Sample records for waste processing equipment

  1. Hazardous Waste Minimization Assessment: Fort Campbell, Kentucky

    DTIC Science & Technology

    1991-03-01

    Used Oii - Better Operating Practices . Selective Segregation 97 Used Oil - Process Change - Fast Lube Oil Change System (FLOCS) 98 Caustic Wastes...Product Substitution 98 Caustic Wastes - Process Change - Hot Tank (Equipment) Modifications 98 Aqueous or Caustic Wastes - Process Change - Dry Ovens...Aqueous or Caustic Wastes - Equipment Leasiag 102 Dirty Rags/Uniforms • Onsite/Offsite Recycling - Laundry Service 103 Treatment 103 Used Oil - Onsite

  2. 40 CFR 265.401 - General operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, the process or equipment must be equipped with a means to stop this inflow (e.g., a waste feed....401 Section 265.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  3. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air conditioning wastes are not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but... from cleaning [with or without chemical cleaning compounds] any metal process equipment including, but...

  4. Distribution of human waste samples in relation to sizing waste processing in space

    NASA Technical Reports Server (NTRS)

    Parker, Dick; Gallagher, S. K.

    1992-01-01

    Human waste processing for closed ecological life support systems (CELSS) in space requires that there be an accurate knowledge of the quantity of wastes produced. Because initial CELSS will be handling relatively few individuals, it is important to know the variation that exists in the production of wastes rather than relying upon mean values that could result in undersizing equipment for a specific crew. On the other hand, because of the costs of orbiting equipment, it is important to design the equipment with a minimum of excess capacity because of the weight that extra capacity represents. A considerable quantity of information that had been independently gathered on waste production was examined in order to obtain estimates of equipment sizing requirements for handling waste loads from crews of 2 to 20 individuals. The recommended design for a crew of 8 should hold 34.5 liters per day (4315 ml/person/day) for urine and stool water and a little more than 1.25 kg per day (154 g/person/day) of human waste solids and sanitary supplies.

  5. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  6. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  7. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  8. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  9. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  10. Management of waste electrical and electronic equipment in Romania: A mini-review.

    PubMed

    Ciocoiu, Carmen Nadia; Colesca, Sofia Elena; Rudăreanu, Costin; Popescu, Maria-Loredana

    2016-02-01

    Around the world there are growing concerns for waste electrical and electronic equipment. This is motivated by the harmful effects of waste electrical and electronic equipment on the environment, but also by the perspectives of materials recovery. Differences between countries regarding waste electrical and electronic equipment management are notable in the European Union. Romania is among the countries that have made significant efforts to comply with European Union regulations, but failed reaching the collection target. The article presents a mini review of the waste electrical and electronic equipment management system in Romania, based on legislation and policy documents, statistical data, research studies and reports published by national and international organisations. The article debates subjects like legislative framework, the electrical and electronic equipment Romanian market, the waste electrical and electronic equipment collection system, waste electrical and electronic equipment processing and waste electrical and electronic equipment behaviour. The recast of the European directive brings new challenges to national authorities and to other stakeholders involved in the waste electrical and electronic equipment management. Considering the fact that Romania has managed a collection rate of roughly 1 kg capita(-1) in the last years, the new higher collection targets established by the waste electrical and electronic equipment Directive offer a serious challenge for the management system. Therefore, another aim of the article is to highlight the positive and negative aspects in the Romanian waste electrical and electronic equipment field, in order to identify the flows that should be corrected and the opportunities that could help improve this system to the point of meeting the European standards imposed by the European Directive. © The Author(s) 2015.

  11. The influence of residents' behaviour on waste electrical and electronic equipment collection effectiveness.

    PubMed

    Nowakowski, Piotr

    2016-11-01

    Government agencies have implemented regulations to reduce the volume of waste electrical and electronic equipment to protect the environment and encourage recycling. The effectiveness of systems through which waste electrical and electronic equipment is collected and recycled depends on (a) the development and operation of new programmes to process this material and (b) on information dissemination programmes aimed at manufacturers, retail sellers, and the consuming public. This study analyses these two elements. The main focus is to better understand household residents' behaviour in regards to the proper methods of handling waste electrical and electronic equipment and possible storage of the obsolete equipment that brings disturbances with collection of the waste equipment. The study explores these issues depending on size of municipality and the household residents' knowledge about legal methods of post-consumer management of waste electrical and electronic equipment in Poland, where the collection rate of that type of waste is about 40% of the total mass of waste electrical and electronic equipment appearing in the market.The research was informed by various sources of information, including non-government organisations, Inspectorate of Environmental Protection and Central Statistics Office in Poland, questionnaires, and interviews with the household residents. The questionnaires were distributed to daytime and vocational students from different universities and the customers of an electronic equipment superstore. The results show that a resident's behaviour in regards to the handling of obsolete waste electrical and electronic equipment can significantly reduce the collection rate, especially when the waste is discarded improperly - mixed with municipal waste or sold in scrapyards. It is possible to identify points that are necessary to be improved to achieve a higher collection rate. © The Author(s) 2016.

  12. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  13. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  14. Process and equipment development for hot isostatic pressing treatability study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP withinmore » INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.« less

  15. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the Savannah River Site. It is not expected that the exact equipment used during this testing will be used during the waste feed qualification testing for WTP, but functionally similar equipment will be used such that the techniques demonstrated would be applicable. For example, the mixing apparatus could use any suitable mixer capable of being remoted and achieving similar mixing speeds to those tested.« less

  16. The market of electrical and electronic equipment waste in Portugal: Analysis of take-back consumers' decisions.

    PubMed

    Botelho, Anabela; Ferreira Dias, Marta; Ferreira, Carla; Pinto, Lígia M Costa

    2016-10-01

    This paper aims to ascertain the efficacy and acceptability of five incentive schemes for the take-back of waste electrical and electronic equipment in Portugal, focusing in consumers' perspectives. It assesses users' perception of these items, evaluating the motivations and interests they have concerning the market of waste electrical and electronic equipment. Results indicate, on one hand, a lack of awareness by consumers about the process of take-back of their equipment. On the other hand, results show that information conditions and socio-demographic factors affect consumers' motivations for returning the electrical and electronic equipment at the end of life. In this context, it can be concluded that, in Portugal, the market for the recovery of waste electrical and electronic equipment is still in its infancy. © The Author(s) 2016.

  17. Applying Separations Science to Waste Problems.

    DTIC Science & Technology

    1998-01-01

    inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the

  18. Technology and equipment based on induction melters with ``cold'' crucible for reprocessing active metal waste

    NASA Astrophysics Data System (ADS)

    Pastushkov, V. G.; Molchanov, A. V.; Serebryakov, V. P.; Smelova, T. V.; Shestoperov, I. N.

    2000-07-01

    The paper discusses specific features of technology, equipment and control of a single stage RAMW decontamination and melting process in an induction furnace equipped with a "cold" crucible. The calculated and experimental data are given on melting high activity level stainless steel and Zr simulating high activity level metal waste. The work is under way in SSC RF VNIINM.

  19. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less

  20. Mechanical recycling of waste electric and electronic equipment: a review.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2003-05-30

    The production of electric and electronic equipment (EEE) is one of the fastest growing areas. This development has resulted in an increase of waste electric and electronic equipment (WEEE). In view of the environmental problems involved in the management of WEEE, many counties and organizations have drafted national legislation to improve the reuse, recycling and other forms of recovery of such wastes so as to reduce disposal. Recycling of WEEE is an important subject not only from the point of waste treatment but also from the recovery of valuable materials.WEEE is diverse and complex, in terms of materials and components makeup as well as the original equipment's manufacturing processes. Characterization of this waste stream is of paramount importance for developing a cost-effective and environmentally friendly recycling system. In this paper, the physical and particle properties of WEEE are presented. Selective disassembly, targeting on singling out hazardous and/or valuable components, is an indispensable process in the practice of recycling of WEEE. Disassembly process planning and innovation of disassembly facilities are most active research areas. Mechanical/physical processing, based on the characterization of WEEE, provides an alternative means of recovering valuable materials. Mechanical processes, such as screening, shape separation, magnetic separation, Eddy current separation, electrostatic separation, and jigging have been widely utilized in recycling industry. However, recycling of WEEE is only beginning. For maximum separation of materials, WEEE should be shredded to small, even fine particles, generally below 5 or 10mm. Therefore, a discussion of mechanical separation processes for fine particles is highlighted in this paper. Consumer electronic equipment (brown goods), such as television sets, video recorders, are most common. It is very costly to perform manual dismantling of those products, due to the fact that brown goods contain very low-grade precious metals and copper. It is expected that a mechanical recycling process will be developed for the upgrading of low metal content scraps.

  1. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examinesmore » the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.« less

  2. 40 CFR 240.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutants released to the atmosphere. (g) Facility means all thermal processing equipment, buildings, and... hazards by spreading the solid wastes in thin layers, compacting the solid wastes to the smallest...

  3. 40 CFR 240.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutants released to the atmosphere. (g) Facility means all thermal processing equipment, buildings, and... hazards by spreading the solid wastes in thin layers, compacting the solid wastes to the smallest...

  4. 40 CFR 240.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutants released to the atmosphere. (g) Facility means all thermal processing equipment, buildings, and... hazards by spreading the solid wastes in thin layers, compacting the solid wastes to the smallest...

  5. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.

  6. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    PubMed

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  7. 40 CFR 415.441 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... material, intermediate product, finished product, by-product, or waste product. The term “process... any raw material, intermediate product, finished product, by-product or waste product by means of (1) rainfall runoff; (2) accidental spills; (3) accidental leaks caused by the failure of process equipment...

  8. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design.

  9. High level radioactive waste vitrification process equipment component testing

    NASA Astrophysics Data System (ADS)

    Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

  10. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube... chemical cleaning compounds] any metal process equipment including, but not limited to, boiler tube...

  11. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube... chemical cleaning compounds] any metal process equipment including, but not limited to, boiler tube...

  12. 75 FR 65625 - Agency Information Collection Activities; Proposed Collection; Comment Request; Hazardous Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... ICR are: Tank systems, Surface impoundments, Waste piles, Land treatment, Landfills, Incinerators..., Process vents, Equipment leaks, Containment buildings, Recovery/recycling. With each information...: Waste Piles 17 Subpart M: Land Treatment 0 Subpart N: Landfills 37 [[Page 65627

  13. 40 CFR 415.431 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., intermediate product, finished product, by-product, or waste product. The term “process wastewater” does not... material, intermediate product, finished product, by-product or waste product by means of (1) rainfall runoff; (2) accidental spills; (3) accidental leaks caused by the failure of process equipment, which are...

  14. Metallurgical recovery of metals from electronic waste: a review.

    PubMed

    Cui, Jirang; Zhang, Lifeng

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the topic are presented. In addition, mechanisms and models of biosorption of precious metal ions from solutions are discussed.

  15. Abatement of waste gases and water during the processes of semiconductor fabrication.

    PubMed

    Wen, Rui-mei; Liang, Jun-wu

    2002-10-01

    The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.

  16. Steam generation by combustion of processed waste fats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudel, F.; Lengenfeld, P.

    1993-12-31

    The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.

  17. Occupational health hazards related to informal recycling of E-waste in India: An overview.

    PubMed

    Annamalai, Jayapradha

    2015-01-01

    The innovation in science and technology coupled with the change in lifestyle of an individual has made an incredible change in the electronic industry show casing an assorted range of new products every day to the world. India too has been impacted by this digital revolution where consumption of electronics goods grows at a rapid rate producing a large amount of waste electrical and electronic equipment. This substantial generation of electronic waste referred to as e-waste accompanied with the lack of stringent environmental laws and regulations for handling the hazardous e-waste has resulted in the cropping of number of informal sectors. Over 95% of the e-waste is treated and processed in the majority of urban slums of the country, where untrained workers carry out the dangerous procedures without personal protective equipment, which are detrimental not only to their health but also to the environment. This paper focuses on the occupational health hazards due to the informal recycling of e-waste and then proceeds to show the safe disposal methods for handling the large quantities of e-waste generated in this electronic era and thus finds a sustainable solution for the formal processing of e-waste.

  18. Occupational health hazards related to informal recycling of E-waste in India: An overview

    PubMed Central

    Annamalai, Jayapradha

    2015-01-01

    The innovation in science and technology coupled with the change in lifestyle of an individual has made an incredible change in the electronic industry show casing an assorted range of new products every day to the world. India too has been impacted by this digital revolution where consumption of electronics goods grows at a rapid rate producing a large amount of waste electrical and electronic equipment. This substantial generation of electronic waste referred to as e-waste accompanied with the lack of stringent environmental laws and regulations for handling the hazardous e-waste has resulted in the cropping of number of informal sectors. Over 95% of the e-waste is treated and processed in the majority of urban slums of the country, where untrained workers carry out the dangerous procedures without personal protective equipment, which are detrimental not only to their health but also to the environment. This paper focuses on the occupational health hazards due to the informal recycling of e-waste and then proceeds to show the safe disposal methods for handling the large quantities of e-waste generated in this electronic era and thus finds a sustainable solution for the formal processing of e-waste. PMID:26023273

  19. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)« less

  20. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  1. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  2. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  3. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  4. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  5. Technology Demonstration Summary: International Waste Technologies In Situ Stabilization/Solidification, Hialeah, Florida

    EPA Science Inventory

    An evaluation was performed of the International Waste Technologies (IWT) HWT-20 additive and the Geo-Con, Inc. deep-soil-mixing equipment for an in situ stabilization/solidification process and its applicability as an on-site treatment method for waste site cleanup. The analysis...

  6. SOLVENT WASTE REDUCTION ALTERNATIVES

    EPA Science Inventory

    This publication contains edited versions of presentations on this subject made at five Technology Transfer seminars in 1988. Chapters are included on land disposal regulations and requirements; waste solvent disposal alternatives from various industries such as process equipment...

  7. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirro, G.A.

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  8. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  9. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)« less

  10. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    PubMed

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  11. Recycling of the Electronic Waste Applying the Plasma Reactor Technology

    NASA Astrophysics Data System (ADS)

    Lázár, Marián; Jasminská, Natália; Čarnogurská, Mária; Dobáková, Romana

    2016-12-01

    The following paper discusses a high-temperature gasification process and melting of electronic components and computer equipment using plasma reactor technology. It analyses the marginal conditions of batch processing, as well as the formation of solid products which result from the procedure of waste processing. Attention is also paid to the impact of the emerging products on the environment.

  12. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  13. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  14. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  15. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  16. East Europe Report, Economic and Industrial Affairs, No. 2448.

    DTIC Science & Technology

    1983-09-14

    investment was postponed); equipment for the food processing industry—refrigerators, production lines for soups, tomato puree and the like; mining equipment...processes based primarily on components derived from pyrolysis and reformation fractions which currently are still not used on a wide scale. 11,023...chemical processes, coking and pyrolysis furnace gases, combustible wastes from raw and other materials, physical heat from processes, heat from

  17. Governor`s award of excellence for outstanding achievement in waste management. Cape Industries, Wilmington, North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1990-12-31

    Cape Industries produces Dimethyl Terephthalate (DMT) and Terephthalic Acid (TA) which are used as raw materials in the production of polyester fibers and films. In this process para-cymene is used as a heat transfer fluid for the process equipment. As the para-cymene is circulated through the process and repeatedly reheated to operating temperatures, some thermal degradation of the cymene and minor contamination due to infiltration of the process material occurs. Prior to August 1988 this spent material was purged from the system and shipped off site for reclamation. The spent material was classified as a hazardous waste due to themore » characteristic of ignitability. In early 1988 existing equipment was retrofitted allowing for on site distillation of the spent para-cymene in a closed-loop system. Reclaimed para-cymene is returned to the system for reuse while the still bottoms are used as a feedstock in the production of DMT. No waste material is generated.« less

  18. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  19. Performance characterization of water recovery and water quality from chemical/organic waste products

    NASA Technical Reports Server (NTRS)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  20. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  1. Development studies of a novel wet oxidation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dhooge, P.M.

    1995-12-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. There is a need for non-combustion processes with a wide application range to treat the large majority of these waste forms. The non-combustion process should also be safe, effective, cost-competitive, permit-able, and preferrably mobile. This paper describes the DETOX processmore » of organic waste oxidation.« less

  2. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, D.W.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  3. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube cleaning. (d) The term metal cleaning waste means any wastewater resulting from cleaning [with or without chemical cleaning compounds...

  4. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube cleaning. (d) The term metal cleaning waste means any wastewater resulting from cleaning [with or without chemical cleaning compounds...

  5. Development studies of a novel wet oxidation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dhooge, P.M.

    1995-10-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.

  6. Development of a novel wet oxidation process for hazardous and mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1994-11-01

    This article describes and evaluates the DETOX{sup sm} process for processing of mixed wastes. Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides, often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The DETOX{sup sm} process, patented by Delphi Research, uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. Included are the following subject areas: project description (phases I-IV); results of all phases; and future work. 5 figs., 1 tab.

  7. Electrical and electronic waste: a global environmental problem.

    PubMed

    Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya

    2007-08-01

    The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.

  8. Methods for recovering precious metals from industrial waste

    NASA Astrophysics Data System (ADS)

    Canda, L.; Heput, T.; Ardelean, E.

    2016-02-01

    The accelerated rate of industrialization increases the demand for precious metals, while high quality natural resources are diminished quantitatively, with significant operating costs. Precious metals recovery can be successfully made from waste, considered to be secondary sources of raw material. In recent years, concerns and interest of researchers for more increasing efficient methods to recover these metals, taking into account the more severe environmental protection legislation. Precious metals are used in a wide range of applications, both in electronic and communications equipment, spacecraft and jet aircraft engines and for mobile phones or catalytic converters. The most commonly recovered precious metals are: gold from jewellery and electronics, silver from X- ray films and photographic emulsions, industrial applications (catalysts, batteries, glass/mirrors), jewellery; platinum group metals from catalytic converters, catalysts for the refining of crude oil, industrial catalysts, nitric acid manufacturing plant, the carbon-based catalyst, e-waste. An important aspect is the economic viability of recycling processes related to complex waste flows. Hydrometallurgical and pyrometallurgical routes are the most important ways of processing electrical and electronic equipment waste. The necessity of recovering precious metals has opened new opportunities for future research.

  9. 40 CFR 261.35 - Deletion of certain hazardous waste codes following equipment cleaning and replacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cleaning and replacement. (a) Wastes from wood preserving processes at plants that do not resume or... parts per trillion (ppt), sample weight of 1000 g, IS spiking level of 1 ppt, final extraction volume of... previously used and the date on which their use ceased in each process at the plant; (3) Formulations...

  10. 40 CFR 261.35 - Deletion of certain hazardous waste codes following equipment cleaning and replacement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cleaning and replacement. (a) Wastes from wood preserving processes at plants that do not resume or... parts per trillion (ppt), sample weight of 1000 g, IS spiking level of 1 ppt, final extraction volume of... previously used and the date on which their use ceased in each process at the plant; (3) Formulations...

  11. Process Waste Assessment, Mechanics Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-05-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags andmore » spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.« less

  12. Electronic wastes

    NASA Astrophysics Data System (ADS)

    Regel-Rosocka, Magdalena

    2018-03-01

    E-waste amount is growing at about 4% annually, and has become the fastest growing waste stream in the industrialized world. Over 50 million tons of e-waste are produced globally each year, and some of them end up in landfills causing danger of toxic chemicals leakage over time. E-waste is also sent to developing countries where informal processing of waste electrical and electronic equipment (WEEE) causes serious health and pollution problems. A huge interest in recovery of valuable metals from WEEE is clearly visible in a great number of scientific, popular scientific publications or government and industrial reports.

  13. Cost effective modular unit for cleaning oil and gas field waste water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinberg, M.B.; Nenasheva, M.N.; Gafarov, N.A.

    1996-12-31

    Problems of environmental control involving conservation of water resources are vital for the development of giant oil and gas condensate fields near Caspian Sea (Russia) characterized by water shortages. One of the urgent tasks of oil production industry is to use all field waste water consisting of underground, processing and rain water. It was necessary to construct a new highly effective equipment which could be used in local waste water treatment. Now we have at our disposal a technology and equipment to meet the requirements to the treated water quality. Thus we have installed a modular unit of 100 m{supmore » 3}/a day capacity to clean waste water from oil products, suspended matter and other organic pollutants at Orenburg oil and gas condensate field, Russia. The unit provides with a full treatment of produced water and comprises a settling tank with adhesive facility, the number of sorption filters, Trofactor bioreactors and a disinfecting facility. The equipment is fitted into three boxes measuring 9 x 3.2 x 2.7 in each. The equipment is simple in design that enables to save money, time and space. Sorption filters, bioreactors as well as the Trofactor process are a part of know-how. While working on the unit construction we applied well known methods of settling and sorption. The process of mechanic cleaning is undergoing in the following succession: (1) the gravitational separation in a settling tank where the floated film oil products are constantly gathered and the sediment is periodically taken away, (2) the settled water treatment in sorption Filters of a special kind.« less

  14. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  15. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    PubMed

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  16. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less

  17. Small Column Ion Exchange Design and Safety Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, T.; Rios-Armstrong, M.; Edwards, R.

    2011-02-07

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streamsmore » for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and includes provisions for equipment maintenance including remote handling. The design includes a robust set of nuclear safety controls compliant with DOE Standard (STD)-1189, Integration of Safety into the Design Process. The controls cover explosions, spills, boiling, aerosolization, and criticality. Natural Phenomena Hazards (NPH) including seismic event, tornado/high wind, and wildland fire are considered. In addition, the SCIX process equipment was evaluated for impact to existing facility safety equipment including the waste tank itself. SCIX is an innovative program which leverages DOE's technology development capabilities to provide a basis for a successful field deployment.« less

  18. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.

    PubMed

    Senouci, Khouira; Medles, Karim; Dascalescu, Lucian

    2013-02-01

    The variability of the quantity and purity of the recovered materials is a serious drawback for the application of electrostatic separation technologies to the recycling of granular wastes. In a series of previous articles we have pointed out how capability and classic control chart concepts could be employed for better mastering the outcome of such processes. In the present work, the multiple exponentially weighted moving average (MEWMA) control chart is introduced and shown to be more effective than the Hotelling T2 chart for monitoring slow varying changes in the electrostatic separation of granular mixtures originating from electric and electronic equipment waste. The operation of the industrial process was simulated by using a laboratory roll-type electrostatic separator and granular samples resulting from shredded electric cable wastes. The 25 tests carried out during the observation phase enabled the calculation of the upper and lower control limits for the two control charts considered in the present study. The 11 additional tests that simulated the monitoring phase pointed out that the MEWMA chart is more effective than Hotelling's T(2) chart in detecting slow varying changes in the outcome of a process. As the reverse is true in the case of abrupt alterations of monitored process performances, simultaneous usage of the two control charts is strongly recommended. While this study focused on a specific electrostatic separation process, using the MEWMA chart together with the well known Hotelling's T(2) chart should be applicable to the statistical control of other complex processes in the field of waste processing.

  19. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  20. Optimising waste from electric and electronic equipment collection systems: a comparison of approaches in European countries.

    PubMed

    Friege, Henning; Oberdörfer, Michael; Günther, Marko

    2015-03-01

    The first European waste from electric and electronic equipment directive obliged the Member States to collect 4 kg of used devices per inhabitant and year. The target of the amended directive focuses on the ratio between the amount of waste from electric and electronic equipment collected and the mass of electric and electronic devices put on the market in the three foregoing years. The minimum collection target is 45% starting in 2016, being increased to 65% in 2019 or alternatively 85% of waste from electric and electronic equipment generated. Being aware of the new target, the question arises how Member States with 'best practice' organise their collection systems and how they enforce the parties in this playing field. Therefore the waste from electric and electronic equipment schemes of Sweden, Denmark, Switzerland, Germany and the Flemish region of Belgium were investigated focusing on the categories IT and telecommunications equipment, consumer equipment like audio systems and discharge lamps containing hazardous substances, e.g. mercury. The systems for waste from electric and electronic equipment collection in these countries vary considerably. Recycling yards turned out to be the backbone of waste from electric and electronic equipment collection in most countries studied. For discharge lamps, take-back by retailers seems to be more important. Sampling points like special containers in shopping centres, lidded waste bins and complementary return of used devices in all retail shops for electric equipment may serve as supplements. High transparency of collection and recycling efforts can encourage ambition among the concerned parties. Though the results from the study cannot be transferred in a simplistic manner, they serve as an indication for best practice methods for waste from electric and electronic equipment collection. © The Author(s) 2015.

  1. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management datamore » such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were considered. Establishment of the calculation formula for dismantling of each kind of equipment makes it possible to evaluate manpower for dismantling the whole facility. However, it is not easy to prepare calculation formula for all kinds of equipment that exist in the facility. Therefore, a simpler evaluation method was considered to calculate manpower based on facility characteristics. The results showed promise for evaluating dismantling manpower with respect to each chemical process. For dismantling of contaminated equipment, a GH has been used for protection of the spread of contamination. The use of a GH increases manpower for installation and removal of GH etc. Moreover, structural materials of the GH such as plastic sheets, adhesive tape become a burnable secondary waste. To create an effective dismantling plan, it is necessary to carefully consider use of a GH preliminarily. Thus, an evaluation method of project management data such as manpower and secondary waste generation was considered. The results showed promise for evaluating project management data of GH by using established calculation formula. (authors)« less

  2. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogenmore » from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.« less

  3. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    PubMed

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material characterisation vary widely from one equipment type to another. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    Water and sewage treatment systems are presented with concentration on the filtration of water. Equipment is described for organic removal, solids removal, nutrient removal, inorganic removal, and disinfection of the water. Such things as aseline hardware, additional piping connections, waste disposal, and costs involved are also reported.

  5. Hazardous Waste Treatment, Storage, and Disposal Facilities-Organic Air Emission Standards for Process Vents and Equipment Leaks - Technical Amendment - Federal Register Notice, April 26, 1991

    EPA Pesticide Factsheets

    This document corrects typographical errors in the regulatory text of the final standards that would limit organic air emissions as a class at hazardous waste treatment, storage, and disposal facilities (TSDF) that are subject to regulation under subtitle

  6. E-waste: the growing global problem and next steps.

    PubMed

    Heacock, Michelle; Kelly, Carol Bain; Suk, William A

    2016-03-01

    In many low- and middle-income countries, handling and disposal of discarded electrical or electronic equipment (EEE) is frequently unregulated. e-Waste contains hazardous constituents such as lead, mercury, and chromium, certain chemicals in plastics, and flame retardants. There is increasing concern about health effects related to contamination in air, soil, and water for people working and living at or near informal e-waste processing sites, especially to the most vulnerable populations, pregnant women and children. The observed adverse health effects and increasing number of e-waste sites make protecting human health and the environment from e-waste contamination an expanding challenge. Through international cooperation, awareness can be elevated about the harm that e-waste processing poses to human health. Here we discuss how international researchers, public health practitioners, and policymakers can employ solutions to reduce e-waste exposures.

  7. E-waste management and sustainability: a case study in Brazil.

    PubMed

    Azevedo, Luís Peres; da Silva Araújo, Fernando Gabriel; Lagarinhos, Carlos Alberto Ferreira; Tenório, Jorge Alberto Soares; Espinosa, Denise Crocce Romano

    2017-11-01

    The advancement of technology and development of new electronic and electrical equipment with a reduced life cycle has increased the need for the disposal of them (called Waste of Electric and Electronic Equipment or simply e-waste) due to defects presented during use, replacement of obsolete equipment, and ease of acquisition of new equipment. There is a lack of consumer awareness regarding the use, handling storage, and disposal of this equipment. In Brazil, the disposal of post-consumer waste is regulated by the National Solid Waste Policy, established by Law No. 12305 and regulated on the 23rd December 2010. Under this legislation, manufacturers and importers are required to perform a project for the Reverse Logistics of e-waste, though its implementation is not well defined. This work focuses on the verification of the sustainability of reverse logistics suggested by the legislation and the mandatory points, evaluating its costs and the possible financial gain with recycling of the waste. The management of reverse logistics and recycling of waste electrical and electronic equipment, or simply recycling of e-waste, as suggested by the government, will be the responsibility of the managing organization to be formed by the manufacturers/importers in Brazil.

  8. Breckinridge Project, initial effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Report V, Volume 4 provides descriptions, data, and drawings pertaining to Instrument and Plant Air Systems (Plant 36), Telecommunication Systems (Plant 37), Inert Gas Systems (Plant 38), Purge and Flush Oil Systems (Plant 39), Site Development and Roads (Plant 40), Buildings (Plant 41), Solid Waste Management (Plant 42), and Landfill (Plant 44). Instrument and Plant Air Systems (Plant 36) includes all equipment and piping necessary to supply instrument and utility air to the process plants and offsite facilities. Telecommunication Systems (Plant 37) includes the equipment and wiring for: communication throughout the facility; communication between plant data processing systems and offsitemore » computing facilities; and communication with transportation carriers. Inert Gas Systems (Plant 38) provides high purity and low purity nitrogen streams for plant startup and normal operation. Purge and Flush Oil Systems (Plant 39) provides purge and flush oils to various plants. Site Development and Roads (Plant 40) provides site leveling, the addition of roads, fencing, and drainage, and the placement of fills, pilings, footings, and foundations for plants. Buildings (Plant 41) provides buildings for equipment and for personnel, including utilities, lighting, sanitary facilities, heating, air conditioning, and ventilation. Solid Waste Management (Plant 42) identifies, characterizes, segregates, and transports the various types of solid wastes to either Landfill (Plant 44) or outside disposal sites. Landfill (Plant 44) provides disposal of both nonhazardous and hazardous solid wastes. Information is included (as applicable) for each of the eight plants described.« less

  9. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.

    PubMed

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-06-01

    This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RASMUSSEN, J.H.

    1999-08-02

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AZ-102 required to satisfy the Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank TIS An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase 1: Confirm Tank TIS An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activity Waste andmore » High Level Waste Feed Data Quality Objectives (L&H DQO) (Patello et al. 1999) and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues, except the Equipment DQO apply to tank 241-AZ-102 for this sampling event. The Equipment DQO is applied for shear strength measurements of the solids segments only. Poppiti (1999) requires additional americium-241 analyses of the sludge segments. Brown et al. (1998) also identify safety screening, regulatory issues and provision of samples to the Privatization Contractor(s) as applicable issues for this tank. However, these issues will not be addressed via this sampling event. Reynolds et al. (1999) concluded that information from previous sampling events was sufficient to satisfy the safety screening requirements for tank 241 -AZ-102. Push mode core samples will be obtained from risers 15C and 24A to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples, composite the liquids and solids, perform chemical analyses, and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AZ-102 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plan.« less

  11. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment. 273.4 Section 273.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury...-containing components have been removed. (c) Generation of waste mercury-containing equipment. (1) Used...

  12. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    PubMed

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.

  13. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basismore » of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)« less

  14. Cleanup Verification Package for the 118-F-1 Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. J. Farris and H. M. Sulloway

    2008-01-10

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  15. A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunsell, D.A.

    2008-07-01

    Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that,more » when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed that is 100% scalable from a concentrate test sample as small as 50 grams to full-scale processing of 100 cubic foot containers or larger. In summary: The absorption process offers utilities a viable and less costly alternative to on-site drying or solidification of concentrates. The absorption process can be completed by site personnel or by a vendor as a turnkey service. The process is suitable for multiple types of waste, including RO and evaporator concentrates, sludges, and other difficult to process waters and wet solids. (author)« less

  16. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z.

    1997-12-01

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrificationmore » campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).« less

  17. Development of space technology for ecological habitats

    NASA Technical Reports Server (NTRS)

    Martello, N. V.

    1986-01-01

    The development of closed ecological systems for space stations is discussed. Growth chambers, control systems, microgravity, ecosystem stability, lighting equipment, and waste processing systems are among the topics discussed.

  18. Data sharing report characterization of population 7: Personal protective equipment, dry active waste, and miscellaneous debris, surveillance and maintenance project Oak Ridge National Laboratory Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpenau, Evan M.

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan formore » Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.« less

  19. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less

  20. A new process and equipment for waste minimization: Conversion of NO(x) scrubber liquor to fertilizer

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Barile, Ronald G.; Gamble, Paul H.; Lueck, Dale E.; Young, Rebecca C.

    1995-01-01

    A new emissions control system for the oxidizer scrubbers that eliminates the current oxidizer liquor waste and lowers the NO(x) emissions is described. Since fueling and deservicing spacecraft constitute the primary operations in which environmental emissions occur, this will eliminate the second largest waste stream at KSC. This effort is in accord with Executive Order No. 12856 (Federal Compliance with Right-to-Know Laws and Pollution Prevention Requirements, data 6 Aug. 1993) and Executive Order No. 12873 (Federal Acquisition, Recycling, and Waste Prevention, dated 20 Oct. 1993). A recent study found that the efficiencies of the oxidizer scrubbers during normal operations ranged from 70 percent to 99 percent. The new scrubber liquor starts with 1% hydrogen peroxide at a pH of 7 and the process control system adds hydrogen peroxide and potassium hydroxide to the scrubber liquor to maintain those initial conditions. The result is the formation of a solution of potassium nitrate, which is sold as a fertilizer. This report describes the equipment and procedures used to monitor and control the conversion of the scrubber liquor to fertilizer, while reducing the scrubber emissions.

  1. 2007 SB14 Source Reduction Plan/Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L

    2007-07-24

    Aqueous solutions (mixed waste) generated from various LLNL operations, such as debris washing, sample preparation and analysis, and equipment maintenance and cleanout, were combined for storage in the B695 tank farm. Prior to combination the individual waste streams had different codes depending on the particular generating process and waste characteristics. The largest streams were CWC 132, 791, 134, 792. Several smaller waste streams were also included. This combined waste stream was treated at LLNL's waste treatment facility using a vacuum filtration and cool vapor evaporation process in preparation for discharge to sanitary sewer. Prior to discharge, the treated waste streammore » was sampled and the results were reviewed by LLNL's water monitoring specialists. The treated solution was discharged following confirmation that it met the discharge criteria. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. Quarterly waste generation data prepared by the Environmental Protection Department's P2 Team are regularly provided to engineering shops as well as other facilities so that generators can track the effectiveness of their waste minimization efforts.« less

  2. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  3. Development studies of a novel wet oxidation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dooge, P.M.

    1996-12-31

    The objective of this study is to develop a novel catalytic chemical oxidation process that can be used to effectively treat multi-component wastes with a minimum of pretreatment characterization, thus providing a versatile, non-combustion method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. Although the DETOX{sup SM} process had been tested to a limited extent for potential application to mixed wastes, there had not been sufficient experience with the process to determine its range of application to multicomponent waste forms. The potential applications ofmore » the process needed to be better identified. Then, the process needed to be demonstrated on wastes and remediate types on a practical scale in order that data could be obtained on application range, equipment size, capital and operating costs, effectiveness, safety, reliability, permittability, and potential commercial applications of the process. The approach for the project was, therefore, to identify the potential range of applications of the process (Phase I), to choose demonstration sites and design a demonstration prototype (Phase II), to fabricate and shakedown the demonstration unit (Phase III), then finally to demonstrate the process on surrogate hazardous and mixed wastes, and on actual mixed wastes (Phase IV).« less

  4. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-12

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase I : Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activitymore » Waste and High-Level Waste Feed Data Quality Objectives (L and H DQO) (Patello et al. 1999), and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  5. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  6. Heavy metals in soil at a waste electrical and electronic equipment processing area in China.

    PubMed

    Gu, Weihua; Bai, Jianfeng; Yao, Haiyan; Zhao, Jing; Zhuang, Xuning; Huang, Qing; Zhang, Chenglong; Wang, JingWei

    2017-11-01

    For the objective of evaluating the contamination degree of heavy metals and analysing its variation trend in soil at a waste electrical and electronic equipment processing area in Shanghai, China, evaluation methods, which include single factor index method, geo-accumulation index method, comprehensive pollution index method, and potential ecological risk index method, were adopted in this study. The results revealed that the soil at a waste electrical and electronic equipment processing area was polluted by arsenic, cadmium, copper, lead, zinc, and chromium. It also demonstrated that the concentrations of heavy metals were increased over time. Exceptionally, the average value of the metalloid (arsenic) was 73.31 mg kg -1 in 2014, while it was 58.31 mg kg -1 in the first half of 2015, and it was 2.93 times and 2.33 times higher than that of the Chinese Environmental Quality Standard for Soil in 2014 and the first half of 2015, respectively. The sequences of the contamination degree of heavy metals in 2014 and the first half of 2015 were cadmium > lead > copper > chromium > zinc and cadmium > lead > chromium > zinc > copper. From the analysis of the potential ecological risk index method, arsenic and cadmium had higher ecological risk than other heavy metals. The integrated ecological risk index of heavy metals (cadmium, copper, lead, zinc, and chromium) and metalloid (arsenic) was 394.10 in 2014, while it was 656.16 in the first half of 2015, thus documenting a strong ecological risk.

  7. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi, E-mail: sakanakura@nies.go.jp; Terazono, Atsushi, E-mail: terazono@nies.go.jp

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered duringmore » the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment.« less

  8. The Best-of-2-Worlds philosophy: developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies.

    PubMed

    Wang, Feng; Huisman, Jaco; Meskers, Christina E M; Schluep, Mathias; Stevels, Ab; Hagelüken, Christian

    2012-11-01

    E-waste is a complex waste category containing both hazardous and valuable substances. It demands for a cost-efficient treatment system which simultaneously liberates and refines target fractions in an environmentally sound way. In most developing countries there is a lack of systems covering all steps from disposal until final processing due to limited infrastructure and access to technologies and investment. This paper introduces the 'Best-of-2-Worlds' philosophy (Bo2W), which provides a network and pragmatic solution for e-waste treatment in emerging economies. It seeks technical and logistic integration of 'best' pre-processing in developing countries to manually dismantle e-waste and 'best' end-processing to treat hazardous and complex fractions in international state-of-the-art end-processing facilities. A series of dismantling trials was conducted on waste desktop computers, IT equipment, large and small household appliances, in order to compare the environmental and economic performances of the Bo2W philosophy with other conventional recycling scenarios. The assessment showed that the performance of the Bo2W scenario is more eco-efficient than mechanical separation scenarios and other local treatment solutions. For equipment containing substantial hazardous substances, it demands the assistance from domestic legislation for mandatory removal and safe handling of such fractions together with proper financing to cover the costs. Experience from Bo2W pilot projects in China and India highlighted key societal factors influencing successful implementation. These include market size, informal competitors, availability of national e-waste legislation, formal take-back systems, financing and trust between industrial players. The Bo2W philosophy can serve as a pragmatic and environmentally responsible transition before establishment of end-processing facilities in developing countries is made feasible. The executive models of Bo2W should be flexibly differentiated for various countries by adjusting to local conditions related to operational scale, level of centralized operations, dismantling depth, combination with mechanical processing and optimized logistics to international end-processors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Status of pre-processing of waste electrical and electronic equipment in Germany and its influence on the recovery of gold.

    PubMed

    Chancerel, Perrine; Bolland, Til; Rotter, Vera Susanne

    2011-03-01

    Waste electrical and electronic equipment (WEEE) contains gold in low but from an environmental and economic point of view relevant concentration. After collection, WEEE is pre-processed in order to generate appropriate material fractions that are sent to the subsequent end-processing stages (recovery, reuse or disposal). The goal of this research is to quantify the overall recovery rates of pre-processing technologies used in Germany for the reference year 2007. To achieve this goal, facilities operating in Germany were listed and classified according to the technology they apply. Information on their processing capacity was gathered by evaluating statistical databases. Based on a literature review of experimental results for gold recovery rates of different pre-processing technologies, the German overall recovery rate of gold at the pre-processing level was quantified depending on the characteristics of the treated WEEE. The results reveal that - depending on the equipment groups - pre-processing recovery rates of gold of 29 to 61% are achieved in Germany. Some practical recommendations to reduce the losses during pre-processing could be formulated. Defining mass-based recovery targets in the legislation does not set incentives to recover trace elements. Instead, the priorities for recycling could be defined based on other parameters like the environmental impacts of the materials. The implementation of measures to reduce the gold losses would also improve the recovery of several other non-ferrous metals like tin, nickel, and palladium.

  10. Warfighter Support: Army Has Taken Steps to Improve Reset Process, but More Complete Reporting of Equipment and Future Cost Is Needed

    DTIC Science & Technology

    2012-05-01

    asphalt spreaders ), other semi-trucks and trailers, palletized loading systems, and heavy equipment transports. As table 3 shows, the actual reset...Copies of GAO Reports and Testimony Order by Phone Connect with GAO To Report Fraud, Waste, and Abuse in Federal Programs Congressional Relations Public Affairs Please Print on Recycled Paper.

  11. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types ofmore » commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.« less

  12. A model for simulating the grinding and classification cyclic system of waste PCBs recycling production line.

    PubMed

    Yang, Deming; Xu, Zhenming

    2011-09-15

    Crushing and separating technology is widely used in waste printed circuit boards (PCBs) recycling process. A set of automatic line without negative impact to environment for recycling waste PCBs was applied in industry scale. Crushed waste PCBs particles grinding and classification cyclic system is the most important part of the automatic production line, and it decides the efficiency of the whole production line. In this paper, a model for computing the process of the system was established, and matrix analysis method was adopted. The result showed that good agreement can be achieved between the simulation model and the actual production line, and the system is anti-jamming. This model possibly provides a basis for the automatic process control of waste PCBs production line. With this model, many engineering problems can be reduced, such as metals and nonmetals insufficient dissociation, particles over-pulverizing, incomplete comminuting, material plugging and equipment fever. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.

    PubMed

    Priya, Anshu; Hait, Subrata

    2017-03-01

    Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.

  14. Additional Equipment for Soil Biodegradation

    NASA Astrophysics Data System (ADS)

    Vondráčková, Terezie; Kraus, Michal; Šál, Jiří

    2017-12-01

    Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for on-sit biodegradation.

  15. Present status of recycling waste mobile phones in China: a review.

    PubMed

    Li, Jingying; Ge, Zhongying; Liang, Changjin; An, Ni

    2017-07-01

    A large number of waste mobile phones have already been generated and are being generated. Various countries around the world have all been positively exploring the way of recycling and reuse when facing such a large amount of waste mobile phones. In some countries, processing waste mobile phones has been forming a complete industrial chain, which can not only recycle waste mobile phones to reduce their negative influence on the environment but also turn waste into treasure to acquire economic benefits dramatically. However, the situation of recycling waste mobile phones in China is not going well. Waste mobile phones are not formally covered by existing regulations and policies for the waste electric and electronic equipment in China. In order to explore an appropriate system to recover waste mobile phones, the mobile phone production and the amount of waste mobile phones are introduced in this paper, and status of waste mobile phones recycling is described; then, the disposal technology of electronic waste that would be most likely to be used for processing of electronic waste in industrial applications in the near future is reviewed. Finally, rationalization proposals are put forward based on the current recovery status of waste mobile phones for the purpose of promoting the development of recycling waste mobile phones in developing countries with a special emphasis on China.

  16. Process test plan, phase II: waste retrieval sluicing system emissions collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, R.L.

    1999-06-01

    This Process Test Plan is prepared to continue from HNF-3733 which was Phase I of the test. Supplemental operational controls and sampling requirements are defined to safely obtain gas samples from the 296-C-006 ventilation system stack during active operation of the sluicing equipment.

  17. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hotmore » exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.« less

  18. Pilot-scale evaluation of a novel TiO2-supported V2O5 catalyst for DeNOx at low temperatures at a waste incinerator.

    PubMed

    Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo

    2017-03-01

    The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO 2 -supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO 2 -supported V 2 O 5 catalyst coated (with a loading of 7wt% of impregnated V 2 O 5 ) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m 3 h -1 ) using real exhaust gas from the waste incinerator. The experimental results showed that the V 2 O 5 /TiO 2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Design for application of the DETOX{sup SM} wet oxidation process to mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, R.A.; Dhooge, P.M.

    1994-04-01

    Conceptual engineering has been performed for application of the DETOX{sup SM} wet oxidation process to treatment of specific mixed waste types. Chemical compositions, mass balances, energy balances, temperatures, pressures, and flows have been used to define design parameters for treatment units capable of destroying 5. Kg per hour of polychlorinated biphenyls and 25. Kg per hour of tributyl phosphate. Equipment for the units has been sized and materials of construction have been specified. Secondary waste streams have been defined. Environmental safety and health issues in design have been addressed. Capital and operating costs have been estimated based on the conceptualmore » designs.« less

  20. Applied technology for mine waste water decontamination in the uranium ores extraction from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejenaru, C.; Filip, G.; Vacariu, V.T.

    1996-12-31

    The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less

  1. Lessons-Learned from D and D Activities at the Five Gaseous Diffusion Buildings (K-25, K- 27, K-29, K-31 and K-33) East Tennessee Technology Park, Oak Ridge, TN - 13574

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopotic, James D.; Ferri, Mark S.; Buttram, Claude

    The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good,more » up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)« less

  2. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  3. A Guide for Developing Standard Operating Job Procedures for the Sludge Thickening Process Wastewater Treatment Facility. SOJP No. 9.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  4. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report summary

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    This study of water reclamation and waste disposal is directed toward a more efficient utilization of natural resources. From an ecological standpoint improved methods of land use, water processing equipment, and ideal population profiles are investigated. Methods are described whereby significant reduction in water usage can be achieved by the adoption of presently available and practically applied technological concepts. Allowances are made for social, natural, and economic contingencies which are likely to occur up to the year 2000.

  5. Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran

    PubMed Central

    Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad

    2016-01-01

    Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative. PMID:27766238

  6. Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran.

    PubMed

    Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad

    2016-01-01

    Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative.

  7. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processingmore » plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.« less

  8. Biowaste monitoring system for shuttle

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Sauer, R. L.

    1975-01-01

    The acquisition of crew biomedical data has been an important task on all manned space missions from Project Mercury through the recently completed Skylab Missions. The monitoring of metabolic wastes from the crew is an important aspect of this activity. On early missions emphasis was placed on the collection and return of biowaste samples for post-mission analysis. On later missions such as Skylab, equipment for inflight measurement was also added. Life Science experiments are being proposed for Shuttle missions which will require the inflight measurement and sampling of metabolic wastes. In order to minimize the crew impact associated with these requirements, a high degree of automation of these processes will be required. This paper reviews the design and capabilities of urine biowaste monitoring equipment provided on past-manned space programs and defines and describes the urine volume measurement and sampling equipment planned for the Shuttle Orbiter program.

  9. The status and development of treatment techniques of typical waste electrical and electronic equipment in China: a review.

    PubMed

    He, Yunxia; Xu, Zhenming

    2014-04-01

    A large quantity of waste electrical and electronic equipment (WEEE) is being generated because technical innovation promotes the unceasing renewal of products. China's household appliances and electronic products have entered the peak of obsolescence. Due to lack of technology and equipment, recycling of WEEE is causing serious environment pollution. In order to achieve the harmless disposal and resource utilization of WEEE, researchers have performed large quantities of work, and some demonstration projects have been built recently. In this paper, the treatment techniques of typical WEEE components, including printed circuit boards, refrigerator cabinets, toner cartridges, cathode ray tubes, liquid crystal display panels, batteries (Ni-Cd and Li-ion), hard disk drives, and wires are reviewed. An integrated recycling system with environmentally friendly and highly efficient techniques for processing WEEE is proposed. The orientation of further development for WEEE recycling is also proposed.

  10. Biogasification of Walt Disney World biomass waste blend. Annual report Jan-Dec 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Chynoweth, D.P.; Janulis, J.

    1983-05-01

    The objective of this research is to develop efficient processes for conversion of biomass-waste blends to methane and other resources. To evaluate the technical and economic feasibility, an experimental test facility (ETU) is being designed and installed at the Reedy Creek Wastewater Treatment Plant at Walt Disney World, Orlando, Florida. The facility will integrate a biomethanogenic conversion process with a waste-water treatment process employing water hyacinth ponds for secondary and tertiary treatment of sewage produced at Walt Disney World. The ETU will be capable of feeding 1-wet ton per day of water hyacinth-sludge blends to the digestion system for productionmore » of methane and other byproducts. The detailed design of the facility has been completed and procurement of equipment is in progress.« less

  11. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    PubMed

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Foam and gel methods for the decontamination of metallic surfaces

    DOEpatents

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  13. US Department of Energy's Efforts in Intelligent Processing Equipment

    NASA Technical Reports Server (NTRS)

    Peavy, Richard D.; Mcfarland, Janet C.

    1992-01-01

    The Department of Energy (DOE) uses intelligent processing equipment (IPE) technologies to conduct research and development and manufacturing for energy and nuclear weapons programs. This paper highlights several significant IPE efforts underway in DOE. IPE technologies are essential to the accomplishment of DOE's missions, because of the need for small lot production, precision, and accuracy in manufacturing, hazardous waste management, and protection of the environment and the safety and health of the workforce and public. Applications of IPE technologies include environmental remediation and waste handling, advanced manufacturing, and automation of tasks carried out in hazardous areas. DOE laboratories have several key programs that integrate robotics, sensor, and control technologies. These programs embody a considerable technical capability that also may be used to enhance U.S. industrial competitiveness. DOE encourages closer cooperation with U.S. industrial partners based on mutual benefits. This paper briefly describes technology transfer mechanisms available for industrial involvement.

  14. I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Frank

    The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were produced concentrated salt products that acted as the feed material for development of advanced waste forms investigated in this proposal. Accomplishments from the first year activities associated with this I-NERI project included the down selection of candidate waste forms to immobilize fission products separated from electrorefiner salt, and the design of equipment to fabricate actual waste forms in the Hot Fuels Examination Facility (HFEF) at the INL. Reported in this document are accomplishments from the second year (FY10) work performed at the INL, and includes the testing of waste form fabrication equipment, repeating the fission product precipitation experiment, and initial waste form fabrication efforts.« less

  15. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.

    PubMed

    Hirayama, Denise; Saron, Clodoaldo

    2015-06-01

    Polymeric materials constitute a considerable fraction of waste computer equipment and polymers acrylonitrile-butadiene-styrene and high-impact polystyrene are the main thermoplastic polymeric components found in waste computer equipment. Identification, separation and characterisation of additives present in acrylonitrile-butadiene-styrene and high-impact polystyrene are fundamental procedures to mechanical recycling of these polymers. The aim of this study was to evaluate the methods for identification of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil, as well as their potential for mechanical recycling. The imprecise utilisation of symbols for identification of the polymers and the presence of additives containing toxic elements in determinate computer devices are some of the difficulties found for recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. However, the considerable performance of mechanical properties of the recycled acrylonitrile-butadiene-styrene and high-impact polystyrene when compared with the virgin materials confirms the potential for mechanical recycling of these polymers. © The Author(s) 2015.

  16. Waste electrical and electronic equipment management and Basel Convention compliance in Brazil, Russia, India, China and South Africa (BRICS) nations.

    PubMed

    Ghosh, Sadhan Kumar; Debnath, Biswajit; Baidya, Rahul; De, Debashree; Li, Jinhui; Ghosh, Sannidhya Kumar; Zheng, Lixia; Awasthi, Abhishek Kumar; Liubarskaia, Maria A; Ogola, Jason S; Tavares, André Neiva

    2016-08-01

    Brazil, Russia, India, China and South Africa (BRICS) nations account for one-quarter of the world's land area, having more than 40% of the world's population, and only one-quarter of the world gross national income. Hence the study and review of waste electrical and electronic equipment management systems in BRICS nations is of relevance. It has been observed from the literature that there are studies available comparing two or three country's waste electrical and electronic equipment status, while the study encompassing the BRICS nations considering in a single framework is scant. The purpose of this study is to analyse the existing waste electrical and electronic equipment management systems and status of compliance to Basel convention in the BRICS nations, noting possible lessons from matured systems, such as those in the European Union EU) and USA. The study introduced a novel framework for a waste electrical and electronic equipment management system that may be adopted in BRICS nations and revealed that BRICS countries have many similar types of challenges. The study also identified some significant gaps with respect to the management systems and trans-boundary movement of waste electrical and electronic equipment, which may attract researchers for further research. © The Author(s) 2016.

  17. Environmental issues and management strategies for waste electronic and electrical equipment.

    PubMed

    Townsend, Timothy G

    2011-06-01

    Issues surrounding the impact and management of discarded or waste electronic and electrical equipment (WEEE) have received increasing attention in recent years. This attention stems from the growing quantity and diversity of electronic and electrical equipment (EEE) used by modern society, the increasingly rapid turnover of EEE with the accompanying burden on the waste stream, and the occurrence of toxic chemicals in many EEE components that can pose a risk to human and environmental health if improperly managed. In addition, public awareness of the WEEE or "e-waste" dilemma has grown in light of popular press features on events such as the transition to digital television and the exportation of WEEE from the United States and other developed countries to Africa, China, and India, where WEEE has often not been managed in a safe manner (e.g., processed with proper safety precautions, disposed of in a sanitary landfill, combusted with proper air quality procedures). This paper critically reviews current published information on the subject of WEEE. The definition, magnitude, and characteristics of this waste stream are summarized, including a detailed review of the chemicals of concern associated with different components and how this has changed and continues to evolve over time. Current and evolving management practices are described (e.g., reuse, recycling, incineration, landfilling). This review discusses the role of regulation and policies developed by governments, institutions, and product manufacturers and how these initiatives are shaping current and future management practices.

  18. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  19. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  20. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  1. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  2. Where next on e-waste in Australia?

    PubMed

    Golev, Artem; Schmeda-Lopez, Diego R; Smart, Simon K; Corder, Glen D; McFarland, Eric W

    2016-12-01

    For almost two decades waste electrical and electronic equipment, WEEE or e-waste, has been considered a growing problem that has global consequences. The value of recovered materials, primarily in precious and base metals, has prompted some parts of the world to informally and inappropriately process e-waste causing serious environmental and human health issues. Efforts in tackling this issue have been limited and in many ways unsuccessful. The global rates for formal e-waste treatment are estimated to be below the 20% mark, with the majority of end-of-life (EoL) electronic devices still ending up in the landfills or processed through rudimentary means. Industrial confidentiality regarding device composition combined with insufficient reporting requirements has made the task of simply characterizing the problem difficult at a global scale. To address some of these key issues, this paper presents a critical overview of existing statistics and estimations for e-waste in an Australia context, including potential value and environmental risks associated with metals recovery. From our findings, in 2014, on average per person, Australians purchased 35kg of electrical and electronic equipment (EEE) while disposed of 25kg of WEEE, and possessed approximately 320kg of EEE. The total amount of WEEE was estimated at 587kt worth about US$ 370million if all major metals are fully recovered. These results are presented over the period 2010-2014, detailed for major EEE product categories and metals, and followed by 2015-2024 forecast. Our future projection, with the base scenario fixing EEE sales at 35kg per capita, predicts stabilization of e-waste generation in Australia at 28-29kg per capita, with the total amount continuing to grow along with the population growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. 29 CFR 1910.1045 - Acrylonitrile.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., equipment failure, rupture of containers, or failure of control equipment, which results in an unexpected... decontamination is completed. (l) Waste disposal. AN waste, scrap, debris, bags, containers, or equipment shall be.... (3) Labels. (i) The employer shall assure that precautionary labels are affixed to all containers of...

  4. The Environmental Assessment and Management (TEAM) Guide: Montana Supplement. Revision

    DTIC Science & Technology

    2010-01-01

    pollution control equipment are operating as designed. AE.37.3.MT. Non -exempt existing s mall m unicipal combustion u nits m ust m eet...species. NON -ESSENTIAL EXPERIMENTAL POPULATION (XN) - A population of a listed species reintroduced into a specific area that receives more flexible...been triple rinsed or processed by methods approved by the Department. 2. Group III wastes include wood wastes and non -water soluble solids. These

  5. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to themore » Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.« less

  6. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.

    PubMed

    Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo

    2015-09-01

    Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results. © The Author(s) 2015.

  7. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-05-19

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy ''Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO)' (Nguyen 1999a), ''Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Butch X (LAW DQO) (Nguyen 1999b)'', ''Low Activity Wastemore » and High-Level Waste Feed Data Quality Objectives (L&H DQO)'' (Patello et al. 1999), and ''Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO)'' (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide sub-samples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  8. Feasibility basis for use of new solid household waste processing equipment

    NASA Astrophysics Data System (ADS)

    Vertakova, Y. V.; Zvyagintsev, G. L.; Babich, T. N.; Polozhentseva, Y. S.

    2017-10-01

    Economic efficiency assessment of innovative organizational project of solid household waste processing enterprise (SHW) is given. A distinctive feature of this project is new mining and chemical technology use of waste depolymerization. The proved feature is fuel-resource production in portion modules of tubular type. They are patented and approved under laboratory conditions. The main ways of SHW processing in the world including Russia are described. Advantages and disadvantages are revealed. Comparative analysis is carried out. Technology prioritization is a result of this analysis. During organization of such enterprise, it was proved that not only SHW processing is a result of its functioning. The other result is environmentally friendly production using secondary raw materials. These products can be sold and can have bring income. Main investment and current expenses necessary for the offered project implementation are defined. This allows making economic assessment of innovative enterprise efficiency.

  9. Plasma methods for metals recovery from metal-containing waste.

    PubMed

    Changming, Du; Chao, Shang; Gong, Xiangjie; Ting, Wang; Xiange, Wei

    2018-04-27

    Metal-containing waste, a kind of new wastes, has a great potential for recycling and is also difficult to deal with. Many countries pay more and more attention to develop the metal recovery process and equipment of this kind of waste as raw material, so as to solve the environmental pollution and comprehensively utilize the discarded metal resources. Plasma processing is an efficient and environmentally friendly way for metal-containing waste. This review mainly discuss various metal-containing waste types, such as printed circuit boards (PCBs), red mud, galvanic sludge, Zircon, aluminium dross and incinerated ash, and the corresponding plasma methods, which include DC extended transferred arc plasma reactor, DC non-transferred arc plasma torch, RF thermal plasma reactor and argon and argon-hydrogen plasma jets. In addition, the plasma arc melting technology has a better purification effect on the extraction of useful metals from metal-containing wastes, a great capacity of volume reduction of waste materials, and a low leaching toxicity of solid slag, which can also be used to deal with all kinds of metal waste materials, having a wide range of applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. 40 CFR 270.25 - Specific part B information requirements for equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for equipment. 270.25 Section 270.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... subpart BB of part 264 applies: (1) Equipment identification number and hazardous waste management unit identification. (2) Approximate locations within the facility (e.g., identify the hazardous waste management unit...

  11. Comprehensive characterization of printed circuit boards of various end-of-life electrical and electronic equipment for beneficiation investigation.

    PubMed

    Anshu Priya; Hait, Subrata

    2018-05-01

    Comprehensive characterization of printed circuit board (PCB) of end-of-life electrical and electronic equipment (EEE) is obligatory for prospective profitable beneficiation. In this study, beneficiation oriented comprehensive characterization of two brands of PCBs each of 16 end-of-life EEE was conducted in terms of their physicochemical characteristics with special emphasis on the content of 16 general elements, 2 precious metals and 15 rare earth elements (REEs). General elements and their highest weight percent composition found in different PCBs of the EEEs were Cu (23% in laptop), Al (6% in computer), Pb (15% in DVD player) and Ba (7% in TV). The high abundant of precious metals such as Au (316 g/ton) and Ag (636 g/ton) in mobile phone and laptop, respectively coupled with rapid obsolescence age makes waste PCBs of information technology and telecommunication equipment the most potent resource reservoir. Additionally, most of the waste PCBs were observed to contain REEs in considerable quantity with Sc up to 31 g/ton and Ce up to 13 g/ton being the major constituents. Comprehensive characterization of waste PCBs therefore will systematically help towards better understanding of e-waste recycling processes for beneficiation purpose and sustainable resource circulation and conservation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Skylab

    NASA Image and Video Library

    1970-01-01

    This photograph was taken during assembly of the bottom and upper floors of the Skylab Orbital Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  13. Treatment options for tank farms long-length contaminated equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  14. Waste electrical and electronic equipment (WEEE) estimation: A case study of Ahvaz City, Iran.

    PubMed

    Alavi, Nadali; Shirmardi, Mohammad; Babaei, Aliakbar; Takdastan, Afshin; Bagheri, Nastaran

    2015-03-01

    The development of new technologies and the increasing consumption of electronic and electrical equipment have led to increased generation of e-waste in the municipal waste streams. This waste due to the presence of hazardous substances in its composition needs specific attention and management. The present study was carried out in Ahvaz metropolis using a survey method in 2011. For estimating the amount of waste electrical and electronic equipment (WEEE) generated, the "use and consumption" method was used. In order to determine the amounts of the electrical and electronic equipment that were used and their lifetime, and for investigating the current status of e-waste management in Ahvaz, an appropriate questionnaire was devised. In 2011, the total number of discarded electronic items was 2,157,742 units. According to the average weight of the equipment, the total generation of e-waste was 9952.25 metric tons per year and was 9.95 kg per capita per year. The highest e-waste generated was related to air conditioners, with 3125.36 metric tons per year, followed by the wastes from refrigerators and freezers, washing machines, and televisions. The wastes from desktop computers and laptops were 418 and 63 metric tons/year, respectively, and the corresponding values per capita were 0.42 and 0.063 kg, respectively. These results also showed that 10 tons fixed phones, 25 tons mobile phones, and by considering an average lifetime of 3 years for each lamp about 320 tons lamps were generated as e-waste in Ahvaz in the year 2011. Based on this study, currently there is not an integrated system for proper management of WEEE in Ahvaz, and this waste stream is collected and disposed of with other municipal waste. Some measures, including a specific collection system, recycling of valuable substances, and proper treatment and disposal, should be done about such waste. Ahvaz is one of the most important economic centers of Iran, and to the best of our knowledge, no study has been carried out to estimate the generation of waste electrical and electronic equipment (WEEE) in this city. Therefore, the authors estimated the generation of the WEEE by the "use and consumption" method. The results of this study can be useful not only for decision-making organizations of Ahvaz to manage and recycle this type of waste but also can be used as a method to estimate the generation of e-waste in different locations of the world, especially in places where the generation of such waste could be a risk to human health and the environment.

  15. Interim waste storage for the Integral Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, R.W.; Phipps, R.D.; Condiff, D.W.

    1991-01-01

    The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes thatmore » are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig.« less

  16. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.

    PubMed

    Hu, Biao; Hui, Wenlong

    2017-09-01

    Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Economic Viability of Brewery Spent Grain as a Biofuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, Charles

    This report summarizes an investigation into the technical feasibility and economic viability of use grain wastes from the beer brewing process as fuel to generate the heat needed in subsequent brewing process. The study finds that while use of spent grain as a biofuel is technically feasible, the economics are not attractive. Economic viability is limited by the underuse of capital equipment. The investment in heating equipment requires a higher utilization that the client brewer currently anticipates. It may be possible in the future that changing factors may swing the decision to a more positive one.

  18. POLLUTION PREVENTION TECHNOLOGY DIFFUSION INITIATIVE (TDI)

    EPA Science Inventory

    Although pollution prevention (P2) technologies save money and help prevent the release of toxic and hazardous wastes into the environment, many companies are reluctant to install new equipment or change the current processes. Some of the reluctance is initiated by lack of time a...

  19. Innovating e-waste management: From macroscopic to microscopic scales.

    PubMed

    Zeng, Xianlai; Yang, Congren; Chiang, Joseph F; Li, Jinhui

    2017-01-01

    Waste electrical and electronic equipment (WEEE or e-waste) has become a global problem, due to its potential environmental pollution and human health risk, and its containing valuable resources (e.g., metals, plastics). Recycling for e-waste will be a necessity, not only to address the shortage of mineral resources for electronics industry, but also to decline environmental pollution and human health risk. To systematically solve the e-waste problem, more attention of e-waste management should transfer from macroscopic to microscopic scales. E-waste processing technology should be significantly improved to diminish and even avoid toxic substance entering into downstream of material. The regulation or policy related to new production of hazardous substances in recycled materials should also be carried out on the agenda. All the findings can hopefully improve WEEE legislation for regulated countries and non-regulated countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-10-05

    This report summarizes existing analytical data gleaned from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shellmore » tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature. This report supercedes and replaces PNNL-14832.« less

  1. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanksmore » B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.« less

  2. Development of a novel wet oxidation process for hazardous and mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1994-12-31

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process usesmore » a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described.« less

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less

  4. EPA Works with Rhode Island Company to Reduce Risks from Hazardous Materials

    EPA Pesticide Factsheets

    A Lincoln, RI, metals etching company has made changes in its manufacturing equipment and process to ensure that it is complying with federal clean air and hazardous waste laws and to settle claims of violations by the US Environmental Protection Agency.

  5. Alternative polymer separation technology by centrifugal force in a melted state.

    PubMed

    Dobrovszky, Károly; Ronkay, Ferenc

    2014-11-01

    In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. NORM Management in the Oil & Gas Industry

    NASA Astrophysics Data System (ADS)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-01

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil & gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  7. Greening of orthopedic surgery.

    PubMed

    Lee, Rushyuan J; Mears, Simon C

    2012-06-01

    Every year, 4 billion pounds of waste are produced by health care facilities, and the amount continues to increase annually. In response, a movement toward greening health care has been building, with a particular focus on the operating room. Between 20% and 70% of health care waste originates from a hospital's operating room, and up to 90% of operating room waste is improperly sorted and sent for costly and unneeded hazardous waste processing. Recent successful changes include segregation of hospital waste, substitution of the ubiquitous polypropylene plastic wrap used for the sterilization and handling of surgical equipment with metal cases, and the reintroduction of reusable surgical gowns. Orthopedic-related changes include the successful reprocessing and reuse of external fixators, shavers, blades, burs, and tourniquets. These changes have been shown to be environmentally and economically beneficial. Early review indicates that these changes are feasible, but a need exists for further evaluation of the effect on the operating room and flow of the surgical procedure and of the risks to the surgeons and operating room staff. Other key considerations are the effects of reprocessed and reused equipment on patient care and outcome and the role of surgeons in helping patients make informed decisions regarding surgical care. The goals of this study were to summarize the amount and types of waste produced in hospitals and operating rooms, highlight the methods of disposal used, review disposal methods that have been developed to reduce waste and improve recycling, and explore future developments in greening health care. Copyright 2012, SLACK Incorporated.

  8. Nodes packaging option for Space Station application

    NASA Technical Reports Server (NTRS)

    So, Kenneth T.; Hall, John B., Jr.

    1988-01-01

    Space Station nodes packaging analyses are presented relative to moving environmental control and life support system (ECLSS) equipment from the habitability (HAB) module to node 4, in order to provide more living space and privacy for the crew, remove inherently noisy equipment from the crew quarter, retain crew waste collection and processing equipment in one location, and keep objectionable odor away from the living quarters. In addition, options for moving external electronic equipment from the Space Station truss to pressurized node 3 were evaluated in order to reduce the crew extravehicular-activity time required to install and maintain the equipment. Node size considered in this analysis is 3.66 m in diameter and 5.38 m long. The analysis shows that significant external electronic equipment could be relocated from the Space Station truss structure to node 3, and nonlife critical ECLSS HAB module equipment could be moved to node 4.

  9. Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1982-01-01

    The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.

  10. Optimization of Wastewater of Batik Buaran Pekalongan by Using Photocatalytic Membrane Bioreactor

    NASA Astrophysics Data System (ADS)

    Arifan, Fahmi; Nugraheni, FS; Lianandaya, Niken Elsa

    2018-02-01

    The purpose of this study is to determine the final COD concentration reduction by changing COD and MLSS concentration on the performance of submerged membrane bioreactor (MBRs) as a waste treatment of Batik in Buaran Pekalongan. The method is covers the process of seeding, the acclimatization process and the main process. Description of the process that we take an active mud from IPLT Buaran Pekalongan, then we analyze the sludge MLSS, MLVSS, COD, BOD, and TSS. After that we enter the active sludge in the bath nursery that has been given aerator (a tool for aeration) and made provision in the form of NPK nutrients and glucose at a ratio of 1:10. Activated sludge from the acclimatization process is inserted into the MBRs (membrane bioreactor submerged) that is equipped with an aerator. Then prepare influent(waste to be lowered concentration of COD). How, liquid waste of Batik Pekalongan Buaran COD diluted concentration of 10,000 mg / l and 15,000 mg / l, and then inserted in influent tub. After that liquid waste of Batik Buaran Pekalongan influent flowed into Photocatalytic Membrane Bioreactor, of MPB effluent flowed into the tub (result).

  11. DWPF STARTUP FRIT VISCOSITY MEASUREMENT ROUND ROBIN RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Edwards, Tommy B.; Russell, Renee L.

    2012-07-31

    A viscosity standard is needed to replace the National Institute of Standards and Technology (NIST) glasses currently being used to calibrate viscosity measurement equipment. The current NIST glasses are either unavailable or less than ideal for calibrating equipment to measure the viscosity of high-level waste glasses. This report documents the results of a viscosity round robin study conducted on the Defense Waste Processing Facility (DWPF) startup frit. DWPF startup frit was selected because its viscosity-temperature relationship is similar to most DWPF and Hanford high-level waste glass compositions. The glass underwent grinding and blending to homogenize the large (100 lb) batch.more » Portions of the batch were supplied to the laboratories (named A through H) for viscosity measurements following a specified temperature schedule with a temperature range of 1150 C to 950 C and with an option to measure viscosity at lower temperatures if their equipment was capable of measuring at the higher viscosities. Results were used to fit the Vogel-Tamman-Fulcher and Arrhenius equations to viscosity as a function of temperature for the entire temperature range of 460 C through 1250 C as well as the limited temperature interval of approximately 950 C through 1250 C. The standard errors for confidence and prediction were determined for the fitted models.« less

  12. Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study.

    PubMed

    Gu, Fu; Ma, Buqing; Guo, Jianfeng; Summers, Peter A; Hall, Philip

    2017-10-01

    Management of Waste Electrical and Electronic Equipment (WEEE) is a vital part in solid waste management, there are still some difficult issues require attentionss. This paper investigates the potential of applying Internet of Things (IoT) and Big Data as the solutions to the WEEE management problems. The massive data generated during the production, consumption and disposal of Electrical and Electronic Equipment (EEE) fits the characteristics of Big Data. Through using the state-of-the-art communication technologies, the IoT derives the WEEE "Big Data" from the life cycle of EEE, and the Big Data technologies process the WEEE "Big Data" for supporting decision making in WEEE management. The framework of implementing the IoT and the Big Data technologies is proposed, with its multiple layers are illustrated. Case studies with the potential application scenarios of the framework are presented and discussed. As an unprecedented exploration, the combined application of the IoT and the Big Data technologies in WEEE management brings a series of opportunities as well as new challenges. This study provides insights and visions for stakeholders in solving the WEEE management problems under the context of IoT and Big Data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Skylab

    NASA Image and Video Library

    1970-01-01

    This photograph was taken during installation of floor grids on the upper and lower floors inside the Skylab Orbital Workshop at the McDornell Douglas plant at Huntington Beach, California. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  14. 40 CFR 267.52 - What must be in the contingency plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste or hazardous waste constituents to air, soil, or surface water at the facility. (2) Describe... decontamination equipment), where this equipment is required. In addition, you must include the location and a...

  15. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges.

    PubMed

    Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui

    2016-11-01

    Waste electrical and electronic equipment (e-waste) is the most rapidly growing waste stream in the world, and the majority of the residues are openly disposed of in developing countries. Waste printed circuit boards (WPCBs) make up the major portion of e-waste, and their informal recycling can cause environmental pollution and health risks. Furthermore, the conventional disposal and recycling techniques-mechanical treatments used to recover valuable metals, including copper-are not sustainable in the long term. Chemical leaching is rapid and efficient but causes secondary pollution. Bioleaching is a promising approach, eco-friendly and economically feasible, but it is slower process. This review considers the recycling potential of microbes and suggests an integrated bioleaching approach for Cu extraction and recovery from WPCBs. The proposed recycling system should be more effective, efficient and both technically and economically feasible.

  16. 17 CFR 250.58 - Exemption of investments in certain nonutility companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities relating to electric and compressed natural gas powered vehicles; (iv) The sale of electric and gas appliances; equipment to promote new technologies, or new applications for existing technologies... and commercialization of technologies or processes that utilize coal waste by-products as an integral...

  17. Risk Management in Australian Science Education: A Model for Practice.

    ERIC Educational Resources Information Center

    Forlin, Peter

    1995-01-01

    Provides a framework that incorporates the diverse elements of risk management in science education into a systematic process and is adaptable to changing circumstances. Appendix contains risk management checklist for management, laboratory and storage, extreme biological and chemical hazards, protective equipment, waste disposal, electrical…

  18. Mercury Contamination - Amalgamate (contract with NFS and ADA). Demonstration of DeHg SM Process. Mixed Waste Focus Area. OST Reference Number 1675

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U.S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U.S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tysonmore » 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scalable equipment is needed that can produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-h worker exposure limit (50 mg/m3) for mercury, and perform the above economically.« less

  19. Alternative polymer separation technology by centrifugal force in a melted state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrovszky, Károly; Ronkay, Ferenc, E-mail: ronkay@pt.bme.hu

    2014-11-15

    Highlights: • Waste separation should take place at high purity. • Developed a novel, alternative separation method, where the separation occurred in a melted state by centrifugal forces. • Possibility of separation two different plastics into neat fractions. • High purity fractions were established at granulates and also at prefabricated blend. • Results were verified by DSC, optical microscopy and Raman spectroscopy. - Abstract: In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal forcemore » in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy.« less

  20. Selection of infectious medical waste disposal firms by using the analytic hierarchy process and sensitivity analysis.

    PubMed

    Hsu, Pi-Fang; Wu, Cheng-Ru; Li, Ya-Ting

    2008-01-01

    While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derived to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.

  1. Packaging, Transportation and Recycling of NPP Condenser Modules - 12262

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, G.M.

    2012-07-01

    Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ∼102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged inmore » inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ∼15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ∼15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ∼102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing facility. If any of these issues were not adequately resolved prior to the start of the outage, costly delays would result and the re-start of the power plant could be impacted. The main focus of this project was to find successful methods for keeping this material out of the landfills and preserving the natural resources. In addition, this operation provided a significant cost savings to the public utility by minimizing landfill disposal. The onsite portion of the project has been completed without impact to the overall outage schedule. By the date of presentation, the majority of the waste from the condenser replacement project will have been processed and recycled. The goals for this project included helping Energy Northwest maintain the outage schedule, package and characterize waste compliantly, perform transportation activities in compliance with 49CFR (Ref-1), and minimize the waste disposal volume. During this condenser replacement project, over three millions pounds of waste was generated, packaged, characterized and transported without injury or incident. It is anticipated that 95% of the waste generated during this project will not require landfill disposal. All of the waste is scheduled to be processed, decontaminated and recycled by June of 2012. (authors)« less

  2. Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems

    NASA Astrophysics Data System (ADS)

    Zhivkov, P. K.

    2018-05-01

    There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.

  3. BRIQUETTES FROM AGRICULTURAL RESIDUE AND OTHER WASTES FOR USE IN BIOMASS SYNGAS FUELED POWER GENERATION

    EPA Science Inventory

    The complete project will greatly increase the sustainability of small gasoline and/or diesel powered generators that are currently used to supplement or replace an unreliable power grid. This phase will develop the feedstock processing equipment needed to produce syngas bio-...

  4. 9 CFR 416.2 - Establishment grounds and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... 416.2 Section 416.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... where food is processed, handled, stored, or examined; where equipment and utensils are cleaned; and in... discharge waste water or sewage and piping systems that carry water for product manufacturing; and (6...

  5. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process, as shown in Figure 1. Borosilicate beads of various diameters were also procured for initial testing.« less

  6. Aerobic Food Waste Composting: Measurement of Green House Gases

    NASA Astrophysics Data System (ADS)

    Chung, J.

    2016-12-01

    Greenhouse gases (GHGs) are a major cause of global warming. While food waste composting can reduce the amount of waste being sent to traditional landfills, it also produces GHGs during the process. The objective of this research is to evaluate the GHGs emitted from an aerobic food composting machine, which is used in ISF. The Independent Schools Foundation Academy is a private independent school in Hong Kong with approximately 1500 students. Each academic year, the school produces 27 metric tons of food waste. In November 2013, the school installed a food waste composting system. Over the past 3 years, various improvements, such as installing a bio-filter to reduce the smell of the compost, have been made to the composting process. Meanwhile the compost is used by the primary students, as part of their experiential learning curriculum and organic farming projects. The composting process employs two machines: the Dehydra and A900 Rocket. The Dehydra reduces the mass of the food waste by separating the ground food waste and excessive water. The A900 Rocket, a composter made by Tidy Planet, processes food waste into compost in 14 days. This machine runs in an aerobic process, in which oxygen is used as an input gas and gases, such as carbon dioxide, are released. Carbon Dioxide is one of the greenhouse gases (GHGs). This research focuses on GHGs that are emitted from the A900 Rocket. The data is collected by the Gasmet DX 4015, a Fourier transform infrared spectroscopy (FTIR) multi gas analyser. This equipment measures the concentration (ppm) of different GHGs, including N2O, CO2, CH4, NH3 and CO.

  7. Computed Tomography For Internal Inspection Of Castings

    NASA Technical Reports Server (NTRS)

    Hanna, Timothy L.

    1995-01-01

    Computed tomography used to detect internal flaws in metal castings before machining and otherwise processing them into finished parts. Saves time and money otherwise wasted on machining and other processing of castings eventually rejected because of internal defects. Knowledge of internal defects gained by use of computed tomography also provides guidance for changes in foundry techniques, procedures, and equipment to minimize defects and reduce costs.

  8. Quantitative Characterization of Aqueous Byproducts from Hydrothermal Liquefaction of Municipal Wastes, Food Industry Wastes, and Biomass Grown on Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas

    Hydrothermal liquefaction (HTL) is a viable thermochemical process for converting wet solid wastes into biocrude which can be hydroprocessed to liquid transportation fuel blendstocks and specialty chemicals. The aqueous byproduct from HTL contains significant amounts (20 to 50%) of the feed carbon, which must be used to enhance economic sustainability of the process on an industrial scale. In this study, aqueous fractions produced from HTL of industrial and municipal waste were characterized using a wide variety of analytical approaches. Organic chemical compounds present in these aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compoundsmore » include organic acids, nitrogen compounds, alcohols, aldehydes, and ketones. Conventional gas chromatography and liquid chromatography methods were employed to quantify the identified compounds. Inorganic species, in the aqueous stream of hydrothermal liquefaction of these aqueous byproducts, also were quantified using ion chromatography and inductively coupled plasma optical emission spectroscopy. The concentrations of organic chemical compounds and inorganic species are reported, and the significance of these results is discussed in detail.« less

  9. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  10. Biochemical process of low level radioactive liquid simulation waste containing detergent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive elementmore » in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour{sup −1}.« less

  11. Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi

    2013-10-01

    Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Potential reuse of small household waste electrical and electronic equipment: Methodology and case study.

    PubMed

    Bovea, María D; Ibáñez-Forés, Valeria; Pérez-Belis, Victoria; Quemades-Beltrán, Pilar

    2016-07-01

    This study proposes a general methodology for assessing and estimating the potential reuse of small waste electrical and electronic equipment (sWEEE), focusing on devices classified as domestic appliances. Specific tests for visual inspection, function and safety have been defined for ten different types of household appliances (vacuum cleaner, iron, microwave, toaster, sandwich maker, hand blender, juicer, boiler, heater and hair dryer). After applying the tests, reuse protocols have been defined in the form of easy-to-apply checklists for each of the ten types of appliance evaluated. This methodology could be useful for reuse enterprises, since there is a lack of specific protocols, adapted to each type of appliance, to test its potential of reuse. After applying the methodology, electrical and electronic appliances (used or waste) can be segregated into three categories: the appliance works properly and can be classified as direct reuse (items can be used by a second consumer without prior repair operations), the appliance requires a later evaluation of its potential refurbishment and repair (restoration of products to working order, although with possible loss of quality) or the appliance needs to be finally discarded from the reuse process and goes directly to a recycling process. Results after applying the methodology to a sample of 87.7kg (96 units) show that 30.2% of the appliances have no potential for reuse and should be diverted for recycling, while 67.7% require a subsequent evaluation of their potential refurbishment and repair, and only 2.1% of them could be directly reused with minor cleaning operations. This study represents a first approach to the "preparation for reuse" strategy that the European Directive related to Waste Electrical and Electronic Equipment encourages to be applied. However, more research needs to be done as an extension of this study, mainly related to the identification of the feasibility of repair or refurbishment operations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.« less

  14. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less

  15. The stem cell laboratory: design, equipment, and oversight.

    PubMed

    Wesselschmidt, Robin L; Schwartz, Philip H

    2011-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources.

  16. Mercury contamination - Amalgamate (contract with NFS and ADA). Stabilize Elemental Mercury Wastes. Mixed Waste Focus Area. OST Reference Number 1675

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U. S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U. S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not beenmore » tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scaleable equipment is needed that can: produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-hour worker exposure limit (50 mg/m3) for mercury, and perform the above economically.« less

  17. Standard Waste Box Lid Screw Removal Option Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  18. Flotation separation of waste plastics for recycling-A review.

    PubMed

    Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian

    2015-07-01

    The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. THE FINAL DEMISE OF EAST TENNESSEE TECHNOLOGY PARK BUILDING K-33 Health Physics Society Annual Meeting West Palm Beach, Florida June 27, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2011-06-27

    Building K-33 was constructed in 1954 as the final section of the five-stage uranium enrichment cascade at the Oak Ridge Gaseous Diffusion Plant (ORGDP). The two original building (K-25 and K-27) were used to produce weapons grade highly enriched uranium (HEU). Building K-29, K-31, and K-33 were added to produce low enriched uranium (LEU) for nuclear power plant fuel. During ORGDP operations K-33 produced a peak enrichment of 2.5%. Thousands of tons of reactor tails fed into gaseous diffusion plants in the 1950s and early 1960s introducing some fission products and transuranics. Building K-33 was a two-story, 25-meters (82-feet) tallmore » structure with approximately 30 hectare (64 acres) of floor space. The Operations (first) Floor contained offices, change houses, feed vaporization rooms, and auxiliary equipment to support enrichment operations. The Cell (second) Floor contained the enrichment process equipment and was divided into eight process units (designated K-902-1 through K-902-8). Each unit contained ten cells, and each cell contained eight process stages (diffusers) for a total of 640 enrichment stages. 1985: LEU buildings were taken off-line after the anticipated demand for uranium enrichment failed to materialize. 1987: LEU buildings were placed in permanent shutdown. Process equipment were maintained in a shutdown state. 1997: DOE signed an Action Memorandum for equipment removal and decontamination of Buildings K-29, K-31, K-33; BNFL awarded contract to reindustrialize the buildings under the Three Buildings D&D and Recycle Project. 2002: Equipment removal complete and effort shifts to vacuuming, chemical cleaning, scabbling, etc. 2005: Decontamination efforts in K-33 cease. Building left with significant {sup 99}Tc contamination on metal structures and PCB contamination in concrete. Uranium, transuranics, and fission products also present on building shell. 2009: DOE targets Building K-33 for demolition. 2010: ORAU contracted to characterize Building K-33 for final disposition at the Environmental Management Waste Management Facility (EMWMF) in Oak Ridge. ORAU collected 439 samples from May and June. LATA Sharp started removing transite panels in September. 2011: LATA Sharp began demolition in January and expects the last waste shipment to EMWMF in September. Approximately 237,000 m{sup 3} (310,000 yd{sup 3}, bulked) of waste taken to EMWMF in 23,000 truckloads expected by project completion.« less

  20. Environmental Management Waste Management Facility Proxy Waste Lot Profile 6.999 for Building K-25 West Wing, East Tennessee Technology Park, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigsby V.P.

    2009-02-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement slab], roofing, structural steel supports, interior walls, and exterior walls) and support system components including the recirculation cooling water (RCW); electrical; communication; fire protection; ventilation; process coolant; process lube oil; utilities such as steam, water and drain lines; (2) Process Piping; (3) Seal Exhaust Headers; (4) Seal Exhaust Traps; (5) Process Valves; (6) Differential Blind Multipliers (DBM)/Partial Blind Multipliers (PBM); and (7) Aftercoolers (also known as Intercell coolers). Converters and compressors while components of the process gas system, are not included in this commingled waste lot. On January 6, 2009, a meeting was held with EPA, TDEC, DOE and the team for the sole purpose of finalizing the objectives, format, and content of WPXL 6.999. The objective of WPXL 6.999 was to provide a crosswalk to the building structure and the PGE components profiles. This was accomplished by providing tables with references to the specific section of the individual profiles for each of the WLs. There are two building profiles and eight PGE profiles. All of the waste identified in the individual profiles will be commingled, shipped, and disposed exclusively under WPXL 6.999. The individual profiles were provided to the EPA and Tennessee Department of Environment and Conservation (TDEC) for information purposes only. This summary WPXL 6.999 will be submitted to EPA, TDEC, and DOE for review and approval. The format agreed upon by the regulators and DOE form the basis for WPXL 6.999. The agreed format is found on pages v and vi of the CONTENTS section of this profile. The disposal of this waste will be executed in accordance with the Action Memorandum for the Decontamination and Decommissioning of the K-25 and K-27 Buildings, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2002), Removal Action Work Plan for the K-25 and K-27 Buildings, Process Equipment Removal and Demolition, K-25/K-27 Project, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008a); Waste Handling Plan for Demolition of the K-25 and K-27 Building Structures and Remaining Components Located at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005); and Waste Handling Plan for Building K-25 West Wing Process Equipment and Piping at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008b).« less

  1. New life of recycled rare earth-oxides powders for lighting applications.

    NASA Astrophysics Data System (ADS)

    Carlo Ricci, Pier; Murgia, Massimiliano; Carbonaro, Carlo Maria; Sgariotto, Serena; Stagi, Luigi; Corpino, Riccardo; Chiriu, Daniele; Grilli, Maria Luisa

    2018-03-01

    In this work we analysed the optical and structural properties of Ce:YAG regenerated phosphors. The concentrate resulted as the final product of an industrial recycling process of waste electrical and electronic equipment (WEEE), and in particular fluorescent powders coming from spent lamps treatment plant. The waste pristine materials were re-utilized without any further purification and or separation process as starting materials to obtain a YAG matrix (Y2Al5O12) doped with Cerium ions. We tested out the recovered concentrate against commercial Ce:YAG phosphors comparing their structural and optical properties by means of XRD measurements and steady time and time resolved luminescence. The analysis reveals that the new phosphors obtained by scrap powder have the same crystal structure as the commercial reference sample and comparable optical properties. In particular, the Ce-related emission efficiency has a quantum yield of about 0.75 when excited at 450 nm, in good agreement with our reference sample and with the one of commercial powder presently exploited in white LED. This achievement strongly suggests the possibility of a new life for the exhausted phosphors and a possible step forward to a complete circular process for lighting equipment.

  2. Engineering Tests of Experimental Ammonia Process Printer-Developer

    DTIC Science & Technology

    1950-07-06

    of materials and processes for photo reproduction by the amonia process. c. It was expected that the new machine might also pro- vide an interim...grease, oil, amonia waste can, and attachzmnts. A 6- inch diareter flexible tube is attached at the roar of the rxchine for carrying away the exhaust heat...by field troops. 2 TGIF 58 SUBJECT: Amonia Process Equipment Developed Under Project 8-35-09-005 19 Jan 50 7. An early reply would be required in

  3. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Meltermore » Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling« less

  4. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Marcelo Guimaraes, E-mail: marcel_g@uol.com.br; Magrini, Alessandra; Mahler, Claudio Fernando

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Literature of WEEE generation in developing countries is reviewed. Black-Right-Pointing-Pointer We analyse existing estimates of WEEE generation for Brazil. Black-Right-Pointing-Pointer We present a model for WEEE generation estimate. Black-Right-Pointing-Pointer WEEE generation of 3.77 kg/capita year for 2008 is estimated. Black-Right-Pointing-Pointer Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste mustmore » be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the 'boom' in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.« less

  5. Interior View of the Orbital Workshop

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This photograph is an interior view of the Orbital Workshop (OWS) upper level looking from the airlock hatch, showing the octagonal opening that separated the workshop's two levels. The trash airlock can be seen at center. The lower level of the OWS provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  6. Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Zhang, Y; Banks, C J

    2013-02-01

    Particle size may significantly affect the speed and stability of anaerobic digestion, and matching the choice of particle size reduction equipment to digester type can thus determine the success or failure of the process. In the current research the organic fraction of municipal solid waste was processed using a combination of a shear shredder, rotary cutter and wet macerator to produce streams with different particle size distributions. The pre-processed waste was used in trials in semi-continuous 'wet' and 'dry' digesters at organic loading rate (OLR) up to 6kg volatile solids (VS) m(-3)day(-1). The results indicated that while difference in the particle size distribution did not change the specific biogas yield, the digester performance was affected. In the 'dry' digesters the finer particle size led to acidification and ultimately to process failure at the highest OLR. In 'wet' digestion a fine particle size led to severe foaming and the process could not be operated above 5kgVSm(-3)day(-1). Although the trial was not designed as a direct comparison between 'wet' and 'dry' digestion, the specific biogas yield of the 'dry' digesters was 90% of that produced by 'wet' digesters fed on the same waste at the same OLR. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  8. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  9. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  10. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  11. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  12. IET control building (TAN620). equipment removed. Lube oil and waste ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). equipment removed. Lube oil and waste piping at upper right. Fire door on right. Rebar exposed in concrete of ceiling. INEEL negative no. HD-21-5-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. Biomass process handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  14. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  15. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  16. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  17. Design, fabrication and testing of a wet oxidation waste processing system. [for manned space flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The wet oxidation of sewage sludge during space flight was studied for water and gas recovery, and the elimination of overboard venting. The components of the system are described. Slurry and oxygen supply modules were fabricated and tested. Recommendations for redesign of the equipment are included.

  18. Environmental Support Specialist, Blocks VI & VII, 17-7. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text contains the final section of a four-part course to train environmental support specialists. Covered in the individual course blocks are maintenance of water and waste processing system components (external corrosion control, cathodic protection, drive equipment, pipelines and valves, meters and recorders, chemical…

  19. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  20. 40 CFR 60.482-5 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., provided the purged process fluid is not hazardous waste as defined in 40 CFR part 261. (c) In situ... Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for which Construction...-purge, closed-loop, or closed-vent system, except as provided in § 60.482-1(c) and paragraph (c) of this...

  1. 40 CFR 60.482-5 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., provided the purged process fluid is not hazardous waste as defined in 40 CFR part 261. (c) In situ... Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for which Construction...-purge, closed-loop, or closed-vent system, except as provided in § 60.482-1(c) and paragraph (c) of this...

  2. 40 CFR 60.482-5 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., provided the purged process fluid is not hazardous waste as defined in 40 CFR part 261. (c) In situ... Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for which Construction...-purge, closed-loop, or closed-vent system, except as provided in § 60.482-1(c) and paragraph (c) of this...

  3. NORM management in the oil and gas industry.

    PubMed

    Cowie, M; Mously, K; Fageeha, O; Nassar, R

    2012-01-01

    It has been established that naturally occurring radioactive material (NORM) may accumulate at various locations along the oil and gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become contaminated with NORM, and NORM can accumulate in the form of sludge, scale, scrapings, and other waste media. This can create a potential radiation hazard to workers, the general public, and the environment if certain controls are not established. Saudi Aramco has developed NORM management guidelines, and is implementing a comprehensive strategy to address all aspects of NORM management that aim to enhance NORM monitoring; control of NORM-contaminated equipment; control of NORM waste handling and disposal; and protection, awareness, and training of workers. The benefits of shared knowledge, best practice, and experience across the oil and gas industry are seen as key to the establishment of common guidance. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy, and its goals of establishing common guidance throughout the oil and gas industry. Copyright © 2012. Published by Elsevier Ltd.

  4. Heat Recovery Incinerator-Equipment Selection and Plant Layout for Safety, Human Engineering and Maintainability.

    DTIC Science & Technology

    1984-10-01

    16 4.2 Solid Waste Receiving and Storage Area ........................ 17 4.3 Equipment Location and Spacing...10OROS (Ccr4n-ifl. **,0d. d - -eet -.d tdonfffy by bltk -P-+) HRI, RAM, Human factors, HRI design, IRI safety, solid waste , energy recovery 10 AOSTNACT...health and safety hazards to individuals hand-sorting the conglomerate of solid waste , the potential of dangerous substances and inflammable or ex

  5. Waste Minimization Program. Air Force Plant 4.

    DTIC Science & Technology

    1986-02-01

    incinerator equipped with a secondary combustion chamber and venturi scrubber could serve AFP 4’s needs. As the wastes listed in Table 3-6 contain negligible... scrubber water treatment in the AFP 4eatment. waste treatment system. 2.3 ECONOMICS -Table 2-3 summarizes the projected economics of the recommendations for...control devices. These paint booths are equipped with water curtain air scrubbers which remove solids from the booth exhaust by providing - intimate

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Boardman; B. H. O'Brien; N. R. Soelberg

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in themore » New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.« less

  7. Skylab

    NASA Image and Video Library

    1972-01-01

    This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.

  8. Skylab Orbiter Workshop Illustration

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.

  9. Cutaway View of Skylab Orbital Workshop

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This illustration is a cutaway view of the Orbital Workshop (OWS) showing details of the living and working quarters. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment . The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.

  10. Hydrogen recovery from the thermal plasma gasification of solid waste.

    PubMed

    Byun, Youngchul; Cho, Moohyun; Chung, Jae Woo; Namkung, Won; Lee, Hyeon Don; Jang, Sung Duk; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

    2011-06-15

    Thermal plasma gasification has been demonstrated as one of the most effective and environmentally friendly methods for solid waste treatment and energy utilization in many of studies. Therefore, the thermal plasma process of solid waste gasification (paper mill waste, 1.2 ton/day) was applied for the recovery of high purity H(2) (>99.99%). Gases emitted from a gasification furnace equipped with a nontransferred thermal plasma torch were purified using a bag-filter and wet scrubber. Thereafter, the gases, which contained syngas (CO+H(2)), were introduced into a H(2) recovery system, consisting largely of a water gas shift (WGS) unit for the conversion of CO to H(2) and a pressure swing adsorption (PSA) unit for the separation and purification of H(2). It was successfully demonstrated that the thermal plasma process of solid waste gasification, combined with the WGS and PSA, produced high purity H(2) (20 N m(3)/h (400 H(2)-Nm(3)/PMW-ton), up to 99.99%) using a plasma torch with 1.6 MWh/PMW-ton of electricity. The results presented here suggest that the thermal plasma process of solid waste gasification for the production of high purity H(2) may provide a new approach as a future energy infrastructure based on H(2). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Decommissioning of the 247-F Fuel Manufacturing Facility at the Savannah River Site (SRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Joseph K.; Chostner, Stephen M.

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980's. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the need for naval fuel declined, the facility was shut down and underwent initial deactivation, which was completed in 1990. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping andmore » equipment systems, a significant volume of liquid remained after initial deactivation. After initial deactivation, a non-destructive assay of the process area identified approximately 17 ({+-}100%) kg of uranium held up in equipment and piping. The facility was placed in Surveillance and Maintenance mode until 2003, when the decision was made to perform final deactivation, and then decommission the facility. The following lessons were learned as a result of the D and D of building 247-F. Successful D and D of a major radiochemical process building requires significant up-front planning by a team of knowledgeable personnel led by a strong project manager. The level of uncertainty and resultant risk to timely, cost effective project execution was found to be high. Examples of the types of problems encountered which had high potential to adversely impact cost and schedule performance are described below. Low level and sanitary waste acceptance criteria do not allow free liquids in waste containers. These liquids, which are often corrosive, must be safely removed from the equipment before it is loaded to waste containers. Drained liquids must be properly managed, often as hazardous or mixed waste. Tapping and draining of process lines is a dangerous operation, which must be performed carefully. The temptation to become complacent when breaking into lines is great. Incidents of personnel exposure to liquids during draining are likely. Records from the initial 1990 deactivation led early work planners to assume the facility was cold, dark and dry. This turned out to be a poor assumption. Work instructions had to be modified to require that engineers evaluate each of several hundred process lines to identify the low point, where a tap and drain system could be installed to allow positive verification that the line was empty before the line was cut for removal. During the period between facility shut down in 1990 and the start of final deactivation in 2003, roof leaks had developed, allowing rain water to enter building 247-F, which provided an environment for mold growth. Sampling confirmed the presence of Stachybotrys chartarum, a toxic indoor mold that grows on wet cellulosic material, such as drywall paper. D and D workers in areas where this hazard was identified were required to where proper personal protective equipment, which complicated work execution. Discovery of the potential presence of uniquely hazardous chemicals such as shock sensitive compounds and toxic uranium hexafluoride became issues which required investigation and special handling strategies. Team access to subject matter experts, who could quickly provide the required guidance for safe material handling, was critical to keeping the project on schedule. In old legacy facilities, it is possible that the D and D workers will be exposed to undocumented energy sources such as energized electrical conductors and pipes containing hazardous materials that originate outside the boundaries of the facility. Significant effort must be expended on adequate mechanical and electrical isolation. Subdividing the facility into well defined zones for which detailed zone-specific end points could be developed proved to be a highly effective project management strategy. Waste management must be carefully planned. The rate of waste generation as the facility is converted from a structure to waste can frequently exceed the D and D team's resources to characterize, package, store and transport the waste to a disposal facility in a timely manner. This can lead to schedule delays and/or increased project cost.« less

  12. Listed waste determination report. Environmental characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idahomore » identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P & Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application.« less

  13. Selection of infectious medical waste disposal firms by using the analytic hierarchy process and sensitivity analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P.-F.; Wu, C.-R.; Li, Y.-T.

    2008-07-01

    While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derivedmore » to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.« less

  14. Biogas Upgrading and Waste-to-Energy | Bioenergy | NREL

    Science.gov Websites

    dots. Waste Feedstocks We inventory WTE feedstocks-waste fat, oil, and greases; municipal solid wastes " and points right to an icon of an Excel spreadsheet labeled "Equipment and Raw Material

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitratemore » waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.« less

  16. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome.

  17. Electronic waste (e-waste): material flows and management practices in Nigeria.

    PubMed

    Nnorom, Innocent Chidi; Osibanjo, Oladele

    2008-01-01

    The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT) in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue.

  18. The Performance of Underground Radioactive Waste Storage Tanks at the Savannah River Site: A 60-Year Historical Perspective

    DOE PAGES

    Wiersma, Bruce J.

    2014-02-08

    The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of themore » instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.« less

  19. Development potential of e-waste recycling industry in China.

    PubMed

    Li, Jinhui; Yang, Jie; Liu, Lili

    2015-06-01

    Waste electrical and electronic equipment (WEEE or e-waste) recycling industries in China have been through several phases from spontaneous informal family workshops to qualified enterprises with treatment fund. This study attempts to analyse the development potential of the e-waste recycling industry in China from the perspective of both time and scale potential. An estimation and forecast of e-waste quantities in China shows that, the total e-waste amount reached approximately 5.5 million tonnes in 2013, with 83% of air conditioners, refrigerators, washing machines, televisions sand computers. The total quantity is expected to reach ca. 11.7 million tonnes in 2020 and 20 million tonnes in 2040, which indicates a large increase potential. Moreover, the demand for recycling processing facilities, the optimal service radius of e-waste recycling enterprises and estimation of the profitability potential of the e-waste recycling industry were analysed. Results show that, based on the e-waste collection demand, e-waste recycling enterprises therefore have a huge development potential in terms of both quantity and processing capacity, with 144 and 167 e-waste recycling facilities needed, respectively, by 2020 and 2040. In the case that e-waste recycling enterprises set up their own collection points to reduce the collection cost, the optimal collection service radius is estimated to be in the range of 173 km to 239 km. With an e-waste treatment fund subsidy, the e-waste recycling industry has a small economic profit, for example ca. US$2.5/unit for television. The annual profit for the e-waste recycling industry overall was about 90 million dollars in 2013. © The Author(s) 2015.

  20. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration.

    PubMed

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-05-15

    Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36mm, with preferable conditions being 400rpm rotation speed, 5min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The Stem Cell Laboratory: Design, Equipment, and Oversight

    PubMed Central

    Wesselschmidt, Robin L.; Schwartz, Philip H.

    2013-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources. PMID:21822863

  2. A primer for health care managers: data sanitization, equipment disposal, and electronic waste.

    PubMed

    Andersen, Cathy M

    2011-01-01

    In this article, security regulations under the Health Insurance Portability and Accountability Act concerning data sanitization and the disposal of media containing stored electronic protected health information are discussed, and methods for effective sanitization and media disposal are presented. When disposing of electronic media, electronic waste-or e-waste-is produced. Electronic waste can harm human health and the environment. Responsible equipment disposal methods can minimize the impact of e-waste. Examples of how health care organizations can meet the Health Insurance Portability and Accountability Act regulations while also behaving responsibly toward the environment are provided. Examples include the environmental stewardship activities of reduce, reuse, reeducate, recover, and recycle.

  3. Household food waste separation behavior and the importance of convenience.

    PubMed

    Bernstad, Anna

    2014-07-01

    Two different strategies aiming at increasing household source-separation of food waste were assessed through a case-study in a Swedish residential area (a) use of written information, distributed as leaflets amongst households and (b) installation of equipment for source-segregation of waste with the aim of increasing convenience food waste sorting in kitchens. Weightings of separately collected food waste before and after distribution of written information suggest that this resulted in neither a significant increased amount of separately collected food waste, nor an increased source-separation ratio. After installation of sorting equipment in households, both the amount of separately collected food waste as well as the source-separation ratio increased vastly. Long-term monitoring shows that results where longstanding. Results emphasize the importance of convenience and existence of infrastructure necessary for source-segregation of waste as important factors for household waste recycling, but also highlight the need of addressing these aspects where waste is generated, i.e. already inside the household. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Can Small Countries Benefit from the E-waste Global Value Chain?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meine Pieter, Dijk van, E-mail: mpvandijk@iss.nl

    E-waste is a term used to cover items of all types of electrical and electronic equipment and its parts that have been discarded by the owners as waste without the intention of re-use, because this equipment has ceased to be of any value to its owners. E-waste is one of the fastestgrowing waste streams globally. Since the Rio Summit Earth summit organized by the United Nations in 1992, the concept of sustainability extends to rendering basic services such as Solid Waste Management and dealing with e-waste. People are afraid of e-waste because of its possible negative effects on health andmore » because it could pollute the environment. Indicators of unsustainable service provision concerninge-waste include irregular collection, open dumping, burning of solid and e-waste in open spaces. Often collection covers a small part of the country, cost recovery is limited or not existent, and one notes poor utilization of available resources with no or very limited reuse and recycling.« less

  5. PEP Run Report for Integrated Test A, Caustic Leaching in UFP-VSL-T01A, Oxidative Leaching in UFP-VSL-T02A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman-Leong, Consuelo E.; Bredt, Ofelia P.; Burns, Carolyn A.

    2009-12-04

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.”(a) The PEP, located in the Process Engineering Laboratory-West (PDLW) located in Richland, Washington, is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes.more » The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.« less

  6. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave.

    PubMed

    Zhang, Kaihua; Li, Bin; Wu, Yufeng; Wang, Wei; Li, Rubing; Zhang, Yi-Nan; Zuo, Tieyong

    2017-06-01

    The tremendous amount of end-of-life liquid crystal displays (LCDs) has become one of the prominent sources of waste electrical and electronic equipment (WEEE) in recent years. Despite the necessity of safe treatment, recycling indium is also a focus of waste LCD treatment because of the scarcity of indium. Based on the analyses of the structure of Indium Tin Oxide (ITO) glass, crushing is demonstrated to be not required. In the present research, a complete non-crushing leaching method was firstly adopted to recycle indium from waste LCDs, and the ultrasonic waves was applied in the leaching process. The results demonstrated that indium can be leached efficiently with even a low concentration of chloride acid (HCl) without extra heating. About 96.80% can be recovered in 60mins, when the ITO glass was leached by 0.8MHCl with an enhancement of 300W ultrasonic waves. The indium leaching process is abridged free from crushing, and proves to be of higher efficiency. In addition, the ultrasonic wave influence on leaching process was also explained combing with micron-scale structure of ITO glass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less

  8. Apollo experience report: Crew provisions and equipment subsystem

    NASA Technical Reports Server (NTRS)

    Mcallister, F.

    1972-01-01

    A description of the construction and use of crew provisions and equipment subsystem items for the Apollo Program is presented. The subsystem is composed principally of survival equipment, bioinstrumentation devices, medical components and accessories, water- and waste-management equipment, personal-hygiene articles, docking aids, flight garments (excluding the pressure garment assembly), and various other crew-related accessories. Particular attention is given to items and assemblies that presented design, development, or performance problems: the crew optical alinement sight system, the metering water dispenser, and the waste-management system. Changes made in design and materials to improve the fire safety of the hardware are discussed.

  9. Depleted uranium startup of spent-fuel treatment operations at ANL-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Mariani, R.D.; Bonomo, N.L.

    1995-12-31

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of Experimental Breeder Reactor II (EBR-II) spent nuclear fuel. This fuel will be treated using an electrometallurgical process in the fuel conditioning facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The process equipment is undergoing testing with depleted uranium in preparation for irradiated fuel operations during the summer of 1995.

  10. Evaluation of engineering foods for closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1982-01-01

    A nutritionally adequate and acceptable diet was evaluated and developed. A design for a multipurpose food plant is discussed. The types and amounts of foods needed to be regenerated in a partially closed ecological life support system (PCELSS) were proposed. All steps of food processes to be utilized in the multipurpose food plant of PCELSS were also considered. Equipment specifications, simplification of the proposed processes, and food waste treatment were analyzed.

  11. 29 CFR 570.63 - Occupations involved in the operation of balers, compactors, and paper-products machines (Order 12).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS AND... American National Standard for Equipment Technology and Operations for Wastes and Recyclable Materials... Standard ANSI Z245.5-2004 American National Standard for Equipment Technology and Operations for Wastes and...

  12. 29 CFR 570.63 - Occupations involved in the operation of paper-products machines, scrap paper balers, and paper...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR... National Standard for Equipment Technology and Operations for Wastes and Recyclable Materials—Baling... Standard ANSI Z245.2-1997 (“American National Standard for Equipment Technology and Operations for Wastes...

  13. 29 CFR 570.63 - Occupations involved in the operation of balers, compactors, and paper-products machines (Order 12).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS AND... American National Standard for Equipment Technology and Operations for Wastes and Recyclable Materials... Standard ANSI Z245.5-2004 American National Standard for Equipment Technology and Operations for Wastes and...

  14. 29 CFR 570.63 - Occupations involved in the operation of balers, compactors, and paper-products machines (Order 12).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS AND... American National Standard for Equipment Technology and Operations for Wastes and Recyclable Materials... Standard ANSI Z245.5-2004 American National Standard for Equipment Technology and Operations for Wastes and...

  15. 29 CFR 570.63 - Occupations involved in the operation of balers, compactors, and paper-products machines (Order 12).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS AND... American National Standard for Equipment Technology and Operations for Wastes and Recyclable Materials... Standard ANSI Z245.5-2004 American National Standard for Equipment Technology and Operations for Wastes and...

  16. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  17. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and Laboratory Reports, Part 1 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    1996-04-01

    Volume II (part 1 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the documentation and raw data, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  18. 76 FR 80747 - Approval and Promulgation of Implementation Plans; Oregon: New Source Review/Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... 340-228--Requirements for Fuel Burning Equipment and Fuel Sulfur Content 0020 Definitions 11/8/2007 0200 General Emission Standards for Fuel 11/8/2007 Burning Equipment, Sulfur Dioxide Standards. 0210... reduced sulfur (TRS) emission-related definitions. 0100 Wigwam Waste Burners, Wigwam Waste Burners 11/8...

  19. 76 FR 11243 - Solicitation of Input From Stakeholders To Inform the National Framework for Electronics Stewardship

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... a metal detector, and sign the EPA visitor log. All visitor bags are processed through an X- ray... equipment from solid waste landfills in the United States. EPA does, however, control how cathode ray tube... cell phone and computers/laptops or recover valuable resources, such as precious metals, plastics or...

  20. 10 CFR Appendix I to Part 110 - Illustrative List of Reprocessing Plant Components Under NRC Export Licensing Authority

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... dissolution, solvent extraction, and process liquor storage. There may also be equipment for thermal denitration of uranium nitrate, conversion of plutonium nitrate to oxide metal, and treatment of fission product waste liquor to a form suitable for long term storage or disposal. However, the specific type and...

  1. 10 CFR Appendix I to Part 110 - Illustrative List of Reprocessing Plant Components Under NRC Export Licensing Authority

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... dissolution, solvent extraction, and process liquor storage. There may also be equipment for thermal denitration of uranium nitrate, conversion of plutonium nitrate to oxide metal, and treatment of fission product waste liquor to a form suitable for long term storage or disposal. However, the specific type and...

  2. 10 CFR Appendix I to Part 110 - Illustrative List of Reprocessing Plant Components Under NRC Export Licensing Authority

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... dissolution, solvent extraction, and process liquor storage. There may also be equipment for thermal denitration of uranium nitrate, conversion of plutonium nitrate to oxide metal, and treatment of fission product waste liquor to a form suitable for long term storage or disposal. However, the specific type and...

  3. Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of Olin Chemicals Group, Charleston, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, M.S.

    1983-08-01

    A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at Olin Chemicals Group (SIC-2800, SIC-2812, SIC-2819), Charleston, Tennessee in May 1982. Hazardous wastes generated at the facility included brine sludge, thick mercury (7439954) (Hg) butter, and calcium-hypochlorite (7778543). An estimated 8500 tons of waste were disposed of annually. The Hg waste underwent a retorting process that recycled the Hg. The final detoxified waste was land filled. Brine sludge and calcium-hypochlorite were also land filled. No controls beyond those normally used at such sites were found at the landfills. Periodic monitoring of Hg vapor concentrationsmore » was conducted by the company. Medical monitoring of urine for Hg exposure was conducted. Specific limits were set for urinary Hg concentrations. When these limits were exceeded the workers were removed from exposure. Personal protective equipment consisted of hard hats, safety glasses, and spirators specially designed for Hg exposure. The author concludes that the hazardous waste disposal and treatment operations at the facility are well controlled.« less

  4. Presentation of the 2007 Richard S. Hodes, M.D. Honor Lecture Award

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, L.

    Perma-Fix Environmental Services, Inc. Chief Operating Officer Larry McNamara is the 2007 recipient of the distinguished Richard S. Hodes, M.D. Honor Lecture Award from the Southeast Compact Commission for Low-Level Radioactive Waste Management. This award recognizes Mr. McNamara's innovation in the commercialization of mixed waste treatment processes for the nuclear industry, and the significant role that these innovations have played solving low-level radioactive waste (LLRW) management problems in the United States with specific emphasis on low-level mixed wastes. Low-level mixed wastes (LLMW) have historically been the most difficult wastes to treat because of the specialized equipment, permits and experience neededmore » to deal with a large variety of hazardous constituents. Prior to innovations in the mixed waste treatment industry championed by Mr. McNamara, wastes were stored at generator sites around the country in regulated storage areas, at great cost, and in many cases for decades. In this paper, Mr. McNamara shares lessons he has learned over the past seven years in developing and implementing innovative waste management solutions that have helped solve one of the nation's biggest challenges. He also describes the future challenges facing the industry. (authors)« less

  5. The economics of the disposal of sewage and trade effluents*

    PubMed Central

    Townend, C. B.

    1959-01-01

    In this review of the economics of the disposal of sewage and trade wastes, the author touches on all aspects of the subject, from the annual costs of sewerage and sewage-disposal services in England and Wales, and what he terms the “uneconomics” of pollution of natural waters, to the financing of capital expenditure on the construction of new sewage works and equipment and on alterations to existing works. He discusses the purposes and relative costs of the various processes in the treatment of domestic sewage and outlines the special problems involved in the disposal of trade wastes. PMID:13839093

  6. The economics of the disposal of sewage and trade effluents.

    PubMed

    TOWNEND, C B

    1959-01-01

    In this review of the economics of the disposal of sewage and trade wastes, the author touches on all aspects of the subject, from the annual costs of sewerage and sewage-disposal services in England and Wales, and what he terms the "uneconomics" of pollution of natural waters, to the financing of capital expenditure on the construction of new sewage works and equipment and on alterations to existing works. He discusses the purposes and relative costs of the various processes in the treatment of domestic sewage and outlines the special problems involved in the disposal of trade wastes.

  7. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal...-contaminated equipment and other items that are disposed of as waste, through the application of waste...

  8. Chernobyl NPP: Completion of LRW Treatment Plant and LRW Management on Site - 12568

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Denis; Adamovich, Dmitry; Klimenko, I.

    2012-07-01

    Since a beginning of ChNPP operation, and after a tragedy in 1986, a few thousands m3 of LRW have been collected in a storage tanks. In 2004 ChNPP started the new project on creation of LRW treatment plant (LRWTP) financed from EBRD fund. But it was stopped in 2008 because of financial and contract problems. In 2010 SIA RADON jointly with Ukrainian partners has won a tender on completion of LRWTP, in particular I and C system. The purpose of LRTP is to process liquid rad-wastes from SSE 'Chernobyl NPP' site and those liquids stored in the LRWS and SLRWSmore » tanks as well as the would-be wastes after ChNPP Power Units 1, 2 and 3 decommissioning. The LRTP design lifetime - 20 years. Currently, the LRTP is getting ready to perform the following activities: 1. retrieval of waste from tanks stored at ChNPP LWS using waste retrieval system with existing equipment involved; 2. transfer of retrieved waste into LRTP reception tanks with partial use of existing transfer pipelines; 3. laboratory chemical and radiochemical analysis of reception tanks contest to define the full spectrum of characteristics before processing, to acknowledge the necessity of preliminary processing and to select end product recipe; 4. preliminary processing of the waste to meet the requirements for further stages of the process; 5. shrinkage (concentrating) of preliminary processed waste; 6. solidification of preliminary processed waste with concrete to make a solid-state (end product) and load of concrete compound into 200-l drums; 7. curing of end product drums in LRTP curing hall; 8. radiologic monitoring of end product drums and their loading into special overpacks; 9. overpack radiological monitoring; 10. send for disposal (ICSRM Lot 3); The current technical decisions allow to control and return to ChNPP of process media and supporting systems outputs until they satisfy the following quality norms: salt content: < 100 g/l; pH: 1 - 11; anionic surface-active agent: < 25 mg/l; oil dissipated in the liquid: < 2 mg/l; overall gamma-activity: < 3,7 x10{sup 5} Bq/l. (authors)« less

  9. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    PubMed

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.

    PubMed

    Jiang, Wu; Jia, Li; Zhen-Ming, Xu

    2009-01-15

    The electrostatic separation is an effective method for recycling waste electrical and electronic equipment (WEEE). The efficiency of electrostatic separation processes depends on the ability of the separator. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycling metals and plastics from waste printed circuit board (PCB). However, its industry application still faces some problems, such as: the further disposal of the middling products of the separation process; the balance of the production capacity and the good separation efficiency; the separation of the fine granular mixture and the stability of the separation process. A new "two-roll-type corona-electrostatic separator" was built to overcome the limitation of the classical one. The experimental data were discussed and the results showed that the outcome of the separation process was improved by using the new separator. Compared with the classical machine, the mass of conductive products increases 8.9% (groups 2 and 3) and10.2% (group 4) while the mass of the middling products decreases 45% (groups 2 and 3) and 31.7% (group 4), respectively. The production capacity of the new machine increases, and the stability of the separation process is enhanced.

  11. Biogasification of Walt Disney World biomass waste blend. Annual report, January-December 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Chynoweth, D.P.; Janulis, J.

    1984-09-01

    The objective of this research is to develop efficient processes for conversion of biomass-waste blends to methane and other resources. To evaluate the technical and economic feasibility, an experimental test unit (ETU) was designed and installed at the Reedy Creek Wastewater Treatment Plant at Walt Disney World in Lake Buena Vista, Florida. The facility integrates a biomethanogenic conversion process with a wastewater treatment process employing water hyacinth ponds for secondary and tertiary treatment of sewage. Harvested water hyacinth is subsequently combined with sludge from the primary wastewater clarifier and fed at 1-wet-ton per day to the ETU digester. This resultsmore » in the production of methane and other useful byproducts. Design, procurement of equipment, and installation has been completed. Start-up of the ETU is in progress.« less

  12. Electronic waste (e-waste): Material flows and management practices in Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nnorom, Innocent Chidi; Osibanjo, Oladele

    The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT)more » in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue.« less

  13. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.

    PubMed

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A

    2015-11-01

    Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less

  15. Data Package for Secondary Waste Form Down-Selection—Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey; Westsik, Joseph H.

    2011-09-05

    Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations andmore » leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.« less

  16. Quality control by HyperSpectral Imaging (HSI) in solid waste recycling: logics, algorithms and procedures

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2014-03-01

    In secondary raw materials and recycling sectors, the products quality represents, more and more, the key issue to pursuit in order to be competitive in a more and more demanding market, where quality standards and products certification play a preheminent role. These goals assume particular importance when recycling actions are applied. Recovered products, resulting from waste materials, and/or dismissed products processing, are, in fact, always seen with a certain suspect. An adequate response of the industry to the market can only be given through the utilization of equipment and procedures ensuring pure, high-quality production, and efficient work and cost. All these goals can be reached adopting not only more efficient equipment and layouts, but also introducing new processing logics able to realize a full control of the handled material flow streams fulfilling, at the same time, i) an easy management of the procedures, ii) an efficient use of the energy, iii) the definition and set up of reliable and robust procedures, iv) the possibility to implement network connectivity capabilities finalized to a remote monitoring and control of the processes and v) a full data storage, analysis and retrieving. Furthermore the ongoing legislation and regulation require the implementation of recycling infrastructure characterised by high resources efficiency and low environmental impacts, both aspects being strongly linked to the waste materials and/or dismissed products original characteristics. For these reasons an optimal recycling infrastructure design primarily requires a full knowledge of the characteristics of the input waste. What previously outlined requires the introduction of a new important concept to apply in solid waste recycling, the recycling-oriented characterization, that is the set of actions addressed to strategically determine selected attributes, in order to get goaloriented data on waste for the development, implementation or improvement of recycling strategies. The problems arising when suitable HyperSpectral Imaging (HSI) based procedures have to be developed and implemented to solid waste products characterization, in order to define time efficient compression and interpretation techniques, are thus analyzed and discussed in the following. Particular attention was also addressed to define an integrated hardware and software (HW and SW) platform able to perform a non-intrusive, non-contact and real-time analysis and embedding a core of analytical logics and procedures to utilize both at laboratory and industrial scale. Several case studies, referred to waste plastics products, are presented and discussed.

  17. CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.

    2013-01-09

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase-1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Ralph L.; Seitz, Roger R.; Dixon, Kenneth L.

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the informationmore » necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.« less

  19. Waste Printed Circuit Board (PCB) Recycling Techniques.

    PubMed

    Ning, Chao; Lin, Carol Sze Ki; Hui, David Chi Wai; McKay, Gordon

    2017-04-01

    With the development of technologies and the change of consumer attitudes, the amount of waste electrical and electronic equipment (WEEE) is increasing annually. As the core part of WEEE, the waste printed circuit board (WPCB) is a dangerous waste but at the same time a rich resource for various kinds of materials. In this work, various WPCB treatment methods as well as WPCB recycling techniques divided into direct treatment (landfill and incineration), primitive recycling technology (pyrometallurgy, hydrometallurgy, biometallurgy and primitive full recovery of NMF-non metallic fraction), and advanced recycling technology (mechanical separation, direct use and modification of NMF) are reviewed and analyzed based on their advantages and disadvantages. Also, the evaluation criteria are discussed including economic, environmental, and gate-to-market ability. This review indicates the future research direction of WPCB recycling should focus on a combination of several techniques or in series recycling to maximize the benefits of process.

  20. Converting baker's waste into alcohol. Revised final progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halsey, R.; Wilson, P.B.

    All types of baker's waste (including waste from candy manufacturers) can be converted into alcohol to be used as a fuel. All types of waste at any stage in process can be converted, such as: basic ingredients (including floor sweepings); dry mixes (including floor sweepings); dough at any stage; partially or fully cooked products; and day old returned products. The basic steps are the same, only the initial preparation will vary slightly. The variation will be: amount of water to be added and amount and type of nutrients (if any) to be added. The basic steps are: slurrying, liquefying tomore » put starch into liquid state, saccharifying to convert starch into fermentable sugars, fermentation to convert sugars into alcohol, and distillation to separate the alcohol from the mash. Each step is discussed in detail along with problems that may arise. Directions are given and materials (enzymes, yeast, etc.) and equipment are descibed briefly.« less

  1. International E-Waste Management Network (IEMN)

    EPA Pesticide Factsheets

    EPA and the Environmental Protection Administration Taiwan (EPAT) have collaborated since 2011 to build global capacity for the environmentally sound management of waste electrical and electronic equipment (WEEE), which is commonly called e-waste.

  2. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    NASA Astrophysics Data System (ADS)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-02-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper.

  3. Process Window for Direct Recycling of Acrylonitrile-Butadiene-Styrene and High-Impact Polystyrene from Electrical and Electronic Equipment Waste.

    PubMed

    Vazquez, Yamila V; Barbosa, Silvia E

    2017-01-01

    The aim of this paper is to assess recycling process window of ABS (Acrylonitrile-Butadiene-Styrene) and HIPS (High impact Polystyrene) from WEEE (waste from electrical and electronic equipment) through a final properties/structure screening study on their blends. Main motivation is to evaluate which amount of one plastic WEEE can be included into the other at least keeping their properties. In this sense, a wider margin of error during sorting could be admitted to obtain recycling materials with similar technological application of recycled ABS and HIPS by themselves. Results are discussed in terms of final blend structure, focusing in the interaction, within blends, of copolymers phases and fillers presents in WEEE. The comparative analysis of mechanical performance and morphology of HIPS/ABS blends indicates that the addition of 50wt% HIPS to ABS even improves 50% the elongation at break maintaining the strength. On the opposite, HIPS maintains its properties with 20wt% of ABS added. This study allows enlarging composition process window of recycling plastic WEEE for similar applications. This could be a sustainable way to improve benefit of e-scrap with low costs and easy processability. In consequence, social interest in the recycling of this kind of plastic scrap could be encourage from either ecological or economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Global responses for recycling waste CRTs in e-waste.

    PubMed

    Singh, Narendra; Li, Jinhui; Zeng, Xianlai

    2016-11-01

    The management of used cathode ray tube (CRT) devices is a major problem worldwide due to rapid uptake of the technology and early obsolescence of CRT devices, which is considered an environment hazard if disposed improperly. Previously, their production has grown in step with computer and television demand but later on with rapid technological innovation; TVs and computer screens has been replaced by new products such as Liquid Crystal Displays (LCDs) and Plasma Display Panel (PDPs). This change creates a large volume of waste stream of obsolete CRTs waste in developed countries and developing countries will be becoming major CRTs waste producers in the upcoming years. We studied that there is also high level of trans-boundary movement of these devices as second-hand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. Moreover, the current global production of e-waste is estimated to be '41million tonnes per year' where a major part of the e-waste stream consists of CRT devices. This review article provides a concise overview of world's current CRTs waste scenario, namely magnitude of the demand and processing, current disposal and recycling operations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Waste management in hospitals. Current situation in the state of North Rhine-Westphalia].

    PubMed

    Popp, W; Hansen, D; Hilgenhöner, M; Grandek, M; Heinemann, A; Blättler, T

    2009-07-01

    In 20 hospitals in North Rhine-Westphalia in-plant handling wastes and the delivery of the waste to the disposer were examined. Deficits were seen regarding risk assessment and operating instructions, support by company doctors, personal protection equipment, and break areas for the waste collecting personnel. Also the qualification of the waste management officer and his/her time contingent, correct declaration of the wastes, the training of the waste collecting personnel, the cleaning of multi-use containers and transportation vehicles, storage of the wastes at the collecting points, and the use of sharp collecting boxes were to be partly criticized. Consequences and recommendations are given, concerning the company's obligations (e.g., provide risk assessment, operating instructions), waste management officer (e.g., qualification, enough time contingent, regular inspections), waste collecting personnel (e.g., training courses), industrial safety (e.g., protection equipment, break area wash places), company doctors, transportation vehicles in the house (e.g., regular cleaning), one-way collectors (e.g., labelling at the site of the collection), multi-use collectors (e.g., cleaning), and compressing containers (e.g., larger maintenance openings).

  6. Ideas To Save Electricity

    ERIC Educational Resources Information Center

    Gardner, John C.

    1974-01-01

    Significant energy savings can be effected through stopping obvious waste of water, electricity, and heat; purchasing equipment with the correct voltage and horsepower; equipment maintenance; and redesigning or replacing obsolete or inefficient equipment. (Author/MF)

  7. Chemical hazards associated with treatment of waste electrical and electronic equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsydenova, Oyuna; Bengtsson, Magnus, E-mail: bengtsson@iges.or.jp

    2011-01-15

    This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associatedmore » with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.« less

  8. Cleaner production options for reducing industrial waste: the case of batik industry in Malang, East Java-Indonesia

    NASA Astrophysics Data System (ADS)

    Sirait, M.

    2018-01-01

    The aim of this research is to conduct cleaner production options for improving the environmental performance during the production of batik industry, the case of UKM batik, Malang, East Java. Batik industry is one of small and medium textile industry which has contribution to economic growth in Malang. However, during production the batik, it generates wastewater that has potential to decrease the environmental performance. Wastewater from Celaket batik industry has BOD, COD, TSS, and pH level is far larger than the threshold of water quality standard as a result of use chemical substance during the dyes processing. In order to prevent generating wastewater, this study utilized cleaner production options, such as substitution of input material.Substitution of input material for dyes process was implemented by replacement chemical dyes (e.g.indigosol, nafthol, rapid) with natural dyes (e.g. Indigofero Tintoria). Modifying of technology/equipment was conducted by developing wastewater treatment equipment to reduce waste of batik production. The implementation of this strategy was carried out by changing input material from chemical dyes with natural dyes. The CP uptake could reduce significantly the environmental impact in term of reduction of COD, BOD, and TSS.

  9. 75 FR 82005 - Agency Information Collection Activities; Proposed Collection; Comment Request; Hazardous Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... hazardous waste or hazardous constituents to air, soil, or surface water. This information is also needed to... environment from hazardous waste accumulation practices, including contamination from equipment leaks and...

  10. International Space Station USOS Waste and Hygiene Compartment Development

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Broyan, James Lee, Jr.; Gelmis, Karen; Philistine, Cynthia; Balistreri, Steven

    2007-01-01

    The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. Additional hardware is planned for the United States Operational Segment (USOS) to support expansion of the crew to six person capability. The additional hardware will be integrated in an ISS standard equipment rack structure that was planned to be installed in the Node 3 element; however, the ISS Program Office recently directed implementation of the rack, or Waste and Hygiene Compartment (WHC), into the U.S. Laboratory element to provide early operational capability. In this configuration, preserved urine from the WHC waste collection system can be processed by the Urine Processor Assembly (UPA) in either the U.S. Lab or Node 3 to recover water for crew consumption or oxygen production. The human waste collection hardware is derived from the Service Module system and is provided by RSC-Energia. This paper describes the concepts, design, and integration of the WHC waste collection hardware into the USOS including integration with U.S. Lab and Node 3 systems.

  11. Industrial waste water in Bangkok, Thailand: Definitional mission report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfrang, W.

    A definitional mission visited Thailand between February 1 and 7, 1992 to study the market opportunities for US manufacturers in providing pollution control equipment. Thailand presently lacks industrial machinery required for pollution control equipment. Consequently, this equipment must be imported for both industrial and municipal waste treatment facilities. The US has both the applicable technology and manufactured goods to serve the market. There is, however, stiff competition from Europe and especially Japan, who offer financial assistance at preferential rates for these types of projects.

  12. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualifiedmore » the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)« less

  13. Trip report. Eurochemic company assistance: Hanford Atomic Products Operation spent fuel processing technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shank, E.M.

    1959-06-23

    Information obtained from HAPO during visit by M.K. Twichell, UCNC, and E.M. Shank, ORNL, is given. Included are the tentative procedures for obtaining and transmitting information to the Eurochemic company. Discussions are given on pulsed columns, corrosion, puse generators, centrifuges, valves, in-line instrumentation, evaporators, resin column design, off-gas processing, solvent recovery, liquid-waste handling, process control, equipment decontamination, criticality, radiation protection, diluent, and solvent stability, backmixing in a pulsed column, and use of 40% TBP in the purex flowsheet.

  14. Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate.

    PubMed

    Alzate, Andrea; López, Maria Esperanza; Serna, Claudia

    2016-11-01

    This paper presents a novel methodology to recover gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate ((NH 4 ) 2 S 2 O 8 ). Gold was recovered as a fine coating using substrate oxidation without shredding or grinding process. The WEEE sample was characterized giving values of Au: 1.05g/kg, Fe: 86.00g/kg, Ni: 73.64g/kg, Cu: 26.65g/kg. The effect of (NH 4 ) 2 S 2 O 8 concentration (0.22-1.10M), oxygen (0.0-1.4L/min) and L/S ratio (10-30mL/g) on the main responses (substrate oxidation and Au recovery) was investigated implementing response surface methodology with numerical optimization. A quadratic model was developed and quantities greater than 98% of Au were recovered. The findings presented suggest that, optimized quantities of ammonium persulfate in aqueous highly oxygenated media could be used to extract superficial gold from WEEE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cutaway View of the Skylab Orbital Workshop

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This illustration is a cutaway view of a half of the Skylab Orbital Workshop (OWS) showing details of the living and working quarters. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.

  16. Guidelines for Risk-Based Changeover of Biopharma Multi-Product Facilities.

    PubMed

    Lynch, Rob; Barabani, David; Bellorado, Kathy; Canisius, Peter; Heathcote, Doug; Johnson, Alan; Wyman, Ned; Parry, Derek Willison

    2018-01-01

    In multi-product biopharma facilities, the protection from product contamination due to the manufacture of multiple products simultaneously is paramount to assure product quality. To that end, the use of traditional changeover methods (elastomer change-out, full sampling, etc.) have been widely used within the industry and have been accepted by regulatory agencies. However, with the endorsement of Quality Risk Management (1), the use of risk-based approaches may be applied to assess and continuously improve established changeover processes. All processes, including changeover, can be improved with investment (money/resources), parallel activities, equipment design improvements, and standardization. However, processes can also be improved by eliminating waste. For product changeover, waste is any activity not needed for the new process or that does not provide added assurance of the quality of the subsequent product. The application of a risk-based approach to changeover aligns with the principles of Quality Risk Management. Through the use of risk assessments, the appropriate changeover controls can be identified and controlled to assure product quality is maintained. Likewise, the use of risk assessments and risk-based approaches may be used to improve operational efficiency, reduce waste, and permit concurrent manufacturing of products. © PDA, Inc. 2018.

  17. Redesign 3 R Machine as a Refrigerant Waste Treatment Alternative in Environmental Rescue

    NASA Astrophysics Data System (ADS)

    Negara, I. P. S.; Arsawan, I. M.

    2018-01-01

    Cooling machine technologies really affect nowadays’ modern life, not only limited in enhancement of life quality and comfort, but it has also reached the essential things of humans’ life supporter (Arora, 2001). Cooling machine technologies have direct contribution toward environmental damage such as depletion of ozone layer and global warming through synthetic refrigerant waste and leakage (CFC and HFC) to environment. The refrigerant release to the environment is 60% of the service sector. Destructive characteristics of ozone possessed by CFC were first proposed by Rowland and Molina which were then supported by yard measurement. It is estimated that ozone layer damage occurs for about 3% every decade. The ozone layer located in the stratosphere is functioned to prevent ultraviolet-B ray from entering into earth surface. This Ultraviolet-B is suspected to be the cause of health problem for humans and disorder for plants on earth. As for the purpose of this research is to obtain a product design of refrigerant waste processing system (recovery and recycle refrigerant) as well as to acknowledge the work method (COP) of cooling machines that use CFC refrigerant (R-12) as the result of recovery and recycle compared to CFC refrigerant (R-12)/pure R134a. One method that can be used is by redesigning existing equipment namely 3R machine that cannot be used anymore thus it can be reused. This research will be conducted through modifying the existing 3R machine therefore it can be reused and be easily operated as well as doing the maintenance, after that the refrigerant as the result of recovery will be tried on a refrigeration system and a test of refrigeration system work method will be conducted by using the refrigerant recycle product which is obtained and compared with the work method of the one with pure refrigeration.The result has been achieved that the redesign product of refrigerant waste processing equipment can be reused and able to perform the recovery, recycle and richarging process, although using semi-automatic control system. So the use of car air conditioning refrigerant can be more efficient. With the functioning of 3R mesi is expected wastes refrigerant is not wasted which is one of the efforts to save the environment.

  18. Lean oncology: a new model for oncologists.

    PubMed

    Montesarchio, Vincenzo; Grimaldi, Antonio Maria; Fox, Bernard A; Rea, Antonio; Marincola, Francesco M; Ascierto, Paolo A

    2012-04-25

    The history of the term Lean is relatively recent and originates from the Toyota Production System (TPS). The term "Lean" means "thin", which refers to a mental process, operational, productive, no-frills, quick but not hasty, consequential to the previous event. The Lean process flows seamlessly into the result, eliminates unnecessary complications to the effect, prevents unnecessary equipment processes. The idea is to 'do more with less', like using the (few) available resources in the most productive way possible, through the elimination of all types of waste that inevitably accompanies every stage of a production process. Lean management is primarily a management philosophy, a system of values and behaviors that goes beyond the mere application of the instrument and that, once internalized, will form the nucleus of the corporate culture. "Lean Oncology" is a term coined to identify a methodology of care and treatment to cancer patients, consisting on process simplification, streamlining of the organizational and routes of drug treatment, detection and elimination of waste. Its main objective is the centrality of the patient.

  19. Integrated environmental policy: A review of economic analysis.

    PubMed

    Wiesmeth, Hans; Häckl, Dennis

    2017-04-01

    Holistic environmental policies, which emerged from a mere combination of technical activities in waste management some 40 years ago, constitute the most advanced level of environmental policies. These approaches to environmental policy, among them the policies in integrated waste management, attempt to guide economic agents to an environment-friendly behaviour. Nevertheless, current holistic policies in waste management, including policies on one-way drinks containers and waste electrical and electronic equipment, and implementations of extended producer responsibility with further applications to waste electrical and electronic equipment, reveal more or less severe deficiencies - despite some positive examples. This article relates these policy failures, which are not necessarily the result of an insufficient compliance with the regulations, to missing constitutive elements of what is going to be called an 'integrated environmental policy'. This article therefore investigates - mostly from a practical point of view - constitutive elements, which are necessary for a holistic policy to serve as a well-functioning allocation mechanism. As these constitutive elements result from a careful 'integration' of the environmental commodities into the economic allocation problems, we refer to these policies as 'integrated environmental policies'. The article also discusses and illustrates the main steps of designing such a policy - for waste electrical and electronic equipment and a (possible) ban of Glyphosat in agriculture. As these policies are dependent on economic and political stability with environmental awareness sufficiently developed, the article addresses mostly waste management policies in highly industrialised countries.

  20. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authoritymore » of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.« less

  1. Total energy food plant 21 million gallon ethanol facility

    NASA Astrophysics Data System (ADS)

    1981-10-01

    The Phase I Engineering study includes the following: process description, waste water treatment plant, material summary, energy chart, capital cost estimate, equipment list, personnel requirements, drawings list, specifications list, and project schedule. The economic and financial feasibility of the technical process, and environmental, health, safety, and socio-economic assessments for the project are reported. The costs for extending the following utilities to the property line of the selected site are presented: potable water, sewer system, electricity, roads for truck traffic, and rail service.

  2. Using Lean methodologies to streamline processing of requests for durable medical equipment and supplies for children with complex conditions.

    PubMed

    Fields, Elise; Neogi, Smriti; Schoettker, Pamela J; Lail, Jennifer

    2017-12-12

    An improvement team from the Complex Care Center at our large pediatric medical center participated in a 60-day initiative to use Lean methodologies to standardize their processes, eliminate waste and improve the timely and reliable provision of durable medical equipment and supplies. The team used value stream mapping to identify processes needing improvement. Improvement activities addressed the initial processing of a request, provider signature on the form, returning the form to the sender, and uploading the completed documents to the electronic medical record. Data on lead time (time between receiving a request and sending the completed request to the Health Information Management department) and process time (amount of time the staff worked on the request) were collected via manual pre- and post-time studies. Following implementation of interventions, the median lead time for processing durable medical equipment and supply requests decreased from 50 days to 3 days (p < 0.0001). Median processing time decreased from 14min to 9min (p < 0.0001). The decrease in processing time realized annual cost savings of approximately $11,000. Collaborative leadership and multidisciplinary training in Lean methods allowed the CCC staff to incorporate common sense, standardize practices, and adapt their work environment to improve the timely and reliable provision of equipment and supplies that are essential for their patients. The application of Lean methodologies to processing requests for DME and supplies could also result in a natural spread to other paperwork and requests, thus avoiding delays and potential risk for clinical instability or deterioration. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Property-close source separation of hazardous waste and waste electrical and electronic equipment--a Swedish case study.

    PubMed

    Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik

    2011-03-01

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. 40 CFR 220.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agents, radioactive materials, chemicals, biological and laboratory waste, wreck or discarded equipment, rock, sand, excavation debris, industrial, municipal, agricultural, and other waste, but such term does... matter of any kind or description, including, but not limited to, dredged material, solid waste...

  5. Solid waste management in Kolkata, India: practices and challenges.

    PubMed

    Hazra, Tumpa; Goel, Sudha

    2009-01-01

    This paper presents an overview of current solid waste management (SWM) practices in Kolkata, India and suggests solutions to some of the major problems. More than 2920ton/d of solid waste are generated in the Kolkata Municipal Corporation (KMC) area and the budget allocation for 2007-2008 was Rs. 1590 million (US$40 million), which amounts to Rs. 265/cap-y (US$6.7/cap-d) on SWM. This expenditure is insufficient to provide adequate SWM services. Major deficiencies were found in all elements of SWM. Despite 70% of the SWM budget being allocated for collection, collection efficiency is around 60-70% for the registered residents and less than 20% for unregistered residents (slum dwellers). The collection process is deficient in terms of manpower and vehicle availability. Bin capacity provided is adequate but locations were found to be inappropriate, thus contributing to the inefficiency of the system. At this time, no treatment is provided to the waste and waste is dumped on open land at Dhapa after collection. Lack of suitable facilities (equipment and infrastructure) and underestimates of waste generation rates, inadequate management and technical skills, improper bin collection, and route planning are responsible for poor collection and transportation of municipal solid wastes.

  6. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute significantly to understanding the recycling methods of NMFs from WEEE and serve as guidance for the future technology research and development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Environmental Assessment for Increasing Routine Flightline Activities, Edwards Air Force Base, California

    DTIC Science & Technology

    2009-08-01

    waste resulting from industrial processes: paint stripping , metal plating, maintenance and repair, aircraft and vehicle cleaning, power or heat...Figure 7) are delineated with paint and aeronautical field markers. The runways and landing areas are used for: emergency response landing...affected by mobile source emissions from aircraft and aerospace ground equipment (AGE), stationary sources such as paint operations, fueling and

  8. Westinghouse modular grinding process - improvement for follow on processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehrmann, Henning

    2013-07-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompactionmore » (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)« less

  9. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, Keith; Woosley, Steve; Campbell, Brett

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers,more » plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)« less

  10. Environmental risk assessment of CRT and PCB workshops in a mobile e-waste recycling plant.

    PubMed

    Song, Qingbin; Zeng, Xianlai; Li, Jinhui; Duan, Huabo; Yuan, Wenyi

    2015-08-01

    The mobile e-waste recycling equipment was chosen as the object of this study, including manual dismantling, mechanical separation of cathode ray tubes (CRTs), and printed circuit boards (PCBs) in the two independent workshops. To determine the potential environmental contamination, the noise, the heavy metals (Cu, Cd, Pb), and the environmental impacts of the e-waste recycling processes in the two workshops of the mobile plant have been evaluated in this paper. This study determined that when control measures are employed, the noise within the two workshops (<80 dB) will meet the national standards. In the CRT workshop, Pb was the most polluting metal, with 2.3 μg/m(3) and 10.53 mg/g in the air and floor dust, respectively. The result of a health risk assessment shows that noncancerous effects are possible for Pb (hazard index (HI) = 3.54 in the CRT workshop and HI = 1.27 in the PCB workshop). The carcinogenic risks to workers for Cd are relatively light in both the workshops. From the results of life cycle assessment (LCA), it can be seen that there was an environmental benefit from the e-waste recycling process as a whole.

  11. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  12. Utilization of the wastes of vital activity

    NASA Technical Reports Server (NTRS)

    Gusarov, B. G.; Drigo, Y. A.; Novikov, V. M.; Samsonov, N. M.; Farafonov, N. S.; Chizhov, S. V.; Yazdovskiy, V. I.

    1979-01-01

    The recycling of wastes from the biological complex for use in life-support systems is discussed. Topics include laboratory equipment, heat treatment of waste materials, mineralization of waste products, methods for production of ammonium hydroxide and nitric acid, the extraction of sodium chloride from mineralized products, and the recovery of nutrient substances for plants from urine.

  13. Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J; McLaughlin, Russell L.

    2008-01-01

    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment, small parts and flight components result in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL) for hexavalent chromium (CrVI) from 52 to 5 micrograms per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in numerous pretreatment and primer coatings used within the Space Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient, and environmentally preferable manner. The use of laser energy to prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation, and non destructive evaluation (NDE) is a relatively new application of the technology that has been proven to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The novel process eliminates VOCs and blast media and captures the removed coatings with an integrated vacuum system. This means that the only waste generated are the coatings that are removed, resulting in an overall cleaner process. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, between 40 and 500 Watts, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation.

  14. Vermi composting--organic waste management and disposal.

    PubMed

    Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada

    2012-01-01

    Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public.

  15. Urban mining: quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste.

    PubMed

    Di Maria, Francesco; Micale, Caterina; Sordi, Alessio; Cirulli, Giuseppe; Marionni, Moreno

    2013-12-01

    The mechanically sorted dry fraction (MSDF) and Fines (<20mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20mm particle size fractions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. IMPROVED WELL PLUGGING EQUIPMENT AND WASTE MANGEMENT TECHNIQUES EXCEED ALARA GOALS AT THE OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, R.; Pawlowicz, R.; Whitehead, L.

    2002-02-25

    In 2000, Bechtel Jacobs Company LLC (BJC) contracted Tetra Tech NUS, Inc. (TtNUS) and their sub-contractor, Texas World Operations, Inc. (TWO), to plug and abandon (P&A) 111 wells located in the Melton Valley area of Oak Ridge National Laboratory (ORNL). One hundred and seven of those wells were used to monitor fluid movement and subsurface containment of the low level radioactive liquid waste/grout slurry that was injected into the Pumpkin Valley Shale Formation, underlying ORNL. Four wells were used as hydrofracture injection wells to emplace the waste in the shale formation. Although the practice of hydrofracturing was and is consideredmore » by many to pose no threat to human health or the environment, the practice was halted in 1982 after the Federal Underground Injection Control regulations were enacted by United States Environmental Protection Agency (USEPA) making it necessary to properly close the wells. The work is being performed for the United States Department of Energy Oak Ridge Operations (DOE ORO). The project team is using the philosophy of minimum waste generation and the principles of ALARA (As Low As Reasonably Achievable) as key project goals to minimize personnel and equipment exposure, waste generation, and project costs. Achievement of these goals was demonstrated by the introduction of several new pieces of custom designed well plugging and abandonment equipment that were tested and used effectively during field operations. Highlights of the work performed and the equipment used are presented.« less

  17. Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy

    2016-03-11

    This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferredmore » option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.« less

  18. Title I preliminary engineering for: A. S. E. F. solid waste to methane gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-01-01

    An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec.more » 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.« less

  19. Electrical and electronic plastics waste co-combustion with municipal solid waste for energy recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J.; Mark, F.E.

    1997-12-01

    The recovery or disposal of end-of-life electrical and electronic (E+E) equipment is receiving considerable attention from industry organisations such as APME in order to supply factual information which can be used in the development of a clear industry strategy. It is hoped that such information will persuade EU member states to define the best management practices for this waste stream. One of the difficulties regarding the recovery or disposal of E+E waste is a lack of data regarding its behaviour when incinerated. This lack of data has led to unfounded conclusions by sonic parties that plastic wastes contain harmful halogenatedmore » species which are difficult to treat and remove, and when incinerated contribute to the emission of halogenated species and are responsible for the major portion of emissions. APME has a comprehensive testing program investigating the impact of plastics on municipal solid waste (MSW) incineration. APME`s previous work has demonstrated the positive, beneficial effects of mixed waste plastics in the MSW energy recovery process as well as studying halogen behaviour during the combustion of packaging plastics waste and construction foam from the building industry. The current study was designed to evaluate the incineration of MSW containing typical levels of electrical and electronic (E+E) plastic waste, as well as MSW containing E+E waste in amounts up to 12%.« less

  20. Analysis of waste management issues arising from a field study evaluating decontamination of a biological agent from a building.

    PubMed

    Lemieux, P; Wood, J; Drake, J; Minamyer, S; Silvestri, E; Yund, C; Nichols, T; Ierardi, M; Amidan, B

    2016-01-01

    The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through "Pre-Incident" response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test. Management of waste is a critical element of activities dealing with remediation of buildings and outdoor areas following a biological contamination incident. Waste management must be integrated into the overall remediation process, along with sampling, decontamination, resource management, and other important response elements, rather than being a stand-alone activity. The results presented in this paper will provide decision makers and emergency planners at the federal/state/tribal/local level information that can be used to integrate waste management into an overall systems approach to planning and response activities.

  1. 40 CFR 264.1059 - Standards: Delay of repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 264.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... infeasible without a hazardous waste management unit shutdown. In such a case, repair of this equipment shall...

  2. Innovative approach for the valorization of useful metals from waste electric and electronic equipment (WEEE)

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Dumitrescu, D. V.; Constantin, I.; Soare, V.; Popescu, A.-M. J.; Carcea, I.

    2016-08-01

    Waste electric and electronic equipment are an important secondary source of rare and precious metals and their processing through ecological technologies constitutes a major concern in the European Union and significantly contributes to the reduction of environmental pollution and to the preservation of valuable resources of nonferrous metals. The paper presents an innovative approach for the complex valorization of useful metals contained in WEEE. The method consists in the melting of WEEE in a furnace in a microwave field at temperatures of 1000 ÷1200°C, for the complete separation of the metallic fraction from the organic components. The gases resulting from the melting process were also treated/neutralized in a microwave environment and the obtained metallic bulk (multi-component alloy) was processed through combined hydrometallurgical and electrochemical methods. The major elements in the metallic bulk (Cu, Sn, Zn, Pb) were separated/recovered by anodic dissolution, respectively by leaching in nitric acid followed by cementation using various agents, or by electrodeposition. Depending on the electrochemical parameters, cathodic deposits consisting of Cu, with a purity higher than 99.9%, or of Cu-Sn and Cu-Sn-Zn alloys were obtained. Silver was valorized by leaching/precipitation with NaCl and the gold concentrated in the anodic slime will be recovered by thiourea extraction. The experiments performed demonstrate the possibility of ecological and efficient processing of WEEE in a microwave field and the recovery of nonferrous and precious metals through combined hydrometallurgical and electrochemical methods.

  3. Status of electronic waste recycling techniques: a review.

    PubMed

    Abdelbasir, Sabah M; Hassan, Saad S M; Kamel, Ayman H; El-Nasr, Rania Seif

    2018-05-08

    The increasing use of electrical and electronic equipment leads to a huge generation of electronic waste (e-waste). It is the fastest growing waste stream in the world. Almost all electrical and electronic equipment contain printed circuit boards as an essential part. Improper handling of these electronic wastes could bring serious risk to human health and the environment. On the other hand, proper handling of this waste requires a sound management strategy for awareness, collection, recycling, and reuse. Nowadays, the effective recycling of this type of waste has been considered as a main challenge for any society. Printed circuit boards (PCBs), which are the base of many electronic industries, are rich in valuable heavy metals and toxic halogenated organic substances. In this review, the composition of different PCBs and their harmful effects are discussed. Various techniques in common use for recycling the most important metals from the metallic fractions of e-waste are illustrated. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical, or biohydrometallurgical routes is also discussed, along with alternative uses of non-metallic fraction. The data are explained and compared with the current e-waste management efforts done in Egypt. Future perspectives and challenges facing Egypt for proper e-waste recycling are also discussed.

  4. Analysis of solid waste from ships and modeling of its generation on the river Danube in Serbia.

    PubMed

    Ulniković, Vladanka Presburger; Vukić, Marija; Milutinović-Nikolić, Aleksandra

    2013-06-01

    This study focuses on the issues related to the waste management in river ports in general and, particularly, in ports on the river Danube's flow through Serbia. The ports of Apatin, Bezdan, Backa Palanka, Novi Sad, Belgrade, Smederevo, Veliko Gradiste, Prahovo and Kladovo were analyzed. The input data (number of watercrafts, passengers and crew members) were obtained from harbor authorities for the period 2005-2009. The quantities of solid waste generated on both cruise and cargo ships are considered in this article. As there is no strategy for waste treatment in the ports in Serbia, these data are extremely valuable for further design of equipment for waste treatment and collection. Trends in data were analyzed and regression models were used to predict the waste quantities in each port in next 3 years. The obtained trends could be utilized as the basis for the calculation of the equipment capacities for waste selection, collection, storage and treatment. The results presented in this study establish the need for an organized management system for this type of waste, as well as suggest where the terminals for collection, storage and treatment of solid waste from ships should be located.

  5. Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.

    2013-07-01

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase- 1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material. (authors)« less

  6. Status of the International Space Station Waste and Hygiene Compartment

    NASA Technical Reports Server (NTRS)

    Walker, Stephanie; Zahner, Christopher

    2010-01-01

    The Waste and Hygiene Compartment (WHC) serves as the primary system for removal and containment of metabolic waste and hygiene activities on board the United States segment of the International Space Station (ISS). The WHC was launched on ULF 2 and is currently in the U.S. Laboratory and is integrated into the Water Recovery System (WRS) where pretreated urine is processed by the Urine Processor Assembly (UPA). The waste collection part of the WHC system is derived from the Service Module system and was provided by RSC-Energia along with additional hardware to allow for urine delivery to the UPA. The System has been integrated in an ISS standard equipment rack structure for use on the U.S. segment of the ISS. The system has experienced several events of interest during the deployment, checkout, and operation of the system during its first year of use and these will be covered in this paper. Design and on-orbit performance will also be discussed.

  7. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less

  8. The University of Georgia Chemical Waste Disposal Program.

    ERIC Educational Resources Information Center

    Dreesen, David W.; Pohlman, Thomas J.

    1980-01-01

    Describes a university-wide program directed at reducing the improper storage and disposal of toxic chemical wastes from laboratories. Specific information is included on the implementation of a waste pick-up service, safety equipment, materials and methods for packaging, and costs of the program. (CS)

  9. Status of chemistry lab safety in Nepal.

    PubMed

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  10. Status of chemistry lab safety in Nepal

    PubMed Central

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001). PMID:28644869

  11. Assessment of medical waste management in seven hospitals in Lagos, Nigeria.

    PubMed

    Awodele, Olufunsho; Adewoye, Aishat Abiodun; Oparah, Azuka Cyril

    2016-03-15

    Medical waste (MW) can be generated in hospitals, clinics and places where diagnosis and treatment are conducted. The management of these wastes is an issue of great concern and importance in view of potential public health risks associated with such wastes. The study assessed the medical waste management practices in selected hospitals and also determined the impact of Lagos Waste Management Authority (LAWMA) intervention programs. A descriptive cross-sectional survey method was used. Data were collected using three instrument (questionnaire, site visitation and in -depth interview). Two public (hospital A, B) and five private (hospital C, D, E, F and G) which provide services for low, middle and high income earners were used. Data analysis was done with SPSS version 20. Chi-squared test was used to determine level of significance at p < 0.05. The majority 56 (53.3%) of the respondents were females with mean age of 35.46 (±1.66) years. The hospital surveyed, except hospital D, disposes both general and medical waste separately. All the facilities have the same process of managing their waste which is segregation, collection/on-site transportation, on-site storage and off-site transportation. Staff responsible for collecting medical waste uses mainly hand gloves as personal protective equipment. The intervention programs helped to ensure compliance and safety of the processes; all the hospitals employ the services of LAWMA for final waste disposal and treatment. Only hospital B offered on-site treatment of its waste (sharps only) with an incinerator while LAWMA uses hydroclave to treat its wastes. There are no policies or guidelines in all investigated hospitals for managing waste. An awareness of proper waste management amongst health workers has been created in most hospitals through the initiative of LAWMA. However, hospital D still mixes municipal and hazardous wastes. The treatment of waste is generally done by LAWMA using hydroclave, to prevent environmental hazards except hospital B that treats its sharp with an incinerator. In order to enhance uniform and appropriate waste management practices in the entire State, there is need for capacity building at all levels and also policies and guidelines formulations.

  12. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.

    PubMed

    Yang, Xiaoning; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of whole recycling process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Economic analysis and assessment of syngas production using a modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hakkwan; Parajuli, Prem B.; Yu, Fei

    Economic analysis and modeling are essential and important issues for the development of current feedstock and process technology for bio-gasification. The objective of this study was to develop an economic model and apply to predict the unit cost of syngas production from a micro-scale bio-gasification facility. An economic model was programmed in C++ computer programming language and developed using a parametric cost approach, which included processes to calculate the total capital costs and the total operating costs. The model used measured economic data from the bio-gasification facility at Mississippi State University. The modeling results showed that the unit cost ofmore » syngas production was $1.217 for a 60 Nm-3 h-1 capacity bio-gasifier. The operating cost was the major part of the total production cost. The equipment purchase cost and the labor cost were the largest part of the total capital cost and the total operating cost, respectively. Sensitivity analysis indicated that labor costs rank the top as followed by equipment cost, loan life, feedstock cost, interest rate, utility cost, and waste treatment cost. The unit cost of syngas production increased with the increase of all parameters with exception of loan life. The annual cost regarding equipment, labor, feedstock, waste treatment, and utility cost showed a linear relationship with percent changes, while loan life and annual interest rate showed a non-linear relationship. This study provides the useful information for economic analysis and assessment of the syngas production using a modeling approach.« less

  14. 40 CFR 273.32 - Notification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... universal waste management activities; (4) A list of all the types of universal waste managed by the handler (e.g., batteries, pesticides, mercury-containing equipment, and lamps); and (5) A statement...

  15. 40 CFR 273.32 - Notification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... universal waste management activities; (4) A list of all the types of universal waste managed by the handler (e.g., batteries, pesticides, mercury-containing equipment, and lamps); and (5) A statement...

  16. 40 CFR 273.32 - Notification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... universal waste management activities; (4) A list of all the types of universal waste managed by the handler (e.g., batteries, pesticides, mercury-containing equipment, and lamps); and (5) A statement...

  17. 40 CFR 273.32 - Notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... universal waste management activities; (4) A list of all the types of universal waste managed by the handler (e.g., batteries, pesticides, mercury-containing equipment, and lamps); and (5) A statement...

  18. 40 CFR 273.32 - Notification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... universal waste management activities; (4) A list of all the types of universal waste managed by the handler (e.g., batteries, pesticides, mercury-containing equipment, and lamps); and (5) A statement...

  19. Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Robert O.; Aulich, Ted R.

    1997-12-31

    Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less

  20. Green separation and characterization of fatty acids from solid wastes of leather industry in supercritical fluid CO2.

    PubMed

    Onem, Ersin; Renner, Manfred; Prokein, Michael

    2018-05-26

    Considerable tannery waste is generated by leather industry around the world. Recovery of the value-added products as natural fats from the solid wastes gained interest of many researchers. In this study, supercritical fluid separation method was applied for the fatty acid isolation from leather industry solid wastes. Pre-fleshing wastes of the double-face lambskins were used as natural fat source. Only supercritical CO 2 was used as process media without any solvent additive in high-pressure view cell equipment. The effect of different conditions was investigated for the best separation influence. The parameters of pressure (100 to 200 bar), temperature (40 to 80 °C), and time (1 to 3 h) were considered. Extraction yields and fat yields of the parameters were statistically evaluated after the processes. Maximum 78.57 wt% fat yield was obtained from leather industry fleshings in supercritical fluid CO 2 at 200 bar, 80 °C, and 2 h. Morever, conventional Soxhlet and supercritical CO 2 extracted fatty acids were characterized by using gas chromatography (GC) coupled with mass spectrometry (MS) and flame ionization detector (FID). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) characterizations were also done. The results showed that supercritical fluid CO 2 extraction was highly effective for the fat separation as green solvent and leather industry tannery wastes could be used for the value-added products.

  1. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF SPEED REDUCTION EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...

  2. 40 CFR 243.201-2 - Recommended procedures: Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste handling techniques, and in the proper operation of collection equipment, such as those presented in Operation Responsible: Safe Refuse Collection. (b) Personal protective equipment such as gloves... Standards for Subpart I—Personal Protective Equipment (29 CFR 1910.132 through 1910.137). (c) Scavenging...

  3. 40 CFR 243.201-2 - Recommended procedures: Operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste handling techniques, and in the proper operation of collection equipment, such as those presented in Operation Responsible: Safe Refuse Collection. (b) Personal protective equipment such as gloves... Standards for Subpart I—Personal Protective Equipment (29 CFR 1910.132 through 1910.137). (c) Scavenging...

  4. Production of L- and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation.

    PubMed

    Nguyen, Cuong Mai; Kim, Jin-Seog; Nguyen, Thanh Ngoc; Kim, Seul Ki; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Kim, Jin-Cheol

    2013-10-01

    Simultaneous saccharification and cofermentation (SSCF) of Curcuma longa waste biomass obtained after turmeric extraction to L- and D-lactic acid by Lactobacillus coryniformis and Lactobacillus paracasei, respectively, was investigated. This is a rich, starchy, agro-industrial waste with potential for use in industrial applications. After optimizing the fermentation of the biomass by adjusting nitrogen sources, enzyme compositions, nitrogen concentrations, and raw material concentrations, the SSCF process was conducted in a 7-l jar fermentor at 140 g dried material/L. The maximum lactic acid concentration, average productivity, reducing sugar conversion and lactic acid yield were 97.13 g/L, 2.7 g/L/h, 95.99% and 69.38 g/100 g dried material for L-lactic acid production, respectively and 91.61 g/L, 2.08 g/L/h, 90.53% and 65.43 g/100 g dried material for D-lactic acid production, respectively. The simple and efficient process described in this study could be utilized by C. longa residue-based lactic acid industries without requiring the alteration of plant equipment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Environmental risk related to specific processes during scrap computer recycling and disposal.

    PubMed

    Li, Jinhui; Shi, Pixing; Shan, Hongshan; Xie, Yijun

    2012-12-01

    The purpose of this work was to achieve a better understanding of the generation of toxic chemicals related to specific processes in scrap computer recycling and disposal, such as thermal recycling of printed circuit boards (PCBs) and the landfilling or dumping of cathode ray tubes (CRTs). Tube furnace pyrolysis was carried out to simulate different thermal treatment conditions for the identification of the by-products and potential environmental risk from thermal recycling ofPCBs. The Toxicity Characteristic Leaching Procedure (TCLP) and a column test were used to study the leaching characteristics of lead from waste CRT glass, which is one of the most important environmental concerns arising from the disposal of e-waste. The results indicate that more attention should be paid to the benzene series when recycling PCBs under thermal conditions, especially for workers without any personal protection equipment. The impact of immersion on the leaching of lead from CRT leaded glass was more effective than the impact of washing only by acid rain. Thus when waste leaded glass has to be stored for some reason, the storage facility should be dry.

  6. Cleanup Verification Package for the 618-2 Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  7. Conceptual design assessment for the co-firing of bio-refinery supplied lignin project. Quarterly report, July 1--September 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglund, T.; Ranney, J.T.; Babb, C.L.

    2000-10-01

    The initial design criteria of the MSW to ethanol facility have been completed along with preliminary site identification and layouts for the processing facility. These items are the first step in evaluating the feasibility of this co-located facility. Pilot facility design and modification are underway for the production and dewatering of the lignin fuel. Major process equipment identification has been completed and several key unit operations will be accomplished on rental equipment. Equipment not available for rental or at TVA has been ordered and facility modification and shakedown will begin in October. The study of the interface and resulting impactsmore » on the TVA Colbert facility are underway. The TVA Colbert fossil plant is fully capable of providing a reliable steam supply for the proposed Masada waste processing facility. The preferred supply location in the Colbert steam cycle has been identified as have possible steam pipeline routes to the Colbert boundary. Additional analysis is underway to fully predict the impact of the steam supply on Colbert plant performance and to select a final steam pipeline route.« less

  8. Solid waste management in Kolkata, India: Practices and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Tumpa; Goel, Sudha

    2009-01-15

    This paper presents an overview of current solid waste management (SWM) practices in Kolkata, India and suggests solutions to some of the major problems. More than 2920 ton/d of solid waste are generated in the Kolkata Municipal Corporation (KMC) area and the budget allocation for 2007-2008 was Rs. 1590 million (US$40 million), which amounts to Rs. 265/cap-y (US$6.7/cap-d) on SWM. This expenditure is insufficient to provide adequate SWM services. Major deficiencies were found in all elements of SWM. Despite 70% of the SWM budget being allocated for collection, collection efficiency is around 60-70% for the registered residents and less thanmore » 20% for unregistered residents (slum dwellers). The collection process is deficient in terms of manpower and vehicle availability. Bin capacity provided is adequate but locations were found to be inappropriate, thus contributing to the inefficiency of the system. At this time, no treatment is provided to the waste and waste is dumped on open land at Dhapa after collection. Lack of suitable facilities (equipment and infrastructure) and underestimates of waste generation rates, inadequate management and technical skills, improper bin collection, and route planning are responsible for poor collection and transportation of municipal solid wastes.« less

  9. The Effect of COD Concentration Containing Leaves Litter, Canteen and Composite Waste to the Performance of Solid Phase Microbial Fuel Cell (SMFC)

    NASA Astrophysics Data System (ADS)

    Samudro, Ganjar; Syafrudin; Nugraha, Winardi Dwi; Sutrisno, Endro; Priyambada, Ika Bagus; Muthi'ah, Hilma; Sinaga, Glory Natalia; Hakiem, Rahmat Tubagus

    2018-02-01

    This research is conducted to analyze and determine the optimum of COD concentration containing leaves litter, canteen and composite waste to power density and COD removal efficiency as the indicator of SMFC performance. COD as the one of organic matter parameters perform as substrate, nutrient and dominating the whole process of SMFC. Leaves litter and canteen based food waste were obtained from TPST UNDIP in Semarang and treated in SMFC reactor. Its reactor was designed 2 liter volume and equipped by homemade graphene electrodes that were utilized at the surface of organic waste as cathode and in a half of reactor height as anode. COD concentration was initially characterized and became variations of initial COD concentration. Waste volume was maintained 2/3 of volume of reactor. Bacteria sources as the important process factor in SMFC were obtained from river sediment which contain bacteroides and exoelectrogenic bacteria. Temperature and pH were not maintained while power density and COD concentration were periodically observed and measured during 44 days. The results showed that power density up to 4 mW/m2 and COD removal efficiency performance up to 70% were reached by leaves litter, canteen and composite waste at days 11 up to days 44 days. Leaves litter contain 16,567 mg COD/l providing higher COD removal efficiency reached approximately 87.67%, more stable power density reached approximately 4.71 mW/m2, and faster optimum time in the third day than canteen based food waste and composite waste. High COD removal efficiency has not yet resulted in high power density.

  10. Organic Laboratory Experiments: Micro vs. Conventional.

    ERIC Educational Resources Information Center

    Chloupek-McGough, Marge

    1989-01-01

    Presents relevant statistics accumulated in a fall organic laboratory course. Discusses laboratory equipment setup to lower the amount of waste. Notes decreased solid wastes were produced compared to the previous semester. (MVL)

  11. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CUTTING AND WELDING EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot program to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so in an effort to assist these manufacturers Waste Minimization Assessment Cent...

  12. 75 FR 43409 - Rhode Island: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ..., nickel-cadmium batteries or lithium batteries. Rhode Island has decided to regulate circuit boards, as... universal waste program, Rhode Island regulates certain dry cell batteries (i.e., waste-nickel cadmium, mercuric oxide, and lead acid dry cell batteries), used electronics, mercury containing equipment and...

  13. ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION FOR A MANUFACTURER OF COMPRESSED AIR EQUIPMENT COMPONENTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...

  14. Environmental Management Waste Management Facility Waste Lot Profile 155.5 for K-1015-A Laundry Pit, East Tennessee Technology Park Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Jacobs, Raymer J.E.

    2008-06-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden pallets, contaminated equipment, decontamination materials, etc.).« less

  15. Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator.

    PubMed

    Richard, Gontran; Touhami, Seddik; Zeghloul, Thami; Dascalescu, Lucien

    2017-02-01

    Plate-type electrostatic separators are commonly employed for the selective sorting of conductive and non-conductive granular materials. The aim of this work is to identify the optimal operating conditions of such equipment, when employed for separating copper and plastics from either flexible or rigid electric wire wastes. The experiments are performed according to the response surface methodology, on samples composed of either "calibrated" particles, obtained by manually cutting of electric wires at a predefined length (4mm), or actual machine-grinded scraps, characterized by a relatively-wide size distribution (1-4mm). The results point out the effect of particle size and shape on the effectiveness of the electrostatic separation. Different optimal operating conditions are found for flexible and rigid wires. A separate processing of the two classes of wire wastes is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PREPARATION OF U-PLANT FOR FINAL DEMOLITION AND DISPOSAL - 12109E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FARABEE OA; HERZOG B; CAMERON C

    2012-02-16

    The U-Plant is one of the five major nuclear materials processing facilities at Hanford and was chosen as a pilot project to develop the modalities for closure of the other four facilities at Hanford and the rest of the Department of Energy (DOE) complex. The remedy for this facility was determined by a Record of Decision (ROD) pursuant to the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). That remedy was to 'Close in Place - Partially Demolished Structure'. The U-Plant facility is identified as the 221-U Building and is a large, concrete structure nominally 247m (810 ft)more » long, 20 M (66 ft) wide and 24 m (77 ft) high with approximately 9 m (30 ft) being below grade level. It is a robust facility with walls ranging from 0.9 m to 2.7 m (3 ft to 9 ft) thick. One large room extends the entire length of the building that provides access to 40 sub-grade processing cells containing tanks, piping and other components. The work breakdown was divided into three major deliverables: (1) Tank D-10 Removal: removal of Tank D-10, which contained TRU waste; (2) Equipment Disposition: placement of contaminated equipment in the sub-grade cells; and (3) Canyon Grouting: grouting canyon void spaces to the maximum extent practical. A large number of pieces of contaminated equipment (pumps, piping, centrifuges, tanks, etc) from other facilities that had been stored on the canyon operating floor were placed inside of the sub-grade cells as final disposition, grouted and the cell shield plug reinstalled. This action precluded a large volume of waste being transported to another burial site. Finally, {approx}19,000 m3 ({approx}25,000 yd3) of grout was placed inside of the cells (in and around the contaminated equipment), in the major galleries. the ventilation tunnel, the external ventilation duct, and the hot pipe trench to minimize the potential for void spaces and to reduce the mobility, solubility, and/or toxicity of the grouted waste. The interim condition of the facility is 'cold and dark'. Upon availability of funding the structure will have contamination fixative applied to all contaminated surfaces and may be explosively demolished, with the remaining structure buried under an engineered barrier.« less

  17. Development of new materials from waste electrical and electronic equipment: Characterization and catalytic application.

    PubMed

    Souza, J P; Freitas, P E; Almeida, L D; Rosmaninho, M G

    2017-07-01

    Wastes of electrical and electronic equipment (WEEE) represent an important environmental problem, since its composition includes heavy metals and organic compounds used as flame-retardants. Thermal treatments have been considered efficient processes on removal of these compounds, producing carbonaceous structures, which, together with the ceramic components of the WEEE (i.e. silica and alumina), works as support material for the metals. This mixture, associated with the metals present in WEEE, represents promising systems with potential for catalytic application. In this work, WEEE was thermally modified to generate materials that were extensively characterized. Raman spectrum for WEEE after thermal treatment showed two carbon associated bands. SEM images showed a metal nanoparticles distribution over a polymeric and ceramic support. After characterization, WEEE materials were applied in ethanol steam reforming reaction. The system obtained at higher temperature (800°C) exhibited the best activity, since it leads to high conversions (85%), hydrogen yield (30%) and H 2 /CO ratio (3,6) at 750°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. An efficient and fast analytical procedure for the bromine determination in waste electrical and electronic equipment plastics.

    PubMed

    Taurino, R; Cannio, M; Mafredini, T; Pozzi, P

    2014-01-01

    In this study, X-ray fluorescence (XRF) spectroscopy was used, in combination with micro-Raman spectroscopy, for a fast determination of bromine concentration and then of brominated flame retardants (BFRs) compounds in waste electrical and electronic equipments. Different samples from different recycling industries were characterized to evaluate the sorting performances of treatment companies. This investigation must be considered of prime research interest since the impact of BFRs on the environment and their potential risk on human health is an actual concern. Indeed, the new European Restriction of Hazardous Substances Directive (RoHS 2011/65/EU) demands that plastics with BFRs concentration above 0.1%, being potential health hazards, are identified and eliminated from the recycling process. Our results show the capability and the potential of Raman spectroscopy, together with XRF analysis, as effective tools for the rapid detection of BFRs in plastic materials. In particular, the use of these two techniques in combination can be considered as a promising method suitable for quality control applications in the recycling industry.

  19. Characterization of Fine Metal Particles Derived from Shredded WEEE Using a Hyperspectral Image System: Preliminary Results

    PubMed Central

    Candiani, Gabriele; Picone, Nicoletta; Pompilio, Loredana; Pepe, Monica; Colledani, Marcello

    2017-01-01

    Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals’ recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%. PMID:28505070

  20. A new method for recovery of cellulose from lignocellulosic bio-waste: Pile processing.

    PubMed

    Tezcan, Erdem; Atıcı, Oya Galioğlu

    2017-12-01

    This paper presents a new delignification method (pile processing) for the recovery of cellulose from lignocellulosic bio-wastes, adapted from heap leaching technology in metallurgy. The method is based on the stacking of cellulosic materials in a pile, irrigation of the pile with aqueous reactive solution from the top, lignin and hemicellulose removal and enrichment of cellulose by the reactive solution while percolation occurs through the bottom of the pile, recirculating the reactive solution after adjusting several values such as chemical concentrations, and allow the system run until the desired time or cellulose purity. Laboratory scale systems were designed using fall leaves (FL) as lignocellulosic waste materials. The ideal condition for FL was noted as: 0.1g solid NaOH addition per gram of FL into the irrigating solution resulting in instant increase in pH to about 13.8, later allowing self-decrease in pH due to delignification over time down to 13.0, at which point another solid NaOH addition was performed. The new method achieved enrichment of cellulose from 30% to 81% and removal of 84% of the lignin that prevents industrial application of lignocellulosic bio-waste using total of 0.3g NaOH and 4ml of water per gram of FL at environmental temperature and pressure. While the stirring reactions used instead of pile processing required the same amount of NaOH, they needed at least 12ml of water and delignification was only 56.1%. Due to its high delignification performance using common and odorless chemicals and simple equipment in mild conditions, the pile processing method has great promise for the industrial evaluation of lignocellulosic bio-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less

  2. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galowitz, Stephen

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven andmore » reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.« less

  3. Collaboration Between Environmental Water Chemistry Students and Hazardous Waste Treatment Specialists on the University of Colorado-Boulder Campus

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.

    2012-12-01

    The University of Colorado-Boulder is one of a few universities in the country that has a licensed Treatment, Storage, and Disposal Facility (TSDF) for hazardous waste on campus. This facility, located on the bottom floor of the Environmental Health and Safety (EH&S) building, allows CU to more economically treat hazardous waste by enabling treatment specialists on staff to safely collect and organize the hazardous waste generated on campus. Hazardous waste is anything that contains a regulated chemical or compound and most chemicals used in engineering labs (e.g., acids, solvents, metal solutions) fall into this category. The EH&S staff is able to treat close almost 33% of the waste from campus and the rest is packed for off-site treatment at various places all over the country for disposal (e.g., Sauget, IL, Port Aurthor, TX). The CU-Boulder campus produced over 50 tons of hazardous waste in 2010 costing over $300,000 in off-campus expenses. The EH&S staff assigns one of over 50 codes to the waste which will determine if the waste can be treated on campus of must be shipped off campus to be disposed of. If the waste can be treated on campus, it will undergo one of three processes: 1) neutralization, 2) UV-ozone oxidation, or 3) ion exchange. If the waste is acidic but contains no heavy metals, the acid is neutralized with sodium hydroxide (a base) and can be disposed "down the drain" to the Boulder Wastewater Treatment Plant. If the waste contains organic compounds and no metals, a UV-ozone oxidation system is used to break down the organic compounds. Silver from photography wastewater can be removed using ion exchange columns. Undergraduate and graduate students worked with the hazardous waste treatment facility at the Environmental Health and Safety (EH&S) building on the CU-Boulder campus during the fall of 2011 and fall of 2012. Early in the semester, students receive a tour of the three batch treatment processes the facility is equipped with. Later in the semester, the students conduct a bench-scale laboratory exercise where they study part of the treatment process. Several small start-up companies are testing components in the lab, which adds to the colaboration of the project.; Figure 1. Students in Environmental Water Chemistry lab conducting a titration.

  4. General view of the middeck looking aft and port. In ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid-deck looking aft and port. In this view you can clearly see the crew access hatch and the airlock hatch. The hose and ladder in the image are pieces of ground support equipment. The hose is part of the climate control apparatus used while orbiters are being processed. The ladder is used to access the inter-deck passage, leading to the flight deck, while the orbiter is in 1g (earth's gravity). A careful observer will notice a void in the wall near the base of the access ladder, this is the Waste Management Compartment with the Waste Management System, i.e. Space Potty, removed. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  6. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  7. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  8. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  9. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  10. Environmental Assessment of a Central Heating Plant.

    DTIC Science & Technology

    1983-02-01

    control equipment will be required. One proven system for SO2 control is flue gas desulfurization (FGt). A variety of systems are currently in use on...low sulfur coal, but it could be further reduced by flue gas desulfur - ization. This option, however, entails greater capital and operating costs and an... wet or dry. Wet processes involve contacting the flue gas with aqueous slurries or solutions of absorbents and produce liquid wastes for direct

  11. Burnout control at the Albright coal-waste-bank fire. Rept. of investigations/1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiken, R.F.; Bayles, L.G.

    1991-01-01

    Burnout Control is a process developed by the U.S. Bureau of Mines for accelerating the burning of wasted coal fires in situ, while at the same time controlling the heat and fumes produced. The Albright fire project is a first field trial of Burnout Control as applied to a coal waste bank. An exhaust ventilation system was designed and constructed and then operated over a 1-year period at the site of an existing abandoned mine land fire near the town of Albright, W.V. While predicted exhaust gas temperatures of 900 C and thermal power levels of 5 MW were achievedmore » at 20- to 30-in H2O vacuum levels, problems were encountered with engineering designs, equipment breakdown, and fuel-rich combustion that curtailed the time period of satisfactory operation. Effective afterburning of the exhaust gases (as they were drawn from the bank) corrected the problems associated with combustion stoichiometry and led to high thermal outputs. It is believed that with (1) improvements in engineering design and construction, (2) better control of the afterburning process, and (3) the use of conventional stack gas air-pollution controls, Burnout Control can be applied successfully to a coal waste bank fire.« less

  12. 40 CFR 265.52 - Content of contingency plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste constituents to air, soil, or surface water at the facility. (b) If the owner or operator... alarm systems (internal and external), and decontamination equipment), where this equipment is required...

  13. 13 CFR 120.331 - What devices or techniques are eligible for a loan?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... heating or production of energy from industrial waste; (f) Hydroelectric power equipment; (g) Wind energy conversion equipment; and (h) Engineering, architectural, consulting, or other professional services...

  14. 13 CFR 120.331 - What devices or techniques are eligible for a loan?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... heating or production of energy from industrial waste; (f) Hydroelectric power equipment; (g) Wind energy conversion equipment; and (h) Engineering, architectural, consulting, or other professional services...

  15. 13 CFR 120.331 - What devices or techniques are eligible for a loan?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... heating or production of energy from industrial waste; (f) Hydroelectric power equipment; (g) Wind energy conversion equipment; and (h) Engineering, architectural, consulting, or other professional services...

  16. 13 CFR 120.331 - What devices or techniques are eligible for a loan?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... heating or production of energy from industrial waste; (f) Hydroelectric power equipment; (g) Wind energy conversion equipment; and (h) Engineering, architectural, consulting, or other professional services...

  17. 13 CFR 120.331 - What devices or techniques are eligible for a loan?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... heating or production of energy from industrial waste; (f) Hydroelectric power equipment; (g) Wind energy conversion equipment; and (h) Engineering, architectural, consulting, or other professional services...

  18. Advanced evaporator technology progress report FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to bemore » incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.« less

  19. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less

  20. ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF HEATING, VENTILATING, AND AIR CONDITIONING EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...

  1. 21 CFR 1250.53 - Discharge of wastes on air conveyances.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Discharge of wastes on air conveyances. 1250.53 Section 1250.53 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... CONVEYANCE SANITATION Equipment and Operation of Land and Air Conveyances § 1250.53 Discharge of wastes on...

  2. 21 CFR 1250.53 - Discharge of wastes on air conveyances.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Discharge of wastes on air conveyances. 1250.53 Section 1250.53 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... CONVEYANCE SANITATION Equipment and Operation of Land and Air Conveyances § 1250.53 Discharge of wastes on...

  3. 21 CFR 1250.53 - Discharge of wastes on air conveyances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Discharge of wastes on air conveyances. 1250.53 Section 1250.53 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... CONVEYANCE SANITATION Equipment and Operation of Land and Air Conveyances § 1250.53 Discharge of wastes on...

  4. F-Tank Farm Performance Assessment Updates through the Special Analysis Process at Savannah River Site - 12169

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Mark H.

    2012-07-01

    The F-Area Tank Farm (FTF) is owned by the U.S. Department of Energy and operated by Savannah River Remediation, LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF is in the north-central portion of the SRS and occupies approximately 22 acres within F-Area. The FTF is an active radioactive waste storage facility consisting of 22 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. An FTF Performance Assessment (PA) was prepared to support the eventual closure of the FTF underground radioactive waste tanks and ancillary equipment. The PA providesmore » the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for final closure of FTF. The FTank Farm is subject to a state industrial waste water permit and Federal Facility Agreement. Closure documentation will include an F-Tank Farm Closure Plan and tank-specific closure modules utilizing information from the performance assessment. For this reason, the State of South Carolina and the Environmental Protection Agency must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. The projected waste tank inventories in the FTF PA provide reasonably bounding FTF inventory projections while taking into account uncertainties in the effectiveness of future tank cleaning technologies. As waste is removed from the FTF waste tanks, the residual contaminants will be sampled and the remaining residual inventory is characterized. In this manner, tank specific data for the tank inventories at closure will be available to supplement the waste tank inventory projections currently used in the FTF PA. For FTF, the new tank specific data will be evaluated through the Special Analysis process. The FTF Special Analyses process will be utilized to evaluate information regarding the final residual waste that will be grouted in place in the FTF Tanks and assess the potential impact the new inventory information has on the FTF PA assumptions and results. The Special Analysis can then be used to inform decisions regarding FTF tank closure documents. The purpose of this paper is to discuss the Special Analysis process and share insights gained while implementing this process. An example of an area of interest in the revision process is balancing continuous improvement versus configuration control of agreed upon methodologies. Other subjects to be covered include: 1) defining the scope of the revisions included in the Special Analysis, 2) determining which PA results should be addressed in the Special Analysis, and 3) deciding whether the Special Analysis should utilize more qualitative or quantitative assessments. For the SRS FTF, an FTF PA has been prepared to provide the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of FTF. The FTF Special Analyses process will be utilized to evaluate the impact new information has on the FTF PA assumptions and results. The Special Analysis can then be used to inform decisions regarding FTF tank closure documents. In preparing SAs, it is crucial that the scope of the SA be well defined within the SA, since the specific scope will vary from SA to SA. Since the SAs are essentially addendums to the PA, the SA scope should utilize the PA as the baseline from which the SA scope is defined. The SA needs to focus on evaluating the change associated with the scope, and not let other changes interfere with the ability to perform that evaluation by masking the impact of the change. In preparing the SA, it is also important to let the scope determine whether the Special Analysis should utilize more qualitative or quantitative assessments and also which results from the PA should be addressed in the Special Analysis. These decisions can vary from SA and should not be predetermined. (author)« less

  5. Recycling potential for low voltage and high voltage high rupturing capacity fuse links.

    PubMed

    Psomopoulos, Constantinos S; Barkas, Dimitrios A; Kaminaris, Stavros D; Ioannidis, George C; Karagiannopoulos, Panagiotis

    2017-12-01

    Low voltage and high voltage high-rupturing-capacity fuse links are used in LV and HV installations respectively, protecting mainly the LV and HV electricity distribution and transportation networks. The Waste Electrical and Electronic Equipment Directive (2002/96/EC) for "Waste of electrical and electronic equipment" is the main related legislation and as it concerns electrical and electronic equipment, it includes electric fuses. Although, the fuse links consist of recyclable materials, only small scale actions have been implemented for their recycling around Europe. This work presents the possibilities for material recovery from this specialized industrial waste for which there are only limited volume data. Furthermore, in order to present the huge possibilities and environmental benefits, it presents the potential for recycling of HRC fuses used by the Public Power Corporation of Greece, which is the major consumer for the country, but one of the smallest ones in Europe and globally, emphasizing in this way in the issue. According to the obtained results, fuse recycling could contribute to the effort for minimize the impacts on the environment through materials recovery and reduction of the wastes' volume disposed of in landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. K basins sludge removal sludge pretreatment system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, H.L.

    1997-06-12

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task formore » this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.« less

  7. Some challenges in designing a lunar, Martian, or microgravity CELSS.

    PubMed

    Salisbury, F B

    1992-01-01

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3 xg and in the vacuum of space. Light (energy demanding), CO2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures--and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.

  8. Some challenges in designing a lunar, Martian, or microgravity CELSS

    NASA Astrophysics Data System (ADS)

    Salisbury, Frank B.

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3xg and in the vacuum of space. Light (energy demanding), CO 2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures-and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.

  9. Formation of PBDD/F from PBDE in electronic waste in recycling processes and under simulated extruding conditions.

    PubMed

    Zennegg, Markus; Schluep, Mathias; Streicher-Porte, Martin; Lienemann, Peter; Haag, Regula; Gerecke, Andreas C

    2014-12-01

    The increasing volumes of waste electrical and electronic equipment (WEEE) in Europe and developing economies demand for efficient disposal solutions. However, WEEE also contains toxic compounds and, therefore, there is a need for recycling technologies for WEEE that creates revenue without causing environmental harm. Among other fast developing economies, South Africa is tempting to make use of recycled plastic. Brominated flame retardants (BFRs) are additives used to protect plastic materials in electrical and electronic equipment (EEE) against ignition. Some BFRs are known persistent organic pollutants (POPs) and some BFRs can be transformed into highly toxic compounds such as polybrominated dibenzofurans and dioxins (PBDD/Fs). In this study, the contents of critical BFRs, i.e. polybrominated diphenyl ethers, and highly toxic PBDD/Fs were measured in WEEE material from Switzerland and South Africa. The formation of PBDD/Fs has been observed in two South African recycling processes and under controlled laboratory conditions. Total PBDE-contents in the South African and Swiss plastic waste varied between 1×10(3) and 7×10(6) μg kg(-1). A few WEEE plastic fractions exceeded the RoHS limit of 1×10(6) μg kg(-1) for PBDEs and thus they could not be used for recycling products without special treatment. The total content of ∑PBDFs was around 1×10(3) μg kg(-1). Such contents in materials do not pose a risk for consumer under normal conditions. Workers at recycling plants might be at risk. The measured formation rates of PBDFs were between 2×10(-5) and 2×10(-4)∑PBDE(-1) min(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.

    PubMed

    Lixandru, A; Venkatesan, P; Jönsson, C; Poenaru, I; Hall, B; Yang, Y; Walton, A; Güth, K; Gauß, R; Gutfleisch, O

    2017-10-01

    Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Process Improvements: Aerobic Food Waste Composting at ISF Academy

    NASA Astrophysics Data System (ADS)

    Lau, Y. K.

    2015-12-01

    ISF Academy, a school with 1500 students in Hong Kong, installed an aerobic food waste composting system in November of 2013. The system has been operational for over seven months; we will be making improvements to the system to ensure the continued operational viability and quality of the compost. As a school we are committed to reducing our carbon footprint and the amount of waste we send to the local landfill. Over an academic year we produce approximately 27 metric tons of food waste. Our system processes the food waste to compost in 14 days and the compost is used by our primary school students in a organic farming project.There are two areas of improvement: a) if the composting system becomes anaerobic, there is an odor problem that is noticed by the school community; we will be testing the use of a bio-filter to eliminate the odor problem and, b) we will be working with an equipment vendor from Australia to install an improved grease trap system. The grease and oil that is collected will be sold to a local company here in Hong Kong that processes used cooking oil for making biofuels. This system will include a two stage filtration system and a heated vessel for separating the oil from the waste water.The third project will be to evaluate biodegradable cutlery for the compositing in the system. Currently, we use a significant quantity of non-biodegradable cutlery that is then thrown away after one use. Several local HK companies are selling biodegradable cutlery, but we need to evaluate the different products to determine which ones will work with our composting system. The food waste composting project at ISF Academy demonstrates the commitment of the school community to a greener environment for HK, the above listed projects will improve the operation of the system.

  12. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less

  13. Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvin, Nick; Kowalczyk, Joseph

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality control systems performance.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economicmore » and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced.« less

  15. Enhancing e-waste estimates: improving data quality by multivariate Input-Output Analysis.

    PubMed

    Wang, Feng; Huisman, Jaco; Stevels, Ab; Baldé, Cornelis Peter

    2013-11-01

    Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input-Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Global challenges for e-waste management: the societal implications.

    PubMed

    Magalini, Federico

    2016-03-01

    Over the last decades the electronics industry and ICT Industry in particular has revolutionized the world: electrical and electronic products have become ubiquitous in today's life around the planet. After use, those products are discarded, sometimes after re-use cycles in countries different from those where they were initially sold; becoming what is commonly called e-waste. Compared to other traditional waste streams, e-waste handling poses unique and complex challenges. e-Waste is usually regarded as a waste problem, which can cause environmental damage and severe human health consequences if not safely managed. e-Waste contains significant amounts of toxic and environmentally sensitive materials and is, thus, extremely hazardous to humans and the environment if not properly disposed of or recycled. On the other hand, e-waste is often seen as a potential source of income for individuals and entrepreneurs who aim to recover the valuable materials (metals in particular) contained in discarded equipment. Recently, for a growing number of people, in developing countries in particular, recycling and separation of e-waste has become their main source of income. In most cases, this is done informally, with no or hardly any health and safety standards, exposing workers and the surrounding neighborhoods to extensive health dangers as well as leading to substantial environmental pollution. Treatment processes of e-waste aim to remove the hazardous components and recover as much reusable material (e.g. metals, glass and plastics) as possible; achieving both objectives is most desired. The paper discuss societal implications of proper e-waste management and key elements to be considered in the policy design at country level.

  17. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, developmentmore » of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)« less

  18. Characterization and open windrow composting of MSW in Jodhpur City, Rajasthan, India.

    PubMed

    Ambade, Bhushan; Sharma, Sunil; Sharma, Yukti; Sharma, Yagya

    2013-07-01

    Solid waste is sometimes not suitable for direct land application. Processing solid waste through composting converts it to a humus-containing organic material advantageous for agriculture/horticulture use. Major advantages of composting are stabilization of the wastes; substantially reduced C/N ratio and gas formation, and virtually elimination of odors and pathogens. Composting is accomplished under aerobic conditions developing temperatures of 55 degrees C or above. The windrow technique is simple and accomplished easily with standard equipments. The open windrow composting of municipal solid waste (MSW) in windrows was analyzed in this study for six weeks. The raw MSW was introduced to active composting without any source segregations. The moisture content of the MSW dropped from 58.88% to 48.06% and windrow attained a thermophillic temperature for about two weeks. It was observed that the pH, C/N ratio and temperature variations were comparable to that of traditional windrow composting. The peak temperature recorded was 68 degrees C and temperature remained above 60 degrees C for more than three weeks. The volume reduction was obtained by using one-cu.m. cage. The results indicate that the bulk composting could reduce by about 29% the total mass of the waste.

  19. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlledmore » to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.« less

  20. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor.

    PubMed

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S K; McKay, Gordon

    2015-01-01

    Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Don; Barton, David; Case, Glenn

    2013-07-01

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibilitymore » for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary construction activities for the Port Hope LTWMF commenced in 2012 and are scheduled to continue over the next few years. The first cell of the engineered containment mound is scheduled to be constructed in 2015 with waste placement into the Port Hope LTWMF anticipated over the following seven year period. (authors)« less

  2. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.

  3. A Failing Grade for WEEE Take-Back Programs for Information Technology Equipment

    ERIC Educational Resources Information Center

    Nakajima, Nina; Vanderburg, Willem H.

    2005-01-01

    Product take-back (also called extended producer responsibility) has become a trend for dealing with the garbage resulting from categories of problematic products. Waste electrical and electronic equipment (WEEE) is one such category with computer equipment being of particular significance. This article provides a description of the European…

  4. 10 CFR 72.164 - Control of measuring and test equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., instruments, and other measuring and testing devices used in activities affecting quality are properly... WASTE Quality Assurance § 72.164 Control of measuring and test equipment. The licensee, applicant for a... 10 Energy 2 2010-01-01 2010-01-01 false Control of measuring and test equipment. 72.164 Section 72...

  5. 40 CFR 267.34 - When must personnel have access to communication equipment or an alarm system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to an internal alarm or emergency communication device, either directly or through visual or voice... communication equipment or an alarm system? 267.34 Section 267.34 Protection of Environment ENVIRONMENTAL... have access to communication equipment or an alarm system? (a) Whenever hazardous waste is being poured...

  6. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.

    PubMed

    Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip

    2017-12-01

    Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Contaminated waste incinerator modification study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, F.

    1995-08-01

    An explosive waste incinerator (EWI) can be installed in the existing Badger AAP Contaminated Waste Processor (CWP). An engineering evaluation of installing a rotary kiln furnace to dispose of waste energetic material has shown the installation to be possible. An extensive literature search was completed to develop the known proven methods of energetic waste disposal. Current incineration practice including thermal treatment alternatives was investigated. Existing and new equipment was reviewed for adequacy. Current CWP operations and hazardous waste to be disposed of were determined. Comparisons were made with other AAP`s EWI.

  8. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  9. PLANNING AND ASSESSMENT MEASURES TO UPDATING RESOURCES RECYCLING EQUIPMENTS IN COLLABORATION WITH SEWAGE TREATMENT PLANTS AND WASTE INCINERATION PLANTS

    NASA Astrophysics Data System (ADS)

    Nakakubo, Toyohiko; Tokai, Akihiro; Ohno, Koichi

    This study aims to assess two biomass utilization policies: the integration of food waste treatment in a sewerage treatment plant with an anaerobic digestion tank, and the pruned branch usage as heat source for drying sludge. We focused on two points in our analysis that the impact of the increase of dewatered sludge on sludge treatment processes after digestion and the improvement of the efficiency of waste power generation plants. A developed model was applied to the case study in Kobe city and evaluated the impact until 2030 by four indicators: energy consumption, greenhouse gas (GHG) emission, phosphorus-recovery, and cost. The results showed that case 3-C, which introducing the combined sludge and food waste digestion system, pyrolysis gasification with gas engine and wood-chip boiler, could supply additional 452 TJ/y of energy, recovery 93 t-P/y of phosphorus, and reduce 38 kt-CO2eq./y of GHG while shrinking the cost by 88 million yen/y compared to business as usual types-update case.

  10. Fuel conditioning facility electrorefiner start-up results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Mariani, R.D.; Vaden, D.

    1996-05-01

    At ANL-West, there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will make use of an electrometallurgical process employing molten salts and liquid metals. The treatment equipment is presently undergoing testing with depleted uranium. Operations with irradiated fuel will commence when the environmental evaluation for FCF is complete.

  11. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles.

    PubMed

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J

    2013-07-16

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.

  12. Disposal of waste computer hard disk drive: data destruction and resources recycling.

    PubMed

    Yan, Guoqing; Xue, Mianqiang; Xu, Zhenming

    2013-06-01

    An increasing quantity of discarded computers is accompanied by a sharp increase in the number of hard disk drives to be eliminated. A waste hard disk drive is a special form of waste electrical and electronic equipment because it holds large amounts of information that is closely connected with its user. Therefore, the treatment of waste hard disk drives is an urgent issue in terms of data security, environmental protection and sustainable development. In the present study the degaussing method was adopted to destroy the residual data on the waste hard disk drives and the housing of the disks was used as an example to explore the coating removal process, which is the most important pretreatment for aluminium alloy recycling. The key operation points of the degaussing determined were: (1) keep the platter plate parallel with the magnetic field direction; and (2) the enlargement of magnetic field intensity B and action time t can lead to a significant upgrade in the degaussing effect. The coating removal experiment indicated that heating the waste hard disk drives housing at a temperature of 400 °C for 24 min was the optimum condition. A novel integrated technique for the treatment of waste hard disk drives is proposed herein. This technique offers the possibility of destroying residual data, recycling the recovered resources and disposing of the disks in an environmentally friendly manner.

  13. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)« less

  14. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.

    PubMed

    Li, Jia; Wu, Guiqing; Xu, Zhenming

    2015-01-01

    Plastic products can be found everywhere in people's daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (-)-PE-PS-PC-PVC-ABS-PP-(+), while the triboelectric series obtained by cyclone was (-)-PE-PS-PC-PVC-ABS-PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving forcemore » for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute significantly to understanding the recycling methods of NMFs from WEEE and serve as guidance for the future technology research and development.« less

  16. Export of electronics equipment waste.

    PubMed

    LaDou, Joseph; Lovegrove, Sandra

    2008-01-01

    Electronics equipment waste ("e-waste") includes discarded computers, computer monitors, television sets, and cell phones. Less than 10% of e-waste is currently recycled. The United States and other developed countries export e-waste primarily to Asia, knowing it carries a real harm to the poor communities where it will be discarded. A 2006 directive bans the use of lead, mercury, cadmium, hexavalent chromium, and certain brominated flame retardants in most electronics products sold in the EU. A similar directive facilitates the development and design of clean electronics products with longer lifespans that are safe and easy to repair, upgrade, and recycle, and will not expose workers and the environment to hazardous chemicals. These useful approaches apply only regionally and cover only a fraction of the hazardous substances used in electronics manufacture, however. There is an urgent need for manufacturers of electronics products to take responsibility for their products from production to end-of-life, and for much tighter controls both on the transboundary movement of e-waste and on the manner in which it is recycled. Manufacturers must develop clean products with longer lifespans that are safe and easy to repair, upgrade, and recycle and will not expose workers and the environment to hazardous chemicals.

  17. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    PubMed

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management.

  18. USER'S GUIDE FOR THE MUNICIPAL SOLID WASTE LIFE-CYCLE DATABASE

    EPA Science Inventory

    The report describes how to use the municipal solid waste (MSW) life cycle database, a software application with Microsoft Access interfaces, that provides environmental data for energy production, materials production, and MSW management activities and equipment. The basic datab...

  19. Applicability Flowchart for Hospital/Medical/Infectious Waste Incinerators (HIMWI) Amended October 6, 2009

    EPA Pesticide Factsheets

    This October 2009 document contains a diagram that that are intended to assist you in determining whether you own or operate any equipment that is subject to the Hospital/Medical/Infectious Waste Incinerators (HIMWI) regulations.

  20. ECONOMICS OF GROUND FREEZING FOR MANAGEMENT OF UNCONTROLLED HAZARDOUS WASTE SITES

    EPA Science Inventory

    Ground freezing for hazardous waste containment is an alternative to the traditional and expensive slurry wall or grout curtain barrier technologies. The parameters quantified in this analysis of it include thermal properties, refrigeration line spacing, equipment mobilization an...

  1. E-waste: a global hazard.

    PubMed

    Perkins, Devin N; Brune Drisse, Marie-Noel; Nxele, Tapiwa; Sly, Peter D

    2014-01-01

    Waste from end-of-life electrical and electronic equipment, known as e-waste, is a rapidly growing global problem. E-waste contains valuable materials that have an economic value when recycled. Unfortunately, the majority of e-waste is recycled in the unregulated informal sector and results in significant risk for toxic exposures to the recyclers, who are frequently women and children. The aim of this study was to document the extent of the problems associated with inappropriate e-waste recycling practices. This was a narrative review that highlighted where e-waste is generated, where it is recycled, the range of adverse environmental exposures, the range of adverse health consequences, and the policy frameworks that are intended to protect vulnerable populations from inappropriate e-waste recycling practices. The amount of e-waste being generated is increasing rapidly and is compounded by both illegal exportation and inappropriate donation of electronic equipment, especially computers, from developed to developing countries. As little as 25% of e-waste is recycled in formal recycling centers with adequate worker protection. The health consequences of both direct exposures during recycling and indirect exposures through environmental contamination are potentially severe but poorly studied. Policy frameworks aimed at protecting vulnerable populations exist but are not effectively applied. E-waste recycling is necessary but it should be conducted in a safe and standardized manor. The acceptable risk thresholds for hazardous, secondary e-waste substances should not be different for developing and developed countries. However, the acceptable thresholds should be different for children and adults given the physical differences and pronounced vulnerabilities of children. Improving occupational conditions for all e-waste workers and striving for the eradication of child labor is non-negotiable. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  2. [Assessment of medical waste management in a Palestinian hospital].

    PubMed

    Al-Khatib, I A; Khatib, R A

    2006-01-01

    We studied medical waste management in a Palestinian hospital in the West Bank and the role of municipality in this management. In general, "good management practices" were inadequate; there was insufficient separation between hazardous and non-hazardous wastes, an absence of necessary rules and regulations for the collection of wastes from the hospital wards and the on-site transport to a temporary storage location inside and outside the hospital and inadequate waste treatment and disposal of hospital wastes along with municipal garbage. Moreover, training of personnel was lacking and protective equipment and measures for staff were not available. No special landfills for hazardous wastes were found within the municipality.

  3. The Analysis of the System of special water purification of Beloyarskaya Nuclear Power Plant unit BN-800

    NASA Astrophysics Data System (ADS)

    Valtseva, A. I.; Bibik, I. S.

    2017-11-01

    This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.

  4. Waste separation: Does it influence municipal waste combustor emissions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, A.J.; Rigo, H.G.

    1996-09-01

    It has been suggested that MSW incinerator emissions show significant variations because of the heterogeneous nature of the waste fed to the furnace. This argument has even been used to propose banning certain materials from incinerators. However, data previously reported by the authors suggests that a large portion of the trace metals come from natural sources. Furthermore, full scale incinerator spiking experiments suggest that certain forms of trace metals have minimal effects on stack emissions. Similar studies with chlorinated plastics have failed to identify a significant effect on incinerator dioxin emissions. The implication of segregating the lawn and garden wastemore » and other fines from the furnace feed is explored using data from a 400 tpd mass burn facility equipped with a conditioning tower, dry reactor and fabric filter air pollution control system (APCS) preceded by an NRT separation system. The stack emissions have been tested periodically since commissioning to characterize emissions for various seasons using both processed fuel and raw MSW. Front end processing to remove selected portions of the waste stream based upon size or physical properties, i.e. fines, grass, or ferrous materials, did not result in a statistically significant difference in stack emissions. System operating regime, and in particular those that effect the effective air to cloth ratio in the fabric filter, appear to be the principal influence on emission levels.« less

  5. Spent fuel treatment at ANL-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Benedict, R.W.; Levinskas, D.

    1994-12-31

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Cycle Facility at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will employ a pyrochemical process that also has applications for treating most of the fuel types within the Department of Energy complex. The treatment equipment is in its last stage of readiness, and operations will begin in the Fall of 1994.

  6. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  7. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOEpatents

    Scheffer, Karl D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  8. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOEpatents

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  9. Hazardous Waste Cleanup: Curtiss-Wright in Kearny, New Jersey

    EPA Pesticide Factsheets

    The site is located in Phillipsburg, New Jersey and was operated by Ingersoll Rand Company. Ingersoll Rand began facility construction in 1903 and produced products such as pumps, turbo equipment, air and gas compressors, rock drills, and mining equipment.

  10. Regeneration of paint sludge and reuse in cement concrete

    NASA Astrophysics Data System (ADS)

    Feng, Enqi; Sun, Jitao; Feng, Liming

    2018-06-01

    Paint Sludge (PS) is a hazardous waste. Inappropriate disposal of PS might be harmful to public health and the environment. Various size of Paint Sludge Solid Powder (PSSP) particles have been produced by automatic processing equipment via dewatering, crushing, screening removing Volatile Organic Compounds (VOCs), and etc. Meanwhile, the test results show that PSSP is not a hazardous waste. Both flexural and compressive strength are increased by adding PSSP of polyurethane to cement concrete at a level of below 10% of cement weight. However, the strength has a significant reduction at a level of above 15% of cement weight. The reason for the increase of strength is probably due to a slow coagulation and copolymerization of PSSP and cement. The reduction is likely due to the self-reunion of PSSP.

  11. Converting environmental wastes into valuable resources

    NASA Technical Reports Server (NTRS)

    Duval, Leonard A.

    1993-01-01

    This concept employs a viable energy saving method that uses a solvent to separate oil from particle matter; it can be used in metal forming industries to deoil sludges, oxides, and particle matter that is presently committed to landfill. If oily particles are used in their oily state, severe consequences to environmental control systems such as explosions or filter blinding, occur in the air handling equipment. This is due to the presence of hydrocarbons in the stack gasses resulting from the oily particles. After deoiling, the particles can be recycled and the separated oil can be used as a fuel. The process does not produce a waste of it's own and does not harm air or water. It demonstrates the dual benefits of it being commercially viable and in the national interest of conserving resources.

  12. Converting environmental wastes into valuable resources

    NASA Astrophysics Data System (ADS)

    Duval, Leonard A.

    1993-02-01

    This concept employs a viable energy saving method that uses a solvent to separate oil from particle matter; it can be used in metal forming industries to deoil sludges, oxides, and particle matter that is presently committed to landfill. If oily particles are used in their oily state, severe consequences to environmental control systems such as explosions or filter blinding, occur in the air handling equipment. This is due to the presence of hydrocarbons in the stack gasses resulting from the oily particles. After deoiling, the particles can be recycled and the separated oil can be used as a fuel. The process does not produce a waste of it's own and does not harm air or water. It demonstrates the dual benefits of it being commercially viable and in the national interest of conserving resources.

  13. Method for efficient recovery of high-purity polycarbonates from electronic waste.

    PubMed

    Weeden, George S; Soepriatna, Nicholas H; Wang, Nien-Hwa Linda

    2015-02-17

    More than one million tons of polycarbonates from waste electrical and electronic equipment are consigned to landfills at an increasing rate of 3-5% per year. Recycling the polymer waste should have a major environmental impact. Pure solvents cannot be used to selectively extract polycarbonates from mixtures of polymers with similar properties. In this study, selective mixed solvents are found using guidelines from Hansen solubility parameters, gradient polymer elution chromatography, and solubility tests. A room-temperature sequential extraction process using two mixed solvents is developed to recover polycarbonates with high yield (>95%) and a similar purity and molecular weight distribution as virgin polycarbonates. The estimated cost of recovery is less than 30% of the cost of producing virgin polycarbonates from petroleum. This method would potentially reduce raw materials from petroleum, use 84% less energy, reduce emission by 1-6 tons of CO2 per ton of polycarbonates, and reduce polymer accumulation in landfills and associated environmental hazards.

  14. Evaluation of Practicing sustainable Industrial Solid Waste Minimization by Manufacturing Firms in Malaysia: Strengths and Weaknesses.

    PubMed

    Mallak, Shadi Kafi; Bakri Ishak, Mohd; Mohamed, Ahmad Fariz

    2016-09-13

    Malaysia is facing an increasing trend in industrial solid waste generation due to industrial development.Thus there is a paramount need in taking a serious action to move toward sustainable industrial waste management. The main aim of this study is to assess practicing solid waste minimization by manufacturing firms in Shah Alam industrial state, Malaysia. This paper presents a series of descriptive and inferential statistical analysis regarding the level and effects of practicing waste minimization methods, and seriousness of barriers preventing industries from practicing waste minimization methods. For this purpose the survey questions were designed such that both quantitative (questionnaire) and qualitative (semi-structures interview) data were collected concurrently. Analysis showed that, the majority of firms (92%) dispose their wastes rather than practice other sustainable waste management options. Also waste minimization methods such as segregation of wastes, on-site recycle and reuse, improve housekeeping and equipment modification were found to have significant contribution in waste reduction (p<0.05). Lack of expertise (M=3.50), lack of enough information (M= 3.54), lack of equipment modification (M= 3.16) and lack of specific waste minimization guidelines (M=3.49) have higher mean scores comparing with other barriers in different categories. These data were interpreted for elaborating of SWOT and TOWS matrix to highlight strengths, weaknesses, threats and opportunities. Accordingly, ten policies were recommended for improvement of practicing waste minimization by manufacturing firms as the main aim of this research. Implications This manuscript critically analysis waste minimization practices by manufacturing firms in Malaysia. Both qualitative and quantitative data collection and analysis were conducted to formulate SWOT and TOWS matrix in order to recommend policies and strategies for improvement of solid waste minimization by manufacturing industries. The results contribute to the knowledge and the findings of this study provide a useful baseline information and data on industrial solid waste generation and waste minimization practice.

  15. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOEpatents

    Meikrantz, David H.; Mincher, Bruce J.; Arbon, Rodney E.

    1998-01-01

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilogray. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste.

  16. 40 CFR 267.1101 - What design and operating standards must my containment building meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Stresses of daily operation, including the movement of heavy equipment within the unit and contact of such... characteristics of the waste to be managed. (f) If appropriate to the nature of the waste management operation to...

  17. 40 CFR 267.1101 - What design and operating standards must my containment building meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Stresses of daily operation, including the movement of heavy equipment within the unit and contact of such... characteristics of the waste to be managed. (f) If appropriate to the nature of the waste management operation to...

  18. 40 CFR 267.1101 - What design and operating standards must my containment building meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Stresses of daily operation, including the movement of heavy equipment within the unit and contact of such... characteristics of the waste to be managed. (f) If appropriate to the nature of the waste management operation to...

  19. 40 CFR 267.1101 - What design and operating standards must my containment building meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Stresses of daily operation, including the movement of heavy equipment within the unit and contact of such... characteristics of the waste to be managed. (f) If appropriate to the nature of the waste management operation to...

  20. 40 CFR 267.1101 - What design and operating standards must my containment building meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Stresses of daily operation, including the movement of heavy equipment within the unit and contact of such... characteristics of the waste to be managed. (f) If appropriate to the nature of the waste management operation to...

  1. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ng TEQ/dscm, corrected to 7 percent oxygen, for liquid fuel boilers equipped with a dry air pollution... by paragraph (a)(5) of this section for sources not equipped with a dry air pollution control system; (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control...

  2. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ng TEQ/dscm, corrected to 7 percent oxygen, for liquid fuel boilers equipped with a dry air pollution... by paragraph (a)(5) of this section for sources not equipped with a dry air pollution control system; (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control...

  3. WIPP Remote-Handled TRU Waste Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Most, W.; Kehrman, B.

    2006-07-01

    There are two major regulatory approval milestones necessary in order to commence disposal operations for remote-handled transuranic (RH TRU) waste at the Waste Isolation Pilot Plant (WIPP)-the RH TRU hazardous waste permit modification request [1] and the radiological characterization plan [2]. One of those milestones has been achieved. The US Environmental Protection Agency (EPA) issued its final decision to approve the Department of Energy's (DOE) RH TRU radiological characterization plan along with the RH TRU Waste Characterization Program Implementation Plan [3], on March 26, 2004. The RH TRU hazardous waste permit modification request still awaits agency approval. In EPA's decisionmore » to approve the DOE's RH TRU radiological characterization plan, the EPA also set forth the process for approving site-specific RH TRU waste characterization programs. Included in the March 29, 2005, RH TRU second Notice of Deficiency [4] (NOD) on the Class 3 Permit Modification Request for RH TRU Waste, the New Mexico Environment Department (NMED) requested that the Permittees combine their responses for the RH TRU Waste NOD with the Section 311 permit modification request NOD. The Combined Response Document was submitted April 28, 2005 [5]. Another NOD [6] was issued by the NMED on September 1, 2005, to clarify the Permittees' proposal and submit these clarifications to the administrative record. Combining both the chap. 311 [7] and RH TRU waste permit modification requests allows for both the regulator and Permittees to expedite action on the modification requests. The Combined Response Document preserves human resources and costs by having only one administrative process for both modification requests. Facility readiness requirements of the RH TRU waste final permit [8] must be implemented to declare that the WIPP is ready to receive RH TRU waste for storage and disposal. To demonstrate readiness, the WIPP is preparing for an Operational Readiness Review (ORR) of the RH TRU waste management equipment, system, and procedures. Required by DOE Order, the ORR demonstrates the capability of managing RH TRU waste. The Management and Operating Contractor (MOC) for the WIPP must first perform a Line Management Assessment. Upon successful completion of the Line Management Assessment, the MOC performs the Contractor ORR and presents the results to the local DOE office. At that time, the local DOE office performs its own ORR to declare readiness to DOE Headquarters. (authors)« less

  4. Equipment evaluation for low density polyethylene encapsulated nitrate salt waste at the Rocky Flats Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, W.I.; Faucette, A.M.; Jantzen, R.C.

    1993-08-30

    Mixed wastes at the Rocky Flats Plant (RFP) are subject to regulation by the Resource Conservation and Recovery Act (RCRA). Polymer solidification is being developed as a final treatment technology for several of these mixed wastes, including nitrate salts. Encapsulation nitrate salts with low density polyethylene (LDPE) has been the preliminary focus of the RFP polymer solidification effort. Literature reviews, industry surveys, and lab-scale and pilot-scale tests have been conducted to evaluate several options for encapsulating nitrate salts with LDPE. Most of the effort has focused on identifying compatible drying and extrusion technologies. Other processing options, specifically meltration and non-heatedmore » compounding machines, were also investigated. The best approach appears to be pretreatment of the nitrate salt waste brine in either a vertical or horizontal thin film evaporator followed by compounding of the dried waste with LDPE in an intermeshing, co-rotating, twin-screw extruder. Additional pilot-scale tests planned for the fall of 1993 should further support this recommendation. Preliminary evaluation work indicates that meltration is not possible at atmospheric pressure with the LDPE (Chevron PE-1409) provided by RFP. However, meltration should be possible at atmospheric pressure using another LDPE formulation with altered physical and rheological properties: Lower molecular weight and lower viscosity (Epoline C-15). Contract modifications are now in process to allow a follow-on pilot scale demonstration. Questions regarding changed safety and physical properties of the resultant LDPE waste form due to use of the Epoline C-15 will be addressed. No additional work with non-heated mixer compounder machines is planned at this time.« less

  5. Factors governing particle number emissions in a waste-to-energy plant.

    PubMed

    Ozgen, Senem; Cernuschi, Stefano; Giugliano, Michele

    2015-05-01

    Particle number concentration and size distribution measurements were performed on the stack gas of a waste-to-energy plant which co-incinerates municipal solid waste, sewage sludge and clinical waste in two lines. Average total number of particles was found to be 4.0·10(5)cm(-3) and 1.9·10(5)cm(-3) for the line equipped with a wet flue gas cleaning process and a dry cleaning system, respectively. Ultrafine particles (dp<100nm) accounted for about 97% of total number concentration for both lines, whereas the nanoparticle (dp<50nm) contribution differed slightly between the lines (87% and 84%). The experimental data is explored statistically through some multivariate pattern identifying methods such as factor analysis and cluster analysis to help the interpretation of the results regarding the origin of the particles in the flue gas with the objective of determining the factors governing the particle number emissions. The higher moisture of the flue gas in the wet cleaning process was found to increase the particle number emissions on average by a factor of about 2 due to increased secondary formation of nanoparticles through nucleation of gaseous precursors such as sulfuric acid, ammonia and water. The influence of flue gas dilution and cooling monitored through the variation of the sampling conditions also confirms the potential effect of the secondary new particle formation in increasing the particle number emissions. This finding shows the importance of reporting the experimental conditions in detail to enable the comparison and interpretation of particle number emissions. Regarding the fuel characteristics no difference was observed in terms of particle number concentration and size distributions between the clinical waste feed and the municipal solid waste co-incineration with sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Advanced worker protection system. Topical report, Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, J.

    1995-07-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection tomore » DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system, maintenance, and dramatically improve worker productivity through longer duration work cycles.« less

  7. Eco-friendly copper recovery process from waste printed circuit boards using Fe³⁺/Fe²⁺ redox system.

    PubMed

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Egedy, Attila; Imre-Lucaci, Árpád; Ilea, Petru

    2015-06-01

    The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe(3+) combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Geeting, John GH; Bredt, Ofelia P.

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes." The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEPmore » also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-1, the 19-M NaOH is added to un-concentrated waste slurry (3-8 wt% solids), while for leaching in UFP-2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. In both scenarios, following the caustic leach, the slurry was then concentrated to 17 wt% and washed with inhibited water to remove NaOH and other soluble salts. Next, the slurry was oxidatively leached using sodium permanganate to solubilize chrome. The slurry was then washed to remove the dissolved chrome and concentrated.« less

  9. Manipulation and handling processes off-line programming and optimization with use of K-Roset

    NASA Astrophysics Data System (ADS)

    Gołda, G.; Kampa, A.

    2017-08-01

    Contemporary trends in development of efficient, flexible manufacturing systems require practical implementation of modern “Lean production” concepts for maximizing customer value through minimizing all wastes in manufacturing and logistics processes. Every FMS is built on the basis of automated and robotized production cells. Except flexible CNC machine tools and other equipments, the industrial robots are primary elements of the system. In the studies, authors look for wastes of time and cost in real tasks of robots, during manipulation processes. According to aspiration for optimization of handling and manipulation processes with use of the robots, the application of modern off-line programming methods and computer simulation, is the best solution and it is only way to minimize unnecessary movements and other instructions. The modelling process of robotized production cell and offline programming of Kawasaki robots in AS-Language will be described. The simulation of robotized workstation will be realized with use of virtual reality software K-Roset. Authors show the process of industrial robot’s programs improvement and optimization in terms of minimizing the number of useless manipulator movements and unnecessary instructions. This is realized in order to shorten the time of production cycles. This will also reduce costs of handling, manipulations and technological process.

  10. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Stack gas monitoring and pollution control equipment. (H) Nozzle and burner design. (I) Construction.... (iii) A detailed description of sampling and monitoring procedures, including sampling and monitoring locations in the system, the equipment to be used, sampling and monitoring frequency, and planned analytical...

  11. Nanomanufacturing and sustainability: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Busnaina, Ahmed A.; Mead, Joey; Isaacs, Jacqueline; Somu, Sivasubramanian

    2013-10-01

    New nanomanufacturing technologies, although still in research labs, present a great opportunity to drastically reduce the cost of making nanostructures on a large scale and at high-rates. Such new bottom-up directed assembly-based approaches involve adding materials selectively thereby both reducing waste and the number of required processes. Directed assembly-based processes are conducted at room pressure and temperatures which significantly reduces the cost of nanomanufacturing equipment and tools, ensuring long-term sustainability by reducing energy, consumables, and waste costs. This paradigm shift in nanomanufacturing will unleash not only a wave of creativity in sustainable nanomanufacturing but lessons learnt along the way can be used in various other sectors. Along with the exquisite technological promise that nanotechnology holds, nano-enabled products are heralded as a means for energy and resource reduction, resulting in potential manufacturing cost reductions and further, for potential improvements to environmental remediation. Sustainable nanomanufacturing will, by dramatically lowering current nanomanufacturing barriers, spur innovation, and the creation of entirely new industries by leveling the playing and ultimately leading to the democratization of nanomanufacturing.

  12. Microfluidic-Based sample chips for radioactive solutions

    DOE PAGES

    Tripp, J. L.; Law, J. D.; Smith, T. E.; ...

    2015-01-01

    Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument wouldmore » greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply µL sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.« less

  13. Recovery of PET from packaging plastics mixtures by wet shaking table.

    PubMed

    Carvalho, M T; Agante, E; Durão, F

    2007-01-01

    Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.

  14. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.; Smith III, F. G.; McCabe, D. J.

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how themore » varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.« less

  15. Hospitalization and Medical Evacuation of Army Personnel Due to Toxic Inhalational Exposure-Operations Iraqi Freedom and Enduring Freedom, 2001 Through Mid 2011

    DTIC Science & Technology

    2012-01-01

    waste management tools at locations where more so- phisticated methods of solid waste disposal ( incinerators , reuse/recycling, containerized removal by...an incinerator or other equip- ment specifi cally designed…for burning of solid waste, designated for the purpose of disposing of solid waste by...regularly exceeded the 24-hour standards set by the US Environmental Pro - tection Agency.14 Exhaust and Industrial Byproducts The operational setting in

  16. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and performance properties; (3) Design up to 2 additional grout systems for filling the Tank 18-F and Tank 19-F equipment; (4) Prepare samples of candidate grouts and measure fresh properties, thermal properties and cured properties; (5) Recommend a grout for the Tier 1A equipment fill mock up - ADMP 4 foot high mock up, 1 inch and 2 inch pipes; (6) Support procurement of materials for the Tier 1A equipment fill mock up test; (7) Prepare samples of the recommended grout for hydraulic property measurements which can be used for comparison to values used in the F- Tank Farm Performance Assessment (PA); and (8) Document equipment fill grout data and recommendations in a report.« less

  17. Anaerobic co-digestion of dairy manure and potato waste

    NASA Astrophysics Data System (ADS)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow) operating at thermophilic temperatures are recommended. • The ratio of DM:PW-90:10 or 80:20 is recommended while operating low cost plug flow digesters at thermophilic temperatures. ▸ In cases of anaerobic digesters operated without electricity generation equipment (generators), completely mixed or high or low cost plug flow digesters can be used. • The ratio of DM:PW-80:20 is recommended for completely mixed digesters operated at thermophilic temperatures; • The ratio of DM:PW-90:10 or 80:20 is recommended for high cost plug flow digesters (capital cost of 1,000/cow) operated at thermophilic temperatures; • All of the four co-digested mixing ratios (i.e. DM:PW-90:10 or 80:20 or 60:40 or 40:60) are good for low cost plug flow digesters (capital cost of $600/cow) operated at thermophilic temperatures. The ratio of DM:PW-90:10 is recommended for positive cash flow within the ten year period if the low cost plug flow digesters are operated at mesophilic temperatures.

  18. HANDBOOK: MATERIAL RECOVERY FACILITIES FOR MUNICIPAL SOLID WASTE.

    EPA Science Inventory

    The purpose of this document is to address the technical and economic aspects of material recovery facility (MRF) equipment and technology in such a manner that the document may be of assistance to solid waste planners and engineers at the local community level. This docum...

  19. Heavy equipment maintenance wastes and environmental management in the mining industry.

    PubMed

    Guerin, Turlough F

    2002-10-01

    Maintenance wastes, if not managed properly, represent significant environmental issues for mining operations. Petroleum hydrocarbon liquid wastes were studied at an Australian site and a review of the literature and technology vendors was carried out to identify oil/water separation technologies. Treatment technologies and practices for managing oily wastewater, used across the broader mining industry in the Asia-Pacific region, were also identified. Key findings from the study were: (1) primary treatment is required to remove grease oil contamination and to protect secondary oily wastewater treatment systems from being overloaded; (2) selection of an effective secondary treatment system is dependent on influent oil droplet size and concentration, suspended solids concentration, flow rates (and their variability), environmental conditions, maintenance schedules and effectiveness, treatment targets and costs; and (3) oily wastewater treatment systems, based on mechanical separation, are favoured over those that are chemically based, as they simplify operational requirements. Source reduction, through housekeeping, equipment and reagent modifications, and segregation and/or consolidation of hydrocarbon waste streams, minimizes treatment costs, safety and environmental impact.

  20. Bioregenerative food system cost based on optimized menus for advanced life support

    NASA Technical Reports Server (NTRS)

    Waters, Geoffrey C R.; Olabi, Ammar; Hunter, Jean B.; Dixon, Mike A.; Lasseur, Christophe

    2002-01-01

    Optimized menus for a bioregenerative life support system have been developed based on measures of crop productivity, food item acceptability, menu diversity, and nutritional requirements of crew. Crop-specific biomass requirements were calculated from menu recipe demands while accounting for food processing and preparation losses. Under the assumption of staggered planting, the optimized menu demanded a total crop production area of 453 m2 for six crew. Cost of the bioregenerative food system is estimated at 439 kg per menu cycle or 7.3 kg ESM crew-1 day-1, including agricultural waste processing costs. On average, about 60% (263.6 kg ESM) of the food system cost is tied up in equipment, 26% (114.2 kg ESM) in labor, and 14% (61.5 kg ESM) in power and cooling. This number is high compared to the STS and ISS (nonregenerative) systems but reductions in ESM may be achieved through intensive crop productivity improvements, reductions in equipment masses associated with crop production, and planning of production, processing, and preparation to minimize the requirement for crew labor.

  1. Environmental and economic vision of plasma treatment of waste in Makkah

    NASA Astrophysics Data System (ADS)

    Galaly, Ahmed Rida; van Oost, Guido

    2017-10-01

    An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to the chemical and energetic valorization of the sustainability in the Kingdom of Saudi Arabia (KSA). This is especially applicable in the pilgrimage season in the city of Makkah, which is a major challenge since the amount of waste was estimated at about 750 thousand tons through Arabic Year 1435H (2015), and is growing at a rate of 3%-5% annually. According to statistics, the value of waste in Saudi Arabia ranges between 8 and 9 billion EUR. The Plasma-Treatment Project (PTP) encompasses the direct plasma treatment of all types of waste (from source and landfill), as well as an environmental vision and economic evaluation of the use of the gas produced for fuel and electricity production in KSA, especially in the pilgrimage season in the holy city Makkah. The electrical power required for the plasma-treatment process is estimated at 5000 kW (2000 kW used for the operation of the system and 3000 kW sold), taking into account the fact that: (1) the processing capacity of solid waste is 100 tons per day (2) and the sale of electricity amounts to 23.8 MW at 0.18 EUR per kWh. (3) The profit from the sale of electricity per year is estimated at 3.27 million EUR and the estimated profit of solid-waste treatment amounts to 6 million EUR per year and (4) the gross profit per ton of solid waste totals 8 million EUR per year. The present article introduces the first stage of the PTP, in Makkah in the pilgrimage season, which consists of five stages: (1) study and treatment of waste streams, (2) slaughterhouse waste treatment, (3) treatment of refuse-derived fuel, (4) treatment of car tires and (5) treatment of slag (the fifth stage associated with each stage from the four previous stages).

  2. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  3. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles

    PubMed Central

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.

    2013-01-01

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator. PMID:23836642

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prod'homme, A.; Drouvot, O.; Gregory, J.

    In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) atmore » the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)« less

  5. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.

    PubMed

    Colangelo, Francesco; Messina, Francesco; Cioffi, Raffaele

    2015-12-15

    In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Bottenus, Courtney LH

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogenmore » gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.« less

  7. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives.

    PubMed

    Habib, Komal; Parajuly, Keshav; Wenzel, Henrik

    2015-10-20

    Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.

  8. Effects of dispense equipment sequence on process start-up defects

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nick; Sevegney, Michael

    2013-03-01

    Photofluid dispense systems within coater/developer tools have been designed with the intent to minimize cost of ownership to the end user. Waste and defect minimization, dispense quality and repeatability, and ease of use are all desired characteristics. One notable change within commercially available systems is the sequence in which process fluid encounters dispense pump and filtration elements. Traditionally, systems adopted a pump-first sequence, where fluid is "pushed through" a point-of-use filter just prior to dispensing on the wafer. Recently, systems configured in a pump-last scheme have become available, where fluid is "pulled through" the filter, into the pump, and then is subsequently dispensed. The present work constitutes a comparative evaluation of the two equipment sequences with regard to the aforementioned characteristics that impact cost of ownership. Additionally, removal rating and surface chemistry (i.e., hydrophilicity) of the point-of-use filter are varied in order to evaluate their influence on system start-up and defects.

  9. Mass balance and life cycle assessment of the waste electrical and electronic equipment management system implemented in Lombardia Region (Italy).

    PubMed

    Biganzoli, L; Falbo, A; Forte, F; Grosso, M; Rigamonti, L

    2015-08-15

    Waste electrical and electronic equipment (WEEE) is one of the fastest growing waste streams in Europe, whose content of hazardous substances as well as of valuable materials makes the study of the different management options particularly interesting. The present study investigates the WEEE management system in Lombardia Region (Italy) in the year 2011 by applying the life cycle assessment (LCA) methodology. An extensive collection of primary data was carried out to describe the main outputs and the energy consumptions of the treatment plants. Afterwards, the benefits and burdens associated with the treatment and recovery of each of the five categories in which WEEE is classified according to the Italian legislation (heaters and refrigerators - R1, large household appliances - R2, TV and monitors - R3, small household appliances - R4 and lighting equipment - R5) were evaluated. The mass balance of the treatment and recovery system of each of the five WEEE categories showed that steel and glass are the predominant streams of materials arising from the treatment; a non-negligible amount of plastic is also recovered, together with small amounts of precious metals. The LCA of the regional WEEE management system showed that the benefits associated with materials and energy recovery balance the burdens of the treatment processes, with the sole exception of two impact categories (human toxicity-cancer effects and freshwater ecotoxicity). The WEEE categories whose treatment and recovery resulted more beneficial for the environment and the human health are R3 and R5. The contribution analysis showed that overall the main benefits are associated with the recovery of metals, as well as of plastic and glass. Some suggestions for improving the performance of the system are given, as well as an indication for a more-in-depth analysis for the toxicity categories and a proposal for a new characterisation method for WEEE. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Practical Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    Energy conservation is a key issue in design optimization of Advanced Life Support Systems (ALSS) for long-term space missions. By considering designs for conservation at the system level, energy saving opportunities arise that would otherwise go unnoticed. This paper builds on a steady-state investigation of system-level waste heat reuse in an ALSS with a low degree of crop growth for a Mars mission. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, several practical issues are considered for achieving a pragmatic estimate of total system savings in terms of equivalent system mass (ESM), rather than savings solely in terms of power and cooling. In this paper, more realistic ESM savings are computed by considering heat transfer inefficiencies during material transfer. An estimate of the steady-state mass, volume and crewtime requirements associated with heat exchange equipment is made by considering heat exchange equipment material type and configuration, stream flow characteristics and associated energy losses during the heat exchange process. Also, previously estimated power and cooling savings are adjusted to reflect the impact of such energy losses. This paper goes one step further than the traditional Pinch Method of considering waste heat reuse in heat exchangers to include ESM savings that occur with direct reuse of a stream. For example, rather than exchanging heat between crop growth lamp cooling air and air going to a clothes dryer, air used to cool crop lamps might be reused directly for clothes drying purposes. When thermodynamically feasible, such an approach may increase ESM savings by minimizing the mass, volume and crewtime requirements associated with stream routing equipment.

  11. THE ETV P2 INNOVATIVE COATINGS AND COATING EQUIPMENT PROGRAM--AN UPDATE

    EPA Science Inventory

    The paper focuses on the Pollution Prevention (P2), Recycling, and Waste Treatment Systems Center of the EPA's Environmental Technology Verification (ETV) Program and, specifically, the P2 Innovating Coatings and Coating Equipment Program (CCEP) housed within the Center. The focu...

  12. 40 CFR 63.703 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gaseous HAP emitted from each solvent storage tank, piece of mix preparation equipment, coating operation..., piece of mix preparation equipment, coating operation, waste handling device, and condenser vent in... of this method is sufficient to meet the requirements of paragraph (c)(1) or (2) of this section. (4...

  13. Graphite Waste Tank Cleanup and Decontamination under the Marcoule UP1 D and D Program - 13166

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomasset, Philippe; Chabeuf, Jean-Michel; Thiebaut, Valerie

    2013-07-01

    The UP1 plant in Marcoule reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. During more than 40 years, the decladding operations produced thousands of tons of processed waste, mainly magnesium and graphite fragments. In the absence of a French repository for the graphite waste, the graphite sludge content of the storage pits had to be retrieved and transferred into a newer and safer pit. After an extensive R and D program, the equipment and process necessary for retrieval operations were designed, built and tested. Themore » innovative process is mainly based on the use of two pumps (one to capture and the other one to transfer the sludge) working one after the other and a robotic arm mounted on a telescopic mast. A dedicated process was also set up for the removal of the biggest fragments. The retrieval of the most irradiating fragments was a challenge. Today, the first pit is totally empty and its stainless steel walls have been decontaminated using gels. In the second pit, the sludge retrieval and transfer operations have been almost completed. Most of the non-pumpable graphite fragments has been removed and transferred to a new storage pit. After more than 6 years of operations in sludge retrieval, a lot of experience was acquired from which important 'lessons learned' could be shared. (authors)« less

  14. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umari, A.M.J.; Geldon, A.; Patterson, G.

    1994-12-31

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumentedmore » with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain.« less

  15. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance ofmore » the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.« less

  16. Hospital waste management in El-Beheira Governorate, Egypt.

    PubMed

    Abd El-Salam, Magda Magdy

    2010-01-01

    This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and clear lines of responsibilities between the departments involved in hospital waste management. Effective medical waste management programs are multisectoral and require cooperation between all levels of implementation, from national and local governments to hospital staff and private businesses. 2009 Elsevier Ltd. All rights reserved.

  17. Research and demonstration results for a new "Double-Solution" technology for municipal solid waste treatment.

    PubMed

    Erping, Li; Haoyun, Chen; Yanyang, Shang; Jun, Pan; Qing, Hu

    2017-11-01

    In this paper, the pyrolysis characteristics of six typical components in municipal solid waste (MSW) were investigated through a TG-FTIR combined technique and it was concluded that the main pyrolysis process of the biomass components (including food residues, sawdust and paper) occurred at 150-600°C. The main volatiles were multi-component gas including H 2 O, CO 2 , and CO. The main pyrolysis temperatures of three artificial products (PP, PVC and leather) was ranged from 200to 500°C. The wavelength of small molecule gases (CH 4 , CO 2 and CO) and the the chemical bonds (CO and CC) were observed in the infrared spectrum Based on the pyrolysis temperature interval and volatile constituent, a new "double-solution" process of pyrolysis and oxygen-enrichment decomposition MSW was designed. To achieve this process, a double-solution project was built for the direct treatment of MSW (10t/d). The complete setup of equipment and analysis of the byproducts has been reported in this paper to indicate the performance of this process. Energy balance and economic benefits were analysed for the process supporting. It was successfully demonstrated that the double-solution process was the environmentally friendly alternative method for MSW treatment in Chinese rural areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  19. 40 CFR 62.14463 - What reporting requirements must I satisfy?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious Waste Incinerators Constructed on or....14453, as applicable; (c) The waste management plan as specified in § 62.14431; (d) The highest maximum... (k) Records of the annual equipment inspections, any required maintenance, and any repairs not...

  20. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CAN-MANUFACTURING EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but who lack the expertise to do so. aste Minimization Assessment Centers (WMACs) were established at ...

  1. Bottlenecks

    ERIC Educational Resources Information Center

    Grinstead, Robert R.

    1972-01-01

    Solid wastes that go at low cost into municipal landfills contain valuable raw materials which technology is not equipped to handle on a large scale. Identifying the key stumbling blocks may help divert the flow of wastes to useful purposes rather than into permanent burial sites. First of a two-part article. (BL)

  2. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty.

    PubMed

    Simic, Vladimir; Dimitrijevic, Branka

    2015-02-01

    An interval linear programming approach is used to formulate and comprehensively test a model for optimal long-term planning of vehicle recycling in the Republic of Serbia. The proposed model is applied to a numerical case study: a 4-year planning horizon (2013-2016) is considered, three legislative cases and three scrap metal price trends are analysed, availability of final destinations for sorted waste flows is explored. Potential and applicability of the developed model are fully illustrated. Detailed insights on profitability and eco-efficiency of the projected contemporary equipped vehicle recycling factory are presented. The influences of the ordinance on the management of end-of-life vehicles in the Republic of Serbia on the vehicle hulks procuring, sorting generated material fractions, sorted waste allocation and sorted metals allocation decisions are thoroughly examined. The validity of the waste management strategy for the period 2010-2019 is tested. The formulated model can create optimal plans for procuring vehicle hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Obtained results are valuable for supporting the construction and/or modernisation process of a vehicle recycling system in the Republic of Serbia. © The Author(s) 2015.

  3. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removalmore » and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned motor pumps designed to fit within available risers and have significant agitation capabilities to suspend waste solids. Waste removal and closure of two tanks has been accomplished with agitation provided by 3 SMPs installed within the tanks. In 2012, a team was assembled to investigate alternative solids removal technologies to support waste removal for closing tanks. The goal of the team was to find a more cost effective approach that could be used to replace the current mixing pump technology. This team was unable to identify an alternative technology outside of mixing pumps to support waste agitation and removal from SRS waste tanks. However, the team did identify a potentially lower cost mixing pump compared to the baseline SLPs and SMPs. Rather than using the traditional procurement using an engineering specification, the team proposed to seek commercially available submersible mixer pumps (CSMP) as alternatives to SLPs and SMPs. SLPs and SMPs have a high procurement cost and the actual cost of moving pumps between tanks has shown to be significantly higher than the original estimates that justified the reuse of SMPs and SLPs. The team recommended procurement of “off-the-shelf” industry pumps which may be available for significant savings, but at an increased risk of failure and reduced operating life in the waste tank. The goal of the CSMP program is to obtain mixing pumps that could mix from bulk waste removal through tank closure and then be abandoned in place as part of tank closure. This paper will present the development, progress and relative advantages of the CSMP.« less

  4. Basic repository source term and data sheet report: Lavender Canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This report is one of a series describing studies undertaken in support of the US Department of Energy Civilian Radioactive Waste Management (CRWM) Program. This study contains the derivation of values for environmental source terms and resources consumed for a CRWM repository. Estimates include heavy construction equipment; support equipment; shaft-sinking equipment; transportation equipment; and consumption of fuel, water, electricity, and natural gas. Data are presented for construction and operation at an assumed site in Lavender Canyon, Utah. 3 refs; 6 tabs.

  5. Medical surveillance and programs on industrial hygiene at RCRA facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, T.E.

    1994-12-31

    Some special areas where much progress in industrial hygiene and safety has been made in the past few years are; training, personal protective equipment, uniforms, personal monitoring, area monitoring, and medical surveillance. Before one can begin to construct programs for worker protection, some knowledge of potential exposures must be gained. The best place to start is the Waste Analysis Plan, and the list of wastes that a particular site is authorized to receive. Waste Codes are listed within a facility`s Part A and Part B permits. Actual facility receipt of wastes are well documented within Load Records and other documentation.more » A facility`s training program forms the heart of a health and safety program. Every TSD facility should have developed a matrix of job titles and required training. Every facility must also make a commitment to providing a wide range of personal protective equipment, including a wide array of disposables. Some facilities will benefit from the occasional use of the newer respirator quantitative fit-testing devices. All facilities are urged to rent or borrow this type of equipment periodically. Quantitative respirator fit-testers are capable of revealing important deficiencies in a respirator program. Providing uniforms is a newer means of protecting workers. The use of uniforms is an effective means for addressing the idea of carry-home-waste. The use of disposables including boots, must be integrated into a Uniform Program if the program is to be effective. In addition, employees must strictly understand that uniforms must not leave the facility at any time, including lunch time.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, R.A.; Cron, J.

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existingmore » equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made, further refinements of this analysis are needed as the project parameters change. The designs of the drip shield, the Emplacement Drift, and the other drip shield emplacement equipment all have a direct effect on the overall design feasibility.« less

  7. Process improvement for regulatory analyses of custom-blend fertilizers.

    PubMed

    Wegner, Keith A

    2014-01-01

    Chemical testing of custom-blend fertilizers is essential to ensure that the products meet the formulation requirements. For purposes of proper crop nutrition and consumer protection, regulatory oversight promotes compliance and particular attention to blending and formulation specifications. Analyses of custom-blend fertilizer products must be performed and reported within a very narrow window in order to be effective. The Colorado Department of Agriculture's Biochemistry Laboratory is an ISO 17025 accredited facility and conducts analyses of custom-blend fertilizer products primarily during the spring planting season. Using the Lean Six Sigma (LSS) process, the Biochemistry Laboratory has reduced turnaround times from as much as 45 days to as little as 3 days. The LSS methodology focuses on waste reduction through identifying: non-value-added steps, unneeded process reviews, optimization of screening and confirmatory analyses, equipment utilization, nonessential reporting requirements, and inefficient personnel deployment. Eliminating these non-value-added activities helped the laboratory significantly shorten turnaround time and reduce costs. Key improvement elements discovered during the LSS process included: focused sample tracking, equipment redundancy, strategic supply stocking, batch size optimization, critical sample paths, elimination of nonessential QC reviews, and more efficient personnel deployment.

  8. EMERGENCY RESPONSE EQUIPMENT TO CLEAN UP HAZARDOUS CHEMICAL RELEASES AT SPILLS AND UNCONTROLLED WASTE SITES

    EPA Science Inventory

    This paper reviews some of the research activities of the U.S. Environmental Protection Agency (EPA) regarding the development of emergency response equipment to control hazardous chemical releases. Several devices and systems have been developed by EPA for environmental emergenc...

  9. Generation of domestic waste electrical and electronic equipment on Fernando de Noronha Island: qualitative and quantitative aspects.

    PubMed

    Araujo, Dhiego Raphael Rodrigues; de Oliveira, José Diego; Selva, Vanice Fragoso; Silva, Maisa Mendonça; Santos, Simone Machado

    2017-08-01

    The accelerated growth trajectory of waste electrical and electronic equipment (WEEE) is a matter of concern for governments worldwide. In developing countries, the problem is more complex because municipal waste management is still a challenge for municipalities. Fernando de Noronha Island, an environmentally protected area, has a transfer station for solid waste before it is sent to the final destination abroad, which is different waste management model to most urban areas. In order to check the specifics of management of WEEE, this study aimed to qualitatively and quantitatively evaluate the generation of this type of waste on the main island of Fernando de Noronha, taking into consideration aspects related to consumption habits and handling of waste. During the in situ research, a questionnaire was applied to a sample of 83 households. The results provide a picture of the generation of WEEE for a period of 1 year, when a production of 1.3 tons of WEEE was estimated. Relationships between education level and monthly income and between education level and number of plasma/LCD TVs and washing machines were confirmed. Another important result is that only two socioeconomic variables (monthly income and education level) are related to two recycling behavior variables. In addition, the population and government treat WEEE as ordinary waste, ignoring its contaminant potential. Despite the existence of relevant legislation concerning the treatment and disposal of WEEE, additional efforts will be required by the government in order to properly manage this type of waste on the island.

  10. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco

    2013-11-15

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less

  11. Early detection and evaluation of waste through sensorized containers for a collection monitoring application.

    PubMed

    Rovetta, Alberto; Xiumin, Fan; Vicentini, Federico; Minghua, Zhu; Giusti, Alessandro; Qichang, He

    2009-12-01

    The present study describes a novel application for use in the monitoring of municipal solid waste, based on distributed sensor technology and geographical information systems. Original field testing and evaluation of the application were carried out in Pudong, Shanghai (PR China). The local waste management system in Pudong features particular requirements related to the rapidly increasing rate of waste production. In view of the fact that collected waste is currently deployed to landfills or to incineration plants within the context investigated, the key aspects to be taken into account in waste collection procedures include monitoring of the overall amount of waste produced, quantitative measurement of the waste present at each collection point and identification of classes of material present in the collected waste. The case study described herein focuses particularly on the above mentioned aspects, proposing the implementation of a network of sensorized waste containers linked to a data management system. Containers used were equipped with a set of sensors mounted onto standard waste bins. The design, implementation and validation procedures applied are subsequently described. The main aim to be achieved by data collection and evaluation was to provide for feasibility analysis of the final device. Data pertaining to the content of waste containers, sampled and processed by means of devices validated on two purpose-designed prototypes, were therefore uploaded to a central monitoring server using GPRS connection. The data monitoring and management modules are integrated into an existing application used by local municipal authorities. A field test campaign was performed in the Pudong area. The system was evaluated in terms of real data flow from the network nodes (containers) as well as in terms of optimization functions, such as collection vehicle routing and scheduling. The most important outcomes obtained were related to calculations of waste weight and volume. The latter data were subsequently used as parameters for the routing optimization of collection trucks and material density evaluation.

  12. 40 CFR Appendix I to Part 261 - Representative Sampling Methods

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Representative Sampling Methods I...—Representative Sampling Methods The methods and equipment used for sampling waste materials will vary with the form and consistency of the waste materials to be sampled. Samples collected using the sampling...

  13. 40 CFR Appendix I to Part 261 - Representative Sampling Methods

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Representative Sampling Methods I...—Representative Sampling Methods The methods and equipment used for sampling waste materials will vary with the form and consistency of the waste materials to be sampled. Samples collected using the sampling...

  14. 40 CFR Appendix I to Part 261 - Representative Sampling Methods

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Representative Sampling Methods I Appendix I to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...—Representative Sampling Methods The methods and equipment used for sampling waste materials will vary with the...

  15. ENVIRONMENTAL RESEARCH BRIEF: POLLUTION PREVENTION ASSESSMENT FOR A MANUFACTURER OF FOOD SERVICE EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. n an effort to assist these manufacturers Waste Minimization Assessment Cent...

  16. EMISSION TEST REPORT- FIELD TEST OF CARBON INJECTION FOR MERCURY CONTROL, CAMDEN COUNTY MUNICIPAL WASTE COMBUSTOR

    EPA Science Inventory

    The report gives results of parametric test to evaluate the injection powdered activated carbon to control volatile pollutants in municipal waste combustor (MWC) flue gas. he tests were conducted at a spray dryer absorber/electrostatic precipitator (SD/ESP)-equipped MWC in Camden...

  17. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge.

  18. Modular Chemical Process Intensification: A Review.

    PubMed

    Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas

    2017-06-07

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  19. Modular Chemical Process Intensification: A Review

    DOE PAGES

    Kim, Yong-ha; Park, Lydia K.; Yiacoumi, Sotira; ...

    2016-06-24

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. Dramatic improvements such as these lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. Thismore » article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.« less

  20. Evaporative oxidation treatability test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatmentmore » Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.« less

Top