is on measuring the value of imprecise link information. The level of investment in link prediction that is strategic appears to depend closely on spread model: in some parameter ranges investments in improving link prediction can pay substantial premiums in cascade size. For other ranges, such investments would be wasted. Several trends were remarkably consistent across topologies.
NASA Astrophysics Data System (ADS)
Aditya, Gautam; Hossain, Asif
2018-05-01
Cadmium is one of the most hazardous heavy metal concerning human health and aquatic pollution. The removal of cadmium through biosorption is a feasible option for restoration of the ecosystem health of the contaminated freshwater ecosystems. In compliance with this proposition and considering the efficiency of calcium carbonate as biosorbent, the shell dust of the economically important snail Bellamya bengalensis was tested for the removal of cadmium from aqueous medium. Following use of the flesh as a cheap source of protein, the shells of B. bengalensis made up of CaCO3 are discarded as aquaculture waste. The biosorption was assessed through batch sorption studies along with studies to characterize the morphology and surface structures of waste shell dust. The data on the biosorption were subjected to the artificial neural network (ANN) model for optimization of the process. The biosorption process changed as functions of pH of the solution, concentration of heavy metal, biomass of the adsorbent and time of exposure. The kinetic process was well represented by pseudo second order ( R 2 = 0.998), and Langmuir equilibrium ( R 2 = 0.995) had better fits in the equilibrium process with 30.33 mg g-1 of maximum sorption capacity. The regression equation ( R 2 = 0.948) in the ANN model supports predicted values of Cd removal satisfactorily. The normalized importance analysis in ANN predicts Cd2+ concentration, and pH has the most influence in removal than biomass dose and time. The SEM and EDX studies show clear peaks for Cd confirming the biosorption process while the FTIR study depicts the main functional groups (-OH, C-H, C=O, C=C) responsible for the biosorption process. The study indicated that the waste shell dust can be used as an efficient, low cost, environment friendly, sustainable adsorbent for the removal of cadmium from aqueous solution.
Owamah, H I; Izinyon, O C
2015-10-01
Biogas kinetic models are often used to characterize substrate degradation and prediction of biogas production potential. Most of these existing models are however difficult to apply to substrates they were not developed for since their applications are usually substrate specific. Biodegradability kinetic (BIK) model and maximum biogas production potential and stability assessment (MBPPSA) model were therefore developed in this study for better understanding of the anaerobic co-digestion of food waste and maize husk for biogas production. Biodegradability constant (k) was estimated as 0.11 d(-1) using the BIK model. The results of maximum biogas production potential (A) obtained using the MBPPSA model were found to be in good correspondence, both in value and trend with the results obtained using the popular but complex modified Gompertz model for digesters B-1, B-2, B-3, B-4, and B-5. The (If) value of MBPPSA model also showed that digesters B-3, B-4, and B-5 were stable, while B-1 and B-2 were inhibited/unstable. Similar stability observation was also obtained using the modified Gompertz model. The MBPPSA model can therefore be used as an alternative model for anaerobic digestion feasibility studies and plant design. Copyright © 2015 Elsevier Ltd. All rights reserved.
State of research: environmental pathways and food chain transfer.
Vaughan, B E
1984-01-01
Data on the chemistry of biologically active components of petroleum, synthetic fuel oils, certain metal elements and pesticides provide valuable generic information needed for predicting the long-term fate of buried waste constituents and their likelihood of entering food chains. Components of such complex mixtures partition between solid and solution phases, influencing their mobility, volatility and susceptibility to microbial transformation. Estimating health hazards from indirect exposures to organic chemicals involves an ecosystem's approach to understanding the unique behavior of complex mixtures. Metabolism by microbial organisms fundamentally alters these complex mixtures as they move through food chains. Pathway modeling of organic chemicals must consider the nature and magnitude of food chain transfers to predict biological risk where metabolites may become more toxic than the parent compound. To obtain predictions, major areas are identified where data acquisition is essential to extend our radiological modeling experience to the field of organic chemical contamination. PMID:6428875
Influence of droplet spacing on drag coefficient in nonevaporating, monodisperse streams
NASA Astrophysics Data System (ADS)
Mulholland, J. A.; Srivastava, R. K.; Wendt, J. O. L.
1988-10-01
Trajectory measurements on single, monodisperse, nonevaporating droplet streams whose droplet size, velocity, and spacing were varied to yield initial Re numbers in the 90-290 range are presently used to ascertain the influence of droplet spacing on the drag coefficient of individual drops injected into a quiescent environment. A trajectory model containing the local drag coefficient was fitted to the experimental data by a nonlinear regression; over 40 additional trajectories were predicted with acceptable accuracy. This formulation will aid the computation of waste-droplet drag in flames for improved combustion-generated pollutant predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent Simmons, J.A.; Knap, A.H.
1991-04-01
The computer model Industrial Source Complex Short Term (ISCST) was used to study the stack emissions from a refuse incinerator proposed for the inland of Bermuda. The model predicts that the highest ground level pollutant concentrations will occur near Prospect, 800 m to 1,000 m due south of the stack. The authors installed a portable laboratory and instruments at Prospect to begin making air quality baseline measurements. By comparing the model's estimates of the incinerator contribution to the background levels measured at the site they predicted that stack emissions would not cause an increase in TSP or SO{sub 2}. Themore » incinerator will be a significant source of HCI to Bermuda air with ambient levels approaching air quality guidelines.« less
Development of a Hydrogeological Model of the Borrowdale Volcanics at Sellafield
NASA Astrophysics Data System (ADS)
Lunn, R. J.; Lunn, A. D.; Mackay, R.
This work has arisen out of recent developments within the radioactive waste research programme managed by Her Majesty's Inspectorate of Pollution, UK (HMIP)*, to develop an integrated flow and transport model for the potential deep radioactive waste repository at Sellafield. One of the largest sources of uncertainty in model predictions, is the characterisation of the hydrogeological properties of the underlying strata, in particular, of the Borrowdale Volcanic Group (BVG) within which the repository is to be located. Analysis of the available borehole data (that released by the proponent company, Nirex, by December 1995) for the BVG formation has indicated a dual regime consisting of flow within faults and flow within the matrix (or an equivalent porous medium containing micro-fractures). Significant relationships between permeability, depth and the presence and orientation of faults have been identified; they account for a variation of up to 6 orders of magnitude in mean permeability measurements. This can be explained in part by the effect of the orientation of the current maximum principal stress directions within the BVG: however, it is likely that permeability is also dependent on the existence of fracture families, which cannot be effectively identified from the data currently available. These analyses have enabled considerable insight to be gained into the dominant features of flow within the BVG. The conceptual hydrogeological model derived here will have a significant effect on the outcome and reliability of future radionuclide transport predictions in the Sellafield area.
Modelling the time-variant dietary exposure of PCBs in China over the period 1930 to 2100.
Zhao, Shizhen; Breivik, Knut; Jones, Kevin C; Sweetman, Andrew J
2018-06-06
This study aimed for the first time to reconstruct historical exposure profiles for PCBs to the Chinese population, by examining the combined effect of changing temporal emissions and dietary transition. A long-term (1930-2100) dynamic simulation of human exposure using realistic emission scenarios, including primary emissions, unintentional emissions and emissions from e-waste, combined with dietary transition trends was conducted by a multimedia fate model (BETR-Global) linked to a bioaccumulation model (ACC-HUMAN). The model predicted an approximate 30-year delay of peak body burden for PCB-153 in a 30-year-old Chinese female, compared to their European counterpart. This was mainly attributed to a combination of change in diet and divergent emission patterns in China. A fish-based diet was predicted to result in up to 8 times higher body burden than a vegetable-based diet (2010-2100). During the production period, a worst-case scenario assuming only consumption of imported food from a region with more extensive production and usage of PCBs would result in up to 4 times higher body burden compared to consumption of only locally produced food. However, such differences gradually diminished after cessation of production. Therefore, emission reductions in China alone may not be sufficient to protect human health for PCB-like chemicals, particularly during the period of mass production. The results from this study illustrate that human exposure is also likely to be dictated by inflows of PCBs via the environment, waste and food.
Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen
2018-05-01
The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.
Release and fate of fluorocarbons in a shredder residue landfill cell: 1. Laboratory experiments.
Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter
2010-11-01
The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ensuring Longevity: Ancient Glasses Help Predict Durability of Vitrified Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jamie L.; McCloy, John S.; Ryan, Joseph V.
How does glass alter with time? For the last hundred years this has been an important question to the fields of object conservation and archeology to ensure the preservation of glass artifacts. This same question is part of the development and assessment of durable glass waste forms for the immobilization of nuclear wastes. Researchers have developed experiments ranging from simple to highly sophisticated to answer this question, and, as a result, have gained significant insight into the mechanisms that drive glass alteration. However, the gathered data have been predominately applicable to only short-term alteration times, i.e. over the course ofmore » decades. What has remained elusive is the long-term mechanisms of glass alteration[1]. These mechanisms are of particular interest to the international nuclear waste glass community as they strive to ensure that vitrified products will be durable for thousands to tens of thousands of years. For the last thirty years this community has been working to fill this research gap by partnering with archeologists, museum curators, and geologists to identify hundred to million-year old glass analogues that have altered in environments representative of those expected at potential nuclear waste disposal sites. The process of identifying a waste glass relevant analogue is challenging as it requires scientists to relate data collected from short-term laboratory experiments to observations made from long-term analogues and extensive geochemical modeling.« less
Wilber, William G.; Peters, J.G.; Ayers, M.A.; Crawford, Charles G.
1979-01-01
A digital model calibrated to conditions in Cedar Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that the dissolved-oxygen concentration of the Auburn wastewater effluent and nitrification are the most significant factors affecting the dissolved-oxygen concentration in Cedar Creek during summer low flows. The observed dissolved-oxygen concentration of the Auburn wastewater effluent was low and averaged 30 percent of saturation. Projected nitrogenous biochemical-oxygen demand loads, from the Indiana State Board of Health, for the Auburn and Waterloo wastewater-treatment facilities will result in violations of the current instream dissolved-oxygen standard (5 mg/l), even with an effluent dissolved-oxygen concentration of 80 percent saturation. Natural streamflow for Cedar Creek upstream from the confluence of Willow and Little Cedar Creeks is small compared with the waste discharge, so benefits of dilution for Waterloo and Auburn are minimal. The model also indicates that, during winter low flows, ammonia toxicity, rather than dissolved oxygen, is the limiting water-quality criterion in the reach of Cedar Creek downstream from the wastewater-treatment facility at Auburn and the confluence of Garrett ditch. Ammonia-nitrogen concentrations predicted for 1978 through 2000 downstream from the Waterloo wastewater-treatment facility do not exceed Indiana water-quality standards for streams. Calculations of the stream 's assimilative capacity indicate that future waste discharge in the Cedar Creek basin will be limited to the reaches between the Auburn wastewater-treatment facility and County Road 68. (Kosco-USGS)
Cumulative metal leaching from utilisation of secondary building materials in river engineering.
Leuven, R S E W; Willems, F H G
2004-01-01
The present paper estimates the utilisation of bulky wastes (minestone, steel slag, phosphorus slag and demolition waste) in hydraulic engineering structures in Dutch parts of the rivers Rhine, Meuse and Scheldt over the period 1980-2025. Although they offer several economic, technical and environmental benefits, these secondary building materials contain various metals that may leach into river water. A leaching model was used to predict annual emissions of arsenic, cadmium, copper, chromium, lead, mercury, nickel and zinc. Under the current utilisation and model assumptions, the contribution of secondary building materials to metal pollution in Dutch surface waters is expected to be relatively low compared to other sources (less than 0.1% and 0.2% in the years 2000 and 2025, respectively). However, continued and widespread large-scale applications of secondary building materials will increase pollutant leaching and may require further cuts to be made in emissions from other sources to meet emission reduction targets and water quality standards. It is recommended to validate available leaching models under various field conditions. Complete registration of secondary building materials will be required to improve input data for leaching models.
SPH-based numerical simulations of flow slides in municipal solid waste landfills.
Huang, Yu; Dai, Zili; Zhang, Weijie; Huang, Maosong
2013-03-01
Most municipal solid waste (MSW) is disposed of in landfills. Over the past few decades, catastrophic flow slides have occurred in MSW landfills around the world, causing substantial economic damage and occasionally resulting in human victims. It is therefore important to predict the run-out, velocity and depth of such slides in order to provide adequate mitigation and protection measures. To overcome the limitations of traditional numerical methods for modelling flow slides, a mesh-free particle method entitled smoothed particle hydrodynamics (SPH) is introduced in this paper. The Navier-Stokes equations were adopted as the governing equations and a Bingham model was adopted to analyse the relationship between material stress rates and particle motion velocity. The accuracy of the model is assessed using a series of verifications, and then flow slides that occurred in landfills located in Sarajevo and Bandung were simulated to extend its applications. The simulated results match the field data well and highlight the capability of the proposed SPH modelling method to simulate such complex phenomena as flow slides in MSW landfills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Jincheng; Rimsza, Jessica; Deng, Lu
This NEUP Project aimed to generate accurate atomic structural models of nuclear waste glasses by using large-scale molecular dynamics-based computer simulations and to use these models to investigate self-diffusion behaviors, interfacial structures, and hydrated gel structures formed during dissolution of these glasses. The goal was to obtain realistic and accurate short and medium range structures of these complex oxide glasses, to provide a mechanistic understanding of the dissolution behaviors, and to generate reliable information with predictive power in designing nuclear waste glasses for long-term geological storage. Looking back of the research accomplishments of this project, most of the scientific goalsmore » initially proposed have been achieved through intensive research in the three and a half year period of the project. This project has also generated a wealth of scientific data and vibrant discussions with various groups through collaborations within and outside of this project. Throughout the project one book chapter and 14 peer reviewed journal publications have been generated (including one under review) and 16 presentations (including 8 invited talks) have been made to disseminate the results of this project in national and international conference. Furthermore, this project has trained several outstanding graduate students and young researchers for future workforce in nuclear related field, especially on nuclear waste immobilization. One postdoc and four PhD students have been fully or partially supported through the project with intensive training in the field material science and engineering with expertise on glass science and nuclear waste disposal« less
Geislar, Sally
2017-10-01
Cities around the world are under increasing political pressure to develop organics collection programs (OCP) to curb the flow of food waste into landfills, reduce the associated greenhouse gases, and generate compost or biogas. While OCPs tend to focus on infrastructure, they often overlook the linchpin role that household behavior change plays in the success of OCPs. The current research used a longitudinal field experiment (n=370) to test both the effectiveness of a new curbside OCP and new social innovations intended to stimulate pro-environmental changes in household behavior. The findings suggest greater participation levels occur by implementing both new supportive infrastructure (i.e., curbside carts and collection services), and innovations that target the social aspects of waste (i.e., communicating social norms of separation). The data also provide an opportunity to test new model for predicting the most efficacious behavior-change interventions based on population profiles. The results provide some support for the model; reducing barriers (i.e., curbside carts and collection) tends to help all population profiles, but norm communication increases participation more for the hypothesized profile than for other sub-groups. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of the culture media optimization on pectinase production by Enterobacter sp. PSTB-1.
Reddy, M Purna Chandra; Saritha, K V
2016-12-01
In the present study, media composition for high production of pectinase by Enterobacter sp. PSTB-1 in submerged fermentation was optimized using response surface methodology (RSM). Mango fruit processing industrial waste (MIW) was used as substrate (carbon source) as it contains high amount of pectin. Enterobacter sp. PSTB-1 used in present study has given pectin clear zone (PCZ) of 34 mm is higher than other isolates. The experimental results made by statistical design for high pectinase production revealed that the suitable media components: NaNO 3 2.0 g/l, KCl 0.50 g/l, KH 2 PO 4 1.0 g/l, MgSO 4 ·7H 2 O 0.50 g/l, Yeast extract 1.0 g/l, mango industrial waste powder 5.0 g/l. The actual pectinase activity was 75.23 % correlated with the predicted pectinase activity where the model (CCD) was significant. Response surface modelling applied effectively to optimize the production of pectinase in submerged fermentation to make the process low cost-effective by using powdered mango industrial waste as substrate.
Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants
NASA Astrophysics Data System (ADS)
Awais Salman, Chaudhary; Schwede, Sebastian; Thorin, Eva; Yan, Jinyue
2017-11-01
Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.
Kinyoki, Damaris K; Berkley, James A; Moloney, Grainne M; Odundo, Elijah O; Kandala, Ngianga-Bakwin; Noor, Abdisalan M
2016-01-01
Objective To determine the sub-national seasonal prevalence and trends in wasting from 2007 to 2010 among children aged 6–59 months in Somalia using remote sensing and household survey data from nutritional surveys. Methods Bayesian hierarchical space–time model was implemented using a stochastic partial differential equation (SPDE) approach in integrated nested Laplace approximations (INLA) to produce risk maps of wasting at 1 × 1 km2 spatial resolution and predict to seasons in each year of study from 2007 to 2010. Results The prevalence of wasting was generally at critical levels throughout the country, with most of the areas remaining in the upper classes of critical and very critical levels. There was minimal variation in wasting from year-to-year, but a well-defined seasonal variation was observed. The mean difference of the prevalence of wasting between the dry and wet season ranges from 0% to 5%. The risks of wasting in the South Central zone were highest in the Gedo (37%) and Bay (32%) regions. In North East zone the risk was highest in Nugaal (25%) and in the North West zone the risk was high in Awdal and Woqooyi Galbeed regions with 23%. Conclusion There was a clear seasonal variation in wasting with minimal year-to-year variability from 2007 to 2010 in Somalia. The prevalence was high during the long dry season, which affects the prevalence in the preceding long rainy season. Understanding the seasonal fluctuations of wasting in different locations and at different times is important to inform timely interventions. PMID:26919757
Zhang, Qiang; Wu, Jiangping; Sun, Yuxin; Zhang, Min; Mai, Bixian; Mo, Ling; Lee, Tien Ming; Zou, Fasheng
2015-01-01
Indirect effects of electronic waste (e-waste) have been proposed as a causal factor in the decline of bird populations, but analyses of the severity impacts on community assembly are currently lacking. To explore how population abundance/species diversity are influenced, and which functional traits are important in determining e-waste susceptibility, here we surveyed breeding and overwintering birds with a hierarchically nested sampling design, and used linear mixed models to analyze changes in bird assemblages along an exposure gradient in South China. Total bird abundance and species diversity decreased with e-waste severity (exposed < surrounding < reference), reflecting the decreasing discharge and consequent side effects. Twenty-five breeding species exclusively used natural farmland, and nine species decreased significantly in relative abundance at e-waste polluted sites. A high pairwise similarity between exposed and surrounding sites indicates a diffuse effect of pollutants on the species assembly at local scale. We show that sensitivity to e-waste severity varies substantially across functional guild, with the prevalence of woodland insectivorous and grassland specialists declining, while some open farmland generalists such as arboreal frugivores, and terrestrial granivores were also rare. By contrast, the response of waterbirds, omnivorous and non-breeding visitors seem to be tolerable to a wide range of pollution so far. These findings underscore that improper e-waste dismantling results in a severe decline of bird diversity, and the different bird assemblages on polluted and natural farmlands imply species- and guild-dependent susceptibility with functional traits. Moreover, a better understanding of the impact of e-waste with different pollution levels, combined multiple pollutants, and in a food-web context on bird is required in future.
Zhang, Qiang; Wu, Jiangping; Sun, Yuxin; Zhang, Min; Mai, Bixian; Mo, Ling; Lee, Tien Ming; Zou, Fasheng
2015-01-01
Indirect effects of electronic waste (e-waste) have been proposed as a causal factor in the decline of bird populations, but analyses of the severity impacts on community assembly are currently lacking. To explore how population abundance/species diversity are influenced, and which functional traits are important in determining e-waste susceptibility, here we surveyed breeding and overwintering birds with a hierarchically nested sampling design, and used linear mixed models to analyze changes in bird assemblages along an exposure gradient in South China. Total bird abundance and species diversity decreased with e-waste severity (exposed < surrounding < reference), reflecting the decreasing discharge and consequent side effects. Twenty-five breeding species exclusively used natural farmland, and nine species decreased significantly in relative abundance at e-waste polluted sites. A high pairwise similarity between exposed and surrounding sites indicates a diffuse effect of pollutants on the species assembly at local scale. We show that sensitivity to e-waste severity varies substantially across functional guild, with the prevalence of woodland insectivorous and grassland specialists declining, while some open farmland generalists such as arboreal frugivores, and terrestrial granivores were also rare. By contrast, the response of waterbirds, omnivorous and non-breeding visitors seem to be tolerable to a wide range of pollution so far. These findings underscore that improper e-waste dismantling results in a severe decline of bird diversity, and the different bird assemblages on polluted and natural farmlands imply species- and guild-dependent susceptibility with functional traits. Moreover, a better understanding of the impact of e-waste with different pollution levels, combined multiple pollutants, and in a food-web context on bird is required in future. PMID:25811881
Plante, Benoît; Benzaazoua, Mostafa; Bussière, Bruno; Kandji, El-Hadji-Babacar; Chopard, Aurélie; Bouzahzah, Hassan
2015-05-01
The tools developed for acid mine drainage (AMD) prediction were proven unsuccessful to predict the geochemical behavior of mine waste rocks having a significant chemical sorption capacity, which delays the onset of contaminated neutral drainage (CND). The present work was performed in order to test a new approach of water quality prediction, by using a chelating agent solution (0.03 M EDTA, or ethylenediaminetetraacetic acid) in kinetic testing used for the prediction of the geochemical behavior of geologic material. The hypothesis underlying the proposed approach is that the EDTA solution should chelate the metals as soon as they are released by sulfide oxidation, inhibiting their sorption or secondary precipitation, and therefore reproduce a worst-case scenario where very low metal attenuation mechanisms are present in the drainage waters. Fresh and weathered waste rocks from the Lac Tio mine (Rio tinto, Iron and Titanium), which are known to generate Ni-CND at the field scale, were submitted to small-scale humidity cells in control tests (using deionized water) and using an EDTA solution. Results show that EDTA effectively prevents the metals to be sorbed or to precipitate as secondary minerals, therefore enabling to bypass the delay associated with metal sorption in the prediction of water quality from these materials. This work shows that the use of a chelating agent solution is a promising novel approach of water quality prediction and provides general guidelines to be used in further studies, which will help both practitioners and regulators to plan more efficient management and disposal strategies of mine wastes.
Maillacheruvu, Krishnanand; Roy, D; Tanacredi, J
2003-09-01
The current study was undertaken to characterize the East and West Ponds and develop a mathematical model of the effects of nutrient and BOD loading on dissolved oxygen (DO) concentrations in these ponds. The model predicted that both ponds will recover adequately given the average expected range of nutrient and BOD loading due to waste from surface runoff and migratory birds. The predicted dissolved oxygen levels in both ponds were greater than 5.0 mg/L, and were supported by DO levels in the field which were typically above 5.0 mg/L during the period of this study. The model predicted a steady-state NBOD concentration of 12.0-14.0 mg/L in the East Pond, compared to an average measured value of 3.73 mg/L in 1994 and an average measured value of 12.51 mg/L in a 1996-97 study. The model predicted that the NBOD concentration in the West Pond would be under 3.0 mg/L compared to the average measured values of 7.50 mg/L in 1997, and 8.51 mg/L in 1994. The model predicted that phosphorus (as PO4(3-)) concentration in the East Pond will approach 4.2 mg/L in 4 months, compared to measured average value of 2.01 mg/L in a 1994 study. The model predicted that phosphorus concentration in the West Pond will approach 1.00 mg/L, compared to a measured average phosphorus (as PO4(3-)) concentration of 1.57 mg/L in a 1994 study.
Sfakiotakis, Stelios; Vamvuka, Despina
2015-12-01
The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.
2015-09-30
Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.« less
Thorne, M C; Degnan, P; Ewen, J; Parkin, G
2000-12-01
The physically based river catchment modelling system SHETRAN incorporates components representing water flow, sediment transport and radionuclide transport both in solution and bound to sediments. The system has been applied to simulate hypothetical future catchments in the context of post-closure radiological safety assessments of a potential site for a deep geological disposal facility for intermediate and certain low-level radioactive wastes at Sellafield, west Cumbria. In order to have confidence in the application of SHETRAN for this purpose, various blind validation studies have been undertaken. In earlier studies, the validation was undertaken against uncertainty bounds in model output predictions set by the modelling team on the basis of how well they expected the model to perform. However, validation can also be carried out with bounds set on the basis of how well the model is required to perform in order to constitute a useful assessment tool. Herein, such an assessment-based validation exercise is reported. This exercise related to a field plot experiment conducted at Calder Hollow, west Cumbria, in which the migration of strontium and lanthanum in subsurface Quaternary deposits was studied on a length scale of a few metres. Blind predictions of tracer migration were compared with experimental results using bounds set by a small group of assessment experts independent of the modelling team. Overall, the SHETRAN system performed well, failing only two out of seven of the imposed tests. Furthermore, of the five tests that were not failed, three were positively passed even when a pessimistic view was taken as to how measurement errors should be taken into account. It is concluded that the SHETRAN system, which is still being developed further, is a powerful tool for application in post-closure radiological safety assessments.
NASA Astrophysics Data System (ADS)
Brimo, Khaled; Ouvrard, Stéphanie; Houot, Sabine; Lafolie, François; Deschamps, Marjolaine; Benoit, Pierre; Garnier, Patricia
2017-04-01
Numerous studies have shown the presence of organic pollutants (OPs) in composts. Compost application in agricultural soil generates flux of OPs and among them polycyclic aromatic hydrocarbons (PAHs). A potential accumulation of PAHs in soils from successive compost applications could imply risks to environment. To explore and design scenarios that help land managers in their impact evaluations when composts are added in soils, there is a need to a new generation of models built from multi-modules that mimic the whole interactions between the different processes describing OP dynamic in soil. Our work is based on the implementation of an interdisciplinary global model for PAHs in soil by coupling modules describing the major physical, biochemical and biological processes influencing the fate of PAHs in soil, with modules that simulate water transfer, heat transfer, solute transport, and organic matter transformation under climatic conditions. The coupling is being facilitated by the «VSOIL» modeling platform. The steps of our modelling study are the following: 1) calibrate the field model using parameters previously estimated in laboratory completed with field data on a short period, 2) test the simulations using field experimental data, 3) build scenarios to explore the impact of PAHs accumulation in a long term (40 years). Our results show that the model can adequately predict the fate of PAHs in soil and can contribute to clarify some of unexplored aspects regarding the behavior of PAHs in soil like their mineralization and stabilization. Scenarios that predict the dynamic of PAHs in soil at long terms show a low PAH accumulation in soil after 40 years due to a high sequestration of the PAH in soils that is slightly higher for municipal solid waste composts than for green waste sludge composts.
Prediction of Estrogen Runoff and Transport Driven by Rainfalls from Swine Spray Fields
NASA Astrophysics Data System (ADS)
Lee, B.; Reckhow, K. H.; Kullman, S. W.
2010-12-01
Animal waste-borne steroidal hormones, which are referred to as natural steroidal estrogens, are recognized pollutants to surface water systems. Steroidal estrogens exhibit strong potency, even at very low concentrations, as endocrine disrupting chemicals on aquatic organisms. In North Carolina, the swine concentrated animal feeding operations (CAFOs) have been a major source for the release of estrogens to watersheds. Release is a direct result of the land application of the generated waste as an organic fertilizer. However, data regarding the estrogen loss and transport through the surface runoff and soil erosion to the water bodies after the spray-fields application has been up till now very limited. We have developed a decision support tool that can help predict and ultimately manage the potential mobilization and transport of estrogens from CAFOs, through the processes of surface runoff transport and sediment loss, into adjacent water bodies. Our decision support tool was built using a dynamic Bayesian Network (DBN) framework. The developed DBN model integrates the processes of a sediment loss and a surface runoff by using the modified universal soil loss equation (MUSLE) and the SCS-CN curve runoff models. Estrogen mobility is assessed as a function of rainfall intensity and land use management with consideration to the temporal distribution of both. The DBN is used to model the estrogen concentration in the runoff process, to determine the degree of off-site movement of estrogens, and to verify the potential environmental significance of the estrogen inputs into the stream. We believe that our modeling framework is particularly useful for use in field situations where estrogen runoff data are not available or are scarce. The DBN model also provides a means to handle the uncertainties of mathematical sediment and runoff models as a dynamic probability model.
Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff
2011-05-15
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less
BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2012-05-10
Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. Amore » three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.« less
Pardo, Guillermo; Moral, Raúl; Del Prado, Agustín
2017-01-01
On-farm anaerobic digestion (AD) has been promoted due to its improved environmental performance, which is based on a number of life cycle assessments (LCA). However, the influence of site-specific conditions and practices on AD performance is rarely captured in LCA studies and the effects on C and N cycles are often overlooked. In this paper, a new model for AD (SIMS WASTE-AD ) is described in full and tested against a selection of available measured data. Good agreement between modelled and measured values was obtained, reflecting the model capability to predict biogas production (r 2 =0.84) and N mineralization (r 2 =0.85) under a range of substrate mixtures and operational conditions. SIMS WASTE-AD was also used to simulate C and N flows and GHG emissions for a set of scenarios exploring different AD technology levels, feedstock mixtures and climate conditions. The importance of post-digestion emissions and its relationship with the AD performance have been stressed as crucial factors to reduce the net GHG emissions (-75%) but also to enhance digestate fertilizer potential (15%). Gas tight digestate storage with residual biogas collection is highly recommended (especially in temperate to warm climates), as well as those operational conditions that can improve the process efficiency on degrading VS (e.g. thermophilic range, longer hydraulic retention time). Beyond the effects on the manure management stage, SIMS WASTE-AD also aims to help account for potential effects of AD on other stages by providing the C and nutrient flows. While primarily designed to be applied within the SIMS DAIRY modelling framework, it can also interact with other models implemented in integrated approaches. Such system scope assessments are essential for stakeholders and policy makers in order to develop effective strategies for reducing GHG emissions and environmental issues in the agriculture sector. Copyright © 2016 Elsevier B.V. All rights reserved.
Trickling filter for urea and bio-waste processing - dynamic modelling of nitrogen cycle
NASA Astrophysics Data System (ADS)
Zhukov, Anton; Hauslage, Jens; Tertilt, Gerin; Bornemann, Gerhild
Mankind’s exploration of the solar system requires reliable Life Support Systems (LSS) enabling long duration manned space missions. In the absence of frequent resupply missions, closure of the LSS will play a very important role and its maximisation will to a large extent drive the selection of appropriate LSS architectures. One of the significant issues on the way to full closure is to effectively utilise biological wastes such as urine, inedible biomass etc. A very promising concept of biological waste reprocessing is the use of trickling filters which are currently being developed and investigated by DLR, Cologne, Germany. The concept is called Combined Regenerative Organic-Food Production (C.R.O.P.) and is based on the microbiological treatment of biological wastes and reprocessing them into aqueous fertilizer which can directly be used in a greenhouse for food production. Numerous experiments have been and are being conducted by DLR in order to fully understand and characterize the process. The human space exploration group of the Technical University of Munich (TUM) in cooperation with DLR has started to establish a dynamic model of the trickling filter system to be able to assess its performance on the LSS level. In the first development stage the model covers the nitrogen cycle enabling to simulate urine processing. This paper describes briefly the C.R.O.P. concept and the status of the trickling filter model development. The model is based on enzyme-catalyzed reaction kinetics for the fundamental microbiological reaction chain and is created in MATLAB. Verification and correlation of the developed model with experiment results has been performed. Several predictive studies for batch sequencing behavior have been performed, demonstrating a good capability of C.R.O.P. concept to be used in closed LSS. Achieved results are critically discussed and way forward is presented.
A model to minimize joint total costs for industrial waste producers and waste management companies.
Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto
2004-12-01
The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.
NASA Astrophysics Data System (ADS)
Gupta, Ankur; Balomajumder, Chandrajit
2017-12-01
In this study, simultaneous removal of Cr(VI) and phenol from binary solution was carried out using Fe-treated tea waste biomass. The effect of process parameters such as adsorbent dose, pH, initial concentration of Cr(VI) (mg/L), and initial concentration of phenol (mg/L) was optimized. The analysis of variance of the quadratic model demonstrates that the experimental results are in good agreement with the predicted values. Based on experimental design at an initial concentration of 55 mg/L of Cr(VI), 27.50 mg/L of phenol, pH 2.0, 15 g/L adsorbent dose, 99.99% removal of Cr(VI), and phenol was achieved.
Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion
2016-06-01
and purification of methane -rich biogas was conducted at the US Air Force Academy. Cost and performance of the technology with respect to renewable...SUBJECT TERMS Food waste, FOG, solid waste, anaerobic digestion, methane , biogas, biomethane, biogas purification, vehicle fuel, renewable energy...The project demonstrated the ability to digest these wastes in a controlled and predictable manner to maximize the generation of biogas, a methane
An analysis of household waste management policy using system dynamics modelling.
Inghels, Dirk; Dullaert, Wout
2011-04-01
This paper analyses the Flemish household waste management policy. Based on historical data from the period 1991-2006, literature reviews and interviews, both mathematical and descriptive relationships are derived that describe Flemish waste collection, reuse, recycling and disposal behaviour. This provides insights into how gross domestic product (GDP), population and selective collection behaviour have influenced household waste production and collection over time. These relationships are used to model the dynamic relationships underlying household waste management in Flanders by using a system dynamics (SD) modelling approach. Where most SD models in literature are conceptual and descriptive, in the present study a real-life case with both correlational and descriptive relationships was modelled for Flanders, a European region with an outstanding waste management track record. This model was used to evaluate the current Flemish household waste management policy based on the principles of the waste hierarchy, also referred as the Lansink ranking. The results show that Flemish household waste targets up to 2015 can be achieved by the current waste policy measures. It also shows the sensitivity of some key policy parameters such as prevention and reuse. Given the general nature of the model and its limited data requirements, the authors believe that the approach implemented in this model can also assist waste policy makers in other regions or countries to meet their policy targets by simulating the effect of their current and potential household waste policy measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebersorger, S.; Beigl, P., E-mail: peter.beigl@boku.ac.at
Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions aremore » met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).« less
Lebersorger, S; Beigl, P
2011-01-01
Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.
Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán
2015-09-01
Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hadley, Brian Christopher
This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.
NASA Astrophysics Data System (ADS)
Williams, T. R. N.; Baxter, S.; Hartley, L.; Appleyard, P.; Koskinen, L.; Vanhanarkaus, O.; Selroos, J. O.; Munier, R.
2017-12-01
Discrete fracture network (DFN) models provide a natural analysis framework for rock conditions where flow is predominately through a series of connected discrete features. Mechanistic models to predict the structural patterns of networks are generally intractable due to inherent uncertainties (e.g. deformation history) and as such fracture characterisation typically involves empirical descriptions of fracture statistics for location, intensity, orientation, size, aperture etc. from analyses of field data. These DFN models are used to make probabilistic predictions of likely flow or solute transport conditions for a range of applications in underground resource and construction projects. However, there are many instances when the volumes in which predictions are most valuable are close to data sources. For example, in the disposal of hazardous materials such as radioactive waste, accurate predictions of flow-rates and network connectivity around disposal areas are required for long-term safety evaluation. The problem at hand is thus: how can probabilistic predictions be conditioned on local-scale measurements? This presentation demonstrates conditioning of a DFN model based on the current structural and hydraulic characterisation of the Demonstration Area at the ONKALO underground research facility. The conditioned realisations honour (to a required level of similarity) the locations, orientations and trace lengths of fractures mapped on the surfaces of the nearby ONKALO tunnels and pilot drillholes. Other data used as constraints include measurements from hydraulic injection tests performed in pilot drillholes and inflows to the subsequently reamed experimental deposition holes. Numerical simulations using this suite of conditioned DFN models provides a series of prediction-outcome exercises detailing the reliability of the DFN model to make local-scale predictions of measured geometric and hydraulic properties of the fracture system; and provides an understanding of the reduction in uncertainty in model predictions for conditioned DFN models honouring different aspects of this data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.P.; Burns, H.H.; Langton, C.
2013-07-01
The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up tomore » 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in K{sub d}/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software tools. Modification of the existing tools can provide many opportunities to bring defense in depth in prediction of the performance of cementitious barriers over time. (authors)« less
Redesigning Urban Carbon Cycles: from Waste Stream to Commodity
NASA Astrophysics Data System (ADS)
Brabander, D. J.; Fitzstevens, M. G.
2013-12-01
While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in supporting urban agriculture. We are now extending this approach to additional large U.S. and European urban centers where different philosophical and technological approaches to managing urban waste carbon have resulted in a range of infrastructures, from highly distributed systems (Germany) to centralized mega facilities (London). Ultimately, this research will lead to a decision-making matrix model that will permit cities to customize their urban carbon waste stream facilities and transform this waste into a usable commodity.
Lean waste classification model to support the sustainable operational practice
NASA Astrophysics Data System (ADS)
Sutrisno, A.; Vanany, I.; Gunawan, I.; Asjad, M.
2018-04-01
Driven by growing pressure for a more sustainable operational practice, improvement on the classification of non-value added (waste) is one of the prerequisites to realize sustainability of a firm. While the use of the 7 (seven) types of the Ohno model now becoming a versatile tool to reveal the lean waste occurrence. In many recent investigations, the use of the Seven Waste model of Ohno is insufficient to cope with the types of waste occurred in industrial practices at various application levels. Intended to a narrowing down this limitation, this paper presented an improved waste classification model based on survey to recent studies discussing on waste at various operational stages. Implications on the waste classification model to the body of knowledge and industrial practices are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Z.; Gu, D.; Anthony, R.G.
1995-06-01
Polzer et al.`s method combined with Bromley`s method for estimating activity coefficients and a Langmuir isotherm for cesium in a simple simulated waste solution containing 5.1 M NaNO{sub 3} and 0.6 M NaOH was used to estimate distribution coefficients for cesium in a complex simulated waste solution characteristic of the radioactive tank wastes at Hanford and other US Department of energy sites. The ion exchange material was a hydrous sodium crystalline silicotitanate, labeled TAM-5, which is being developed by Texas A and M University, Sandia National Laboratories, and UOP Associates. Cesium distribution coefficients collected by Bray et al. on amore » NCAW simulated waste solution were predicted with deviations of less than 25% for solutions containing 1 M, 3 M, and 5 M Na{sup +} and Na:Cs ratios of 10{sup 3}--10{sup 8}. The deviations were less than 5% for the solutions with 1 M Na{sup +}. Cesium distribution coefficients were also predicted and compared with values measured by Egan et al. for TAM-5 and for a storage tank supernate and a newly generated waste solution. Excellent results were obtained for the newly generated waste simulated solution, which did not contain potassium or rubidium.The predictions for the other simulated waste solution were significantly greater than the measured values, because of the presence of large concentrations of potassium or rubidium. The effect of competitive ion exchange between Cs, Rb, and K was not included in the theory. However, the effect of competitive ion exchange between Cs, Rb, and K was not included in the theory. However, the effect of competitive exchange of Cs, Rb, and K appears to be greater for the Oak Ridge simulated waste solution than for the NCAW waste.« less
Konovalenko, L; Bradshaw, C; Kumblad, L; Kautsky, U
2014-07-01
This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water uptake pathways and processes such as assimilation and excretion, (ii) the possibility to extrapolate within element groups (a common requirement in many risk assessments when initial model parameters are scarce) and (iii) predictions of radionuclide uptake in the ecosystem after changes in ecosystem structure or environmental conditions. These features are important for the longterm (>1000 year) risk assessments that need to be considered for a deep nuclear waste repository. Copyright © 2013. Published by Elsevier Ltd.
Chemical transport in a fissured rock: Verification of a numerical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end, we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions with or without decaymore » and source terms. The method is based on an integrated finite-difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10{sup -3} % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters is likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. work in this direction is in progress.« less
Evaluation of Technetium Getters to Improve the Performance of Cast Stone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey
2015-11-01
Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII)more » species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 ( 99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively short-term (63 day) leach tests conducted on both LAW and secondary waste Cast Stone monoliths indicated that 99Tc diffusivities were at or near diffusivities where the groundwater at the 100-m down-gradient well would exceed the allowable maximum permissible 99Tc concentrations. There is, therefore, a need and an opportunity to improve the retention of Tc in the Cast Stone waste form. One method to improve the performance of the Cast Stone waste form is through the addition of “getters” that selectively sequester Tc inside Cast Stone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Z.; Anthony, R.G.; Miller, J.E.
1997-06-01
An equilibrium multicomponent ion exchange model is presented for the ion exchange of group I metals by TAM-5, a hydrous crystalline silicotitanate. On the basis of the data from ion exchange and structure studies, the solid phase is represented as Na{sub 3}X instead of the usual form of NaX. By using this solid phase representation, the solid can be considered as an ideal phase. A set of model ion exchange reactions is proposed for ion exchange between H{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, and Cs{sup +}. The equilibrium constants for these reactions were estimated from experiments with simplemore » ion exchange systems. Bromley`s model for activity coefficients of electrolytic solutions was used to account for liquid phase nonideality. Bromley`s model parameters for CsOH at high ionic strength and for NO{sub 2}{sup {minus}} and Al(OH){sub 4}{sup {minus}} were estimated in order to apply the model for complex waste simulants. The equilibrium compositions and distribution coefficients of counterions were calculated for complex simulants typical of DOE wastes by solving the equilibrium equations for the model reactions and material balance equations. The predictions match the experimental results within 10% for all of these solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolsey, G.B.; Wilhite, E.L.
1980-01-01
This paper confirmed with actual nuclear waste the thermodynamic predictions of the fate of some of the semivolatiles in off-gas. Ruthenium behaves erratically and it is postulated that it migrates as a finely divided solid, rather than as a volatile oxide. Provisions for handling these waste off-gasses will be incorporated in the design of facilities for vitrifying SRP waste.
Hidden flows and waste processing--an analysis of illustrative futures.
Schiller, F; Raffield, T; Angus, A; Herben, M; Young, P J; Longhurst, P J; Pollard, S J T
2010-12-14
An existing materials flow model is adapted (using Excel and AMBER model platforms) to account for waste and hidden material flows within a domestic environment. Supported by national waste data, the implications of legislative change, domestic resource depletion and waste technology advances are explored. The revised methodology offers additional functionality for economic parameters that influence waste generation and disposal. We explore this accounting system under hypothetical future waste and resource management scenarios, illustrating the utility of the model. A sensitivity analysis confirms that imports, domestic extraction and their associated hidden flows impact mostly on waste generation. The model offers enhanced utility for policy and decision makers with regard to economic mass balance and strategic waste flows, and may promote further discussion about waste technology choice in the context of reducing carbon budgets.
NASA Astrophysics Data System (ADS)
Karyakin, Alexey; Vasenev, Ivan; Karyakina, Svetlana
2015-04-01
Regional environmental bodies' ability to understand, model and predict their soil cover environmental functions are especially important in case of landfill reclamation. The special attention has to be done to landfills with industrial wastes created earlier in frame of big city - comparatively closed to their residential areas. Dominated in Ryazan region sandy loam gray forest soils with not so high soil organic matter content and soil exchange capacity determine additional problems with landfill biological reclamation and continuous sustainable vegetation cover development. The modern environmental monitoring system has been developed in the big landfill with tanning industrial wastes from the biggest in Europe tannery to develop recommendation on the environmentally friendly reclamation technologies adapted to concrete landscape conditions and functional features of 2 m fresh soil-ground coating the landfill surface. More detailed monitoring system has to be developed to assess the regulatory environmental functions of the regenerated soil cover to minimize the reclamated landfill' negative impacts on the urban ecosystem air, surface and ground water quality. Obtained result will be useful for similar landfills with tanning industrial wastes environmental impact assessment and smart design.
Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers
Burns, Katrina N.; Sun, Kan; Fobil, Julius N.; Neitzel, Richard L.
2016-01-01
Electronic waste (e-waste) is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people’s livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA) and community (70 dBA) noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen’s Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman’s ρ 0.46, p < 0.001). A mixed effects linear regression model indicated that a 1 dB increase in noise exposure was associated with a 0.17 increase in heart rate (p-value = 0.01) even after controlling for work activities, age, smoking, perceived stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage. PMID:26797626
Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers.
Burns, Katrina N; Sun, Kan; Fobil, Julius N; Neitzel, Richard L
2016-01-19
Electronic waste (e-waste) is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people's livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA) and community (70 dBA) noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen's Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman's ρ 0.46, p < 0.001). A mixed effects linear regression model indicated that a 1 dB increase in noise exposure was associated with a 0.17 increase in heart rate (p-value = 0.01) even after controlling for work activities, age, smoking, perceived stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.
Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review andmore » assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.« less
An equivalent-time-lines model for municipal solid waste based on its compression characteristics.
Gao, Wu; Bian, Xuecheng; Xu, Wenjie; Chen, Yunmin
2017-10-01
Municipal solid waste (MSW) demonstrates a noticeable time-dependent stress-strain behavior, which contributes greatly to the settlement of landfills and therefore influences both the storage capacity of landfills and the integrity of internal structures. The long-term compression tests for MSW under different biodegradation conditions were analyzed. It showed that the primary compression can affect the secondary compression due to the biodegradation and mechanical creep. Based on the time-lines model for clays and the compression characteristics of MSW, relationships between MSW's viscous strain rate and equivalent time were established, and then the viscous strain functions of MSW under different biodegradation conditions were deduced, and an equivalent-time-lines model for MSW settlement for two biodegradation conditions was developed, including the Type I model for the enhanced biodegradation condition and the Type II model for the normal biodegradation condition. The simulated compression results of laboratory and field compression tests under different biodegradation conditions were consistent with the measured data, which showed the reliability of both types of the equivalent-time-lines model for MSW. In addition, investigations of the long-term settlement of landfills from the literature indicated that the Type I model is suitable for predicting settlement in MSW landfills with a distinct biodegradation progress of MSW, a high content of organics in MSW, a short fill age or under an enhanced biodegradation environment; while the Type II model is good at predicting settlement in MSW landfills with a distinct progress of mechanical creep compression, a low content of organics in MSW, a long fill age or under a normal biodegradation condition. Furthermore, relationships between model parameters and the fill age of landfills were summarized. Finally, the similarities and differences between the equivalent-time-lines model for MSW and the stress-biodegradation model for MSW were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blijderveen, Maarten van; University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede; Bramer, Eddy A.
Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of themore » used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, D; Tommy Edwards, T; Kevin Fox, K
The Savannah River National Laboratory (SRNL) has developed, and continues to enhance, its integrated capability to evaluate the impact of proposed sludge preparation plans on the Defense Waste Processing Facility's (DWPF's) operation. One of the components of this integrated capability focuses on frit development which identifies a viable frit or frits for each sludge option being contemplated for DWPF processing. A frit is considered viable if its composition allows for economic fabrication and if, when it is combined with the sludge option under consideration, the DWPF property/composition models (the models of DWPF's Product Composition Control System (PCCS)) indicate that themore » combination has the potential for an operating window (a waste loading (WL) interval over which the sludge/frit glass system satisfies processability and durability constraints) that would allow DWPF to meet its goals for waste loading and canister production. This report documents the results of SRNL's efforts to identify candidate frit compositions and corresponding predicted operating windows (defined in terms of WL intervals) for the February 2007 compositional projection of Sludge Batch 4 (SB4) developed by the Liquid Waste Organization (LWO). The nominal compositional projection was used to assess projected operating windows (in terms of a waste loading interval over which all predicted properties were classified as acceptable) for various frits, evaluate the applicability of the 0.6 wt% SO{sub 4}{sup =} PCCS limit to the glass systems of interest, and determine the impact (or lack thereof) to the previous SB4 variability studies. It should be mentioned that the information from this report will be coupled with assessments of melt rate to recommend a frit for SB4 processing. The results of this paper study suggest that candidate frits are available to process the nominal SB4 composition over attractive waste loadings of interest to DWPF. Specifically, two primary candidate frits for SB4 processing, Frit 510 and Frit 418, have projected operating windows that should allow for successful processing at DWPF. While Frit 418 has been utilized at DWPF, Frit 510 is a higher B{sub 2}O{sub 3} based frit which could lead to improvements in melt rate. These frits provide relatively large operating windows and demonstrate robustness to possible sludge compositional variation while avoiding potential nepheline formation issues. In addition, assessments of SO{sub 4}{sup =} solubility indicate that the 0.6 wt% SO{sub 4}{sup =} limit in PCCS is applicable for the Frit 418 and the Frit 510 based SB4 glass systems.« less
De la Rubia, M A; Villamil, J A; Rodriguez, J J; Borja, R; Mohedano, A F
2018-06-01
In the present study, the influence of substrate pre-treatment (grinding and sieving) on batch anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was first assessed, then followed by co-digestion experiments with the liquid fraction from hydrothermal carbonization (LFHTC) of dewatered sewage sludge (DSS). The methane yield of batch anaerobic digestion after grinding and sieving (20 mm diameter) the OFMSW was considerably higher (453 mL CH 4 STP g -1 VS added ) than that of untreated OFMSW (285 mL CH 4 STP g -1 VS added ). The modified Gompertz model adequately predicted process performance. The maximum methane production rate, R m , for ground and sieved OFMSW was 2.4 times higher than that of untreated OFMSW. The anaerobic co-digestion of different mixtures of OFMSW and LFHTC of DSS did not increase the methane yield above that of the anaerobic digestion of OFMSW alone, and no synergistic effects were observed. However, the co-digestion of both wastes at a ratio of 75% OFMSW-25% LFHTC provides a practical waste management option. The experimental results were adequately fitted to a first-order kinetic model showing a kinetic constant virtually independent of the percentage of LFHTC (0.52-0.56 d -1 ) and decreasing slightly for 100% LFHTC (0.44 d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.
High efficient waste-to-energy in Amsterdam: getting ready for the next steps.
Murer, Martin J; Spliethoff, Hartmut; de Waal, Chantal M W; Wilpshaar, Saskia; Berkhout, Bart; van Berlo, Marcel A J; Gohlke, Oliver; Martin, Johannes J E
2011-10-01
Waste-to-energy (WtE) plants are traditionally designed for clean and economical disposal of waste. Design for output on the other hand was the guideline when projecting the HRC (HoogRendement Centrale) block of Afval Energie Bedrijf Amsterdam. Since commissioning of the plant in 2007, operation has continuously improved. In December 2010, the block's running average subsidy efficiency for one year exceeded 30% for the first time. The plant can increase its efficiency even further by raising the steam temperature to 480°C. In addition, the plant throughput can be increased by 10% to reduce the total cost of ownership. In order to take these steps, good preparation is required in areas such as change in heat transfer in the boiler and the resulting higher temperature upstream of the super heaters. A solution was found in the form of combining measured data with a computational fluid dynamics (CFD) model. Suction and acoustic pyrometers are used to obtain a clear picture of the temperature distribution in the first boiler pass. With the help of the CFD model, the change in heat transfer and vertical temperature distribution was predicted. For the increased load, the temperature is increased by 100°C; this implies a higher heat transfer in the first and second boiler passes. Even though the new block was designed beyond state-of-the art in waste-to-energy technology, margins remain for pushing energy efficiency and economy even further.
Assessment of occupational safety risks in Floridian solid waste systems using Bayesian analysis.
Bastani, Mehrad; Celik, Nurcin
2015-10-01
Safety risks embedded within solid waste management systems continue to be a significant issue and are prevalent at every step in the solid waste management process. To recognise and address these occupational hazards, it is necessary to discover the potential safety concerns that cause them, as well as their direct and/or indirect impacts on the different types of solid waste workers. In this research, our goal is to statistically assess occupational safety risks to solid waste workers in the state of Florida. Here, we first review the related standard industrial codes to major solid waste management methods including recycling, incineration, landfilling, and composting. Then, a quantitative assessment of major risks is conducted based on the data collected using a Bayesian data analysis and predictive methods. The risks estimated in this study for the period of 2005-2012 are then compared with historical statistics (1993-1997) from previous assessment studies. The results have shown that the injury rates among refuse collectors in both musculoskeletal and dermal injuries have decreased from 88 and 15 to 16 and three injuries per 1000 workers, respectively. However, a contrasting trend is observed for the injury rates among recycling workers, for whom musculoskeletal and dermal injuries have increased from 13 and four injuries to 14 and six injuries per 1000 workers, respectively. Lastly, a linear regression model has been proposed to identify major elements of the high number of musculoskeletal and dermal injuries. © The Author(s) 2015.
Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F
2017-01-01
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H2, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H2 consumption and retardation of radionuclide migration. PMID:28350393
Weitz, Melissa; Coburn, Jeffrey B; Salinas, Edgar
2008-05-01
This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura
Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less
Soltani, Maryam; Kerachian, Reza
2018-04-15
In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)
NASA Astrophysics Data System (ADS)
Murphy, W. M.
2009-12-01
For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository at Yucca Mountain, Nevada, USA. These results generally bracket repository conditions between natural and experimental systems providing confidence in the understanding of expected processes. Also, the conceptual bases and numerical techniques for modeling unsaturated zone contaminant transport over periods of thousands of years at Yucca Mountain were tested by modeling the observable record of metal transport from archaeological artifacts buried in Holocene tuff at Akrotiri, Greece. Geologically episodic mineral alteration and contaminant transport have been documented using radioisotope data in numerous analog systems providing insights for the interpretation and validity of predictive models for long term repository performance. The applicability and value of natural analog studies to understanding geologic disposal systems is a persistent question. As proposed disposal sites become increasingly well defined by site characterization and engineering design, the strengths and weaknesses of analogies can be assessed. Confidence in predictive models for complex geologic and engineered phenomena can be enhanced through multiple lines of investigation including studies of natural analog systems.
A novel stochastic modeling method to simulate cooling loads in residential districts
An, Jingjing; Yan, Da; Hong, Tianzhen; ...
2017-09-04
District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less
A novel stochastic modeling method to simulate cooling loads in residential districts
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Jingjing; Yan, Da; Hong, Tianzhen
District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less
A finite element simulation of biological conversion processes in landfills.
Robeck, M; Ricken, T; Widmann, R
2011-04-01
Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.
Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.
Bujak, J
2015-08-01
The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.
2015-01-01
Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: an analysis of produced fluids from the Marcellus Shale. Environ Health Perspect 123:689–696; http://dx.doi.org/10.1289/ehp.1408855 PMID:25831257
Chen, Huan-Sheng; Cheng, Chun-Ting; Hou, Chun-Cheng; Liou, Hung-Hsiang; Chang, Cheng-Tsung; Lin, Chun-Ju; Wu, Tsai-Kun; Chen, Chang-Hsu; Lim, Paik-Seong
2017-07-01
Rapid screening and monitoring of nutritional status is mandatory in hemodialysis population because of the increasingly encountered nutritional problems. Considering the limitations of previous composite nutrition scores applied in this population, we tried to develop a standardized composite nutrition score (SCNS) using low lean tissue index as a marker of protein wasting to facilitate clinical screening and monitoring and to predict outcome. This retrospective cohort used 2 databases of dialysis populations from Taiwan between 2011 and 2014. First database consisting of data from 629 maintenance hemodialysis patients was used to develop the SCNS and the second database containing data from 297 maintenance hemodialysis patients was used to validate this developed score. SCNS containing albumin, creatinine, potassium, and body mass index was developed from the first database using low lean tissue index as a marker of protein wasting. When applying this score in the original database, significantly higher risk of developing protein wasting was found for patients with lower SCNS (odds ratio 1.38 [middle tertile vs highest tertile, P < .0001] and 2.40 [lowest tertile vs middle tertile, P < .0001]). The risk of death was also shown to be higher for patients with lower SCNS (hazard ratio 4.45 [below median level vs above median level, P < .0001]). These results were validated in the second database. We developed an SCNS consisting of 4 easily available biochemical parameters. This kind of scoring system can be easily applied in different dialysis facilities for screening and monitoring of protein wasting. The wide application of body composition monitor in dialysis population will also facilitate the development of specific nutrition scoring model for individual facility. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Preliminary ECLSS waste water model
NASA Technical Reports Server (NTRS)
Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.
1991-01-01
A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.
Brown, Andrew D; Marotta, Thomas R
2017-02-01
Incorrect imaging protocol selection can contribute to increased healthcare cost and waste. To help healthcare providers improve the quality and safety of medical imaging services, we developed and evaluated three natural language processing (NLP) models to determine whether NLP techniques could be employed to aid in clinical decision support for protocoling and prioritization of magnetic resonance imaging (MRI) brain examinations. To test the feasibility of using an NLP model to support clinical decision making for MRI brain examinations, we designed three different medical imaging prediction tasks, each with a unique outcome: selecting an examination protocol, evaluating the need for contrast administration, and determining priority. We created three models for each prediction task, each using a different classification algorithm-random forest, support vector machine, or k-nearest neighbor-to predict outcomes based on the narrative clinical indications and demographic data associated with 13,982 MRI brain examinations performed from January 1, 2013 to June 30, 2015. Test datasets were used to calculate the accuracy, sensitivity and specificity, predictive values, and the area under the curve. Our optimal results show an accuracy of 82.9%, 83.0%, and 88.2% for the protocol selection, contrast administration, and prioritization tasks, respectively, demonstrating that predictive algorithms can be used to aid in clinical decision support for examination protocoling. NLP models developed from the narrative clinical information provided by referring clinicians and demographic data are feasible methods to predict the protocol and priority of MRI brain examinations. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Genome-scale reconstruction of the metabolic network in Yersinia pestis CO92
NASA Astrophysics Data System (ADS)
Navid, Ali; Almaas, Eivind
2007-03-01
The gram-negative bacterium Yersinia pestis is the causative agent of bubonic plague. Using publicly available genomic, biochemical and physiological data, we have developed a constraint-based flux balance model of metabolism in the CO92 strain (biovar Orientalis) of this organism. The metabolic reactions were appropriately compartmentalized, and the model accounts for the exchange of metabolites, as well as the import of nutrients and export of waste products. We have characterized the metabolic capabilities and phenotypes of this organism, after comparing the model predictions with available experimental observations to evaluate accuracy and completeness. We have also begun preliminary studies into how cellular metabolism affects virulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.; Meeussen, J.; Sloot, H.
2010-03-31
The objective of the work described in this report is to demonstrate the capabilities of the current version of LeachXS{trademark}/ORCHESTRA for simulating chemical behavior and constituent release processes in a range of applications that are relevant to the CBP. This report illustrates the use of LeachXS{trademark}/ORCHESTRA for the following applications: (1) Comparing model and experimental results for leaching tests for a range of cementitious materials including cement mortars, grout, stabilized waste, and concrete. The leaching test data includes liquid-solid partitioning as a function of pH and release rates based on laboratory column, monolith, and field testing. (2) Modeling chemical speciationmore » of constituents in cementitious materials, including liquid-solid partitioning and release rates. (3) Evaluating uncertainty in model predictions based on uncertainty in underlying composition, thermodynamic, and transport characteristics. (4) Generating predominance diagrams to evaluate predicted chemical changes as a result of material aging using the example of exposure to atmospheric conditions. (5) Modeling coupled geochemical speciation and diffusion in a three layer system consisting of a layer of Saltstone, a concrete barrier, and a layer of soil in contact with air. The simulations show developing concentration fronts over a time period of 1000 years. (6) Modeling sulfate attack and cracking due to ettringite formation. A detailed example for this case is provided in a separate article by the authors (Sarkar et al. 2010). Finally, based on the computed results, the sensitive input parameters for this type of modeling are identified and discussed. The chemical speciation behavior of substances is calculated for a batch system and also in combination with transport and within a three layer system. This includes release from a barrier to the surrounding soil as a function of time. As input for the simulations, the physical and chemical properties of the materials are used. The test cases used in this demonstration are taken from Reference Cases for Use in the Cementitious Barriers Partnership (Langton et al. 2009). Before it is possible to model the release of substances from stabilized waste or radioactive grout through a cement barrier into the engineered soil barrier or natural soil, the relevant characteristics of such materials must be known. Additional chemical characteristics are needed for mechanistic modeling to be undertaken, not just the physical properties relevant for modeling of transport. The minimum required properties for modeling are given in Section 5.0, 'Modeling the chemical speciation of a material'.« less
Analysis of a novel class of predictive microbial growth models and application to coculture growth.
Poschet, F; Vereecken, K M; Geeraerd, A H; Nicolaï, B M; Van Impe, J F
2005-04-15
In this paper, a novel class of microbial growth models is analysed. In contrast with the currently used logistic type models (e.g., the model of Baranyi and Roberts [Baranyi, J., Roberts, T.A., 1994. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23, 277-294]), the novel model class, presented in Van Impe et al. (Van Impe, J.F., Poschet, F., Geeraerd, A.H., Vereecken, K.M., 2004. Towards a novel class of predictive microbial growth models. International Journal of Food Microbiology, this issue), explicitly incorporates nutrient exhaustion and/or metabolic waste product effects inducing stationary phase behaviour. As such, these novel model types can be extended in a natural way towards microbial interactions in cocultures and microbial growth in structured foods. Two illustrative case studies of the novel model types are thoroughly analysed and compared to the widely used model of Baranyi and Roberts. In a first case study, the stationary phase is assumed to be solely resulting from toxic product inhibition and is described as a function of the pH-evolution. In the second case study, substrate exhaustion is the sole cause of the stationary phase. Finally, a more complex case study of a so-called P-model is presented, dealing with a coculture inhibition of Listeria innocua mediated by lactic acid production of Lactococcus lactis.
Karri, Rama Rao; Sahu, J N
2018-01-15
Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R 2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Models, validation, and applied geochemistry: Issues in science, communication, and philosophy
Nordstrom, D. Kirk
2012-01-01
Models have become so fashionable that many scientists and engineers cannot imagine working without them. The predominant use of computer codes to execute model calculations has blurred the distinction between code and model. The recent controversy regarding model validation has brought into question what we mean by a ‘model’ and by ‘validation.’ It has become apparent that the usual meaning of validation may be common in engineering practice and seems useful in legal practice but it is contrary to scientific practice and brings into question our understanding of science and how it can best be applied to such problems as hazardous waste characterization, remediation, and aqueous geochemistry in general. This review summarizes arguments against using the phrase model validation and examines efforts to validate models for high-level radioactive waste management and for permitting and monitoring open-pit mines. Part of the controversy comes from a misunderstanding of ‘prediction’ and the need to distinguish logical from temporal prediction. Another problem stems from the difference in the engineering approach contrasted with the scientific approach. The reductionist influence on the way we approach environmental investigations also limits our ability to model the interconnected nature of reality. Guidelines are proposed to improve our perceptions and proper utilization of models. Use of the word ‘validation’ is strongly discouraged when discussing model reliability.
Gioannis, G De; Muntoni, A; Cappai, G; Milia, S
2009-03-01
Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy.
Sorption Modeling and Verification for Off-Gas Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavlarides, Lawrence; Yiacoumi, Sotira; Tsouris, Costas
2016-12-20
This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on themore » active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection processes. These models were built on a numerical framework for solving conservation law problems in one-dimensional geometries such as spheres, cylinders, and lines. Coupled with the framework are specific models for adsorption in commercial adsorbents, such as zeolites and mordenites. Utilizing this modeling approach, the authors were able to accurately describe and predict adsorption kinetic data obtained from experiments at a variety of different temperatures and gas phase concentrations. A demonstration of how these models, and framework, can be used to simulate adsorption in fixed- bed columns is provided. The CO 2 absorption work involved modeling with supportive experimental information. A dynamic model was developed to simulate CO 2 absorption using high alkaline content water solutions. The model is based upon transient mass and energy balances for chemical species commonly present in CO 2 absorption. A computer code was developed to implement CO 2 absorption with a chemical reaction model. Experiments were conducted in a laboratory scale column to determine the model parameters. The influence of geometric parameters and operating variables on CO 2 absorption was studied over a wide range of conditions. Continuing work could employ the model to control column operation and predict the absorption behavior under various input conditions and other prescribed experimental perturbations. The value of the validated models and numerical frameworks developed in this project is that they can be used to predict the sorption behavior of off-gas evolved during the reprocessing of nuclear waste and thus reduce the cost of the experiments. They can also be used to design sorption processes based on concentration limits and flow-rates determined at the plant level.« less
Modeling and risk assessment of a 30-Year-old subsurface radioactive-liquid drain field
NASA Astrophysics Data System (ADS)
Dawson, Lon A.; Pohl, Phillip I.
1997-11-01
The contamination from a 30-year-old radioactive liquid drain field was assessed for movement in the subsurface and potential risks to humans. This assessment included determining field concentrations of cesium 137 (137Cs) and other inorganic contaminants and modeling of the flow and transport of the liquid waste that was sent to the drain field. The field investigation detected no contamination deeper than 15 feet (4.6 m) from the bottom of the drain field. Prediction of the water content of the vadose zone showed no saturated conditions for times greater than 10 years after the known infiltration. Sensitivity analysis of the modeling parameters showed the equilibrium sorption coefficient to be the most important factor in predicting the contaminant plumes. Calibration of modeling results with field data gave a 137Cs sorption coefficient that is within the range of values found in the literature. The risk assessment for the site showed that the contamination poses no significant risk to human health.
Fu, Li; Merabia, Samy; Joly, Laurent
2018-04-19
Following our recent theoretical prediction of the giant thermo-osmotic response of the water-graphene interface, we explore the practical implementation of waste heat harvesting with carbon-based membranes, focusing on model membranes of carbon nanotubes (CNT). To that aim, we combine molecular dynamics simulations and an analytical model considering the details of hydrodynamics in the membrane and at the tube entrances. The analytical model and the simulation results match quantitatively, highlighting the need to take into account both thermodynamics and hydrodynamics to predict thermo-osmotic flows through membranes. We show that, despite viscous entrance effects and a thermal short-circuit mechanism, CNT membranes can generate very fast thermo-osmotic flows, which can overcome the osmotic pressure of seawater. We then show that in small tubes confinement has a complex effect on the flow and can even reverse the flow direction. Beyond CNT membranes, our analytical model can guide the search for other membranes to generate fast and robust thermo-osmotic flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Sang
2015-03-02
The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less
Hansen, Trine Lund; Christensen, Thomas Højlund; Schmidt, Sonia
2006-04-01
Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact assessment of environmental effects from land application of treated organic MSW: DST (Decision Support Tool, USA), IWM (Integrated Waste Management, U.K.), THE IFEU PROJECT (Germany), ORWARE (ORganic WAste REsearch, Sweden) and EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers. THE IFEU PROJECT, ORWARE and EASEWASTE are life cycle assessment (LCA) models containing more detailed land application modules. A case study estimating the environmental impacts from land application of 1 ton of composted source sorted organic household waste was performed to compare the results from the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts of the system. However, due to slightly different assumptions, quantification methods and environmental impact assessment, the obtained results varied clearly between the models. Furthermore, local conditions (e.g. soil type, farm type, climate and legal regulation) and waste composition strongly influenced the results of the environmental assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moak, Don J.; Grondin, Richard L.; Triner, Glen C.
CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site andmore » off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance with the facility's radioactive materials license(s) (RML). While both CHPRC and PFNW maintain waste databases to track all waste movements, it became evident early in the process that a tool was needed that married the two systems to better track SNM inventories and sequence waste from the point of generation, through the PFNW facility, and back to the Hanford site for final disposition. This tool, known as the Treatment Integration and Planning Tool (TIPT), has become a robust planning tool that provides real-time data to support compliant and efficient waste generation, transportation, treatment, and disposition. TIPT is developing into the next generation tool that will change the way in which legacy wastes, retrieval wastes and decontamination and decommissioning operations are conducted on the Plateau Remediation Contract (PRC). The real value of the TIPT is its predictive capability. It allows the W and FMP to map out optimal windows for processing waste through the PFNW facility, or through any process that is in some way resource limited. It allows project managers to identify and focus on problem areas before shipments are affected. It has been modified for use in broader applications to predict turnaround times and identify windows of opportunity for processing higher gram wastes through PFNW and to allow waste generators, site-wide, to accurately predict scope, cost, and schedule for waste generation to optimize processing and eliminate storage, double handling, and related costs and unnecessary safety risks. The TIPT addresses the years old problem of how to effectively predict not only what needs to be done, but when. 'When' is the key planning parameter that has been ignored by the generator and processor for many years, but has proven to be the most important parameter for both parties. While further refinement is a natural part of any development process, the current improvements on the TIPT have shown that prediction is a powerful consideration. Even in lean times expected for the foreseeable future, the improved TIPT continues to play a central role in managing our way through those times to assure facilities remain viable and available. It is recommended that other major remediation projects and waste processing facilities incorporate a tool such as TIPT to improve customer-commercial supplier communications and better optimization of resources. (authors)« less
A dynamic spatio-temporal model for spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.
2017-01-01
Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.
Cho, Han Sang; Moon, Hee Sun; Kim, Jae Young
2012-04-01
A study was conducted to investigate the effect of waste composition change on the methane production in landfills. An empirical equation for the methane potential of the mixed waste is derived based on the methane potential values of individual waste components and the compositional ratio of waste components. A correction factor was introduced in the equation and was determined from the BMP and lysimeter tests. The equation and LandGEM were applied for a full size landfill and the annual methane potential was estimated. Results showed that the changes in quantity of waste affected the annual methane potential from the landfill more than the changes of waste composition. Copyright © 2012 Elsevier Ltd. All rights reserved.
Energy Economics of Farm Biogas in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillay, Pragasen; Grimberg, Stefan; Powers, Susan E
Anaerobic digestion of farm and dairy waste has been shown to be capital intensive. One way to improve digester economics is to co-digest high-energy substrates together with the dairy manure. Cheese whey for example represents a high-energy substrate that is generated during cheese manufacture. There are currently no quantitative tools available that predict performance of co-digestion farm systems. The goal of this project was to develop a mathematical tool that would (1) predict the impact of co-digestion and (2) determine the best use of the generated biogas for a cheese manufacturing plant. Two models were developed that separately could bemore » used to meet both goals of the project. Given current pricing structures of the most economical use of the generated biogas at the cheese manufacturing plant was as a replacement of fuel oil to generate heat. The developed digester model accurately predicted the performance of 26 farm digesters operating in the North Eastern U.S.« less
A mass transfer model of ammonia volatilization from anaerobic digestate.
Whelan, M J; Everitt, T; Villa, R
2010-10-01
Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilization from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilization was approximately 5.2 g Nm(-2)week(-1). The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high. (c) 2009 Elsevier Ltd. All rights reserved.
Grainger, Matthew James; Aramyan, Lusine; Piras, Simone; Quested, Thomas Edward; Righi, Simone; Setti, Marco; Vittuari, Matteo; Stewart, Gavin Bruce
2018-01-01
Food waste from households contributes the greatest proportion to total food waste in developed countries. Therefore, food waste reduction requires an understanding of the socio-economic (contextual and behavioural) factors that lead to its generation within the household. Addressing such a complex subject calls for sound methodological approaches that until now have been conditioned by the large number of factors involved in waste generation, by the lack of a recognised definition, and by limited available data. This work contributes to food waste generation literature by using one of the largest available datasets that includes data on the objective amount of avoidable household food waste, along with information on a series of socio-economic factors. In order to address one aspect of the complexity of the problem, machine learning algorithms (random forests and boruta) for variable selection integrated with linear modelling, model selection and averaging are implemented. Model selection addresses model structural uncertainty, which is not routinely considered in assessments of food waste in literature. The main drivers of food waste in the home selected in the most parsimonious models include household size, the presence of fussy eaters, employment status, home ownership status, and the local authority. Results, regardless of which variable set the models are run on, point toward large households as being a key target element for food waste reduction interventions.
Aramyan, Lusine; Piras, Simone; Quested, Thomas Edward; Righi, Simone; Setti, Marco; Vittuari, Matteo; Stewart, Gavin Bruce
2018-01-01
Food waste from households contributes the greatest proportion to total food waste in developed countries. Therefore, food waste reduction requires an understanding of the socio-economic (contextual and behavioural) factors that lead to its generation within the household. Addressing such a complex subject calls for sound methodological approaches that until now have been conditioned by the large number of factors involved in waste generation, by the lack of a recognised definition, and by limited available data. This work contributes to food waste generation literature by using one of the largest available datasets that includes data on the objective amount of avoidable household food waste, along with information on a series of socio-economic factors. In order to address one aspect of the complexity of the problem, machine learning algorithms (random forests and boruta) for variable selection integrated with linear modelling, model selection and averaging are implemented. Model selection addresses model structural uncertainty, which is not routinely considered in assessments of food waste in literature. The main drivers of food waste in the home selected in the most parsimonious models include household size, the presence of fussy eaters, employment status, home ownership status, and the local authority. Results, regardless of which variable set the models are run on, point toward large households as being a key target element for food waste reduction interventions. PMID:29389949
Modeling pitting corrosion of iron exposed to alkaline solutions containing nitrate and nitrite
NASA Astrophysics Data System (ADS)
Chen, Lifeng
2001-07-01
Pitting corrosion could be extremely serious for dilute high-level radioactive waste stored or processed in carbon steel tanks at the Savannah River Site. In these solutions, nitrate is an aggressive ion with respect to pitting of carbon steel while nitrite can be used as an inhibitor. Excessive additions of nitrite increase the risk of generating unstable nitrogen compounds during waste processing, and insufficient additions of nitrite could increase the risk of corrosion-induced failure. Thus there are strong incentives to obtain a fundamental understanding of the role of nitrite in pitting corrosion prevention with these solution chemistries. In this dissertation, both a 1-D and a 2-D model are used to study the pitting mechanism as a function of nitrite/nitrate ratios. The 1-D model used BAND(J) to test a reaction mechanism for the passivation behavior by comparing the predicted Open Circuit Potential (OCP) with OCP data from experiments at different NO2-/NO3- ratio. The model predictions are compared with Cyclic Potentiodynamic Polarization (CPP) experiments. A 2-D model was developed for the propagation of a pit in iron by writing subroutines for finite element software of GAMBIT and FIDAP. Geometrically distributed anodic and cathodic reactions are assumed. The results show three partial explanations describing the inhibition influence of nitrite to iron corrosion: the competing reduction reaction of nitrate to nitrite, the formation of Fe(OH)+, and the function of the porous film. The current distributions and the effect of porosity of the film on pH are also explained. The calculation results also show that rate of pit growth decreases as the pit diameter increases until it reaches a constant value. The profile of the local current density on the pit wall is parabolic for small pits and it changes to a linear distribution for large pits. The model predicts that addition of nitrite will decrease the production of ferrous ions and those can prevent iron from dissolving. Also nitrate ion will accumulate in the pit if not enough inhibitor is added to the solution, and this will accelerate pit growth.
Toward a community coastal sediment transport modeling system: the second workshop
Sherwood, Christopher R.; Harris, Courtney K.; Geyer, W. Rockwell; Butman, Bradford
2002-01-01
Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.
Toward a community coastal sediment transport modeling system: The second workshop
NASA Astrophysics Data System (ADS)
Sherwood, Christopher R.; Harris, Courtney K.; Rockwell Geyer, W.; Butman, Bradford
Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.
Bekiaris, Georgios; Bruun, Sander; Peltre, Clément; Houot, Sabine; Jensen, Lars S
2015-05-01
Fourier transform infrared (FT-IR) spectroscopy has been used for several years as a fast, low-cost, reliable technique for characterising a large variety of materials. However, the strong influence of sample particle size and the inability to measure the absorption of very dark and opaque samples have made FTIR unsuitable for many waste materials. FTIR-photoacoustic spectroscopy (FTIR-PAS) can eliminate some of the shortcomings of traditional FTIR caused by scattering effects and reflection issues, and recent advances in PAS technology have made commercial instruments available. In this study, FTIR-PAS was used to characterise a wide range of organic waste products and predict their labile carbon fraction, which is normally determined from time-consuming assays. FTIR-PAS was found to be capable of predicting the labile fraction of carbon as efficiently as near infrared spectroscopy (NIR) and furthermore of identifying the compounds that are correlated with the predicted parameter, thus facilitating a more mechanistic interpretation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Application of receptor models on water quality data in source apportionment in Kuantan River Basin
2012-01-01
Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management. PMID:23369363
Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar
2018-01-01
Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reddy, Krishna R; Kumar, Girish; Giri, Rajiv K
2017-05-01
A two-dimensional (2-D) mathematical model is presented to predict the response of municipal solid waste (MSW) of conventional as well as bioreactor landfills undergoing coupled hydro-bio-mechanical processes. The newly developed and validated 2-D coupled mathematical modeling framework combines and simultaneously solves a two-phase flow model based on the unsaturated Richard's equation, a plain-strain formulation of Mohr-Coulomb mechanical model and first-order decay kinetics biodegradation model. The performance of both conventional and bioreactor landfill was investigated holistically, by evaluating the mechanical settlement, extent of waste degradation with subsequent changes in geotechnical properties, landfill slope stability, and in-plane shear behavior (shear stress-displacement) of composite liner system and final cover system. It is concluded that for the given specific conditions considered, bioreactor landfill attained an overall stabilization after a continuous leachate injection of 16years, whereas the stabilization was observed after around 50years of post-closure in conventional landfills, with a total vertical strain of 36% and 37% for bioreactor and conventional landfills, respectively. The significant changes in landfill settlement, the extent of MSW degradation, MSW geotechnical properties, along with their influence on the in-plane shear response of composite liner and final cover system, between the conventional and bioreactor landfills, observed using the mathematical model proposed in this study, corroborates the importance of considering coupled hydro-bio-mechanical processes while designing and predicting the performance of engineered bioreactor landfills. The study underscores the importance of considering the effect of coupled processes while examining the stability and integrity of the liner and cover systems, which form the integral components of a landfill. Moreover, the spatial and temporal variations in the landfill settlement, the stability of landfill slope under pressurized leachate injection conditions and the rapid changes in the MSW properties with degradation emphasizes the complexity of the bioreactor landfill system and the need for understanding the interrelated processes to design and operate stable and effective bioreactor landfills. A detailed discussion on the results obtained from the numerical simulations along with limitations and key challenges in this study are also presented. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Woodland, Brandon Jay
An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high performance to cost ratio of this machine lends significant credence to the economic viability of small-scale, low-temperature ORCs. The experimental campaign covered two heat source temperatures, the full range of pump and expander speeds, a full range of heat source and heat sink fluid flow rates, and various charge levels for the three working fluids. This resulted in 366 steady-state measurements. The steady state measurements are used to develop a detailed ORC model. The model is based on multi-fluid performance maps for the pump and expander and a robust moving-boundary heat exchanger model. It is validated against the measured data and predicts the net power output of the tested ORC with a mean absolute percent error of 7.16%. Comparisons made with the detailed model confirm the predictions of the design-stage model. Using a conservative estimate of the condenser fan power, 19.1% improvement of the ZRC over the baseline ORC is indicated for a source temperature of 80 °C. For a 100 °C source temperature, 13.8% improvement is indicated. A key feature of the detailed ORC model is that it calculates the charge inventory of the working fluid in each heat exchanger and line set. Total system charge can also be specified as a model input. The model can represent the total charge well for R134a at low measured charge levels. As the measured charge level increases, the model becomes less accurate. Reasons for the deviation of the model at higher charge are investigated. It is expected that a charge tuning scheme could be employed to improve the accuracy of model-predicted charge.
A new technology for determining transport parameters in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conca, J.L.; Wright, J.
The UFA Method can directly and rapidly measure transport parameters for any porous medium over a wide range of water contents and conditions. UFA results for subsurface sediments at a mixed-waste disposal site at the Hanford Site in Washington State provided the data necessary for detailed hydrostratigraphic mapping, subsurface flux and recharge distributions, and subsurface chemical mapping. Seven hundred unsaturated conductivity measurements along with pristine pore water extractions were obtained in only six months using the UFA. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies.
SINGLE HEATER TEST FINAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.B. Cho
The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Planmore » by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between multiple organizations performing their part in the test.« less
Performance Assessments of Generic Nuclear Waste Repositories in Shale
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.
2017-12-01
Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017- 8305 A
Composition, production rate and characterization of Greek dental solid waste.
Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos
2018-05-01
The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018 Elsevier Ltd. All rights reserved.
International Arctic Seas Assessment Project.
Sjöblom, K L; Salo, A; Bewers, J M; Cooper, J; Dyer, R S; Lynn, N M; Mount, M E; Povinec, P P; Sazykina, T G; Schwarz, J; Scott, E M; Sivintsev, Y V; Tanner, J E; Warden, J M; Woodhead, D
1999-09-30
The International Atomic Energy Agency responded to the news that the former Soviet Union had dumped radioactive wastes in the shallow waters of the Arctic Seas, by launching the International Arctic Seas Assessment Project in 1993. The project had two objectives: to assess the risks to human health and to the environment associated with the radioactive wastes dumped in the Kara and Barents Seas; and to examine possible remedial actions related to the dumped wastes and to advise on whether they are necessary and justified. The current radiological situation in the Arctic waters was examined to assess whether there is any evidence for releases from the dumped waste. Potential future releases from the dumped wastes were predicted, concentrating on the high-level waste objects containing the major part of the radionuclide inventory of the wastes. Environmental transport of released radionuclides was modelled and the associated radiological impact on humans and the biota was assessed. The feasibility, costs and benefits of possible remedial measures applied to a selected high-level waste object were examined. Releases from identified dumped objects were found to be small and localised to the immediate vicinity of the dumping sites. Projected future annual doses to members of the public in typical local population groups were very small, less than 1 microSv--corresponding to a trivial risk. Projected future doses to a hypothetical group of military personnel patrolling the foreshore of the fjords in which wastes have been dumped were higher, up to 4 mSv/year, which still is of the same order as the average annual natural background dose. Moreover, since any of the proposed remedial actions were estimated to cost several million US$ to implement, remediation was not considered justified on the basis of potentially removing a collective dose of 10 man Sv. Doses calculated to marine fauna were insignificant, orders of magnitude below those at which detrimental effects on fauna populations might be expected to occur. Remediation was thus concluded not to be warranted on radiological grounds.
A Spanish model for quantification and management of construction waste.
Solís-Guzmán, Jaime; Marrero, Madelyn; Montes-Delgado, Maria Victoria; Ramírez-de-Arellano, Antonio
2009-09-01
Currently, construction and demolition waste (C&D waste) is a worldwide issue that concerns not only governments but also the building actors involved in construction activity. In Spain, a new national decree has been regulating the production and management of C&D waste since February 2008. The present work describes the waste management model that has inspired this decree: the Alcores model implemented with good results in Los Alcores Community (Seville, Spain). A detailed model is also provided to estimate the volume of waste that is expected to be generated on the building site. The quantification of C&D waste volume, from the project stage, is essential for the building actors to properly plan and control its disposal. This quantification model has been developed by studying 100 dwelling projects, especially their bill of quantities, and defining three coefficients to estimate the demolished volume (CT), the wreckage volume (CR) and the packaging volume (CE). Finally, two case studies are included to illustrate the usefulness of the model to estimate C&D waste volume in both new construction and demolition projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Harrington
2004-10-25
The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through themore » Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.« less
Status report on the disposal of radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culler, F.L. Jr.; McLain, S.
1957-06-25
A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less
Marine pollution. Plastic waste inputs from land into the ocean.
Jambeck, Jenna R; Geyer, Roland; Wilcox, Chris; Siegler, Theodore R; Perryman, Miriam; Andrady, Anthony; Narayan, Ramani; Law, Kara Lavender
2015-02-13
Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025. Copyright © 2015, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslam, J J; Farmer, J C
2004-03-31
Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plainmore » carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.« less
Pakpour, Amir H; Zeidi, Isa Mohammadi; Emamjomeh, Mohammad Mahdi; Asefzadeh, Saeed; Pearson, Heidi
2014-06-01
Understanding the factors influencing recycling behaviour can lead to better and more effective recycling programs in a community. The goal of this study was to examine factors associated with household waste behaviours in the context of the theory of planned behaviour (TPB) among a community sample of Iranians that included data collection at time 1 and at follow-up one year later at time 2. Study participants were sampled from households under the coverage of eight urban health centers in the city of Qazvin. Of 2000 invited households, 1782 agreed to participate in the study. A self-reported questionnaire was used for assessing socio-demographic factors and the TPB constructs (i.e. attitude, subjective norms, perceived behavioural control, and intention). Furthermore, questions regarding moral obligation, self-identity, action planning, and past recycling behaviour were asked, creating an extended TPB. At time 2, participants were asked to complete a follow-up questionnaire on self-reported recycling behaviours. All TPB constructs had positive and significant correlations with each other. Recycling behaviour at time 1 (past behaviour) significantly related to household waste behaviour at time 2. The extended TPB explained 47% of the variance in household waste behaviour at time 2. Attitude, perceived behavioural control, intention, moral obligation, self-identity, action planning, and past recycling behaviour were significant predictors of household waste behaviour at time 2 in all models. The fact that the expanded TPB constructs significantly predicted household waste behaviours holds great promise for developing effective public campaigns and behaviour-changing interventions in a region where overall rates of household waste reduction behaviours are low. Our results indicate that educational materials which target moral obligation and action planning may be particularly effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
Glass Property Data and Models for Estimating High-Level Waste Glass Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang
2009-10-05
This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition modelsmore » were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.« less
Engineered Barrier System: Physical and Chemical Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
2004-04-26
The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less
A mathematical model for municipal solid waste management - A case study in Hong Kong.
Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H
2016-12-01
With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar
2017-03-01
Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiong, Yongliang
2016-09-17
In this study, solubility constants of hydroxyl sodalite (ideal formula, Na 8[Al 6Si 6O 24][OH] 2·3H 2O) from 25°C to 100°C are obtained by applying a high temperature Al—Si Pitzer model to evaluate solubility data on hydroxyl sodalite in high ionic strength solutions at elevated temperatures. A validation test comparing model-independent experimental data to model predictions demonstrates that the solubility values produced by the model are in excellent agreement with the experimental data. In addition, the equilibrium constants obtained in this study have a wide range of applications, including synthesis of hydroxyl sodalite, de-silication in the Bayer process for extractionmore » of alumina, and the performance of proposed sodalite waste forms in geological repositories in various lithologies including salt formations. The thermodynamic calculations based on the equilibrium constants obtained in this work indicate that the solubility products in terms of m ΣAl×m ΣSi for hydroxyl sodalite are very low (e.g., ~10 -13 [mol·kg -1] 2 at 100°C) in brines characteristic of salt formations, implying that sodalite waste forms would perform very well in repositories located in salt formations. Finally, the information regarding the solubility behavior of hydroxyl sodalite obtained in this study provides guidance to investigate the performance of other pure end-members of sodalite such as chloride- and iodide-sodalite, which may be of interest for geological repositories in various media.« less
Ransom, Katherine M; Grote, Mark N.; Deinhart, Amanda; Eppich, Gary; Kendall, Carol; Sanborn, Matthew E.; Sounders, A. Kate; Wimpenny, Joshua; Yin, Qing-zhu; Young, Megan B.; Harter, Thomas
2016-01-01
Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Shallow domestic wells (less than 150 m deep) in agricultural areas are often contaminated by nitrate. Agricultural and rural nitrate sources include dairy manure, synthetic fertilizers, and septic waste. Knowledge of the relative proportion that each of these sources contributes to nitrate concentration in individual wells can aid future regulatory and land management decisions. We show that nitrogen and oxygen isotopes of nitrate, boron isotopes, and iodine concentrations are a useful, novel combination of groundwater tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate. Furthermore, in this work, we develop a new Bayesian mixing model in which these isotopic and elemental tracers were used to estimate the probability distribution of the fractional contributions of manure, fertilizers, septic waste, and natural sources to the nitrate concentration found in an individual well. The approach was applied to 56 nitrate-impacted private domestic wells located in the San Joaquin Valley. Model analysis found that some domestic wells were clearly dominated by the manure source and suggests evidence for majority contributions from either the septic or fertilizer source for other wells. But, predictions of fractional contributions for septic and fertilizer sources were often of similar magnitude, perhaps because modeled uncertainty about the fraction of each was large. For validation of the Bayesian model, fractional estimates were compared to surrounding land use and estimated source contributions were broadly consistent with nearby land use types.
Model development for household waste prevention behaviour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortoleto, Ana Paula, E-mail: a.bortoleto@sheffield.ac.uk; Kurisu, Kiyo H.; Hanaki, Keisuke
Highlights: Black-Right-Pointing-Pointer We model waste prevention behaviour using structure equation modelling. Black-Right-Pointing-Pointer We merge attitude-behaviour theories with wider models from environmental psychology. Black-Right-Pointing-Pointer Personal norms and perceived behaviour control are the main behaviour predictors. Black-Right-Pointing-Pointer Environmental concern, moral obligation and inconvenience are the main influence on the behaviour. Black-Right-Pointing-Pointer Waste prevention and recycling are different dimensions of waste management behaviour. - Abstract: Understanding waste prevention behaviour (WPB) could enable local governments and decision makers to design more-effective policies for reducing the amount of waste that is generated. By merging well-known attitude-behaviour theories with elements from wider models from environmental psychology,more » an extensive cognitive framework that provides new and valuable insights is developed for understanding the involvement of individuals in waste prevention. The results confirm the usefulness of the theory of planned behaviour and of Schwartz's altruistic behaviour model as bases for modelling participation in waste prevention. A more elaborate integrated model of prevention was shown to be necessary for the complete analysis of attitudinal aspects associated with waste prevention. A postal survey of 158 respondents provided empirical support for eight of 12 hypotheses. The proposed structural equation indicates that personal norms and perceived behaviour control are the main predictors and that, unlike the case of recycling, subjective norms have a weak influence on WPB. It also suggests that, since social norms have not presented a direct influence, WPB is likely to be influenced by a concern for the environment and the community as well by perceptions of moral obligation and inconvenience. Results also proved that recycling and waste prevention represent different dimensions of waste management behaviour requiring particular approaches to increase individuals' engagement in future policies.« less