Radioactive Waste Management Complex low-level waste radiological performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, S.J.; Rood, A.S.; Magnuson, S.O.
This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsitemore » receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mike
2015-02-01
This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike lewis
2013-02-01
This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
2014-02-01
This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Radioactive Waste Management Complex performance assessment: Draft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.
1990-06-01
A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Resultsmore » of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.« less
Radiological Characterization Methodology of INEEL Stored RH-TRU Waste from ANL-E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajiv N. Bhatt
2003-02-01
An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using this methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, P.; Bhatt, R.N.
2003-01-14
An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
This work plan establishes the methods and requirements for performing a radiological survey at the David Witherspoon, Incorporated, Landfill-1630 Site, Knoxville, Tennessee (DWI 1630 Site) in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The radiological survey will identify the radiological contamination level of the equipment and debris stored at the DWI 1630 Site. The data generated from the survey activities will support the decisions for characterization of the equipment/debris and aid in subsequent disposition and waste handling. The survey activities to be performed under this work plan include an equipment radiological survey,more » a walkover survey, and an immunoassay testing for polychlorinated biphenyls (PCBs). This work plan includes a quality assurance (QA)/quality control (QC) project plan, a health and safety (H&S) plan, and a waste management plan.« less
Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo
2015-04-01
The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
WIPP Remote-Handled TRU Waste Program Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Most, W.; Kehrman, B.
2006-07-01
There are two major regulatory approval milestones necessary in order to commence disposal operations for remote-handled transuranic (RH TRU) waste at the Waste Isolation Pilot Plant (WIPP)-the RH TRU hazardous waste permit modification request [1] and the radiological characterization plan [2]. One of those milestones has been achieved. The US Environmental Protection Agency (EPA) issued its final decision to approve the Department of Energy's (DOE) RH TRU radiological characterization plan along with the RH TRU Waste Characterization Program Implementation Plan [3], on March 26, 2004. The RH TRU hazardous waste permit modification request still awaits agency approval. In EPA's decisionmore » to approve the DOE's RH TRU radiological characterization plan, the EPA also set forth the process for approving site-specific RH TRU waste characterization programs. Included in the March 29, 2005, RH TRU second Notice of Deficiency [4] (NOD) on the Class 3 Permit Modification Request for RH TRU Waste, the New Mexico Environment Department (NMED) requested that the Permittees combine their responses for the RH TRU Waste NOD with the Section 311 permit modification request NOD. The Combined Response Document was submitted April 28, 2005 [5]. Another NOD [6] was issued by the NMED on September 1, 2005, to clarify the Permittees' proposal and submit these clarifications to the administrative record. Combining both the chap. 311 [7] and RH TRU waste permit modification requests allows for both the regulator and Permittees to expedite action on the modification requests. The Combined Response Document preserves human resources and costs by having only one administrative process for both modification requests. Facility readiness requirements of the RH TRU waste final permit [8] must be implemented to declare that the WIPP is ready to receive RH TRU waste for storage and disposal. To demonstrate readiness, the WIPP is preparing for an Operational Readiness Review (ORR) of the RH TRU waste management equipment, system, and procedures. Required by DOE Order, the ORR demonstrates the capability of managing RH TRU waste. The Management and Operating Contractor (MOC) for the WIPP must first perform a Line Management Assessment. Upon successful completion of the Line Management Assessment, the MOC performs the Contractor ORR and presents the results to the local DOE office. At that time, the local DOE office performs its own ORR to declare readiness to DOE Headquarters. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitworth, J.; Pearson, M.; Feldman, A.
2006-07-01
The Offsite Source Recovery (OSR) Project at Los Alamos National Laboratory is now shipping transuranic (TRU) waste containers to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. Sealed source waste disposal has become possible in part because OSR personnel were able to obtain Environmental Protection Agency (EPA) and DOE-CBFO approval for an alternative radiological characterization procedure relying on acceptable knowledge (AK) and modeling, rather than on non-destructive assay (NDA) of each container. This is the first successful qualification of an 'alternate methodology' under the radiological characterization requirements of the WIPP Waste Acceptance Criteria (WAC) by any TRUmore » waste generator site. This paper describes the approach OSR uses to radiologically characterize its sealed source waste and the process by which it obtained certification of this approach. (authors)« less
de Bucourt, Maximilian; Busse, Reinhard; Güttler, Felix; Wintzer, Christian; Collettini, Federico; Kloeters, Christian; Hamm, Bernd; Teichgräber, Ulf K
2011-08-01
OBJECTIVES: To apply the economic terminology of lean manufacturing and the Toyota Production System to the procurement of vascular stents in interventional radiology. METHODS: The economic- and process-driven terminology of lean manufacturing and the Toyota Production System is first presented, including information and product flow as well as value stream mapping (VSM), and then applied to an interdisciplinary setting of physicians, nurses and technicians from different medical departments to identify wastes in the process of endovascular stent procurement in interventional radiology. RESULTS: Using the so-called seven wastes approach of the Toyota Production System (waste of overproducing, waiting, transport, processing, inventory, motion and waste of defects and spoilage) as well as further waste characteristics (gross waste, process and method waste, and micro waste), wastes in the process of endovascular stent procurement in interventional radiology were identified and eliminated to create an overall smoother process from the procurement as well as from the medical perspective. CONCLUSION: Economic terminology of lean manufacturing and the Toyota Production System, especially VSM, can be used to visualise and better understand processes in the procurement of vascular stents in interventional radiology from an economic point of view.
Selected radionuclides important to low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-11-01
The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). Thismore » report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagwell, Laura; Bennett, Patti
2017-11-02
This memorandum describes work that supports revision of the Radiological Performance Assessment (PA) for the E Area Low Level Radioactive Waste Disposal Facility (LLRWDF). The work summarized here addresses portions of the PA Strategic Planning Team's recommendation #148b (Butcher and Phifer, 2016).
Critical Protection Item classification for a waste processing facility at Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ades, M.J.; Garrett, R.J.
1993-10-01
This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are notmore » required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olander, Jonathan; Myers, Corey
2013-07-01
Studsviks' Processing Facility Erwin (SPFE) has been treating Low-Level Radioactive Waste using its patented THOR process for over 13 years. Studsvik has been mixing and processing wastes of the same waste classification but different chemical and isotopic characteristics for the full extent of this period as a general matter of operations. Studsvik utilizes the accountability method to track the movement of radionuclides from acceptance of waste, through processing, and finally in the classification of waste for disposal. Recently the NRC has proposed to revise the 1995 Branch Technical Position on Concentration Averaging and Encapsulation (1995 BTP on CA) with additionalmore » clarification (draft BTP on CA). The draft BTP on CA has paved the way for large scale blending of higher activity and lower activity waste to produce a single waste for the purpose of classification. With the onset of blending in the waste treatment industry, there is concern from the public and state regulators as to the robustness of the accountability method and the ability of processors to prevent the inclusion of hot spots in waste. To address these concerns and verify the accountability method as applied by the SPFE, as well as the SPFE's ability to control waste package classification, testing of actual waste packages was performed. Testing consisted of a comprehensive dose rate survey of a container of processed waste. Separately, the waste package was modeled chemically and radiologically. Comparing the observed and theoretical data demonstrated that actual dose rates were lower than, but consistent with, modeled dose rates. Moreover, the distribution of radioactivity confirms that the SPFE can produce a radiologically homogeneous waste form. The results of the study demonstrate: 1) the accountability method as applied by the SPFE is valid and produces expected results; 2) the SPFE can produce a radiologically homogeneous waste; and 3) the SPFE can effectively control the waste package classification. (authors)« less
78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...
Radiological performance assessment for the E-Area Vaults Disposal Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
This report is the first revision to ``Radiological Performance Assessment for the E-Area Vaults Disposal Facility, Revision 0'', which was issued in April 1994 and received conditional DOE approval in September 1994. The title of this report has been changed to conform to the current name of the facility. The revision incorporates improved groundwater modeling methodology, which includes a large data base of site specific geotechnical data, and special Analyses on disposal of cement-based wasteforms and naval wastes, issued after publication of Revision 0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boe, Timothy; Lemieux, Paul; Schultheisz, Daniel
2013-07-01
Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies onmore » the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)« less
WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Habashi
2000-06-22
The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, T.E.; Magleby, E.H.
1985-09-06
A review was performed of reports required by federal regulations and the plant-specific radiological effluent technical specifications (RETS) for operations conducted at Tennessee Valley Authority's Browns Ferry Nuclear Station, Units 1, 2, and 3, during 1983. The two periodic reports reviewed were (a) the Effluents and Waste Disposal Semiannual Report, First Half 1983 and (b) the Effluents and Waste Disposal Semiannual Report, Second Half 1983. The principal review guidelines were the plant's specific RETs and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably completemore » and consistent with the review guidelines.« less
Remote Handled WIPP Canisters at Los Alamos National Laboratory Characterized for Retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, J.; Gonzales, W.
2007-07-01
The Los Alamos National Laboratory (LANL) is pursuing retrieval, transportation, and disposal of 16 remote handled transuranic waste canisters stored below ground in shafts since 1994. These canisters were retrievably stored in the shafts to await Nuclear Regulatory Commission certification of the Model Number RH-TRU 72B transportation cask and authorization of the Waste Isolation Pilot Plant (WIPP) to accept the canisters for disposal. Retrieval planning included radiological characterization and visual inspection of the canisters to confirm historical records, verify container integrity, determine proper personnel protection for the retrieval operations, provide radiological dose and exposure rate data for retrieval operations, andmore » to provide exterior radiological contamination data. The radiological characterization and visual inspection of the canisters was performed in May 2006. The effort required the development of remote techniques and equipment due to the potential for personnel exposure to radiological doses approaching 300 R/hr. Innovations included the use of two nested 1.5 meter (m) (5-feet [ft]) long concrete culvert pipes (1.1-m [42 inch (in.)] and 1.5-m [60-in] diameter, respectively) as radiological shielding and collapsible electrostatic dusting wands to collect radiological swipe samples from the annular space between the canister and shaft wall. Visual inspection indicated that the canisters are in good condition with little or no rust, the welded seams are intact, and ten of the canisters include hydrogen gas sampling equipment on the pintle that will have to be removed prior to retrieval. The visual inspection also provided six canister identification numbers that matched historical storage records. The exterior radiological data indicated alpha and beta contamination below LANL release criteria and radiological dose and exposure rates lower than expected based upon historical data and modeling of the canister contents. (authors)« less
Relative radiological risks derived from different TENORM wastes in Malaysia.
Ismail, B; Teng, I L; Muhammad Samudi, Y
2011-11-01
In Malaysia technologically enhanced naturally occurring radioactive materials (TENORM) wastes are mainly the product of the oil and gas industry and mineral processing. Among these TENORM wastes are tin tailing, tin slag, gypsum and oil sludge. Mineral processing and oil and gas industries produce large volume of TENORM wastes that has become a radiological concern to the authorities. A study was carried out to assess the radiological risk related to workers working at these disposal sites and landfills as well as to the members of the public should these areas be developed for future land use. Radiological risk was assessed based on the magnitude of radiation hazard, effective dose rates and excess cancer risks. Effective dose rates and excess cancer risks were estimated using RESRAD 6.4 computer code. All data on the activity concentrations of NORM in wastes and sludges used in this study were obtained from the Atomic Energy Licensing Board, Malaysia, and they were collected over a period of between 5 and 10 y. Results obtained showed that there was a wide range in the total activity concentrations (TAC) of nuclides in the TENORM wastes. With the exception of tin slag and tin tailing-based TENORM wastes, all other TENORM wastes have TAC values comparable to that of Malaysia's soil. Occupational Effective Dose Rates estimated in all landfill areas were lower than the 20 mSv y(-1) permissible dose limit. The average Excess Cancer Risk Coefficient was estimated to be 2.77×10(-3) risk per mSv. The effective dose rates for residents living on gypsum and oil sludge-based TENORM wastes landfills were estimated to be lower than the permissible dose limit for members of the public, and was also comparable to that of the average Malaysia's ordinary soils. The average excess cancer risk coefficient was estimated to be 3.19×10(-3) risk per mSv. Results obtained suggest that gypsum and oil sludge-based TENORM wastes should be exempted from any radiological regulatory control and should be considered radiologically safe for future land use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seigler, R.S.
The US Department of Energy`s (DOE) Environmental Restoration and Waste Management programs will dispose of mixed waste no longer deemed useful. This project is one of the initial activities used to help meet this goal. The project will transport the {approximately}46,000 drums of existing stabilized mixed waste located at the Oak Ridge K-25 Site and presently stored in the K-31 and K-33 buildings to an off-site commercially licensed and permitted mixed waste disposal facility. Shipping and disposal of all {approximately}46,000 pond waste drums ({approximately}1,000,000 ft{sup 3} or 55,000 tons) is scheduled to occur over a period of {approximately}5--10 years. Themore » first shipment of stabilized pond waste should transpire some time during the second quarter of FY 1994. Martin Marietta Energy Systems, Inc., proposes to line each of the Norfolk Southem boxcars with a prefabricated, white, 15-mm low-density polyethylene (LDPE) liner material. To avoid damaging the bottom of the polyethylene floor liner, a minimum .5 in. plywood will be nailed to the boxcars` nailable metal floor. At the end of the Mixed Waste Disposal Initiative (MWDI) Project workers at the Envirocare facility will dismantle and dispose of all the polyethylene liner and plywood materials. Envirocare of Utah, Inc., located in Clive, Utah, will perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Energy Systems. Energy Systems will also perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Norfolk Southem Railroad.« less
Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
MELOY, R.T.
2002-04-01
This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.
A new approach to characterize very-low-level radioactive waste produced at hadron accelerators.
Zaffora, Biagio; Magistris, Matteo; Chevalier, Jean-Pierre; Luccioni, Catherine; Saporta, Gilbert; Ulrici, Luisa
2017-04-01
Radioactive waste is produced as a consequence of preventive and corrective maintenance during the operation of high-energy particle accelerators or associated dismantling campaigns. Their radiological characterization must be performed to ensure an appropriate disposal in the disposal facilities. The radiological characterization of waste includes the establishment of the list of produced radionuclides, called "radionuclide inventory", and the estimation of their activity. The present paper describes the process adopted at CERN to characterize very-low-level radioactive waste with a focus on activated metals. The characterization method consists of measuring and estimating the activity of produced radionuclides either by experimental methods or statistical and numerical approaches. We adapted the so-called Scaling Factor (SF) and Correlation Factor (CF) techniques to the needs of hadron accelerators, and applied them to very-low-level metallic waste produced at CERN. For each type of metal we calculated the radionuclide inventory and identified the radionuclides that most contribute to hazard factors. The methodology proposed is of general validity, can be extended to other activated materials and can be used for the characterization of waste produced in particle accelerators and research centres, where the activation mechanisms are comparable to the ones occurring at CERN. Copyright © 2017 Elsevier Ltd. All rights reserved.
National low-level waste management program radionuclide report series, Volume 15: Uranium-238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.P.
1995-09-01
This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.
Weiss, W
2012-01-01
The report of International Commission on Radiological Protection (ICRP) Task Group 80 entitled 'Radiological protection in geological disposal of long-lived solid radioactive waste' updates and consolidates previous ICRP recommendations related to solid waste disposal (ICRP Publications 46, 77, and 81). The recommendations given in this report apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the 2007 system of radiological protection, described in ICRP Publication 103, can be applied in the context of the geological disposal of long-lived solid radioactive waste. The report is written as a self-standing document. It describes the different stages in the lifetime of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences application of the protection system over the different phases in the lifetime of a disposal facility is the level of oversight that is present. The level of oversight affects the capability to reduce or avoid exposures. Three main time frames have to be considered for the purpose of radiological protection: time of direct oversight when the disposal facility is being implemented and active oversight is taking place; time of indirect oversight when the disposal facility is sealed and indirect oversight is being exercised to provide additional assurance on behalf of the population; and time of no oversight when oversight is no longer exercised because memory is lost. Copyright © 2012. Published by Elsevier Ltd.
HEPA Filter Disposal Write-Up 10/19/16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loll, C.
Process knowledge (PK) collection on HEPA filters is handled via the same process as other waste streams at LLNL. The Field technician or Characterization point of contact creates an information gathering document (IGD) in the IGD database, with input provided from the generator, and submits it for electronic approval. This document is essentially a waste generation profile, detailing the physical, chemical as well as radiological characteristics, and hazards, of a waste stream. It will typically contain a general, but sometimes detailed, description of the work processes which generated the waste. It will contain PK as well as radiological and industrialmore » hygiene analytical swipe results, and any other analytical or other supporting knowledge related to characterization. The IGD goes through an electronic approval process to formalize the characterization and to ensure the waste has an appropriate disposal path. The waste generator is responsible for providing initial process knowledge information, and approves the IGD before it routed to chemical and radiological waste characterization professionals. This is the standard characterization process for LLNL-generated HEPA Filters.« less
Methods for Probabilistic Radiological Dose Assessment at a High-Level Radioactive Waste Repository.
NASA Astrophysics Data System (ADS)
Maheras, Steven James
Methods were developed to assess and evaluate the uncertainty in offsite and onsite radiological dose at a high-level radioactive waste repository to show reasonable assurance that compliance with applicable regulatory requirements will be achieved. Uncertainty in offsite dose was assessed by employing a stochastic precode in conjunction with Monte Carlo simulation using an offsite radiological dose assessment code. Uncertainty in onsite dose was assessed by employing a discrete-event simulation model of repository operations in conjunction with an occupational radiological dose assessment model. Complementary cumulative distribution functions of offsite and onsite dose were used to illustrate reasonable assurance. Offsite dose analyses were performed for iodine -129, cesium-137, strontium-90, and plutonium-239. Complementary cumulative distribution functions of offsite dose were constructed; offsite dose was lognormally distributed with a two order of magnitude range. However, plutonium-239 results were not lognormally distributed and exhibited less than one order of magnitude range. Onsite dose analyses were performed for the preliminary inspection, receiving and handling, and the underground areas of the repository. Complementary cumulative distribution functions of onsite dose were constructed and exhibited less than one order of magnitude range. A preliminary sensitivity analysis of the receiving and handling areas was conducted using a regression metamodel. Sensitivity coefficients and partial correlation coefficients were used as measures of sensitivity. Model output was most sensitive to parameters related to cask handling operations. Model output showed little sensitivity to parameters related to cask inspections.
Quadrant III RFI draft report: Appendix B-I, Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
In order to determine the nature and extent of contamination at a RCRA site it is often necessary to investigate and characterize the chemical composition of the medium in question that represents background conditions. Background is defined as current conditions present at a site which are unaffected by past treatment, storage, or disposal of hazardous waste (OEPA, 1991). The background composition of soils at the Portsmouth Gaseous Diffusion Plant (PORTS) site was characterized for the purpose of comparing investigative soil data to a background standard for each metal on the Target Compound List/Target Analyte List and each radiological parameter ofmore » concern in this RFI. Characterization of background compositions with respect to organic parameters was not performed because the organic parameters in the TCL/TAL are not naturally occurring at the site and because the site is not located in a highly industrialized area nor downgradient from another unrelated hazardous waste site. Characterization of the background soil composition with respect to metals and radiological parameters was performed by collecting and analyzing soil boring and hand-auger samples in areas deemed unaffected by past treatment, storage, or disposal of hazardous waste. Criteria used in determining whether a soil sample location would be representative of the true background condition included: environmental history of the location, relation to Solid Waste Management Units (SWMU`s), prevailing wind direction, surface runoff direction, and ground-water flow direction.« less
Quadrant III RFI draft report: Appendix B-I, Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
In order to determine the nature and extent of contamination at a RCRA site it is often necessary to investigate and characterize the chemical composition of the medium in question that represents background conditions. Background is defined as current conditions present at a site which are unaffected by past treatment, storage, or disposal of hazardous waste (OEPA, 1991). The background composition of soils at the Portsmouth Gaseous Diffusion Plant (PORTS) site was characterized for the purpose of comparing investigative soil data to a background standard for each metal on the Target Compound List/Target Analyte List and each radiological parameter ofmore » concern in this RFI. Characterization of background compositions with respect to organic parameters was not performed because the organic parameters in the TCL/TAL are not naturally occurring at the site and because the site is not located in a highly industrialized area nor downgradient from another unrelated hazardous waste site. Characterization of the background soil composition with respect to metals and radiological parameters was performed by collecting and analyzing soil boring and hand-auger samples in areas deemed unaffected by past treatment, storage, or disposal of hazardous waste. Criteria used in determining whether a soil sample location would be representative of the true background condition included: environmental history of the location, relation to Solid Waste Management Units (SWMU's), prevailing wind direction, surface runoff direction, and ground-water flow direction.« less
Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier
2016-06-05
Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. Copyright © 2016 Elsevier B.V. All rights reserved.
Scenarios for the Hanford immobilized Low-Activity waste (ILAW) performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANN, F.M.
The purpose of the next version of the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (ILAW PA) is to provide an updated estimate of the long-term human health and environmental impact of the disposal of ILAW and to compare these estimates against performance objectives displayed in Tables 1,2, and 3 (Mann 1999a). Such a radiological performance assessment is required by U.S. Department of Energy (DOE) Orders on radioactive waste management (DOE 1988a and DOE 1999a). This document defines the scenarios that will be used for the next update of the PA that is scheduled to be issued in 2001.more » Since the previous performance assessment (Mann 1998) was issued, considerable additional data on waste form behavior and site-specific soil geotechnical properties have been collected. In addition, the 2001 ILAW PA will benefit from improved computer models and the experience gained from the previous performance assessment. However, the scenarios (that is, the features, events, and processes analyzed in the Performance assessment) for the next PA are very similar to the ones in the 1998 PA.« less
POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. King
2000-06-19
The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less
Composite analysis E-area vaults and saltstone disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
1997-09-01
This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less
SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. C. Khamankar
2000-06-20
The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less
Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.
Ying, Leong; O'Connor, Frank; Stolz, John F
2015-01-01
Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.
Nevada National Security Site Radiological Control Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radiological Control Managers’ Council
2012-03-26
This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted bymore » programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.« less
Waste Characterization Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Patrick E.
2014-11-01
The purpose is to provide guidance to the Radiological Characterization Reviewer to complete the radiological characterization of waste items. This information is used for Department of Transportation (DOT) shipping and disposal, typically at the Nevada National Security Site (NNSS). Complete characterization ensures compliance with DOT shipping laws and NNSS Waste Acceptance Criteria (WAC). The fines for noncompliance can be extreme. This does not include possible bad press, and endangerment to the public, employees and the environment. A Radiological Characterization Reviewer has an important role in the organization. The scope is to outline the characterization process, but does not to includemore » every possible situation. The Radiological Characterization Reviewer position requires a strong background in Health Physics; therefore, these concepts are minimally addressed. The characterization process includes many Excel spreadsheets that were developed by Michael Enghauser known as the WCT software suite. New Excel spreadsheets developed as part of this project include the Ra- 226 Decider and the Density Calculator by Jesse Bland, MicroShield Density Calculator and Molecular Weight Calculator by Pat Lambert.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, D. E.
2002-02-28
High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
Pipe Crawler{reg_sign} is a pipe surveying system for performing radiological characterization and/or free release surveys of piping systems. The technology employs a family of manually advanced, wheeled platforms, or crawlers, fitted with one or more arrays of thin Geiger Mueller (GM) detectors operated from an external power supply and data processing unit. Survey readings are taken in a step-wise fashion. A video camera and tape recording system are used for video surveys of pipe interiors prior to and during radiological surveys. Pipe Crawler{reg_sign} has potential advantages over the baseline and other technologies in areas of cost, durability, waste minimization, andmore » intrusiveness. Advantages include potentially reduced cost, potential reuse of the pipe system, reduced waste volume, and the ability to manage pipes in place with minimal disturbance to facility operations. Advantages over competing technologies include potentially reduced costs and the ability to perform beta-gamma surveys that are capable of passing regulatory scrutiny for free release of piping systems.« less
Performance assessment for continuing and future operations at Solid Waste Storage Area 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuingmore » operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.« less
DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...
Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.
Radiological performance assessment for the E-Area Vaults Disposal Facility. Appendices A through M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
1994-04-15
These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file. (GHH)
DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan
Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohout, E.F.; Folga, S.; Mueller, C.
1996-03-01
This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less
Kruskal, Jonathan B; Reedy, Allen; Pascal, Laurie; Rosen, Max P; Boiselle, Phillip M
2012-01-01
Many hospital radiology departments are adopting "lean" methods developed in automobile manufacturing to improve operational efficiency, eliminate waste, and optimize the value of their services. The lean approach, which emphasizes process analysis, has particular relevance to radiology departments, which depend on a smooth flow of patients and uninterrupted equipment function for efficient operation. However, the application of lean methods to isolated problems is not likely to improve overall efficiency or to produce a sustained improvement. Instead, the authors recommend a gradual but continuous and comprehensive "lean transformation" of work philosophy and workplace culture. Fundamental principles that must consistently be put into action to achieve such a transformation include equal involvement of and equal respect for all staff members, elimination of waste, standardization of work processes, improvement of flow in all processes, use of visual cues to communicate and inform, and use of specific tools to perform targeted data collection and analysis and to implement and guide change. Many categories of lean tools are available to facilitate these tasks: value stream mapping for visualizing the current state of a process and identifying activities that add no value; root cause analysis for determining the fundamental cause of a problem; team charters for planning, guiding, and communicating about change in a specific process; management dashboards for monitoring real-time developments; and a balanced scorecard for strategic oversight and planning in the areas of finance, customer service, internal operations, and staff development. © RSNA, 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Arne; Lidar, Per; Bergh, Niklas
2013-07-01
Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, Phil; Samuels, Sandy; Lee, Majelle
2001-09-01
This Annual Site Environmental Report (ASER) for 2000 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned company-operated, test facility within Area IV. All nuclear work was terminated in 1988, andmore » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2000 continue to indicate no significant releases of radioactive material from Rocketdyne sites. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway.« less
Waste management strategy for cost effective and environmentally friendly NPP decommissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Per Lidar; Arne Larsson; Niklas Bergh
2013-07-01
Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named ndcon to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)« less
Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M
2013-06-01
This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences the application of the protection system over the different phases in the life time of a disposal facility is the level of oversight or 'watchful care' that is present. The level of oversight affects the capability to control the source, i.e. the waste and the repository, and to avoid or reduce potential exposures. Three main time frames are considered: time of direct oversight, when the disposal facility is being implemented and is under active supervision; time of indirect oversight, when the disposal facility is sealed and oversight is being exercised by regulators or special administrative bodies or society at large to provide additional assurance on behalf of society; and time of no oversight, when oversight is no longer exercised in case memory of the disposal facility is lost. Copyright © 2013. Published by Elsevier Ltd.
Iraq liquid radioactive waste tanks maintenance and monitoring program plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad
2011-10-01
The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tankmore » inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Phyllis C.
A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.
Thorne, M C; Degnan, P; Ewen, J; Parkin, G
2000-12-01
The physically based river catchment modelling system SHETRAN incorporates components representing water flow, sediment transport and radionuclide transport both in solution and bound to sediments. The system has been applied to simulate hypothetical future catchments in the context of post-closure radiological safety assessments of a potential site for a deep geological disposal facility for intermediate and certain low-level radioactive wastes at Sellafield, west Cumbria. In order to have confidence in the application of SHETRAN for this purpose, various blind validation studies have been undertaken. In earlier studies, the validation was undertaken against uncertainty bounds in model output predictions set by the modelling team on the basis of how well they expected the model to perform. However, validation can also be carried out with bounds set on the basis of how well the model is required to perform in order to constitute a useful assessment tool. Herein, such an assessment-based validation exercise is reported. This exercise related to a field plot experiment conducted at Calder Hollow, west Cumbria, in which the migration of strontium and lanthanum in subsurface Quaternary deposits was studied on a length scale of a few metres. Blind predictions of tracer migration were compared with experimental results using bounds set by a small group of assessment experts independent of the modelling team. Overall, the SHETRAN system performed well, failing only two out of seven of the imposed tests. Furthermore, of the five tests that were not failed, three were positively passed even when a pessimistic view was taken as to how measurement errors should be taken into account. It is concluded that the SHETRAN system, which is still being developed further, is a powerful tool for application in post-closure radiological safety assessments.
Waste Information Management System v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bustamante, David G.; Schade, A. Carl
WIMS is a functional interface to an Oracle database for managing the required regulatory information about the handling of Hazardous Waste. WIMS does not have a component to track Radiological Waste data. And it does not have the ability to manage sensitive information.
Inadvertent Intruder Calculatios for F Tank Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koffman, L
2005-09-12
Savannah River National Laboratory (SRNL) has been providing radiological performance assessment analysis for Savannah River Site (SRS) solid waste disposal facilities (McDowell-Boyer 2000). The performance assessment considers numerous potential exposure pathways that could occur in the future. One set of exposure scenarios, known as inadvertent intruder analysis, considers the impact on hypothetical individuals who are assumed to inadvertently intrude onto the waste disposal site. An Automated Intruder Analysis application was developed by SRNL (Koffman 2004) that simplifies the inadvertent intruder analysis into a routine, automated calculation. Based on SRNL's experience, personnel from Planning Integration & Technology of Closure Business Unitmore » asked SRNL to assist with inadvertent intruder calculations for F Tank Farm to support the development of the Tank Closure Waste Determination Document. Meetings were held to discuss the scenarios to be calculated and the assumptions to be used in the calculations. As a result of the meetings, SRNL was asked to perform four scenario calculations. Two of the scenarios are the same as those calculated by the Automated Intruder Analysis application and these can be calculated directly by providing appropriate inputs. The other two scenarios involve use of groundwater by the intruder and the Automated Intruder Analysis application was adapted to perform these calculations. The four calculations to be performed are: (1) A post-drilling scenario in which the drilling penetrates a transfer line. (2) A calculation of internal exposure due to drinking water from a well located near a waste tank. (3) A post-drilling calculation in which waste is introduced by irrigation of the garden with water from a well located near a waste tank. (4) A resident scenario where a house is built above transfer lines. Note that calculations 1 and 4 use sources from the waste inventory in the transfer line (given in Table 1) whereas calculations 2 and 3 use sources from groundwater beneath the waste tank (given in Appendix B). It is important to recognize that there are two different sources in the calculations. In these calculations, assumptions are made for parameter values. Three key parameters are the size of the garden, the amount of vegetables eaten, and the distance of the well from the waste tank. For these three parameters, different values are considered in the calculations to determine the impact of the change in these parameters. Another key parameter is the length of time of institutional control, which determines when an inadvertent intruder could first be exposed. The standard length of time for institutional control is 100 years from the time of closure. In this analysis, waste inventory values are used from year 2005 but tanks will not be closed until year 2020. Thus, the effective length of time of institutional control used in the calculations is 115 years from year 2005, which is taken to be time zero for radiological decay calculations. All calculations are carried out for a period of 10,000 years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
This is the third volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report.
Radiological Weapons Control: A Soviet and US Perspective. Occasional Paper 29.
ERIC Educational Resources Information Center
Issraelyan, Victor L.; Flowerree, Charles C.
Two international diplomats from the Soviet Union and the United States focus on the need for a treaty to ban the use of radiological weapons. Radiological weapons are those based on the natural decay of nuclear material such as waste from military or civilian nuclear reactors. Such devices include both weapons and equipment, other than a nuclear…
This regulation sets standards for the protection of public health, safety, and the environment from radiological and non-radiological hazards from uranium and thorium ore processing and disposal of associated wastes.
Test plan for formulation and evaluation of grouted waste forms with shine process wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, W. L.; Jerden, J. L.
2015-09-01
The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.
Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S
2016-09-01
There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. Copyright © 2016 Elsevier B.V. All rights reserved.
Status of the waste assay for nonradioactive disposal (WAND) project
NASA Astrophysics Data System (ADS)
Arnone, Gaetano L.; Foster, Lynn A.; Foxx, Charles L.; Hagan, Roland C.; Martin, E. R.; Myers, Steven C.; Parker, Jack L.
1999-01-01
The WAND (Waste Assay for Nonradioactive Disposal) system scans thought-to-be-clean, low-density waste (mostly paper and plastics) to verify the absence of radioactive contaminants at very low-levels. Much of the low-density waste generated in radiologically controlled areas, formally considered `suspect' radioactive, is now disposed more cheaply at the Los Alamos County Landfill as opposed to the LANL Radioactive Waste Landfill.
GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witwer, Keith; Woosley, Steve; Campbell, Brett
2013-07-01
Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers,more » plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)« less
Cleanup Verification Package for the 300-18 Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete.
The role of organic complexants and microparticulates in the facilitated transport of radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilk, A.J.; Robertson, D.E.; Abel, K.H.
1996-12-01
This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as wellmore » as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.« less
Joint NRC/EPA Sewage Sludge Radiological Survey: Survey Design & Test Site Results
This report contains the results of a radiological survey of nine publicly POTWs around the country, which was commissioned by the Sewage Sludge Subcommittee, to determine whether and to what extent radionuclides concentrate in sewage treatment wastes.
NASA Astrophysics Data System (ADS)
Vickers, Linda Diane
This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future studies should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this dissertation may be applied to any target material of a high-energy particle accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Kauss
2011-06-01
This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 539: Areas 25 and 26 Railroad Tracks, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 539 are located within Areas 25 and 26 of the Nevada National Security Site. Corrective Action Unit 539 comprises the following CASs: • 25-99-21, Area 25 Railroad Tracksmore » • 26-99-05, Area 26 Railroad Tracks The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 539 were met. To achieve this, the following actions were performed: • Reviewed documentation on historical and current site conditions, including the concentration and extent of contamination. • Conducted radiological walkover surveys of railroad tracks in both Areas 25 and 26. • Collected ballast and soil samples and calculated internal dose estimates for radiological releases. • Collected in situ thermoluminescent dosimeter measurements and calculated external dose estimates for radiological releases. • Removed lead bricks as potential source material (PSM) and collected verification samples. • Implemented corrective actions as necessary to protect human health and the environment. • Properly disposed of corrective action and investigation wastes. • Implemented an FFACO use restriction (UR) for radiological contamination at CAS 25-99-21. The approved UR form and map are provided in Appendix F and will be filed in the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Facility Information Management System; the FFACO database; and the NNSA/NSO CAU/CAS files. From November 29, 2010, through May 2, 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 539. Assessment of the data generated from closure activities revealed the following: • At CAS 26-99-05, the total effective dose for radiological releases did not exceed the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at three locations. A corrective action of clean closure was implemented at these locations, and verification samples indicated that no further action is necessary. • At CAS 25-99-21, the total effective dose for radiological releases exceeds the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at eight locations. A corrective action was implemented by removing the lead bricks and soil above FALs at these locations, and verification samples indicated that no further action is necessary. Pieces of debris with high radioactivity were identified as PSM and remain within the CAS boundary. A corrective action of closure in place with a UR was implemented at this CAS because closure activities showed evidence of remaining soil contamination and radioactive PSM. Future land use will be restricted from surface and intrusive activities. Closure activities generated waste streams consisting of industrial solid waste, recyclable materials, low-level radioactive waste, and mixed low-level radioactive waste. Wastes were disposed of in the appropriate onsite landfills. The NNSA/NSO provides the following recommendations: • Clean closure is required at CAS 26-99-05. • Closure in place is required at CAS 25-99-21. • A UR is required at CAS 25-99-21. • A Notice of Completion to the NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 539. • Corrective Action Unit 539 should be moved from Appendix III to Appendix IV of the FFACO.« less
Stochastic Consequence Analysis for Waste Leaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEY, B.E.
This analysis evaluates the radiological consequences of potential Hanford Tank Farm waste transfer leaks. These include ex-tank leaks into structures, underneath the soil, and exposed to the atmosphere. It also includes potential misroutes, tank overflow
Performance assessment for low-level waste disposal in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashworth, A.B.
1995-12-31
British Nuclear Fuels plc (BNFL) operate a site for the disposal of Low Level Radioactive Waste at Drigg in West Cumbria, in North-West England. HMIP are responsible for the regulation of the site with regard to environmental discharges of radioactive materials, both operational and post-closure. This paper is concerned with post-closure matters only. Two post-closure performance assessments have been carried out for this site: one by the National Radiological Protection Board (NRPB) in 1987; and a subsequent one carried out on behalf of HMIP, completed in 1991. Currently, BNFL are preparing a Safety Case for continued operation of the Driggmore » site, and it expected that the core of this Case will comprise BNFL`s own analysis of post-closure performance. HMIP has developed procedures for the assessment of this Case, based upon experience of the previous Drigg assessments, and also upon the experience of similar work carried out in the assessment of Intermediate Level Waste (ILW) disposal at both deep and shallow potential sites. This paper describes the more important features of these procedures.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... Accidental Releases of Radioactive Materials From Liquid Waste Tanks in Ground and Surface Waters for... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications...
Summary of the 2012 Wide Area Recovery and Resiliency Program (WARRP) Waste Management Workshop
Workshop advanced the planning of federal, state and local officials in the area of waste management following a chemical, biological or radiological wide-area incident in the Denver, Colorado urban area.
E-learning and education in radiology.
Pinto, Antonio; Brunese, Luca; Pinto, Fabio; Acampora, Ciro; Romano, Luigia
2011-06-01
To evaluate current applications of e-learning in radiology. A Medline search was performed using PubMed (National Library of Medicine, Bethesda, MD) for publications discussing the applications of e-learning in radiology. The search strategy employed a single combination of the following terms: (1) e-learning, and (2) education and (3) radiology. This review was limited to human studies and to English-language literature. We reviewed all the titles and subsequent the abstract of 29 articles that appeared pertinent. Additional articles were identified by reviewing the reference lists of relevant papers. Finally, the full text of 38 selected articles was reviewed. Literature data shows that with the constant development of technology and global spread of computer networks, in particular of the Internet, the integration of multimedia and interactivity introduced into electronic publishing has allowed the creation of multimedia applications that provide valuable support for medical teaching and continuing medical education, specifically for radiology. Such technologies are valuable tools for collaboration, interactivity, simulation, and self-testing. However, not everything on the World Wide Web is useful, accurate, or beneficial: the quality and veracity of medical information on the World Wide Web is variable and much time can be wasted as many websites do not meet basic publication standards. E-learning will become an important source of education in radiology. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
International Arctic Seas Assessment Project.
Sjöblom, K L; Salo, A; Bewers, J M; Cooper, J; Dyer, R S; Lynn, N M; Mount, M E; Povinec, P P; Sazykina, T G; Schwarz, J; Scott, E M; Sivintsev, Y V; Tanner, J E; Warden, J M; Woodhead, D
1999-09-30
The International Atomic Energy Agency responded to the news that the former Soviet Union had dumped radioactive wastes in the shallow waters of the Arctic Seas, by launching the International Arctic Seas Assessment Project in 1993. The project had two objectives: to assess the risks to human health and to the environment associated with the radioactive wastes dumped in the Kara and Barents Seas; and to examine possible remedial actions related to the dumped wastes and to advise on whether they are necessary and justified. The current radiological situation in the Arctic waters was examined to assess whether there is any evidence for releases from the dumped waste. Potential future releases from the dumped wastes were predicted, concentrating on the high-level waste objects containing the major part of the radionuclide inventory of the wastes. Environmental transport of released radionuclides was modelled and the associated radiological impact on humans and the biota was assessed. The feasibility, costs and benefits of possible remedial measures applied to a selected high-level waste object were examined. Releases from identified dumped objects were found to be small and localised to the immediate vicinity of the dumping sites. Projected future annual doses to members of the public in typical local population groups were very small, less than 1 microSv--corresponding to a trivial risk. Projected future doses to a hypothetical group of military personnel patrolling the foreshore of the fjords in which wastes have been dumped were higher, up to 4 mSv/year, which still is of the same order as the average annual natural background dose. Moreover, since any of the proposed remedial actions were estimated to cost several million US$ to implement, remediation was not considered justified on the basis of potentially removing a collective dose of 10 man Sv. Doses calculated to marine fauna were insignificant, orders of magnitude below those at which detrimental effects on fauna populations might be expected to occur. Remediation was thus concluded not to be warranted on radiological grounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRIGMON, ROBINL.
In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of themore » select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may be much greater than previously demonstrated and they have numerous applications to environmental restoration. Twelve of the isolates were subsequently added to the bioreactor to enhance bioremediation. In this study we showed that a bioreactor could be bioaugmented with select bacteria to enhance bioremediation of petroleum-contaminated soils under radiological conditions.« less
Report on Waste Disposal Workshops for a Radiological ...
Symposium Paper EPA organized a series of workshops to specifically address waste disposal demands resulting from an RDD incident. These workshops leveraged planning efforts for EPA’s Liberty RadEx exercise held in April 2010 in Philadelphia, PA.
Creating an outpatient center of excellence in CT.
Itri, Jason N; Bakow, Eric; Woods, Jordan
2014-12-01
CT examinations represent a substantial portion of the workload for many radiology departments, and optimizing service delivery is a critical function to ensure customer satisfaction. This article describes how the Six Sigma methodology was used in the radiology department at a large academic hospital to improve the patient experience and increase CT capacity while reducing waste and improving staff satisfaction. The 5 distinct phases of Six Sigma are reviewed as they apply to our CT Center of Excellence project: define, measure, analyze, improve, and control. Process metrics used in this project include the percentage of outpatient CT exams started within 5 minutes of the scheduled appointment time, and the number of studies with protocols selected >48 hours before the CT exam is performed. Outcome metrics include monthly department expense per scan and CT Press Ganey "standard test and treatment" mean scores. An approach to developing interventions is described based on identifying critical sources of variation, ranking these by creating risk prioritization numbers, performing root cause analysis, and utilizing the failure mode and effects analysis tool to prioritize possible solutions. Finally, the key features of action plans and a control plan are reviewed. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Source term evaluation model for high-level radioactive waste repository with decay chain build-up.
Chopra, Manish; Sunny, Faby; Oza, R B
2016-09-18
A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.
Batlle, J Vives I; Sweeck, L; Wannijn, J; Vandenhove, H
2016-10-01
The potential radiological impact of releases from a low-level radioactive waste (Category A waste) repository in Dessel, Belgium on the local fauna and flora was assessed under a reference scenario for gradual leaching. The potential impact situations for terrestrial and aquatic fauna and flora considered in this study were soil contamination due to irrigation with contaminated groundwater from a well at 70 m from the repository, contamination of the local wetlands receiving the highest radionuclide flux after migration through the aquifer and contamination of the local river receiving the highest radionuclide flux after migration through the aquifer. In addition, an exploratory study was carried out for biota residing in the groundwater. All impact assessments were performed using the Environmental Risk from Ionising Contaminants: Assessment and Management (ERICA) tool. For all scenarios considered, absorbed dose rates to biota were found to be well below the ERICA 10 μGy h -1 screening value. The highest dose rates were observed for the scenario where soil was irrigated with groundwater from the vicinity of the repository. For biota residing in the groundwater well, a few dose rates were slightly above the screening level but significantly below the dose rates at which the smallest effects are observed for those relevant species or groups of species. Given the conservative nature of the assessment, it can be concluded that manmade radionuclides deposited into the environment by the near surface disposal of category A waste at Dessel do not have a significant radiological impact to wildlife. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Lenox, Art
2008-09-30
This Annual Site Environmental Report (ASER) for 2007 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequentmore » radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended until DOE completes the SSFL Area IV Environmental Impact Statement (EIS). The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2007 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2007.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, Phil; Samuels, Sandy; Leee, Majelle
2002-09-01
This Annual Site Environmental Report (ASER) for 2001 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Boeing Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988,more » and subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Closure of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2001 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway. No structural debris from buildings, released for unrestricted use, was transferred to municipal landfills or recycled in 2001.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saint-Pierre, S.
2006-07-01
The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates)more » is of vital importance. This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry ' s involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM and DWG. (authors)« less
Chernobyl NPP: Completion of LRW Treatment Plant and LRW Management on Site - 12568
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Denis; Adamovich, Dmitry; Klimenko, I.
2012-07-01
Since a beginning of ChNPP operation, and after a tragedy in 1986, a few thousands m3 of LRW have been collected in a storage tanks. In 2004 ChNPP started the new project on creation of LRW treatment plant (LRWTP) financed from EBRD fund. But it was stopped in 2008 because of financial and contract problems. In 2010 SIA RADON jointly with Ukrainian partners has won a tender on completion of LRWTP, in particular I and C system. The purpose of LRTP is to process liquid rad-wastes from SSE 'Chernobyl NPP' site and those liquids stored in the LRWS and SLRWSmore » tanks as well as the would-be wastes after ChNPP Power Units 1, 2 and 3 decommissioning. The LRTP design lifetime - 20 years. Currently, the LRTP is getting ready to perform the following activities: 1. retrieval of waste from tanks stored at ChNPP LWS using waste retrieval system with existing equipment involved; 2. transfer of retrieved waste into LRTP reception tanks with partial use of existing transfer pipelines; 3. laboratory chemical and radiochemical analysis of reception tanks contest to define the full spectrum of characteristics before processing, to acknowledge the necessity of preliminary processing and to select end product recipe; 4. preliminary processing of the waste to meet the requirements for further stages of the process; 5. shrinkage (concentrating) of preliminary processed waste; 6. solidification of preliminary processed waste with concrete to make a solid-state (end product) and load of concrete compound into 200-l drums; 7. curing of end product drums in LRTP curing hall; 8. radiologic monitoring of end product drums and their loading into special overpacks; 9. overpack radiological monitoring; 10. send for disposal (ICSRM Lot 3); The current technical decisions allow to control and return to ChNPP of process media and supporting systems outputs until they satisfy the following quality norms: salt content: < 100 g/l; pH: 1 - 11; anionic surface-active agent: < 25 mg/l; oil dissipated in the liquid: < 2 mg/l; overall gamma-activity: < 3,7 x10{sup 5} Bq/l. (authors)« less
Mantero, J; Gazquez, M J; Bolivar, J P; Garcia-Tenorio, R; Vaca, F
2013-06-01
A study about the distribution of several radionuclides from the uranium and the thorium series radionuclides along the production process of a typical NORM industry devoted to the production of titanium dioxide has been performed. With this end the activity concentrations in raw materials, final product, co-products, and wastes of the production process have been determined by both gamma-ray and alpha-particle spectrometry. The main raw material used in the studied process (ilmenite) presents activity concentrations of around 300 Bq kg(-1) for Th-series radionuclides and 100 Bq kg(-1) for the U-series ones. These radionuclides in the industrial process are distributed in the different steps of the production process according mostly to the chemical behaviour of each radioelement, following different routes. As an example, most of the radium remains associated with the un-dissolved material waste, with activity concentrations around 3 kBq kg(-1) of (228)Ra and around 1 kBq kg(-1) of (226)Ra, while the final commercial products (TiO2 pigments and co-products) contain negligible amounts of radioactivity. The obtained results have allowed assessing the possible public radiological impact associated with the use of the products and co-products obtained in this type of industry, as well as the environmental radiological impact associated with the solid residues and liquid generated discharges. Copyright © 2013 Elsevier Ltd. All rights reserved.
National low-level waste management program radionuclide report series, Volume 14: Americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winberg, M.R.; Garcia, R.S.
1995-09-01
This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.
Nevada National Security Site Environmental Report 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wills
This Nevada National Security Site Environmental Report (NNSSER) was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSERmore » summarizes data and compliance status for calendar year 2016 at the Nevada National Security Site (NNSS) and its two Nevada-based support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR) and the Nevada Test and Training Range (NTTR). NNSA/NFO directs the management and operation of the NNSS and six sites across the nation. In addition to the NNSA itself, the six sites include two in Nevada (NLVF and RSL-Nellis) and four in other states (RSL-Andrews in Maryland, Livermore Operations in California, Los Alamos Operations in New Mexico, and Special Technologies Laboratory in California). Los Alamos, Lawrence Livermore, and Sandia National Laboratories are the principal organizations that sponsor and implement the nuclear weapons programs at the NNSS. National Security Technologies, LLC (NSTec), is the current Management and Operating contractor accountable for the successful execution of work and ensuring that work is performed in compliance with environmental regulations. The six sites all provide support to enhance the NNSS as a location for its multiple missions. The three major NNSS missions include National Security/Defense, Environmental Management, and Nondefense. The major programs that support these missions are Stockpile Stewardship and Management, Nonproliferation and Counterterrorism, Nuclear Emergency Response, Strategic Partnership Projects, Environmental Restoration, Waste Management, Conservation and Renewable Energy, Other Research and Development, and Infrastructure. The major facilities that support the programs include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility, Dense Plasma Focus Facility, Joint Actinide Shock Physics Experimental Research Facility, Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nonproliferation Test and Evaluation Complex (NPTEC), Radiological/Nuclear Weapons of Mass Destruction Incident Exercise Site, the Area 5 Radioactive Waste Management Complex (RWMC), and the Area 3 Radioactive Waste Management Site (RWMS).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Papers and/or abstracts of 42 papers presented at this waste management seminar are included in this volume. Separate abstracts of 27 papers have been prepared for inclusion in the Energy Data Base (EDB). There are 8 papers represented in the proceedings by abstract only and are not included separately in EDB. The subjects covered in these abstracts include: requirements and compliance for the issuance of the second round NPDES permit for the Portsmouth Plant; performance of the pollution abatement facilities at the Portsmouth Plant; the impact of the Kentucky hazardous waste regulations on the Paducah Plant; control of R-114 lossesmore » at the gaseous diffusion plants; innovative alternatives to pollution control projects; evaluating the fate and potential radiological impacts of Technetium-99 released to the environment; and technical support interfacing for the FY-1981 line item project control of water pollution and solid wastes at the Paducah Plant. There are 15 other papers which were previously input to the EDB. (RJC)« less
Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site
NASA Astrophysics Data System (ADS)
Rucker, D. F.; Levitt, M. T.
2006-12-01
The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.
Cover design for radioactive and AMD-producing mine waste in the Ronneburg area, eastern Thuringia.
Gatzweiler, R; Jahn, S; Neubert, G; Paul, M
2001-01-01
At the former uranium mining site of Ronneburg, large scale underground and open pit mining for nearly 40 years resulted in a production of about 113,000 tonnes of uranium and about 200 million cubic metres of mine waste. In their present state, these materials cause risks to human health and strong environmental impacts and therefore demand remedial action. The remediation options available are relocation of mine spoil into the open pit and on site remediation by landscaping/contouring, placement of a cover and revegetation. A suitable vegetated cover system combined with a surface water drainage system provides long-term stability against erosion and reduces acid generation thereby meeting the main remediation objectives which are long-term reduction of radiological exposure and contaminant emissions and recultivation. The design of the cover system includes the evaluation of geotechnical, radiological, hydrological, geochemical and ecological criteria and models. The optimized overall model for the cover system has to comply with general conditions as, e.g. economic efficiency, public acceptance and sustainability. Most critical elements for the long-term performance of the cover system designed for the Beerwalde dump are the barrier system and its long-term integrity and a largely self-sustainable vegetation.
Integrated software system for low level waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worku, G.
1995-12-31
In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less
NASA Astrophysics Data System (ADS)
Pérot, Bertrand; Jallu, Fanny; Passard, Christian; Gueton, Olivier; Allinei, Pierre-Guy; Loubet, Laurent; Estre, Nicolas; Simon, Eric; Carasco, Cédric; Roure, Christophe; Boucher, Lionel; Lamotte, Hervé; Comte, Jérôme; Bertaux, Maïté; Lyoussi, Abdallah; Fichet, Pascal; Carrel, Frédérick
2018-03-01
This review paper describes the destructive and non-destructive measurements implemented or under development at CEA, in view to perform the most complete radioactive waste characterization. First, high-energy photon imaging (radiography, tomography) brings essential information on the waste packages, such as density, position and shape of the waste inside the container and in the possible binder, quality of coating and blocking matrices, presence of internal shields or structures, presence of cracks, voids, or other defects in the container or in the matrix, liquids or other forbidden materials, etc. Radiological assessment is then performed using a series of non-destructive techniques such as gamma-ray spectroscopy, which allows characterizing a wide range of radioactive and nuclear materials, passive neutron coincidence counting and active neutron interrogation with the differential die-away technique, or active photon interrogation with high-energy photons (photofission), to measure nuclear materials. Prompt gamma neutron activation analysis (PGNAA) can also be employed to detect toxic chemicals or elements which can greatly influence the above measurements, such as neutron moderators or absorbers. Digital auto-radiography can also be used to detect alpha and beta contaminated waste. These non-destructive assessments can be completed by gas measurements, to quantify the radioactive and radiolysis gas releases, and by destructive examinations such as coring homogeneous waste packages or cutting the heterogeneous ones, in view to perform visual examination and a series of physical, chemical, and radiochemical analyses on samples. These last allow for instance to check the mechanical and containment properties of the package envelop, or of the waste binder, to measure toxic chemicals, to assess the activity of long-lived radionuclides or pure beta emitters, to determine the isotopic composition of nuclear materials, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, A.; Pitts, M.; Ludowise, J.D.
The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removesmore » outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Shuman, Robert
2012-04-17
The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requiresmore » that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were developed for Revision 4 of the performance assessment and composite analysis. The approach used to characterize the FY 2008 through 2011 waste is generally the same as that used to characterize the inventory for the Revision 4 analyses (Shuman, 2008). This methodology is described in Section 2. The results of the disposal receipt review are presented in Section 3 and discussed in terms of their significance to the Area G analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, K.A.; Mitchell, M.M.; Jean, D.
1997-09-01
This report contains the Appendices A-L including Voluntary Corrective Measure Plans, Waste Management Plans, Task-Specific Health and Safety Plan, Analytical Laboratory Procedures, Soil Sample Results, In-Situ Gamma Spectroscopy Results, Radionuclide Activity Summary, TCLP Soil Sample Results, Waste Characterization Memoranda, Waste Drum Inventory Data, Radiological Risk Assessment, and Summary of Site-Specific Recommendations.
Practical Approaches to Quality Improvement for Radiologists.
Kelly, Aine Marie; Cronin, Paul
2015-10-01
Continuous quality improvement is a fundamental attribute of high-performing health care systems. Quality improvement is an essential component of health care, with the current emphasis on adding value. It is also a regulatory requirement, with reimbursements increasingly being linked to practice performance metrics. Practice quality improvement efforts must be demonstrated for credentialing purposes and for certification of radiologists in practice. Continuous quality improvement must occur for radiologists to remain competitive in an increasingly diverse health care market. This review provides an introduction to the main approaches available to undertake practice quality improvement, which will be useful for busy radiologists. Quality improvement plays multiple roles in radiology services, including ensuring and improving patient safety, providing a framework for implementing and improving processes to increase efficiency and reduce waste, analyzing and depicting performance data, monitoring performance and implementing change, enabling personnel assessment and development through continued education, and optimizing customer service and patient outcomes. The quality improvement approaches and underlying principles overlap, which is not surprising given that they all align with good patient care. The application of these principles to radiology practices not only benefits patients but also enhances practice performance through promotion of teamwork and achievement of goals. © RSNA, 2015.
Downgrading Nuclear Facilities to Radiological Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy
2015-08-01
Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.
1995-04-01
This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developedmore » that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2003-09-30
This Annual Site Environmental Report (ASER) for 2002 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing' s Santa Susana Field Laboratory (SSFL)). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988, and,more » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2002 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property ( land, structures, waste), and recycling. All radioactive w astes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes are released into the environment, and no structural debris from buildings w as transferred to municipal landfills or recycled in 2002.« less
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors... environmental impact of the ISFSI or MRS must be investigated and assessed. (b) Proposed sites for the ISFSI or... proposed site for an MRS, the potential for radiological and other environmental impacts on the region must...
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors... environmental impact of the ISFSI or MRS must be investigated and assessed. (b) Proposed sites for the ISFSI or... proposed site for an MRS, the potential for radiological and other environmental impacts on the region must...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Alexander
2014-04-24
This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK informationmore » used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pombet, Denis; Desnoyers, Yvon; Charters, Grant
2013-07-01
The TruPro{sup R} process enables to collect a significant number of samples to characterize radiological materials. This innovative and alternative technique is experimented for the ANDRA quality-control inspection of cemented packages. It proves to be quicker and more prolific than the current methodology. Using classical statistics and geo-statistics approaches, the physical and radiological characteristics of two hulls containing immobilized wastes (sludges or concentrates) in a hydraulic binder are assessed in this paper. The waste homogeneity is also evaluated in comparison to ANDRA criterion. Sensibility to sample size (support effect), presence of extreme values, acceptable deviation rate and minimum number ofmore » data are discussed. The final objectives are to check the homogeneity of the two characterized radwaste packages and also to validate and reinforce this alternative characterization methodology. (authors)« less
Uncertainty quantification applied to the radiological characterization of radioactive waste.
Zaffora, B; Magistris, M; Saporta, G; Chevalier, J-P
2017-09-01
This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
1994-01-01
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
33 Shafts Category of Transuranic Waste Stored Below Ground within Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth Marshall; Monk, Thomas H
This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package weremore » developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).« less
Waste Isolation Pilot Plant site environmental report, for calendar year 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The U.S. Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires DOE facilities, that conduct environmental protection programs, to annually prepare a Site Environmental Report (SER). The purpose of the SER is to provide an abstract of environmental assessments conducted in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit. The content of this SER is not restricted to a synopsis of the required data, in addition, information pertaining to new and continued monitoring and compliance activities during the 1995 calendar yearmore » are also included. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP). The EMP provides inclusive guidelines implemented to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater. air, soil, and biotic matrices are monitored for an array of radiological and nonradiological factors. The baseline radiological surveillance program encompasses a broader geographic area that includes nearby ranches, villages, and cities. Most elements of nonradiological assessments are conducted within the geographic vicinity of the WIPP site.« less
Work productivity in rheumatoid arthritis: relationship with clinical and radiological features.
Chaparro Del Moral, Rafael; Rillo, Oscar Luis; Casalla, Luciana; Morón, Carolina Bru; Citera, Gustavo; Cocco, José A Maldonado; Correa, María de Los Ángeles; Buschiazzo, Emilio; Tamborenea, Natalia; Mysler, Eduardo; Tate, Guillermo; Baños, Andrea; Herscovich, Natalia
2012-01-01
Objective. To assess the relationship between work productivity with disease activity, functional capacity, life quality and radiological damage in patients with rheumatoid arthritis (RA). Methods. The study included consecutive employed patients with RA (ACR'87), aged over 18. Demographic, disease-related, and work-related variables were determined. The reduction of work productivity was assessed by WPAI-RA. Results. 90 patients were evaluated, 71% women. Age average is 50 years old, DAS28 4, and RAQoL 12. Median SENS is 18 and HAQ-A 0.87. Mean absenteeism was of 14%, presenting an average of 6.30 work hours wasted weekly. The reduction in performance at work or assistance was of 38.4% and the waste of productivity was of 45%. Assistance correlated with DAS28 (r = 0.446; P < 0.001), HAQ-A (r = 0.545; P < 0.001) and RAQoL (r = 0.475; P < 0.001). Lower total productivity was noticed in higher levels of activity and functional disability. Patients with SENS > 18 showed lower work productivity than those with SENS < 18 (50 versus 34; P = 0.04). In multiple regression analysis, variables associated with reduction of total work productivity were HAQ-A and RAQoL. Conclusion. RA patients with higher disease severity showed higher work productivity compromise.
Work Productivity in Rheumatoid Arthritis: Relationship with Clinical and Radiological Features
Chaparro del Moral, Rafael; Rillo, Oscar Luis; Casalla, Luciana; Morón, Carolina Bru; Citera, Gustavo; Cocco, José A. Maldonado; Correa, María de los Ángeles; Buschiazzo, Emilio; Tamborenea, Natalia; Mysler, Eduardo; Tate, Guillermo; Baños, Andrea; Herscovich, Natalia
2012-01-01
Objective. To assess the relationship between work productivity with disease activity, functional capacity, life quality and radiological damage in patients with rheumatoid arthritis (RA). Methods. The study included consecutive employed patients with RA (ACR'87), aged over 18. Demographic, disease-related, and work-related variables were determined. The reduction of work productivity was assessed by WPAI-RA. Results. 90 patients were evaluated, 71% women. Age average is 50 years old, DAS28 4, and RAQoL 12. Median SENS is 18 and HAQ-A 0.87. Mean absenteeism was of 14%, presenting an average of 6.30 work hours wasted weekly. The reduction in performance at work or assistance was of 38.4% and the waste of productivity was of 45%. Assistance correlated with DAS28 (r = 0.446; P < 0.001), HAQ-A (r = 0.545; P < 0.001) and RAQoL (r = 0.475; P < 0.001). Lower total productivity was noticed in higher levels of activity and functional disability. Patients with SENS > 18 showed lower work productivity than those with SENS < 18 (50 versus 34; P = 0.04). In multiple regression analysis, variables associated with reduction of total work productivity were HAQ-A and RAQoL. Conclusion. RA patients with higher disease severity showed higher work productivity compromise. PMID:23320166
DOE Office of Scientific and Technical Information (OSTI.GOV)
ITLV.
1999-03-01
The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: Perform video surveys of the discharge and outfall lines. Collect samples of material in the septic tanks. Conduct exploratory trenching to locate and inspect subsurface components. Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. Drill boreholes and collect subsurface soil samples if required. Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less
NASA Astrophysics Data System (ADS)
Smith, Bethan L.
The work presented in this dissertation represents a systems-level approach to investigate potential net impacts with respect to human health and the environment associated with transitioning to the MOC for the U.S. In Chapter 2, an updated systems-level conceptual model of the OTC is presented to more accurately portray the OTC as currently implemented in the U.S. The conceptual model is the basis for estimating the worker collective doses at each operational stage, and the first demonstration of a quantitative comparative radiological impact assessment from expected normal operations is presented. In the course of evaluating worker collective dose associated with modern OTC practices, it was found that the relative contributions from the two grouped operations (front-end operations for preparing reactor fuel and reactor operations) were substantially different from historical data and conventional wisdom. As a bookend to Chapter 2, a summary is provided that describes the nature of the differences and factors that led to these differences. Detailed information of the work as part of the published journal article based off of this corollary work is included as an Appendix (C). In Chapter 3, the study of worker collective doses from the phased introduction of reprocessing in the MOC scenario, and is presented similarly to the results in Chapter 2. MOC performance was also estimated by evaluating the radioactive waste generated that can be disposed and managed through known disposal practices in shallow-land burial. Relative to the OTC, MOC performance with respect to worker collective dose was not discernibly different; while the volume of radioactive waste generated decreased. It was found that although the sheer volume of radioactive waste avoided is large, the waste disposition pathway is known for the majority of this waste. The radioactive waste that requires disposal at a licensed off-site facility is examined in closer detail. The verification process for this study's comparative impacts of worker collective doses elucidates the dependence of net radiological impacts to workers to fuel-type use. This verification exercise then leads to concluding remarks that fuel-use proportions employed at the end of the hypothetical advanced NFC scenario within the reactor fleet can determine what level of analysis may be required to estimate the net impacts that may be incurred from an advanced NFC. In Chapter 4, a study of potential worker collective doses incurred from carrying out the strategy to manage and dispose of used nuclear fuel outlined by the U.S. Department of Energy (DOE) as part of a comprehensive federal waste management system (FWMS) is discussed. It was estimated that the worker collective dose from repository operations leads to the large part of the radiological impact of the new FWMS. The contribution to worker collective dose was compared to that of the contemporary OTC quantitative model presented in Chapter 2. The additional worker collective dose contributed by FWMS activities is small and when the contributions from each grouped operation of the OTC are renormalized, the FWMS ranges annually from 4-8%. Finally, Chapter 5 offers ideas for future work and provides a summary of the findings of this dissertation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, A.; Sutter, C.; Klos, D.B.
2008-07-01
The Department of Energy, Richland Operations Office is preparing to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action for the decontamination and demolition of the above-grade mining structures and equipment at the 216-Z-9 Crib. An investigation of the condition of the mining complex was initiated to determine constraints necessary for safely conducting the removal of the buildings. While crib headspace chemical analysis and nondestructive analysis of the interior of the buildings was completed to address radiological contamination concerns, the primary concern regarding the removal of the above-grade structures located on the crib cover involves determining themore » loading capacity and structural integrity of the crib cover slab. Additional concerns included headspace gases and radionuclide contamination. Until the structural analysis was completed, loading limits on the crib cover had been restricted. Photographic documentation revealed the loss of protective tiles and acid resistant coating from the underside of the cover raising a question of concrete stability. The investigation relied heavily on the use of high resolution photography with high intensity lighting for photographic documentation of the underside of the crib cover, followed by structural analysis of the documentation by a team of qualified engineers. Deployment of a robot crawler with attached camera and positioning of a fixed camera were integral to this structural characterization effort. Results of the photographic documentation were of sufficient quality to allow for bounding decisions to be made regarding the loading of the crib cover while performing the demolition of the mining structures (glovebox, excavator, bucket) and the associated buildings. The 216-Z-9 Crib, also known as the 216 Z-9 Recuplex CAW (CA column waste) Waste Disposal Cavern, the Z-9 Trench and the Z-9 Crib was constructed as an engineered trench with an open area beneath a concrete slab. The crib is located near the Plutonium Finishing Plant (PFP) facility, at the Hanford Nuclear Reservation in Eastern Washington State. The crib was used as a disposal site for effluent chemical and radiological wastes from the recovery of uranium and plutonium through extraction or RECUPLEX process, a method that recovered uranium and plutonium from liquid and solid wastes and scraps from other PFP processes. During its operating life, from 1955 through 1962, the Z-9 Crib received liquid wastes totaling approximately four million liters, or one million gallons. Analyses of the crib soil in seven locations to a depth of up to two meters (six feet) beneath the crib floor indicated that the plutonium content of the crib soil ranged from 50 to 150 kg (the highest concentration measured was 34.5 g/L of soil). While performing the structural evaluation of the crib cover, additional characterization information was obtained on the radiological and chemical conditions of the crib and structures. (authors)« less
Herbert M. Parker: Publications and contributions to radiological and health physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathren, R.L.; Baalman, R.W.; Bair, W.J.
For more than a half century, Herbert M. Parker was a leading force in radiological physics. As a scientist, he was codeveloper of a systematic dosimetry scheme for implant therapy and the innovative proposer of radiological units with unambiguous physical and biological bases. He made seminal contributions to the development of scientifically based radiation protection standards and, as an administrator and manager as well as scientist, helped the Hanford Laboratories to achieve preeminance in several areas, including radiation biology, radioactive waste disposal, and environmental radioactivity. This volume brings together, sometimes from obscure sources, his works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgans, D. L.; Lindberg, S. L.
The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.J.; Fischer, D.D.; Crawford, R.C.
1982-06-01
Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier tomore » mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.« less
Method and apparatus for in-cell vacuuming of radiologically contaminated materials
Spadaro, Peter R.; Smith, Jay E.; Speer, Elmer L.; Cecconi, Arnold L.
1987-01-01
A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.
DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobdell, D.; Geimer, R.; Larsen, P.
2003-02-27
The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best managemore » lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneve, M.K.; Shandala, N.K.
2007-07-01
The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from ice-breakers, andmore » decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, D.W.; Ridge, A.C.; Thaggard, M.
2006-07-01
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the Department of Energy (DOE) to consult with the Nuclear Regulatory Commission (NRC) about non-High Level Waste (HLW) determinations. In its consultative role, NRC performs technical reviews of DOE's waste determinations but does not have regulatory authority over DOE's waste disposal activities. The safety of disposal is evaluated by comparing predicted disposal facility performance to the performance objectives specified in NRC regulations for the disposal of low-level waste (10 CFR Part 61 Subpart C). The performance objectives contain criteria for protection of themore » public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. The potential radiological dose to receptors typically is evaluated with a performance assessment (PA) model that simulates the release of radionuclides from the disposal site, transport of radionuclides through the environment, and exposure of potential receptors to residual contamination for thousands of years. This paper describes NRC's development and use of independent performance assessment modeling to facilitate review of DOE's non-HLW determination for the Saltstone Disposal Facility (SDF) at the Savannah River Site. NRC's review of the safety of near-surface disposal of radioactive waste at the SDF was facilitated and focused by risk insights developed with an independent PA model. The main components of NRC's performance assessment model are presented. The development of risk insights that allow the staff to focus review efforts on those areas that are most important to satisfying the performance objectives is discussed. Uncertainty analysis was performed of the full stochastic model using genetic variable selection algorithms. The results of the uncertainty analysis were then used to guide the development of simulations of other scenarios to understand the key risk drivers and risk limiters of the SDF. Review emphasis was placed on those aspects of the disposal system that were expected to drive performance: the physical and chemical performance of the cementitious wasteform and concrete vaults. Refinement of the modeling of the degradation and release from the cementitious wasteform had a significant effect on the predicted dose to a member of the public. (authors)« less
NCRP Program Area Committee 5: Environmental Radiation and Radioactive Waste Issues.
Chen, S Y; Napier, Bruce
2016-02-01
Program Area Committee 5 of the National Council on Radiation Protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. The Committee completed a number of reports in these subject areas, most recently NCRP Report No. 175, Decision Making for Late-Phase Recovery from Major Nuclear or Radiological Incidents. Historically this Committee addressed emerging issues of the nation pertaining to radioactivity or radiation in the environment or radioactive waste issues due either to natural origins or to manmade activities.
NV/YMP radiological control manual, Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gile, A.L.
The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste andmore » the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.« less
NASA Astrophysics Data System (ADS)
Setiawan, B.; Prihastuti, S.; Moersidik, S. S.
2018-02-01
The operational of near surface disposal facility during waste packages loading activity into the facility, or in a monitoring activity around disposal facility at Karawang area is predicted to give a radiological risk to radiation workers. The thickness of disposal facility cover system affected the number of radiological risk of workers. Due to this reason, a radiological risk estimation needs to be considered. RESRAD onsite code is applied for this purpose by analyse the individual accepted dose and radiological risk data of radiation workers. The obtained results and then are compared with radiation protection reference in accordance with national regulation. In this case, the data from the experimental result of Karawang clay as host of disposal facility such as Kd value of 137Cs was used. Results showed that the thickness of the cover layer of disposal facility affected to the radiological risk which accepted by workers in a near surface disposal facility.
NASA Astrophysics Data System (ADS)
Card, D. H.; Hunter, P. H.; Barg, D.; Desouza, F.; Felthauser, K.; Winkler, V.; White, R.
1982-02-01
The ramifications of constructing a nuclear energy center in an arid western region were studied. The alternatives for disposing of the low level waste on the site are compared with the alternative of transporting the waste to the nearest commercial waste disposal site for permanent disposal. Both radiological and nonradiological impacts on the local socioeconomic infrastructure and the environment are considered. Disposal on the site was found to cost considerably less than off site disposal with only negligible impacts associated with the disposal option on either mankind or the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.
In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedscheid, J.; Stahl, S.; Devarakonda, M.
2002-02-26
The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste priormore » to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.« less
Fatal and nonfatal risk associated with recycle of D&D-generated concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boren, J.K.; Ayers, K.W.; Parker, F.L.
1997-02-01
As decontamination and decommissioning activities proceed within the U.S. Department of Energy Complex, vast volumes of uncontaminated and contaminated concrete will be generated. The current practice of decontaminating and landfilling the concrete is an expensive and potentially wasteful practice. Research is being conducted at Vanderbilt University to assess the economic, social, legal, and political ramifications of alternate methods of dealing with waste concrete. An important aspect of this research work is the assessment of risk associated with the various alternatives. A deterministic risk assessment model has been developed which quantifies radiological as well as non-radiological risks associated with concrete disposalmore » and recycle activities. The risk model accounts for fatal as well as non-fatal risks to both workers and the public. Preliminary results indicate that recycling of concrete presents potentially lower risks than the current practice. Radiological considerations are shown to be of minor importance in comparison to other sources of risk, with conventional transportation fatalities and injuries dominating. Onsite activities can also be a major contributor to non-fatal risk.« less
Manpower Needs in Environmental Engineering
ERIC Educational Resources Information Center
Middlebrooks, E. J.; And Others
1974-01-01
Outlines manpower needs in both the public and private sectors in the areas of air pollution control, solid waste management, radiological hazard control, pesticide hazard control, and water pollution control. (GS)
SLAYING THE DRAGON-THE STORY OF ONE FPSO, 20 VIETNAMESE OPERATORS AND 3 CONCRETE MIXERS.
O'Brien, Anthony; van Rooyen, Annelize
2017-04-01
End of life of a floating production, storage and offloading (FPSO) facility requires a lot of planning and management. One of the major challenges is the issue of decontamination and waste management. Waste disposal is a very sensitive subject and with agreements like the London Protocol and differences in legislation between countries, it has the potential to become a major stumbling block. Radiation safety is something not often on the mind of an FPSO operator. The planning and layout of such a vessel and its processing plant have usually not gone through any as low as reasonably achievable process during design. Planning the decontamination of such a vessel should start long before the actual decommissioning date. Performing regular vessel cleanouts and radiological profiling of the plant can be beneficial in the end. Finding a workable solution in getting naturally occurring radioactive material contaminated waste out of the vessels and tanks and effectively reducing the waste volumes for end of life clean-up is very important. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Benzene destruction in aqueous waste—I. Bench-scale gamma irradiation experiments
NASA Astrophysics Data System (ADS)
Cooper, William J.; Dougal, Roger A.; Nickelsen, Michael G.; Waite, Thomas D.; Kurucz, Charles N.; Lin, Kaijin; Bibler, Jane P.
1996-07-01
Destruction of the benzene component of a simulated low-level mixed aqueous waste stream by high energy irradiation was explored. This work was motivated by the fact that mixed waste, containing both radionuclides and regulated (non-radioactive) chemicals, is more difficult and more expensive to dispose of than only radioactive waste. After the benzene is destroyed, the waste can then be listed only as radiological waste instead of mixed waste, simplifying its disposal. This study quantifies the removal of benzene, and the formation and destruction of reaction products in a relatively complex waste stream matrix consisting of NO 3-, SO 42-, PO 43-, Fe 2+ and detergent at a pH of 3. All of the experiments were conducted at a bench scale using a 60Co gamma source.
DOE Waste Treatability Group Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, T.D.
1995-01-01
This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less
Applying Systems Engineering Reduces Radiology Transport Cycle Times in the Emergency Department.
White, Benjamin A; Yun, Brian J; Lev, Michael H; Raja, Ali S
2017-04-01
Emergency department (ED) crowding is widespread, and can result in care delays, medical errors, increased costs, and decreased patient satisfaction. Simultaneously, while capacity constraints on EDs are worsening, contributing factors such as patient volume and inpatient bed capacity are often outside the influence of ED administrators. Therefore, systems engineering approaches that improve throughput and reduce waste may hold the most readily available gains. Decreasing radiology turnaround times improves ED patient throughput and decreases patient waiting time. We sought to investigate the impact of systems engineering science targeting ED radiology transport delays and determine the most effective techniques. This prospective, before-and-after analysis of radiology process flow improvements in an academic hospital ED was exempt from institutional review board review as a quality improvement initiative. We hypothesized that reorganization of radiology transport would improve radiology cycle time and reduce waste. The intervention included systems engineering science-based reorganization of ED radiology transport processes, largely using Lean methodologies, and adding no resources. The primary outcome was average transport time between study order and complete time. All patients presenting between 8/2013-3/2016 and requiring plain film imaging were included. We analyzed electronic medical record data using Microsoft Excel and SAS version 9.4, and we used a two-sample t-test to compare data from the pre- and post-intervention periods. Following the intervention, average transport time decreased significantly and sustainably. Average radiology transport time was 28.7 ± 4.2 minutes during the three months pre-intervention. It was reduced by 15% in the first three months (4.4 minutes [95% confidence interval [CI] 1.5-7.3]; to 24.3 ± 3.3 min, P=0.021), 19% in the following six months (5.4 minutes, 95% CI [2.7-8.2]; to 23.3 ± 3.5 min, P=0.003), and 26% one year following the intervention (7.4 minutes, 95% CI [4.8-9.9]; to 21.3 ± 3.1 min, P=0.0001). This result was achieved without any additional resources, and demonstrated a continual trend towards improvement. This innovation demonstrates the value of systems engineering science to increase efficiency in ED radiology processes. In this study, reorganization of the ED radiology transport process using systems engineering science significantly increased process efficiency without additional resource use.
Applying Systems Engineering Reduces Radiology Transport Cycle Times in the Emergency Department
White, Benjamin A.; Yun, Brian J.; Lev, Michael H.; Raja, Ali S.
2017-01-01
Introduction Emergency department (ED) crowding is widespread, and can result in care delays, medical errors, increased costs, and decreased patient satisfaction. Simultaneously, while capacity constraints on EDs are worsening, contributing factors such as patient volume and inpatient bed capacity are often outside the influence of ED administrators. Therefore, systems engineering approaches that improve throughput and reduce waste may hold the most readily available gains. Decreasing radiology turnaround times improves ED patient throughput and decreases patient waiting time. We sought to investigate the impact of systems engineering science targeting ED radiology transport delays and determine the most effective techniques. Methods This prospective, before-and-after analysis of radiology process flow improvements in an academic hospital ED was exempt from institutional review board review as a quality improvement initiative. We hypothesized that reorganization of radiology transport would improve radiology cycle time and reduce waste. The intervention included systems engineering science-based reorganization of ED radiology transport processes, largely using Lean methodologies, and adding no resources. The primary outcome was average transport time between study order and complete time. All patients presenting between 8/2013–3/2016 and requiring plain film imaging were included. We analyzed electronic medical record data using Microsoft Excel and SAS version 9.4, and we used a two-sample t-test to compare data from the pre- and post-intervention periods. Results Following the intervention, average transport time decreased significantly and sustainably. Average radiology transport time was 28.7 ± 4.2 minutes during the three months pre-intervention. It was reduced by 15% in the first three months (4.4 minutes [95% confidence interval [CI] 1.5–7.3]; to 24.3 ± 3.3 min, P=0.021), 19% in the following six months (5.4 minutes, 95% CI [2.7–8.2]; to 23.3 ± 3.5 min, P=0.003), and 26% one year following the intervention (7.4 minutes, 95% CI [4.8–9.9]; to 21.3 ± 3.1 min, P=0.0001). This result was achieved without any additional resources, and demonstrated a continual trend towards improvement. This innovation demonstrates the value of systems engineering science to increase efficiency in ED radiology processes. Conclusion In this study, reorganization of the ED radiology transport process using systems engineering science significantly increased process efficiency without additional resource use. PMID:28435492
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiva, Isabel; Trindade, Romao B.
Council Directive 2011/70/EURATOM of 19 July 2011, establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste will enter in force August 2013 in all EU Member States. Portugal has already started preparing its legislative framework to accommodate the new legislative piece. However, the first report of Portugal to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management of the IAEA, in Vienna, 2012, has shown that Portugal still has many steps to overcome to establish a successful and effective basic regulatory framework. The existencemore » of many competent authorities related to the radiological protection area and a newly independent commission that is still looking on how to fulfill its regulator role in other areas such as the radioactive waste management makes quite challenging the full application of the new directive as well as compliance that Portugal will have to show in the next Joint Convention review meeting in order to meet the obligations of the Convention. In this paper, the reality of the regulatory Portuguese framework on radiological protection, nuclear safety and radioactive waste management is presented. Discussion of the future impact of the new legislation and its consequences such as the need to setup the national program on radioactive waste management is critical discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-06-30
This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2013.« less
Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories
NASA Astrophysics Data System (ADS)
Marklund, L.; Xu, S.; Worman, A.
2009-05-01
If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving significant amounts of radionuclides are limited. To limit the radiological dose assessment, analyses should be focused to and more detailed in such landscape areas in which doses are expected to be high. Due to the similarities among deep groundwater discharge areas, one can make site-specific analyses of those areas, which have a broad applicability for migration of radionuclides originating from a nuclear waste repository.
3D simulation as a tool for improving the safety culture during remediation work at Andreeva Bay.
Chizhov, K; Sneve, M K; Szőke, I; Mazur, I; Mark, N K; Kudrin, I; Shandala, N; Simakov, A; Smith, G M; Krasnoschekov, A; Kosnikov, A; Kemsky, I; Kryuchkov, V
2014-12-01
Andreeva Bay in northwest Russia hosts one of the former coastal technical bases of the Northern Fleet. Currently, this base is designated as the Andreeva Bay branch of Northwest Center for Radioactive Waste Management (SevRAO) and is a site of temporary storage (STS) for spent nuclear fuel (SNF) and other radiological waste generated during the operation and decommissioning of nuclear submarines and ships. According to an integrated expert evaluation, this site is the most dangerous nuclear facility in northwest Russia. Environmental rehabilitation of the site is currently in progress and is supported by strong international collaboration. This paper describes how the optimization principle (ALARA) has been adopted during the planning of remediation work at the Andreeva Bay STS and how Russian-Norwegian collaboration greatly contributed to ensuring the development and maintenance of a high level safety culture during this process. More specifically, this paper describes how integration of a system, specifically designed for improving the radiological safety of workers during the remediation work at Andreeva Bay, was developed in Russia. It also outlines the 3D radiological simulation and virtual reality based systems developed in Norway that have greatly facilitated effective implementation of the ALARA principle, through supporting radiological characterisation, work planning and optimization, decision making, communication between teams and with the authorities and training of field operators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.M. Frank
Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.« less
10 CFR 960.5-2-2 - Site ownership and control.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-2 Site ownership... control of access that are required in order that surface and subsurface activities during repository...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, K.M.
1995-01-01
This study evaluated the task-length average (TLA) respirable dust and respirable silica airborne concentrations to which construction workers excavating volcanic tuff at Los Alamos National Laboratory (LANL) were exposed. These workers were excavating a low level radiological waste disposal pit of final dimensions 720 feet long, 132 feet wide and 60 feet deep. The objectives of this study were as follows: (1) evaluate exposures; (2) determine if the type of machinery used affects the respirable dust concentration in the breathing zone of the worker; (3) evaluate the efficacy of wetting the pit to reduce the respirable dust exposure; and (4)more » determine if exposure increases with increasing depth of pit due to the walls of the pit blocking the cross wind ventilation.« less
Thorn, M C; Kelly, M; Rees, J H; Sánchez-Friera, P; Calvez, M
2002-09-01
Bioaccumulation and dosimetric models have been developed that allow the computation of dose rates to a wide variety of plants and animals in the context of the deep geological disposal of solid radioactive wastes. These dose rates can be compared with the threshold dose rates at which significant deleterious effects have been observed in field and laboratory observations. This provides a general indication of whether effects on ecosystems could be observable, but does not quantify the level of those effects. To address this latter issue, two indicator organisms were identified and exposure-response relationships were developed for endpoints of potential interest (mortality in conifers and the induction of skeletal malformations in rodents irradiated in utero). The bioaccumulation, dosimetry and exposure-response models were implemented and used to evaluate the potential significance of radionuclide releases from a proposed deep geological repository for radioactive wastes in France. This evaluation was undertaken in the context of a programme of assessment studies being performed by the Agence nationale pour la gestion des déchets radioactifs (ANDRA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabert, C.; Coquelet-Pascal, C.; Saturnin, A.
Studies have been performed to assess the industrial perspectives of partitioning and transmutation of long-lived elements. These studies were carried out in tight connection with GEN-IV systems development. The results include the technical and economic evaluation of fuel cycle scenarios along with different options for optimizing the processes between the minor actinide transmutation in fast neutron reactors, their interim storage and geological disposal of ultimate waste. The results are analysed through several criteria (impacts on waste, on waste repository, on fuel cycle plants, on radiological exposure of workers, on costs and on industrial risks). These scenario evaluations take place inmore » the French context which considers the deployment of the first Sodium-cooled Fast Reactor (SFR) in 2040. 3 management options of minor actinides have been studied: no transmutation, transmutation in SFR and transmutation in an accelerator-driven system (ADS). Concerning economics the study shows that the cost overrun related to the transmutation process could vary between 5 to 9% in SFR and 26 % in the case of ADS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, R.R.
1996-04-01
The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changesmore » to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Southern States Energy Board (SSEB) is an interstate compact organization that serves 16 states and the commonwealth of Puerto Rico with information and analysis in energy and environmental matters. Nuclear waste management is a topic that has garnered considerable attention in the SSEB region in the last several years. Since 1985, SSEB has received support from the US Department of Energy for the regional analysis of high-level radioactive waste transportation issues. In the performance of its work in this area, SSEB formed the Advisory Committee on High-Level Radioactive Materials Transportation, which comprises representatives from impacted states and tribes. SSEBmore » meets with the committee semi-annually to provide issue updates to members and to solicit their views on activities impacting their respective states. Among the waste transportation issues considered by SSEB and the committee are shipment routing, the impacts of monitored retrievable storage, state liability in the event of an accident and emergency preparedness and response. This document addresses the latter by describing the radiological emergency response training courses and programs of the southern states, as well as federal courses available outside the southern region.« less
Updating Dosimetry for Emergency Response Dose Projections.
DeCair, Sara
2016-02-01
In 2013, the U.S. Environmental Protection Agency (EPA) proposed an update to the 1992 Protective Action Guides (PAG) Manual. The PAG Manual provides guidance to state and local officials planning for radiological emergencies. EPA requested public comment on the proposed revisions, while making them available for interim use by officials faced with an emergency situation. Developed with interagency partners, EPA's proposal incorporates newer dosimetric methods, identifies tools and guidelines developed since the current document was issued, and extends the scope of the PAGs to all significant radiological incidents, including radiological dispersal devices or improvised nuclear devices. In order to best serve the emergency management community, scientific policy direction had to be set on how to use International Commission on Radiological Protection Publication 60 age groups in dose assessment when implementing emergency guidelines. Certain guidelines that lend themselves to different PAGs for different subpopulations are the PAGs for potassium iodide (KI), food, and water. These guidelines provide age-specific recommendations because of the radiosensitivity of the thyroid and young children with respect to ingestion and inhalation doses in particular. Taking protective actions like using KI, avoiding certain foods or using alternative sources of drinking water can be relatively simple to implement by the parents of young children. Clear public messages can convey which age groups should take which action, unlike how an evacuation or relocation order should apply to entire households or neighborhoods. New in the PAG Manual is planning guidance for the late phase of an incident, after the situation is stabilized and efforts turn toward recovery. Because the late phase can take years to complete, decision makers are faced with managing public exposures in areas not fully remediated. The proposal includes quick-reference operational guidelines to inform re-entry to the contaminated zone. Broad guidance on approaches to wide-area cleanup and cleanup goals is also provided. EPA adapted the cleanup process from the 2008 U.S. Department of Homeland Security (DHS) Planning Guidance for Protection and Recovery Following Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) Incidents, and the final PAG Manual will supersede that DHS guidance. Waste management guidance is also provided. Recognizing that an incident could result in radioactive waste volumes that severely strain or exceed available resources and capacity, officials may consider alternatives for disposal of waste that is relatively lightly contaminated. Waste management, including treatment, staging, and interim and long-term storage, must be an integral part of recovery.
Toxicology profiles of chemical and radiological contaminants at Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, B.L.; Strenge, D.L.; Stenner, R.D.
1995-07-01
This document summarizes toxicology information required under Section 3.3 (Toxicity Assessment) of HSRAM, and can also be used to develop the short toxicology profiles required in site assessments (described in HSRAM, Section 3.3.5). Toxicology information is used in the dose-response step of the risk assessment process. The dose-response assessment describes the quantitative relationship between the amount of exposure to a substance and the extent of toxic injury or disease. Data are derived from animal studies or, less frequently, from studies in exposed human populations. The risks of a substance cannot be ascertained with any degree of confidence unless dose-response relationsmore » are quantified. This document summarizes dose-response information available from the US Environmental Protection Agency (EPA). The contaminants selected for inclusion in this document represent most of the contaminants found at Hanford (both radiological and chemical), based on sampling and analysis performed during site investigations, and historical information on waste disposal practices at the Hanford Site.« less
NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.
2013-07-01
As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staffmore » concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)« less
NASA Astrophysics Data System (ADS)
Tanaka, Ken-ichi; Ueno, Jun
2017-09-01
Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.
Radioactive waste management complex low-level waste radiological composite analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.
1998-05-01
The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consistsmore » of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.« less
Sorbent materials for rapid remediation of wash water during radiological event relief
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolin, William C.; Kaminski, Michael
2016-11-01
Procedures for removing harmful radiation from interior and exterior surfaces of homes and businesses after a nuclear or radiological disaster may generate large volumes of radiologically contaminated waste water. Rather than releasing this waste water to potentially contaminate surrounding areas, it is preferable to treat it onsite. Retention barrels are a viable option because of their simplicity in preparation and availability of possible sorbent materials. This study investigated the use of aluminosilicate clay minerals as sorbent materials to retain 137Cs, 85Sr, and 152Eu. Vermiculite strongly retained 137Cs, though other radionuclides displayed diminished affinity for the surface. Montmorillonite exhibited increased affinitymore » to sorb 85Sr and 152Eu in the presence of higher concentrations of 137Cs. To simulate flow within retention barrels, vermiculite was mixed with sand and used in small-scale column experiments. The GoldSim contaminate fate module was used to model breakthrough and assess the feasibility of using clay minerals as sorbent materials in retention barrels. The modeled radionuclide breakthrough profiles suggest that vermiculite-sand and montmorillonite-sand filled barrels could be used for treatment of contaminated water generated from field operations.« less
Hanf, R William; Kelly, Lynn M
2005-03-01
Drinking water is supplied to most U.S. Department of Energy (DOE) facilities on the Hanford Site by DOE-owned, contractor-operated pumping and distribution systems. Water is primarily obtained from the Columbia River, but some facilities use water from on-site groundwater wells. Because of the large amount of radioactive and chemical waste produced, stored, and disposed of at Hanford, some people are concerned that waste materials are contaminating on-site drinking-water supplies. This paper describes the drinking-water facilities and treatment requirements on the Hanford Site and summarizes radiological and non-radiological water quality data obtained from water samples collected from each drinking-water system in use during 2001 and 2002. Monitoring data show that Hanford-produced radionuclides are measurable in some drinking-water samples. The only non-radiological contaminants detected either were by-products of the chlorination process or came from off-site agricultural activities. Contaminant level values were, in all cases, below state and federal drinking-water limits. This information will provide assurance to current employees and future site developers that drinking water on the Hanford Site is safe for public consumption.
Harrison, John D.; Leggett, Richard Wayne
2016-01-01
This letter to the editor of Journal of Radiological Protection is in response to a letter to the editor from G. M. Smith and M. C. Thorne of Great Britain concerning the appropriate selection of dose coefficients for ingested carbon-14 and chlorine-36, two of the most important long-lived components of radioactive wastes. Smith and Thorne argue that current biokinetic models of the International Commission on Radiological Protection (ICRP) for carbon and chlorine are overly cautious models from the standpoint of radiation dose estimates for C-14 and Cl-36, and that more realistic models are needed for evaluation of the hazards ofmore » these radionuclides in nuclear wastes. We (Harrison and Leggett) point out that new biokinetic models for these and other elements (developed at ORNL) will soon appear in ICRP Publications. These new models generally are considerably more realistic than current ICRP models. Here, examples are given for C-14 inhaled as carbon dioxide or ingested in water as bicarbonate, carbonate, or carbon dioxide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CASmore » 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd{sup 3} of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd{sup 3} of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd{sup 3} of universal waste in the form of fluorescent light bulbs; and approximately 0.5 yd{sup 3} of low-level waste in the form of a radiologically impacted fire hose rack were generated, managed, and disposed of appropriately. Waste minimization techniques, such as the utilization of laboratory analysis and field screening to guide the extent of excavations, were employed during the performance of closure work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himmerkus, Felix; Rittmeyer, Cornelia
2012-07-01
The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management.
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bench, T.R.
1997-05-01
This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less
40 CFR 401.11 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials... the chemical, physical, biological and radiological integrity of water. (h) The term discharge of... restriction established by the Administrator on quantities, rates, and concentrations of chemical, physical...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
2013-01-31
The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLBmore » disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health and the environment. The waste stream is recommended for disposal without conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, E.E.; Welty, B.D.
Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite claymore » have been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE /NV
1999-03-26
The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: (1) Perform video surveys of the discharge and outfall lines. (2) Collect samples of material in the septic tanks. (3) Conduct exploratory trenching to locate and inspect subsurface components. (4) Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. (5) Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. (6) Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. (7) Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. (8) Drill boreholes and collect subsurface soil samples if required. (9) Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. (10) Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. (11) Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less
Nedveckaite, T; Gudelis, A; Vives i Batlle, J
2013-05-01
This work describes the radiological assessment of the near-surface Maisiagala radioactive waste repository (Lithuania) over the period 2005-2012, with focus on water pathways and special emphasis on tritium. The study includes an assessment of the effect of post-closure upgrading, the durability of which is greater than 30 years. Both human and terrestrial non-human biota are considered, with local low-intensity forestry and small farms being the area of concern. The radiological exposure was evaluated using the RESRAD-OFFSITE, RESRAD-BIOTA and ERICA codes in combination with long-term data from a dedicated environmental monitoring programme. All measurements were performed at the Lithuanian Institute of Physics as part of this project. It is determined that, after repository upgrading, radiological exposure to humans are significantly lower than the human dose constraint of 0.2 mSv/year valid in the Republic of Lithuania. Likewise, for non-human biota, dose rates are below the ERICA/PROTECT screening levels. The potential annual effective inhalation dose that could be incurred by the highest-exposed human individual (which is due to tritiated water vapour airborne release over the most exposed area) does not exceed 0.1 μSv. Tritium-labelled drinking water appears to be the main pathway for human impact, representing about 83 % of the exposure. Annual committed effective dose (CED) values for members of the public consuming birch sap as medical practice are calculated to be several orders of magnitude below the CEDs for the same location associated with drinking of well water. The data presented here indicate that upper soil-layer samples may not provide a good indication of potential exposure to terrestrial deep-rooted trees, as demonstrated by an investigation of stratified (3)H in soil moisture, expressed on a wet soil mass basis, in an area with subsurface contamination.
Mitigated Transfer Line Leaks that Result in Surface Pools and Spray Leaks into Pits
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEY, B.E.
This analysis provides radiological and toxicological consequence calculations for postulated mitigated leaks during transfers of six waste compositions. Leaks in Cleanout Boxes equipped with supplemental covers and leaks in pits are analyzed.
On-site characterisation, re-packaging and transport of luminised, former aircraft escape hatches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Nigel; John, Gordon; Beadle, Ian
2007-07-01
AMEC NNC, under contract to the UK Environment Agency, recovered a number of redundant aircraft hatches from an insecure location in North Wales. The Environment Agency instigated emergency action under the Radioactive Substances Act 1993 (RSA93), to recover the hatches. Section 30(1) of RSA93 gives the Environment Agency powers to dispose of radioactive waste where it is unlikely the waste will be lawfully disposed of. Funding for this project was provided by the UK Government, within the Surplus Source Disposal Programme. The Environment Agency worked closely with partner regulatory organisations including the Health and Safety Executive (HSE), the Department formore » Transport (DfT) and the Local Authority to ensure the safe packaging, removal and transport of the material to a part-shielded store pending final disposal. The project comprised a number of technical difficulties that needed to be overcome. These included poor existing characterisation of the waste, insecure premises requiring daily lock-down, construction of a temporary containment facility with associated filtered extract and the inclement weather. AMEC NNC's initial risk assessment identified the likelihood of high levels of loose, airborne radiological material. In order to provide adequate protection for personnel, and to prevent the spread of any radioactive contamination, the decision was made to implement radiological containment and to equip contractors with appropriate RPE (Respiratory Protective Equipment). Accurate characterisation of the radiological nature of the material was a crucial objective within the project. This was in order to correctly identify the Proper Shipping Name for consignment for transport, and to ensure that suitable transport containers were used. The packaged wastes were then transported to a secure location for temporary storage prior to final disposal. An innovative route was identified for processing of this material. Beneficial recycling and re-use within the nuclear industry was the outcome. (authors)« less
Improving Site-Specific Radiological Performance Assessments - 13431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tauxe, John; Black, Paul; Catlett, Kate
2013-07-01
An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, butmore » at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus a Bayesian approach to probabilistic modeling and risk analysis, to guide improvements in PA. This decision-making approach, [4, 5, 6] provides a transparent formal framework for using a value- or objective-focused approach to decision-making. DA, as an analytical means to implement structured decision making, provides a context for both understanding how uncertainty affects decisions and for targeting uncertainty reduction. The proposed DA approach improves defensibility and transparency of decision-making. The DA approach is fully consistent with the need to perform realistic modeling (rather than conservative modeling), including evaluation of site-specific factors. Instead of using generic stylized scenarios for radionuclide fate and transport and for human exposures to radionuclides, site-specific scenarios better represent the advantages and disadvantages of alternative disposal sites or engineered designs, thus clarifying their differences as well as providing a sound basis for evaluation of site performance. The full DA approach to PA is described, from explicitly incorporating societal values through stakeholder involvement to model building. Model building involves scoping by considering features, events, processes, and exposure scenarios (FEPSs), development of a conceptual site model (CSM), translation into numerical models and subsequent computation, and model evaluation. These are implemented in a cycle of uncertainty analysis, sensitivity analysis and value of information analysis so that uncertainty can be reduced until sufficient confidence is gained in the decisions to be made. This includes the traditional focus on hydrogeological processes, but also places emphasis on other FEPSs such as biotically-induced transport and human exposure phenomena. The significance of human exposure scenarios is emphasized by modifying the traditional acronym 'FEPs' to include them, hence 'FEPSs'. The radioactive waste community is also recognizing that disposal sites are to be considered a national (or even global) resource. As such, there is a pressing need to optimize their utility within the constraints of protecting human health and the environment. Failing to do so will result in the need for additional sites or options for storing radioactive waste temporarily, assuming a continued need for radioactive waste disposal. Optimization should be performed using DA, including economic analysis, invoked if necessary through the ALARA process. The economic analysis must recognize the cost of implementation (disposal design, closure, maintenance, etc.), and intra- and inter-generational equity in order to ensure that the best possible radioactive waste management decisions are made for the protection of both current and future generations. In most cases this requires consideration of population or collective risk. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeremy Gwin and Douglas Frenette
This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 – Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values andmore » corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or “clean,” building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, “Final Status Survey Plan for Corrective Action Unit 117 – Pluto Disassembly Facility, Building 2201”) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one of three categories: Class 1, Class 2 or Class 3 (a fourth category is a “Non-Impacted Class” which in the case of Building 2201 only pertained to exterior surfaces of the building.) The majority of the rooms were determined to fall in the less restrictive Class 3 category, however, Rooms 102, 104, 106, and 107 were identified as containing Class 1 and 2 areas. Building 2201 was divided into “survey units” and surveyed following the requirements of the Final Status Survey Plan for each particular class. As each survey unit was completed and documented, the survey results were evaluated. Each sample (static measurement) with units of counts per minute (cpm) was corrected for the appropriate background and converted to a value with units of dpm/100 cm2. With a surface contamination value in the appropriate units, it was compared to the surface contamination limits, or in this case the derived concentration guideline level (DCGLw). The appropriate statistical test (sign test) was then performed. If the survey unit was statistically determined to be below the DCGLw, then the survey unit passed and the null hypothesis (that the survey unit is above limits) was rejected. If the survey unit was equal to or below the critical value in the sign test, the null hypothesis was not rejected. This process was performed for all survey units within Building 2201. A total of thirty-three “Class 1,” four “Class 2,” and one “Class 3” survey units were developed, surveyed, and evaluated. All survey units successfully passed the statistical test. Building 2201 meets the release criteria commensurate with the Waste Acceptance Criteria (for radiological purposes) of the U10C landfill permit residing within NNSS boundaries. Based on the thorough statistical sampling and scanning of the building’s interior, Building 2201 may be considered radiologically “clean,” or free of contamination.« less
Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
L.Soholt; G.Gonzales; P.Fresquez
2003-03-01
Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses tomore » higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.« less
Preliminary hazards analysis -- vitrification process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coordes, D.; Ruggieri, M.; Russell, J.
1994-06-01
This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s constructionmore » and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.« less
Advance assessment for movement of Haz Cat 3 radioactive materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vosburg, Susan K.
2010-04-01
The current packaging of most HC-3 radioactive materials at SNL/NM do not meet DOT requirements for offsite shipment. SNL/NM is transporting HC-3 quantities of radioactive materials from their storage locations in the Manzano Nuclear Facilities bunkers to facilities in TA-5 to be repackaged for offsite shipment. All transportation of HC-3 rad material by SNL/NM is onsite (performed within the confines of KAFB). Transport is performed only by the Regulated Waste/Nuclear Material Disposition Department. Part of the HC3T process is to provide the CAT with the following information at least three days prior to the move: (1) RFt-Request for transfer; (2)more » HC3T movement report; (3) Radiological survey; and (4) Transportation Route Map.« less
Radiological impact assessment to the environment due to waste from disposal of porcelain.
Morsi, Tarek; Hegazy, Rehab; Badawy, Wael
2017-06-01
The present study aimed to assess the radiological parameters from gamma rays due to the uncontrolled disposal of porcelain waste to the environment. Qualitative and quantitative identification of radionuclides in the investigated samples was carried out by means of a high-purity germanium (HPGe) detector. The average activity concentrations of the local porcelain samples were measured as 208.28 Bq/kg for 226 Ra, 125.73 Bq/kg for 238 U, 84.94 Bq/kg for 232 Th and 1033.61 Bq/kg for 40 K, respectively. The imported samples had an average activity of 240.57 Bq/kg for 226 Ra, 135.56 Bq/kg for 238 U, 115.74 Bq/kg for 232 Th and 1312.49 Bq/kg for 40 K, respectively. Radiological parameters and the radium equivalent Ra eq for the investigated samples were calculated. The external and internal hazard indices, representative level index (I γ ), alpha index (I α ), and the exemption level (I x ), were estimated to be higher than the recommended value (unity), while the average activity concentrations for the studied samples were higher than recommended levels. In conclusion, we are concerned that disposal of porcelain in the environment might be a significant hazard.
Ground Penetrating Radar as a Contextual Sensor for Multi-Sensor Radiological Characterisation
Ukaegbu, Ikechukwu K.; Gamage, Kelum A. A.
2017-01-01
Radioactive sources exist in environments or contexts that influence how they are detected and localised. For instance, the context of a moving source is different from a stationary source because of the effects of motion. The need to incorporate this contextual information in the radiation detection and localisation process has necessitated the integration of radiological and contextual sensors. The benefits of the successful integration of both types of sensors is well known and widely reported in fields such as medical imaging. However, the integration of both types of sensors has also led to innovative solutions to challenges in characterising radioactive sources in non-medical applications. This paper presents a review of such recent applications. It also identifies that these applications mostly use visual sensors as contextual sensors for characterising radiation sources. However, visual sensors cannot retrieve contextual information about radioactive wastes located in opaque environments encountered at nuclear sites, e.g., underground contamination. Consequently, this paper also examines ground-penetrating radar (GPR) as a contextual sensor for characterising this category of wastes and proposes several ways of integrating data from GPR and radiological sensors. Finally, it demonstrates combined GPR and radiation imaging for three-dimensional localisation of contamination in underground pipes using radiation transport and GPR simulations. PMID:28387706
Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Price, Laura L.
This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less
NASA Astrophysics Data System (ADS)
Iliopoulos, Sokratis N.; Areias, Lou; Pyl, Lincy; Vantomme, John; Van Marcke, Philippe; Coppens, Erik; Aggelis, Dimitrios G.
2015-03-01
Protecting the environment and future generations against the potential hazards arising from high-level and heat emitting radioactive waste is a worldwide concern. Following this direction, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the reference design which considers the geological disposal of the waste in purely indurated clay. In this design the wastes are first post-conditioned in massive concrete structures called Supercontainers before being transported to the underground repositories. The Supercontainers are cylindrical structures which consist of four engineering barriers that from the inner to the outer surface are namely: the overpack, the filler, the concrete buffer and possibly the envelope. The overpack, which is made of carbon steel, is the place where the vitrified wastes and spent fuel are stored. The buffer, which is made of concrete, creates a highly alkaline environment ensuring slow and uniform overpack corrosion as well as radiological shielding. In order to evaluate the feasibility to construct such Supercontainers two scaled models have so far been designed and tested. The first scaled model indicated crack formation on the surface of the concrete buffer but the absence of a crack detection and monitoring system precluded defining the exact time of crack initiation, as well as the origin, the penetration depth, the crack path and the propagation history. For this reason, the second scaled model test was performed to obtain further insight by answering to the aforementioned questions using the Digital Image Correlation, Acoustic Emission and Ultrasonic Pulse Velocity nondestructive testing techniques.
Preliminary post-emplacement safety analysis of the subseabed disposal of high-level nuclear waste
NASA Astrophysics Data System (ADS)
Kaplan, M. F.; Koplik, C. M.; Klett, R. D.
1984-09-01
The radiological hazard from the disposal of high-level nuclear waste within the deep ocean sediments is evaluated, on a preliminary basis, for locations in the central North Pacific and in the northwestern Atlantic. Radio-nuclide transport in the sediment and water column and by marine organisms is considered. Peak doses to an individual are approximately five orders of magnitude below background levels for both sites. Sensitivity analyses for most aspects of the post-emplacement systems models are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shih-Yew; Napier, Bruce A.
The Program Area Committee 5 (PAC 5) of the National Council on Radiation protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. The committee completed a number of reports in the subject areas, and specifically the most recent NCRP Report 175 (Decision Making for Late-Phase Recovery from Major Nuclear or Radiological Incidents). Historically PAC 5 addressed the emerging issues of the nation that pertain to radioactivity or radiation in the environment, or the radioactive waste issues due either to the natural origins or to the manmade activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rick Demmer; John Drake; Ryan James, PhD
Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel,more » spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.« less
Department of Energy Operational Readiness Review for the Waste Isolation Pilot Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The U.S. Department of Energy (DOE) has completed an Operational Readiness Review (ORR) for the restart of Contact Handled (CH) waste emplacement at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The ORR team assessed the readiness of Nuclear Waste Partnership, LLC (NWP) to manage and perform receipt through CH waste emplacement, and associated waste handling and management activities, including the ability of the National TRU Program (NTP) to evaluate the waste currently stored at the WIPP site against the revised and enhanced Waste Acceptance Criteria (WAC). Field work for this review began on November 14, 2015more » and was completed on November 30, 2016. The DOE ORR was conducted in accordance with the Department of Energy Operational Readiness Review Implementation Plan for the Waste Isolation Pilot Plant, dated November 8, 2016, and DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. The review activities included personnel interviews, record reviews, direct observation of operations and maintenance demonstrations, and observation of multiple operational and emergency drills/exercises. The DOE ORR also evaluated the adequacy of the contractor’s ORR (CORR) and the readiness of the DOE Carlsbad field Office (CBFO) to oversee the startup and execution of CH waste emplacement activities at the WIPP facility. The WIPP facility is categorized as a Hazard Category 2 DOE Nonreactor Nuclear Facility for all surface and Underground (UG) operations per DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. In addition, the WIPP experienced two events in February, 2014 that resulted in Accident Investigations being performed in accordance with the requirements of DOE Order 225.1B, Accident Investigations. Based upon the results of the accident investigations and hazard categorization of the facility, the team placed significant emphasis on the following areas: fire protection, emergency preparedness, radiological protection, nuclear safety, and operations. The identification of specific focus areas was not intended to diminish the importance of other areas of the review, but to ensure that these areas received a particularly thorough and in-depth evaluation due to their significance with respect to the safe operation of the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Althouse, P E; Bertoldo, N A; Brown, R A
2005-09-28
The Lawrence Livermore National Laboratory (LLNL) annual Environmental Report, prepared for the Department of Energy (DOE) and made available to the public, presents summary environmental data that characterizes site environmental management performance, summarizes environmental occurrences and responses reported during the calendar year, confirms compliance with environmental standards and requirements, and highlights significant programs and efforts. By explaining the results of effluent and environmental monitoring, mentioning environmental performance indicators and performance measure programs, and assessing the impact of Laboratory operations on the environment and the public, the report also demonstrates LLNL's continuing commitment to minimize any potentially adverse impact of itsmore » operations. The combination of environmental and effluent monitoring, source characterization, and dose assessment showed that radiological doses to the public caused by LLNL operations in 2004 were less than 0.26% of regulatory standards and more than 11,000 times smaller than dose from natural background. Analytical results and evaluations generally showed continuing low levels of most contaminants; remediation efforts further reduced the concentrations of contaminants of concern in groundwater and soil vapor. In addition, LLNL's extensive environmental compliance activities related to water, air, endangered species, waste, wastewater, and waste reduction controlled or reduced LLNL's effects on the environment. LLNL's environmental program clearly demonstrates a commitment to protecting the environment from operational impacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.
2011-08-31
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expectedmore » to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting structural and chemical changes to concrete waste forms which may affect contaminant containment and waste form performance. However, continued research is necessitated by the need to understand: the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties, and the associated impact on contaminant release. Recent reviews conducted by the National Academies of Science recognized the efficacy of cementitious materials for waste isolation, but further noted the significant shortcomings in our current understanding and testing protocol for evaluating the performance of various formulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Shott, Vefa Yucel, Lloyd Desotell
2008-05-01
This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limitedmore » quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a reasonable expectation that the TRU in T04C can meet all the requirements of 40 CFR 191. Therefore, inadvertent disposal of a limited quantity of TRU in a shallow land burial trench at the Area 5 RWMS does not pose a significant risk to the public and the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Christopher; Kothari, Vijendra; Starr, Ken
2012-07-01
The U.S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequatelymore » described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS and M) program: - Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. - DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. - DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators. After review of historical site documentation, DOE reports, and USACE radiological data, DOE concluded the following: - DOE had access to adequate documentation to evaluate site conditions at the former LOOW. This is important to confirm now, while institutional knowledge of early FUSRAP work remains available. - DOE remediated the completed VPs to conditions that are protective for unrestricted residential use. Sample and walkover gamma scan results indicate that no wastes remain that exceed cleanup criteria. - Process knowledge and field observations establish that Cs-137 is the predominant radionuclide in the KAPL waste stream. Cs-137, a strong gamma emitter, was used as an indicator for remediation of KAPL waste. Other radionuclides were present in much lower relative concentrations and were likely also removed during remediation of the VPs. - KAPL contaminants were removed during remedial activities at the former LOOW as either co-located or co-mingled with other radionuclides. - For the active VPs (VP-E, VP-E', and VP-G), results of DOE's cleanup of the accessible portions of these properties indicate that KAPL waste does not remain at concentrations greater than the DOE cleanup limit: - Inaccessible areas were not associated with historic KAPL waste handling. Therefore, it is unlikely that KAPL waste remains on the active VPs. - Because gamma activity was used by DOE during remediation/verification activities for excavation control, additional USACE cleanup of FUSRAP wastes on these properties will likely result in the remediation of any co-located residual KAPL wastes to acceptable levels or identification of KAPL waste that is not co-located. - Although USACE has not established a cleanup level for Cs-137 on the active NFSS VPs, DOE assessment and remediation data indicate that assessed Cs-137 was remediated and significant Cs-137 is unlikely to remain. Because of the low likelihood of encountering significant KAPL waste on the active NFSS VPs, additional remediation is not anticipated at these properties. - USACE assessment soil sampling results on the NFSS proper indicate that KAPL waste does not exceed the DOE cleanup level for Cs-137. USACE has not established a cleanup level for Cs-137 on NFSS proper. The USACE cleanup of FUSRAP wastes on the NFSS proper will likely result in the remediation of any co-located residual KAPL wastes or identification of KAPL waste that is not co-located. DOE is drafting a report of the investigation of KAPL waste at LOOW. The report will be released to the public for comment when the draft is complete. DOE responses to stakeholder inquiries resulted in a common understanding of site conditions and site risk. DOE expects additional interaction with stakeholders at the former LOOW as USACE completes remediation of the active VPs and the NFSS proper, and these relationships will hopefully have built trust between DOE and the stakeholders that DOE will perform its duties in an open and transparent manner that includes stakeholders as stewards for remediated FUSRAP sites. (authors)« less
Understanding and Applying the Concept of Value Creation in Radiology.
Larson, David B; Durand, Daniel J; Siegal, Daniel S
2017-04-01
The concept of value in radiology has been strongly advocated in recent years as a means of advancing patient care and decreasing waste. This article explores the concept of value creation in radiology and offers a framework for how radiology practices can create value according to the needs of their referring clinicians. Value only exists in the eyes of a customer. We propose that the primary purpose of diagnostic radiology is to answer clinical questions using medical imaging to help guide management of patient care. Because they are the direct recipient of this service, we propose that referring clinicians are the direct customers of a radiology practice and patients are indirect customers. Radiology practices create value as they understand and fulfill their referring clinicians' needs. To narrow those needs to actionable categories, we propose a framework consisting of four major dimensions: (1) how quickly the clinical question needs to be answered, (2) the degree of specialization required to answer the question, (3) how often the referring clinician uses imaging, and (4) the breadth of imaging that the referring clinician uses. We further identify three major settings in which referring clinicians utilize radiological services: (1) emergent or urgent care, (2) primary care, and (3) specialty care. Practices best meet these needs as they engage with their referring clinicians, create a shared vision, work together as a cohesive team, structure the organization to meet referring clinicians' needs, build the tools, and continually improve in ways that help referring clinicians care for patients. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
HIGH TEMPERATURE SORPTION OF CESIUM AND STRONTIUM ON DISPERSED KAOLINITE POWDERS
Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high-temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, nonradioactive aq...
Underwater characterization of control rods for waste disposal using SMOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallozzi-Ulmann, A.; Couturier, P.; Amgarou, K.
Storage of spent fuel assemblies in cooling ponds requires careful control of the geometry and proximity of adjacent assemblies. Measurement of the fuel burnup makes it possible to optimise the storage arrangement of assemblies taking into account the effect of the burnup on the criticality safety margins ('burnup credit'). Canberra has developed a measurement system for underwater measurement of spent fuel assemblies. This system, known as 'SMOPY', performs burnup measurements based on gamma spectroscopy (collimated CZT detector) and neutron counting (fission chamber). The SMOPY system offers a robust and waterproof detection system as well as the needed capability of performingmore » radiometric measurements in the harsh high dose - rate environments of the cooling ponds. The gamma spectroscopy functionality allows powerful characterization measurements to be performed, in addition to burnup measurement. Canberra has recently performed waste characterisation measurements at a Nuclear Power Plant. Waste activity assessment is important to control costs and risks of shipment and storage, to ensure that the activity level remains in the range allowed by the facility, and to declare activity data to authorities. This paper describes the methodology used for the SMOPY measurements and some preliminary results of a radiological characterisation of AIC control rods. After describing the features and normal operation of the SMOPY system, we describe the approach used for establishing an optimum control rod geometric scanning approach (optimum count time and speed) and the method of the gamma spectrometry measurements as well as neutron check measurements used to verify the absence of neutron sources in the waste. We discuss the results obtained including {sup 60}Co, {sup 110m}Ag and {sup 108m}Ag activity profiles (along the length of the control rods) and neutron results including Total Measurement Uncertainty evaluations. Full self-consistency checks were performed and these demonstrate the validity of the techniques. The results are described and analysed in the context of the measurement performance of the equipment. Different casks were fully characterized using a 60 mm{sup 3} CZT detector, to determine the total activities and spatial profiles. A total activity range measurement of 1x10{sup 8} - 1x10{sup 13} Bq/cm was found to be achievable. Finally, comments are made, based on our measurements, on the ability of this equipment for performing in-situ characterisation of wastes in the harsh environments typical of fuel assembly and waste storage ponds and silos. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboul, S. H.; King, W. D.; Coleman, C. J.
2017-05-09
Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulkmore » waste removal campaign).« less
10 CFR 960.5-2-4 - Offsite installations and operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-4... operations, including atomic energy defense activities, (1) will not significantly affect repository siting...), when considered together with emissions from repository operation and closure, will not be likely to...
ERIC Educational Resources Information Center
Michigan State Dept. of Commerce, Lansing. Community Planning Div.
The Highland Park environmental health plan includes the following components: Legal and administrative and programmatic relationships, planning studies, residential environment, disease vector control, water and sewage systems, sanitation, air pollution, food protection, industrial and radiological health, and solid waste facilities. (JR)
Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, Daniel I.
The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less
324 Building Baseline Radiological Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.J. Reeder, J.C. Cooper
This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.
Integrated Fellowship in Vascular Surgery and Intervention Radiology
Messina, Louis M.; Schneider, Darren B.; Chuter, Timothy A. M.; Reilly, Linda M.; Kerlan, Robert K.; LaBerge, Jeane M.; Wilson, Mark W.; Ring, Ernest J.; Gordon, Roy L.
2002-01-01
Objective To evaluate an integrated fellowship in vascular surgery and interventional radiology initiated to train vascular surgeons in endovascular techniques and to train radiology fellows in clinical aspects of vascular diseases. Summary Background Data The rapid evolution of endovascular techniques for the treatment of vascular diseases requires that vascular surgeons develop proficiency in these techniques and that interventional radiologists develop proficiency in the clinical evaluation and management of patients who are best treated with endovascular techniques. In response to this need the authors initiated an integrated fellowship in vascular surgery and interventional radiology and now report their interim results. Methods Since 1999 vascular fellows and radiology fellows performed an identical year-long fellowship in interventional radiology. During the fellowship, vascular surgery and radiology fellows perform both vascular and nonvascular interventional procedures. Both vascular surgery and radiology-based fellows spend one quarter of the year on the vascular service performing endovascular aortic aneurysm repairs and acquiring clinical experience in the vascular surgery inpatient and outpatient services. Vascular surgery fellows then complete an additional year-long fellowship in vascular surgery. To evaluate the type and number of interventional radiology procedures, the authors analyzed records of cases performed by all interventional radiology and vascular surgery fellows from a prospectively maintained database. The attitudes of vascular surgery and interventional radiology faculty and fellows toward the integrated fellowship were surveyed using a formal questionnaire. Results During the fellowship each fellow performed an average of 1,201 procedures, including 808 vascular procedures (236 diagnostic angiograms, 70 arterial interventions, 59 diagnostic venograms, 475 venous interventions, and 43 hemodialysis graft interventions) and 393 nonvascular procedures. On average fellows performed 20 endovascular aortic aneurysm repairs per year. There was no significant difference between the vascular surgery and radiology fellows in either the spectrum or number of cases performed. Eighty-eight percent (23/26) of the questionnaires were completed and returned. Both interventional radiologists and vascular surgeons strongly supported the integrated fellowship model and favored continuation of the integrated program. Vascular surgery and interventional radiology faculty members wanted additional training in clinical vascular surgery for the radiology-based fellows. With the exception of the radiology fellows there was uniform agreement that vascular surgery fellows benefit from training in nonvascular aspects of interventional radiology. Conclusions Integration of vascular surgery and interventional radiology fellowships is feasible and is mutually beneficial to both disciplines. Furthermore, the integrated fellowship provides exceptional training for vascular surgery and interventional radiology fellows in all catheter-based techniques that far exceeds the minimum requirements for credentialing suggested by various professional societies. There is a clear need for cooperation and active involvement on the parts of the American Board of Radiology and the American Board of Surgery and its Vascular Board to create hybrid training programs that meet mutually agreed-on criteria that document sufficient acquisition of both the cognitive and technical skills required to manage patients undergoing endovascular procedures safely and effectively. PMID:12368668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, L. A.; Peterson, J. M.; Frothingham, D. G.
2008-01-01
The US Army Corps of Engineers (USACE) is addressing radiological contamination following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements at the Shallow Land Disposal Area (SLDA) site, which is a radiologically contaminated property that is part of the Formerly utilized Sites Remedial Action Program (FUSRAP). The SLDA is an 18-hectare (44-acre) site in Parks township, Armstrong County, Pennsylvania, about 37 kilometers (23 miles) east-northeast of Pittsburgh. According to historical record, radioactive wastes were disposed of at the SLDA in a series of trenches by the Nuclear Materials and Equipment Company (NUMEC) in the 1960s. The wastes originated frommore » the nearby Apollo nuclear fuel fabrication facility, which began operations under NUMEC in the late 1950s and fabricated enriched uranium into naval reactor fuel elements. It is believed that the waste materials were buried in a series of pits constructed adjacent to one another in accordance with an Atomic Energy Commission (AEC) regulation that has since been rescinded. A CERCLA remedial investigation/feasibility study (RI/FS) process was completed for the SLDA site, and the results of the human health risk assessment indicated that the radiologically contaminated wastes could pose a risk to human health in the future. There are no historical records that provide the exact location of these pits. However, based on geophysical survey results conducted in the 1980s, these pits were defined by geophysical anomalies and were depicted on historical site drawings as trenches. At the SLDA site, a combination of investigative methods and tools was used in the RI/FS and site characterization activities. The SLDA site provides an excellent example of how historical documents and data, historical aerial photo analysis, physical sampling, and nonintrusive geophysical and gamma walkover surveys were used in combination to reduce the uncertainty in the location of the trenches. The data and information from these sources were used to refine the conceptual site model, complete the RI/FS, and support the ongoing remedial design and action, which will achieve site closure acceptable to all stakeholders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, L.A.; Peterson, J.M.; Frothingham, D.G.
2008-07-01
The U.S. Army Corps of Engineers (USACE) is addressing radiological contamination following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements at the Shallow Land Disposal Area (SLDA) site, which is a radiologically contaminated property that is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The SLDA is an 18-hectare (44- acre) site in Parks Township, Armstrong County, Pennsylvania, about 37 kilometers (23 miles) east-northeast of Pittsburgh. According to historical record, radioactive wastes were disposed of at the SLDA in a series of trenches by the Nuclear Materials and Equipment Company (NUMEC) in the 1960's. The wastes originatedmore » from the nearby Apollo nuclear fuel fabrication facility, which began operations under NUMEC in the late 1950's and fabricated enriched uranium into naval reactor fuel elements. It is believed that the waste materials were buried in a series of pits constructed adjacent to one another in accordance with an Atomic Energy Commission (AEC) regulation that has since been rescinded. A CERCLA remedial investigation/feasibility study (RI/FS) process was completed for the SLDA site, and the results of the human health risk assessment indicated that the radiologically contaminated wastes could pose a risk to human health in the future. There are no historical records that provide the exact location of these pits. However, based on geophysical survey results conducted in the 1980's, these pits were defined by geophysical anomalies and were depicted on historical site drawings as trenches. At the SLDA site, a combination of investigative methods and tools was used in the RI/FS and site characterization activities. The SLDA site provides an excellent example of how historical documents and data, historical aerial photo analysis, physical sampling, and non-intrusive geophysical and gamma walkover surveys were used in combination to reduce the uncertainty in the location of the trenches. The data and information from these sources were used to refine the conceptual site model, complete the RI/FS, and support the ongoing remedial design and action, which will achieve site closure acceptable to all stakeholders. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, E.E.
Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet-rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite clay havemore » been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct-buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. A larger test was completed this year to simulate the work in more realistic conditions. (authors)« less
Goudeau, V; Daniel, B; Dubot, D
2017-04-21
During the operation and the decommissioning of a nuclear site the operator must assure the protection of the workers and the environment. It must furthermore identify and classify the various wastes, while optimizing the associated costs. At all stages of the decommissioning radiological measurements are performed to determine the initial situation, to monitor the demolition and clean-up, and to verify the final situation. Radiochemical analysis is crucial for the radiological evaluation process to optimize the clean-up operations and to the respect limits defined with the authorities. Even though these types of analysis are omnipresent in activities such as the exploitation, the monitoring, and the cleaning up of nuclear plants, some nuclear sites do not have their own radiochemical analysis laboratory. Mobile facilities can overcome this lack when nuclear facilities are dismantled, when contaminated sites are cleaned-up, or in a post-accident situation. The current operations for the characterization of radiological soils of CEA nuclear facilities, lead to a large increase of radiochemical analysis. To manage this high throughput of samples in a timely manner, the CEA has developed a new mobile laboratory for the clean-up of its soils, called SMaRT (Shelter for Monitoring and nucleAR chemisTry). This laboratory is dedicated to the preparation and the radiochemical analysis (alpha, beta, and gamma) of potentially contaminated samples. In this framework, CEA and Eichrom laboratories has signed a partnership agreement to extend the analytical capacities and bring on site optimized and validated methods for different problematic. Gamma-emitting radionuclides can usually be measured in situ as little or no sample preparation is required. Alpha and beta-emitting radionuclides are a different matter. Analytical chemistry laboratory facilities are required. Mobile and transportable laboratories equipped with the necessary tools can provide all that is needed. The main advantage of a mobile laboratory is its portability; the shelter can be placed in the vicinity of nuclear facilities under decommissioning, or of contaminated sites with infrastructures unsuitable for the reception and treatment of radioactive samples. Radiological analysis can then be performed without the disadvantages of radioactive material transport. This paper describes how this solution allows a fast response and control of costs, with a high analytical capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Environmental analysis burial of offsite low-level waste at SRP
NASA Astrophysics Data System (ADS)
Poe, W. L.; Moyer, R. A.
1980-12-01
The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.
The visual and radiological inspection of a pipeline using a teleoperated pipe crawler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogle, R.F.; Kuelske, K.; Kellner, R.A.
1996-07-01
In the 1950s the Savannah River Site built an open, unlined retention basin for temporary storage of potentially radionuclide-contaminated cooling water form a chemical separations process and storm water drainage from a nearby waste management facility which stored large quantities of nuclear fission by-products in carbon steel tanks. An underground process pipeline lead to the basin. Once the closure of the basin in 1972, further assessment has been required. A visual and radiological inspection of the pipeline was necessary to aid in the decision about further remediation. This article describes the inspection using a teleoperated pipe crawler. 5 figs.
Nevada Test Site Environmental Report 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathy Wills
2008-09-01
The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollutionmore » prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.« less
The benefits of a fast reactor closed fuel cycle in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregg, R.; Hesketh, K.
2013-07-01
The work has shown that starting a fast reactor closed fuel cycle in the UK, requires virtually all of Britain's existing and future PWR spent fuel to be reprocessed, in order to obtain the plutonium needed. The existing UK Pu stockpile is sufficient to initially support only a modest SFR 'closed' fleet assuming spent fuel can be reprocessed shortly after discharge (i.e. after two years cooling). For a substantial fast reactor fleet, most Pu will have to originate from reprocessing future spent PWR fuel. Therefore, the maximum fast reactor fleet size will be limited by the preceding PWR fleet size,more » so scenarios involving fast reactors still require significant quantities of uranium ore indirectly. However, once a fast reactor fuel cycle has been established, the very substantial quantities of uranium tails in the UK would ensure there is sufficient material for several centuries. Both the short and long term impacts on a repository have been considered in this work. Over the short term, the decay heat emanating from the HLW and spent fuel will limit the density of waste within a repository. For scenarios involving fast reactors, the only significant heat bearing actinide content will be present in the final cores, resulting in a 50% overall reduction in decay energy deposited within the repository when compared with an equivalent open fuel cycle. Over the longer term, radiological dose becomes more important. Total radiotoxicity (normalised by electricity generated) is lower for scenarios with Pu recycle after 2000 years. Scenarios involving fast reactors have the lowest radiotoxicity since the quantities of certain actinides (Np, Pu and Am) eventually stabilise. However, total radiotoxicity as a measure of radiological risk does not account for differences in radionuclide mobility once in repository. Radiological dose is dominated by a small number of fission products so is therefore not affected significantly by reactor type or recycling strategy (since the fission product will primarily be a function of nuclear energy generated). However, by reprocessing spent fuel, it is possible to immobilise the fission product in a more suitable waste form that has far more superior in-repository performance. (authors)« less
High Level Waste System Impacts from Small Column Ion Exchange Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, D. J.; Hamm, L. L.; Aleman, S. E.
2005-08-18
The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastesmore » for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were combined into three batches for a total of about 3.2 million gallons of liquid waste. The chemical and radiological composition of these batches was estimated from the SpaceMan Plus{trademark} model using the same data set and assumptions as the baseline plans.« less
Columbus Closure Project Released without Radiological Restrictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, G.
2007-07-01
The Columbus Closure Project (CCP), a historic radiological research complex, was cleaned up for future use without radiological restriction in 2006. The CCP research and development site contributed to national defense, nuclear fuel fabrication, and the development of safe nuclear reactors in the United States until 1988 when research activities were concluded for site decommissioning. In November of 2003, the Ohio Field Office of the U.S. Department of Energy contracted ECC/E2 Closure Services, LLC (Closure Services) to complete the removal of radioactive contamination from of a 1955 era nuclear sciences area consisting of a large hot cell facility, research reactormore » building and underground piping. The project known as the Columbus Closure Project (CCP) was completed in 27 months and brought to a close 16 years of D and D in Columbus, Ohio. This paper examines the project innovations and challenges presented during the Columbus Closure Project. The examination of the CCP includes the project regulatory environment, the CS safety program, accelerated clean up innovation, project execution strategies and management of project waste issues and the regulatory approach to site release 'without radiological restrictions'. (authors)« less
Upgrading of Sergiev Posad department of Moscow NPO Radon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debieve, Pierre; Delecaut, Gregory; Vanleeuw, Daniel
Available in abstract form only. Full text of publication follows: BELGATOM and IRE Consortium has been awarded by the European Commission end of 2005 to conduct a project entitled 'Upgrading of Sergiev Posad Department of Moscow NPO Radon and the assessment of the radiological impact in the area nearby'. The main aims to achieve in the frame of this Europe-aid Project are: - Improvement of the performance and the safety level of the present radwaste management system, taking into account the additional waste expected from the Kurchatov Institute rehabilitation and from the forecast decommissioning of Research Reactors on the territorymore » of Moscow. - Basic design and assistance for the procurement of upgrading equipment related to: - radwaste sorting and pretreatment - replacement of the hydraulic system of the existing super-compactor - characterisation system for radwaste 'Support for preparing the PSAR and PEIAR for new licensing' Assessment of the radiological impact in an area of 50 km radius around Sergiev Posad Department. - The initial duration of this Project is 3 years, starting beginning of 2006. This paper describes the difficulties encountered to start and implement the Project and its status at the half of the planned time schedule. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Lee, Majelle
2005-09-01
This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil
2007-09-01
This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Samuels, Sandy
2004-09-30
This Annual Site Environmental Report (ASER) for 2003 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing Rocketdyne’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2003 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
Radionuclide Retention in Concrete Wasteforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.
2011-09-30
Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.« less
1998-01-01
(79) Waste, by definition, has no benefit. It should be viewed as one aspect of the beneficial practice that gave rise to it. Furthermore, radioactive waste management should be placed in the context of the management of society's waste in general. (80) A major issue in evaluating the acceptability of a disposal system for long-lived solid radioactive waste is that doses or risks may arise from exposures in the distant future. There is uncertainty surrounding any estimate of these doses or risks due to lack of knowledge about future conditions. Such exposures are treated as potential exposures as their magnitude depends on future processes and conditions that have probabilities associated with them. (81) Nevertheless, the Commission recognises a basic principle that individuals and populations in the future should be afforded at least the same level of protection from the action of disposing of radioactive waste today as is the current generation. This implies use of the current quantitative dose and risk criteria derived from considering associated health detriment. Therefore, protection of future generations should be achieved by applying these dose or risk criteria to the estimated future doses or risks in appropriately defined critical groups. These estimates should not be regarded as measures of health detriment beyond times of around several hundreds of years into the future. In the case of these longer time periods, they represent indicators of the protection afforded by the disposal system. (82 Constrained optimisation is the central approach to evaluating the radiological acceptability of a waste disposal system; dose or risk constraints are used rather than dose or risk limits. By this transition from limitation to optimisation, the needs of practical application of the radiological protection system to the disposal of long-lived solid waste disposal are met: determination of acceptability now for exposures that may occur in the distant future. Optimisation should be applied in an iterative manner during the disposal system development process and should particularly cover both site selection and repository design. (83) Two broad categories of exposure situations should be considered: natural processes and human intrusion. The latter only refers to intrusion that is inadvertent. The radiological implications of deliberate intrusion into a repository are the responsibility of the intruder. Assessed doses or risks arising from natural processes should be compared with a dose constraint of 0.3 mSv per year or its risk equivalent of around 10(-5) per year. With regard to human intrusion, the consequences from one or more plausible stylized scenarios should be considered in order to evaluate the resilience of the repository to such events. (84) The Commission considers that in circumstances where human intrusion could lead to doses to those living around the site sufficiently high that intervention on current criteria would almost always be justified, reasonable efforts should be made at the repository development stage to reduce the probability of human intrusion or to limit its consequences. In this respect, the Commission has previously advised that an existing annual dose of around 10 mSv per year may be used as a generic reference level below which intervention is not likely to be justifiable. Conversely, an existing annual dose of around 100 mSv per year may be used as a generic reference level above which intervention should be considered almost always justifiable. Similar considerations apply in situations where the thresholds for deterministic effects in relevant organs are exceeded. (85) Compliance with the constraints can be assessed by utilising either an aggregated risk-oriented approach, with a risk constraint, or a disaggregated dose/probability approach, with a dose constraint, or a combination of both. A similar level of protection can be achieved by any of these approaches; however, more information may
10 CFR 960.5-2-1 - Population density and distribution.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-1... repository operation and closure, (1) the expected average radiation dose to members of the public within any...) Disqualifying conditions. A site shall be disqualified if— (1) Any surface facility of a repository would be...
Hecht, Silke; Adams, W H; Cunningham, M A; Lane, I F; Howell, N E
2013-01-01
Effective teaching of veterinary radiology can be challenging in a traditional classroom environment. Audience response systems, colloquially known as "clickers," provide a means of encouraging student interaction. The purpose of this study was to compare student performance and course evaluations before and after using the Classroom Performance System™ in the third-year (fifth semester) didactic radiology course at the University of Tennessee College of Veterinary Medicine. Overall student performance was assessed by comparing median numeric final course grades (%) between years without and with use of the Classroom Performance System™. Grades of students were determined for individual instructors' sections. Student evaluations of the radiology course were compared for the years available (2007-2010). Student interactions were also evaluated subjectively by instructors who used the Classroom Performance System™. There was a significant difference (p = 0.009) between the median student grade before (2005 - 2008, median 82.2%; interquartile range 77.6-85.7%; range 61.9-95.5%) and after use of the classroom performance system (2009-2010, median 83.6%; interquartile range 79.9-87.9%; range 68.2-93.2%). There was no statistically significant difference in median student grades for individual instructors over the study period. The radiology course student evaluation scores were significantly higher in years where the Classroom Performance System™ was used in comparison to previous years (P = 0.019). Subjectively, students appeared more involved when using clickers. Findings indicated that the Classroom Performance System™ may be a useful tool for enhancing veterinary radiology education. © 2012 Veterinary Radiology & Ultrasound.
Hoffman, Daniel E
2003-02-01
The Gulf Nuclear Superfund Site located in Odessa, Texas, was an abandoned radioactive source production facility slated for cleanup as a Removal Action under the U.S. Environmental Protection Agency Region VI Superfund program. Prior to cessation of operations and abandonment of the facility in 1992, it was used for the production of radioactive sources used in the oil and gas industry and nuclear medicine applications. Pangea Group was contracted by the U.S. Army Corps of Engineers (USACE) Kansas City District to perform remediation of the site and other contaminated debris, cleaning of interior building surfaces, building demolition, and excavation/removal of contaminated soils and septic system. The project scope also included loading, containerization and transportation of low-level radioactive wastes for offsite disposal. Primary radionuclides present at the facility were 137Cs, 60Co, and 241Am. The project also included packaging and removal of radioactive sources and mixed waste consisting of radiologically contaminated lead shot and lead source containers. Included in the paper is a discussion of primary worker protection and environmental protection measures employed on the project. Worker protection issues included the control of industrial and construction safety hazards as well as control of external and internal radiation dose. Control of air emissions and contaminated wastewater were also very important, especially due to the location of the site. The site was located in an area containing both residential and commercial properties. Several residences and businesses were located immediately adjacent to the site. The project involved the participation of the USACE Kansas City District, EPA Region 6, and the Texas Bureau of Radiological Health. Field work on the project started in April 2001 and was completed approximately five months later.
Hoffman, Daniel E.
2003-02-01
The Gulf Nuclear Superfund Site located in Odessa, Texas, was an abandoned radioactive source production facility slated for cleanup as a Removal Action under the U.S. Environmental Protection Agency Region VI Superfund program. Prior to cessation of operations and abandonment of the facility in 1992, it was used for the production of radioactive sources used in the oil and gas industry and nuclear medicine applications. Pangea Group was contracted by the U.S. Army Corps of Engineers (USACE) Kansas City District to perform remediation of the site and other contaminated debris, cleaning of interior building surfaces, building demolition, and excavation/removal of contaminated soils and septic system. The project scope also included loading, containerization and transportation of low-level radioactive wastes for offsite disposal. Primary radionuclides present at the facility were Cs, Co, and Am. The project also included packaging and removal of radioactive sources and mixed waste consisting of radiologically contaminated lead shot and lead source containers. Included in the paper is a discussion of primary worker protection and environmental protection measures employed on the project. Worker protection issues included the control of industrial and construction safety hazards as well as control of external and internal radiation dose. Control of air emissions and contaminated wastewater were also very important, especially due to the location of the site. The site was located in an area containing both residential and commercial properties. Several residences and businesses were located immediately adjacent to the site. The project involved the participation of the USACE Kansas City District, EPA Region 6, and the Texas Bureau of Radiological Health. Field work on the project started in April 2001 and was completed approximately five months later.
Rodgers, J C; Kenney, J W
1997-02-01
The Department of Energy has constructed a deep geologic repository for defense transuranic waste disposal. The Waste Isolation Pilot Plant, located in Southeastern New Mexico, is slated to receive transuranic waste by truck delivery beginning in 1998. The Environmental Evaluation Group (EEG) provides an independent evaluation of the impact on the health and environment in New Mexico of the WIPP project. Since 1985, the EEG has operated a network of air monitoring sites around WIPP and in nearby communities. The radionuclide concentration data from these air samples have been assembled into a useful baseline data base after resolution of a number of methodological and quality assurance issues. Investigation thresholds for the principal radionuclides have been calculated from combined data collected from several sites. These action levels will provide a critical quantitative basis for decisions of whether future airborne radionuclide measurements are attributable to accidental releases.
Sample Based Unit Liter Dose Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
JENSEN, L.
The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new datamore » to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting {mu}Ci/g or {mu}Ci/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000).« less
Evaluation and implementation of a soil blending application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honerlah, H.; Sendra, D.; Zafran, A.
2007-07-01
With the Nuclear Regulatory Commission (NRC) issuing guidance on the 'Use of Intentional Mixing of Contaminated Soil' (SECY-04-0035) dated 1 March 2004, an opportunity to blend higher level radiologically contaminated soils with that of lower activity from the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) site became available. Shaw Environmental, under contract with United States Army Corps of Engineers (USACE) to remediate the Colonie site, was tasked to blend soils of higher radioactivity (> 6.29 Bq/g or 170 pCi/g) concentration with soils of lower radioactivity concentration (< 6.29 Bq/g or 170 pCi/g). A mass balance formula approach was usedmore » to determine the proper soil blending ratio. This blending process enabled soils to meet the Waste Acceptance Criteria (WAC) of a specific disposal facility. All blended waste streams were treated to stabilize lead, removing the hazardous waste code D008, and to meet appropriate Resource Conservation Recovery Act (RCRA) requirements and land disposal restrictions. The initial blending on-site was conducted with a 2,485 m{sup 3} (3,250 yd{sup 3}) stockpile of higher concentration soils being blended with lower concentration soils. The lower concentration soils were excavated, staged and sampled into 191 m{sup 3} (250 yd{sup 3}) stockpiles. The ratio for this blending was based on the average radiological concentration of the large stockpile being blended and average concentrations of the individual 191 m{sup 3} (250 yd{sup 3}) piles of lower radiological concentration using a mass balance approach. Once a new 191 m{sup 3} (250 yd{sup 3}) stockpile was created with blended soils it was sampled to insure it met the WAC of Facility A. After the large stockpile had been successfully blended and additional in-situ soils of higher concentration were excavated, they were blended using a similar mass balance approach. For the newly excavated soils, each of the individual piles radiological concentrations was used to determine the specific blending ratio. The blending process took place to lower the disposal costs for the project. By sending the soils to Facility A (RCRA part C permitted) vs. Facility B (Part 61 NRC licensed), a cost savings of over 1.56 million dollars was realized. Prior to commencing the blending of soils, USACE coordinated discussions with appropriate state and federal governmental organizations. (authors)« less
Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Robert Wesley; Hargis, Kenneth Marshall
2014-09-01
A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth Marshall
A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlementmore » agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.« less
Liang, Hui; DeWald, Janice P; Solomon, Eric S
2018-02-01
Dental hygiene students' performance in oral radiology courses may give an early indication of their readiness prior to taking the National Board Dental Hygiene Examination (NBDHE). The aim of this study was to determine the relationship between dental hygiene students' performance in an oral radiology lecture course and their performance on the NBDHE. Data were collected for all 117 dental hygiene students at Texas A&M University College of Dentistry from 2006 to 2009 who took the NBDHE during their second year of the program. Their final grades and scores on three written section examinations in an oral radiology course taken in their first year were compared with their overall NBDHE scores and raw scores on the oral radiology and case study sections. Moderate correlations (0.3
Site-Specific Analyses for Demonstrating Compliance with 10 CFR 61 Performance Objectives - 12179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossman, C.J.; Esh, D.W.; Yadav, P.
2012-07-01
The U.S. Nuclear Regulatory Commission (NRC) is proposing to amend its regulations at 10 CFR Part 61 to require low-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance with the performance objectives in Subpart C. The amendments would require licensees to conduct site-specific analyses for protection of the public and inadvertent intruders as well as analyses for long-lived waste. The amendments would ensure protection of public health and safety, while providing flexibility to demonstrate compliance with the performance objectives, for current and potential future waste streams. NRC staff intends to submit proposed rule language and associated regulatorymore » basis to the Commission for its approval in early 2012. The NRC staff also intends to develop associated guidance to accompany any proposed amendments. The guidance is intended to supplement existing low-level radioactive waste guidance on issues pertinent to conducting site-specific analyses to demonstrate compliance with the performance objectives. The guidance will facilitate implementation of the proposed amendments by licensees and assist competent regulatory authorities in reviewing the site-specific analyses. Specifically, the guidance provides staff recommendations on general considerations for the site-specific analyses, modeling issues for assessments to demonstrate compliance with the performance objectives including the performance assessment, intruder assessment, stability assessment, and analyses for long-lived waste. This paper describes the technical basis for changes to the rule language and the proposed guidance associated with implementation of the rule language. The NRC staff, per Commission direction, intends to propose amendments to 10 CFR Part 61 to require licensees to conduct site-specific analyses to demonstrate compliance with performance objectives for the protection of public health and the environment. The amendments would require a performance assessment to demonstrate protection of the general population from releases of radioactivity, an assessment to demonstrate protection of a potential inadvertent intruder, and a long-term analysis to assess how the design of the facility considers the potential radiological impacts associated with disposal of long-lived waste streams. Concurrently, the NRC staff intends to propose associated guidance to facilitate the implementation of the requirements to conduct site-specific analyses. In proposing these amendments to the regulation and associated guidance, the NRC staff has conducted extensive public outreach since 2009 including three public meetings and four briefings of the NRC's Advisory Committee on Reactor Safeguards. The NRC staff plans to submit the proposed amendments to the regulations to the Commission in early 2012. Subsequently, the proposed amendments and associated guidance would be published in the Federal Register for public comment pending approval of the proposed amendments to the regulations by the Commission. Following the public comment period, NRC staff plans to address public comments and revise, as necessary, the regulations and associated guidance before publishing a final rule, which is anticipated in 2013. (authors)« less
RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
KOZLOWSKI, S.D.
2007-05-30
This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less
Portsmouth annual environmental report for 2003, Piketon, Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
none, none
2004-11-30
The Portsmouth & Gaseous Diffusion Plant (PORTS) is located on a 5.8-square-mile site in a rural area of Pike County, Ohio. U.S. Department of Energy (DOE) activities at PORTS include environmental restoration, waste 'management, and long-term'stewardship of nonleased facilities: Production facilities for the separation of uranium isotopes are leased to the United States Enrichment Corporation (USEC), but most activities associated with the uranium enrichment process ceased in 2001. USEC activities are not covered by this document, with the exception of some environmental compliance information provided in Chap. 2 and radiological and non-radiological environmental monitoring program information discussed in Chaps. 4more » and 5.« less
Command and Control. Radiological Transportation Emergencies Course. Revision Three.
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This 12-section course is designed to explain the responsibilities of an incident commander at the scene of a Waste Isolation Pilot Plant (WIPP) transportation incident. It was created for the U.S. Department of Energy WIPP located near Carlsbad, New Mexico, which receives radioactive shipments. The course has two purposes: (1) to provide first…
Becker, J K; Lindborg, T; Thorne, M C
2014-12-01
In safety assessments of repositories for radioactive wastes, large spatial and temporal scales have to be considered when developing an approach to risk calculations. A wide range of different types of information may be required. Local to the site of interest, temperature and precipitation data may be used to determine the erosional regime (which may also be conditioned by the vegetation characteristics adopted, based both on climatic and other considerations). However, geomorphological changes may be governed by regional rather than local considerations, e.g. alteration of river base levels, river capture and drainage network reorganisation, or the progression of an ice sheet or valley glacier across the site. The regional climate is in turn governed by the global climate. In this work, a commentary is presented on the types of climate models that can be used to develop projections of climate change for use in post-closure radiological impact assessments of geological repositories for radioactive wastes. These models include both Atmosphere-Ocean General Circulation Models and Earth Models of Intermediate Complexity. The relevant outputs available from these models are identified and consideration is given to how these outputs may be used to inform projections of landscape development. Issues of spatial and temporal downscaling of climate model outputs to meet the requirements of local-scale landscape development modelling are also addressed. An example is given of how climate change and landscape development influence the radiological impact of radionuclides potentially released from the deep geological disposal facility for spent nuclear fuel that SKB (the Swedish Nuclear Fuel and Waste Management Company) proposes to construct at Forsmark, Sweden. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Christopher; Kothari, Vijendra; Starr, Ken
2012-02-26
The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collectionmore » adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, C.; Givens, C.; Bhatt, R.
2003-02-24
Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less
The Use of Interventional Radiology Techniques in the Treatment of Pancreatic Fistula.
Miłek, Tomasz; Baranowski, Krzysztof; Petryka, Robert; Ciostek, Piotr
2016-12-01
One of the complications of pancreatic disease is the formation of pancreatic fistulae. The presence of fistula leads to body wasting and cachexia. The standard treatment is intubation of the Wirsung duct and in cases where there are no improvements the next proposed form of treatment is surgery. The aim of the study was to evaluate the efficacy of pancreatic fistula closure using interventional radiology techniques. In 2009 to 2014, 46 patients diagnosed with pancreatic fistula were treated with interventional radiology techniques. Treatment consisted of vascular coil implanted at the entry of the fistula and then sealed with tissue glue adhesive during endoscopic procedure. Technical success of vascular coil implantation and the use of tissue glue adhesive were reported in all patients. Pancreatic fistula recurred in 7 patients (15.2%). The latter group of patients underwent statistical analysis to determine what the risk factors in recurring pancreatic fistulas were. The results indicate a significant relationship between etiology of the fistula and treatment effect. (1) the use of interventional radiology methods in the closure of pancreatic fistula is an effective and safe procedure; and (2) the recurrence of fistula is dependent on the etiology and often occurs after surgery or trauma.
Automated classification of radiology reports to facilitate retrospective study in radiology.
Zhou, Yihua; Amundson, Per K; Yu, Fang; Kessler, Marcus M; Benzinger, Tammie L S; Wippold, Franz J
2014-12-01
Retrospective research is an import tool in radiology. Identifying imaging examinations appropriate for a given research question from the unstructured radiology reports is extremely useful, but labor-intensive. Using the machine learning text-mining methods implemented in LingPipe [1], we evaluated the performance of the dynamic language model (DLM) and the Naïve Bayesian (NB) classifiers in classifying radiology reports to facilitate identification of radiological examinations for research projects. The training dataset consisted of 14,325 sentences from 11,432 radiology reports randomly selected from a database of 5,104,594 reports in all disciplines of radiology. The training sentences were categorized manually into six categories (Positive, Differential, Post Treatment, Negative, Normal, and History). A 10-fold cross-validation [2] was used to evaluate the performance of the models, which were tested in classification of radiology reports for cases of sellar or suprasellar masses and colloid cysts. The average accuracies for the DLM and NB classifiers were 88.5% with 95% confidence interval (CI) of 1.9% and 85.9% with 95% CI of 2.0%, respectively. The DLM performed slightly better and was used to classify 1,397 radiology reports containing the keywords "sellar or suprasellar mass", or "colloid cyst". The DLM model produced an accuracy of 88.2% with 95% CI of 2.1% for 959 reports that contain "sellar or suprasellar mass" and an accuracy of 86.3% with 95% CI of 2.5% for 437 reports of "colloid cyst". We conclude that automated classification of radiology reports using machine learning techniques can effectively facilitate the identification of cases suitable for retrospective research.
Interventional Radiology in Paediatrics.
Chippington, Samantha J; Goodwin, Susie J
2015-01-01
As in adult practice, there is a growing role for paediatric interventional radiology expertise in the management of paediatric pathologies. This review is targeted for clinicians who may refer their patients to paediatric interventional radiology services, or who are responsible for patients who are undergoing paediatric interventional radiology procedures. The article includes a brief overview of the indications for intervention, techniques involved and the commonest complications. Although some of the procedures described are most commonly performed in a tertiary paediatric centre, many are performed in most Children's hospitals.
[Interventional radiology: current problems and new directions].
Santos Martín, E; Crespo Vallejo, E
2014-01-01
In recent years, vascular and interventional radiology has become one of the fastest growing diagnostic and therapeutic specialties. This growth has been based on a fundamental concept: performing minimally invasive procedures under imaging guidance. This attractive combination has led to the interest of professionals from other clinical specialties outside radiology in performing this type of intervention. The future of vascular and interventional radiology, although uncertain, must be linked to clinical practice and multidisciplinary teamwork. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
Nancarrow, D J; White, M M
2004-03-01
A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological capacity with respect to 226Ra plus 232Th. The government's decision-making programme for managing solid radioactive wastes in the UK may possibly achieve a general consensus that the use of landfill for LLW from the RCL regime has a fundamental role to play. However, this is unlikely to change the situation within the next few years. No new national facility arising from this programme is likely to be available during the first decade of the operation of a new RCL regime. Hence it appears that Drigg will need to play an important role for some years to come.
Interpreting and Reporting Radiological Water-Quality Data
McCurdy, David E.; Garbarino, John R.; Mullin, Ann H.
2008-01-01
This document provides information to U.S. Geological Survey (USGS) Water Science Centers on interpreting and reporting radiological results for samples of environmental matrices, most notably water. The information provided is intended to be broadly useful throughout the United States, but it is recommended that scientists who work at sites containing radioactive hazardous wastes need to consult additional sources for more detailed information. The document is largely based on recognized national standards and guidance documents for radioanalytical sample processing, most notably the Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP), and on documents published by the U.S. Environmental Protection Agency and the American National Standards Institute. It does not include discussion of standard USGS practices including field quality-control sample analysis, interpretive report policies, and related issues, all of which shall always be included in any effort by the Water Science Centers. The use of 'shall' in this report signifies a policy requirement of the USGS Office of Water Quality.
Radiological Protection in Medicine; OCHRONA RADIOLOGICZNA W MEDYCYNIE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pensko, J.
1961-01-01
S>A review of radiological protection theory and systems, directed toward medical considerations is given. Examples of the types of radioactive materials and types of radiation to which humans might be exposed, the phenomena of energy loss by these types of radiation, and the effects of these transfers of energy in humans, in animals, and in matter in general, are discussed. The present limits (1961) for dose rates and exposures, under various conditions, to the several types of radiation are categorized. The shielding effects of some materials are tabulated; the data for x radiation are prevalent. Arrangement of equipment and recommendedmore » procedures for operation of x-ray devices in medical practice and diagnostic studies are described. The uses of radiation, x rays in particular, in medical therapy for various illnesses and diseases are discussed in detail. Methods of handling and disposing of radioactive wastes are presented, taking into consideration radiological protection and safety of the workers. (R.P.R.)« less
García-Talavera, M; Matarranz, J L M; Salas, R; Ramos, L
2011-01-01
Radioactive and chemical risks coexist in NORM industries although they are usually addressed separately by regulations. The European Union (EU) has developed extensive legislation concerning both matters, which has been diversely reflected in national policies. We consider the case of the Spanish phosphate industry and analyse to which extent regulatory mandates have reduced the historical and ongoing radiological impact on the environment of phosphate facilities. Although no specific radiological constraints on effluent monitoring and release or on waste disposal have yet been imposed on NORM industries in Spain, other environmental regulations have achieved a substantial reduction on the phosphate industry impact. Nevertheless, a more efficient control could be established by eliminating the current conceptual and practical separation of chemical and radioactive risks in NORM industries. We highlight research needs to accomplish so and propose shorter-term measures that require active cooperation among the regulatory bodies involved. Copyright © 2010. Published by Elsevier Ltd.
Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems
NASA Astrophysics Data System (ADS)
Luis, Raul Fernandes
Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second goal of this work was to perform an optimisation study for the ISOLDE neutron converter and Vssion target system. The target system was simulated using FLUKA and the cross section codes TALYS and ABRABLA, with the objective of maximising the performance of the system for the production of pure beams of neutron-rich isotopes, suppressing the contaminations by undesired neutron-deficient isobars. Two alternative target systems were proposed in the optimisation studies; the simplest of the two, with some modiVcations, was built as a prototype and tested at ISOLDE. The experimental results clearly show that it is possible, with simple changes in the layouts of the target systems, to produce purer beams of neutron-rich isotopes around the doubly magic nuclei 78Ni and 132Sn. A study of Radiological Protection was also performed, comparing the performances of the prototype target system and the standard ISOLDE target system. None
Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8
DOE Office of Scientific and Technical Information (OSTI.GOV)
First, M.W.
1991-02-01
Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, H.A.
1986-10-01
An aerial radiological survey was conducted during the period 12 July to 17 July 1985 over a 97-square-kilometer (37-square-mile) area centered on the Browns Ferry Nuclear Power Station located near Decatur, Alabama. The survey was conducted at a nominal altitude of 46 meters (150 feet) with line spacings of 76 meters (250 feet). A contour map of the terrestrial gamma exposure rate plus the cosmic exposure rate extrapolated to 1 meter above ground level was prepared and overlaid on an aerial photograph and a USGS topographic map of the area. The terrestrial exposure rates north and east of Wheeler Lakemore » ranged from approximately 11 to 18 microroentgens per hour (..mu..R/h), while the area south and west of the lake ranged from approximately 9 to 11 ..mu..R/h. Two areas of increased exposure rate were evident. One of these areas was associated with the main units of the reactor facility, while the other was associated with a temporary radiological waste holding area inside the plant's protected area. A machine-aided search of the data for man-made sources of radiation indicated the presence of a third area within the plant facility. This area is utilized as a temporary low-level radioactive waste storage site. All three areas indicated the presence of Co-60. Soil samples and ion chamber measurements were obtained at four locations to support the aerial data. In addition, soil samples were also taken at six locations along the shore of Wheeler Lake. 8 refs., 13 figs., 4 tabs.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... itself. (6) The design requirements in this criterion for longevity and control of radon releases apply... radiological and nonradiological hazards associated with the sites, which is equivalent to, to the extent... “reasonably achievable” as equivalent terms. Decisions involved these terms will take into account the state...
Appraisal of Scientific Resources for Emergency Management.
1983-09-01
water, communications, computers, and oil refineries or storage facilities. In addition, the growth of the number of operative nuclear power plants ...one from a nuclear power plant accident); one involved hazardous waste disposal problems; and finally two involved wartime scenarios, one focusing on...pro- tection research, radiological protection from nuclear power plant accidents, concepts and operation of public shelters, and post attack
Mitchell, Christina J; Kernohan, W George; Higginson, Ray
2012-07-01
Two main areas exist within emergency care where chemical, biological, radiological, nuclear and explosive preparedness can be focused: departmental preparedness and staff preparedness. This study focused upon the latter. To identify areas where nurses require training in order to improve preparedness for a CBRNe incident. A competency questionnaire was developed from the literature and completed by 50 nursing staff across three Emergency Departments within one NHS Trust in Northern Ireland. Descriptive analysis was used for the quantitative data along with content analysis for the qualitative questions. Six key areas were identified for training; waste management (including clinical waste, contaminated clothing, contaminated water and the management of the contaminated deceased), Triage, Chain of command, PODs, awareness of the range of Personal Protective Equipment and its appropriate use and the decontamination of people and equipment. There is a need for a standardised 'blueprint' of role-specific competency criteria for a CBRNe incident for all emergency healthcare staff. The assessment tool used in this study can help to assess levels of preparedness amongst nursing staff and, if adapted accordingly, help gauge preparedness of other key healthcare professionals. Copyright © 2011 Elsevier Ltd. All rights reserved.
Decommissioning of the Iraq former nuclear complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Mohammed; Helou, Tuama; Ahmead, Bushra
2007-07-01
Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of themore » Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.H. Little, P.R. Maul, J.S.S. Penfoldag
2003-02-27
This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapko, Brian M.
2015-09-30
This report examines the need for actual Hanford tank waste solutions to support tasks in the Technetium Management Program in fiscal year (FY) 2016. One key need is to identify both samples where a majority of the soluble technetium is present as pertechnetate and samples where it is not. The total amount of tank supernatant needed from any given tank waste supernatant was determined by polling the tasks leaders for their technology testing needs in FY16 and then arbitrarily ascribing a 10% process loss associated with consolidation and the Cs-137 removal needed to reduce the dose to a level suitablemore » for testing in radiological fumehoods. These polling results identified a need for approximately 2.1 to 3.6 kg of any particular targeted Hanford tank waste supernatant.« less
Sanitary engineering aspects of nuclear energy developments*
Kenny, A. W.
1962-01-01
So many developments have taken place in the field of nuclear energy since 1956, when the author's previous paper on radioactive waste disposal was published in the Bulletin of the World Health Organization, that a fresh review of the subject is now appropriate. The present paper deals with those aspects of the problem which are of most interest to the sanitary engineer. It considers specific points in the latest recommendations of the International Commission on Radiological Protection in relation to public drinking-water supplies, and examines the problem of fall-out, with special reference to the presence and significance of strontium-90 in drinking-water. A general survey of the various uses of radioactive materials is followed by a discussion of the legislative and control measures necessary to ensure safe disposal of wastes. The methods of waste disposal adopted in a number of nuclear energy establishments are described in detail. The paper concludes with some remarks on solid waste disposal, siting of nuclear energy industries and area monitoring. PMID:14455214
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Amar, Ravnesh
2009-09-01
This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spalding, B.P.; Naney, M.T.
1995-06-01
This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Healthmore » Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ``shall`` is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.« less
ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.
Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon
2018-03-16
Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.
Bernardo, Mônica Oliveira; Almeida, Fernando Antonio de; Morgado, Flavio
2017-01-01
To analyze the results of an initiative aimed at improving the reasonable use of radiological examinations, ensuring their technical quality, implementing a radioprotection campaign that includes training of the professional team, and introducing the radioprotection card for children under 12 years old as a tool for parents and doctors to control children's exposure to radiation. The study was held in a health care insurance system covering 140,000 people. A radioprotection campaign was implemented according to Image Gently • protocols, ensuring the lowest dose of radiation and the quality of examinations, and the radioprotection card was implemented. To assess the effectiveness of these actions, the number of radiological examinations performed at the pediatric emergency room in a period of one year preceding the campaign was compared with the number of radiological examinations performed one year after the campaign. The campaign was well accepted by all professionals, families, and patients involved. In the year following the implementation of radioprotection strategies, there was a 22% reduction of radiological examinations performed at the pediatric emergency room. There was also a 29% reduction in the request of two or more radiological examinations for the same child or examinations with two or more incidences. The campaign and the radioprotection card for children under 12 years old proved to be feasible strategies and correlated with a reduction in radiological examinations requested and performed at the pediatric emergency room.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwood, T.L.; Spalding, B.P.
1991-07-01
This report presents the results and conclusions from a multifaceted monitoring effort associated with the high-density polyethylene caps installed in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL) as an interim corrective measure (ICM). The caps were installed between November 1988 and June 1989 to meet Resource Conservation and Recovery Act (RCRA) requirements for closure of those areas of SWSA 6 that had received RCRA-regulated wastes after November 1980. Three separate activities were undertaken to evaluate the performance of the caps: (1) wells were installed in trenches to be covered by the caps, and water levelsmore » in these intratrench wells were monitored periodically; (2) samples were taken of the leachate in the intratrench wells and were analyzed for a broad range of radiological and chemical contaminants; and (3) water levels in wells outside the trenches were monitored periodically. With the exception of the trench leachate sampling, each of these activities spanned the preconstruction, construction, and postconstruction periods. Findings of this study have important implications for the ongoing remedial investigation in SWSA 6 and for the design of other ICMs. 51 figs., 2 tabs.« less
SWSA 6 interim corrective measures environmental monitoring: FY 1990 results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwood, T.L.; Spalding, B.P.
1991-07-01
This report presents the results and conclusions from a multifaceted monitoring effort associated with the high-density polyethylene caps installed in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL) as an interim corrective measure (ICM). The caps were installed between November 1988 and June 1989 to meet Resource Conservation and Recovery Act (RCRA) requirements for closure of those areas of SWSA 6 that had received RCRA-regulated wastes after November 1980. Three separate activities were undertaken to evaluate the performance of the caps: (1) wells were installed in trenches to be covered by the caps, and water levelsmore » in these intratrench wells were monitored periodically; (2) samples were taken of the leachate in the intratrench wells and were analyzed for a broad range of radiological and chemical contaminants; and (3) water levels in wells outside the trenches were monitored periodically. With the exception of the trench leachate sampling, each of these activities spanned the preconstruction, construction, and postconstruction periods. Findings of this study have important implications for the ongoing remedial investigation in SWSA 6 and for the design of other ICMs. 51 figs., 2 tabs.« less
Korir, Geoffrey; Karam, P Andrew
2018-06-11
In the event of a significant radiological release in a major urban area where a large number of people reside, it is inevitable that radiological screening and dose assessment must be conducted. Lives may be saved if an emergency response plan and radiological screening method are established for use in such cases. Thousands to tens of thousands of people might present themselves with some levels of external contamination and/or the potential for internal contamination. Each of these individuals will require varying degrees of radiological screening, and those with a high likelihood of internal and/or external contamination will require radiological assessment to determine the need for medical attention and decontamination. This sort of radiological assessment typically requires skilled health physicists, but there are insufficient numbers of health physicists in any city to perform this function for large populations, especially since many (e.g., those at medical facilities) are likely to be engaged at their designated institutions. The aim of this paper is therefore to develop and describe the technical basis for a novel, scoring-based methodology that can be used by non-health physicists for performing radiological assessment during such radiological events.
Key Performance Indicators in Radiology: You Can't Manage What You Can't Measure.
Harvey, H Benjamin; Hassanzadeh, Elmira; Aran, Shima; Rosenthal, Daniel I; Thrall, James H; Abujudeh, Hani H
2016-01-01
Quality assurance (QA) is a fundamental component of every successful radiology operation. A radiology QA program must be able to efficiently and effectively monitor and respond to quality problems. However, as radiology QA has expanded into the depths of radiology operations, the task of defining and measuring quality has become more difficult. Key performance indicators (KPIs) are highly valuable data points and measurement tools that can be used to monitor and evaluate the quality of services provided by a radiology operation. As such, KPIs empower a radiology QA program to bridge normative understandings of health care quality with on-the-ground quality management. This review introduces the importance of KPIs in health care QA, a framework for structuring KPIs, a method to identify and tailor KPIs, and strategies to analyze and communicate KPI data that would drive process improvement. Adopting a KPI-driven QA program is both good for patient care and allows a radiology operation to demonstrate measurable value to other health care stakeholders. Copyright © 2015 Mosby, Inc. All rights reserved.
Annual Site Environmental Report Calendar Year 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Kayser-Ames Laboratory
This report summarizes the environmental status of Ames Laboratory for calendar year 2007. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2007, the Laboratory accumulated andmore » disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2007. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2007. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, styrofoam peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Self Assessment Report, on its Affirmative Procurement Performance Measure. A performance level of 'A' was achieved in 2007 for Integrated Safety, Health, and Environmental Protection. As reported in Site Environmental Reports for prior years, the Laboratory's Environmental Management System has been integrated into the Laboratory's Integrated Safety Management System since 2005. The integration of EMS into the way the Laboratory does business allows the Laboratory to systematically review, address and respond to the Laboratory's environmental impacts.« less
Radiological controls integrated into design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kindred, G.W.
1995-03-01
Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facilitymore » from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detilleux, Michel; Centner, Baudouin
The paper describes different methodologies and tools developed in-house by Tractebel Engineering to facilitate the engineering works to be carried out especially in the frame of decommissioning projects. Three examples of tools with their corresponding results are presented: - The LLWAA-DECOM code, a software developed for the radiological characterization of contaminated systems and equipment. The code constitutes a specific module of more general software that was originally developed to characterize radioactive waste streams in order to be able to declare the radiological inventory of critical nuclides, in particular difficult-to-measure radionuclides, to the Authorities. In the case of LLWAA-DECOM, deposited activitiesmore » inside contaminated equipment (piping, tanks, heat exchangers...) and scaling factors between nuclides, at any given time of the decommissioning time schedule, are calculated on the basis of physical characteristics of the systems and of operational parameters of the nuclear power plant. This methodology was applied to assess decommissioning costs of Belgian NPPs, to characterize the primary system of Trino NPP in Italy, to characterize the equipment of miscellaneous circuits of Ignalina NPP and of Kozloduy unit 1 and, to calculate remaining dose rates around equipment in the frame of the preparation of decommissioning activities; - The VISIMODELLER tool, a user friendly CAD interface developed to ease the introduction of lay-out areas in a software named VISIPLAN. VISIPLAN is a 3D dose rate assessment tool for ALARA work planning, developed by the Belgian Nuclear Research Centre SCK.CEN. Both softwares were used for projects such as the steam generators replacements in Belgian NPPs or the preparation of the decommissioning of units 1 and 2 of Kozloduy NPP; - The DBS software, a software developed to manage the different kinds of activities that are part of the general time schedule of a decommissioning project. For each activity, when relevant, algorithms allow to estimate, on the basis of local inputs, radiological exposures of the operators (collective and individual doses), production of primary, secondary and tertiary waste and their characterization, production of conditioned waste, release of effluents,... and enable the calculation and the presentation (histograms) of the global results for all activities together. An example of application in the frame of the Ignalina decommissioning project is given. (authors)« less
WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kumar
2000-06-21
The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less
Casadei, Riccardo; Ricci, Claudio; Giampalma, Emanuela; D'Ambra, Marielda; Taffurelli, Giovanni; Mosconi, Cristina; Golfieri, Rita; Minni, Francesco
2014-07-28
The use of interventional radiology has increased as the first-line management of complications after pancreatic resections. Patients in whom interventional radiology was performed were compared with those in whom interventional radiology was not performed as regards type of pancreatic resection, diagnosis, postoperative mortality and morbidity, postoperative pancreatic fistula postpancreatectomy haemorrhage, bile leakage, reoperation rate and length of hospital stay. Our aim was to evaluate the usefulness of interventional radiology in the treatment of complications after pancreatic resection. One hundred and eighty-two (62.8%) out of 290 patients experienced postoperative complications. Interventional radiology procedures were performed in 37 cases (20.3%): percutaneous drainage in 28, transhepatic biliary drainage in 8 and arterial embolisation in 3 cases. Technical success was obtained in all cases and clinical success in 75.7%. Reoperation was avoided in 86.5%. In patients with major complications, clinically relevant postoperative pancreatic fistula and bile leaks as well as those with late postpancreatectomy haemorrhage (P=0.030) and patients with postpancreatectomy haemorrhage grade C (P=0.029), interventional radiology was used (P<0.001, P<0.001 and P=0.009, respectively) significantly more frequently than in the remaining patients. The reoperation and mortality rates were similar in the two groups (P=0.885 and P=0.100, respectively) while patients treated with interventional radiology procedures had a significant longer length of hospital stay than those in the non-interventional radiology group (37.5 ± 23.4 vs. 18.7 ± 11.7 days; P<0.001). Interventional radiology procedures were useful, especially for patients with postoperative pancreatic fistulas and bile leaks in whom reoperation was very often avoided.
NASA Astrophysics Data System (ADS)
Brandan, M.-E.; Ruiz-Trejo, C.; Caspani, C. E. M.; Fleitas, I.; de-la-Mora, R.; Miranda, A. A.; Plazas, M.-C.; Betancourt, C.-M.; Borras, C.
2001-10-01
Under the auspices of PAHO/WHO, a multicentric investigation is carried out in five Latin American countries. Its aim is to correlate quality indicators of radiology services with the accuracy of the radiological interpretation as determined by a panel of radiology experts. We present preliminary results from mammographic imaging facilities. Evaluation of the equipment performance and dose measurements in 21 mammographic units show that, on the average, 75% of the units comply with recommendations issued by various organizations. An independent evaluation of the quality of the clinical images show strong variations among the different radiological services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.
1980-12-31
This document summarizes an oral presentation that described the potential for volcanic activity at the proposed Yucca Mountain, Texas repository site. Yucca Mountain is located in a broad zone of volcanic activity known as the Death Valley-Pancake Ridge volcanic zone. The probability estimate for the likelihood that some future volcanic event will intersect a buried repository at Yucca Mountain is low. Additionally, the radiological consequences of penetration of a repository by basaltic magma followed by eruption of the magma at the surface are limited. The combination of low probability and limited consequence suggests that the risk posed by waste storagemore » at this site is low. (TEM)« less
NASA Astrophysics Data System (ADS)
Rodgers, John C.; Wasiolek, Piotr T.; Schery, Stephen D.; Alcantara, Raul E.
1999-01-01
The need for a continuous air monitor capable of quick and accurate measurements of airborne radioactivity in close proximity to the work environment during waste management, site restoration, and D&D operations led to the Los Alamos National Laboratory development of an environmental continuous air monitor (ECAM). Monitoring the hostile work environment of waste recovery, for example, presents unique challenges for detector design for detectors previously used for the clean room conditions of the typical plutonium laboratory. The environmental and atmospheric conditions (dust, high wind, etc.) influence aerosol particle penetration into the ECAM sampling head as well as the build-up of deposits on the ECAM filter.
Radiologic safety assessment for low level waste storage on TRU pads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, J.P.
1986-03-17
The reference document (TA 2-1118) proposes to store Low Level Radioactive Solid Waste in B-25 boxes on concrete pads at the 643-G burial ground site, pending resolution of policy concernig its ultimate disposal. This analysis verifies that the reference proposal is safe, as long as it is applied to a limited material quantity of low specific activity, as described in the reference document. The predominant concern in the safety analysis is the emission of airborne activity as a result of tornados and fires. However, containment provided by B-25 boxes is sufficient to mitigate the consequences of these events sufficiently. Nevertheless,more » it is strongly recommended that any above-ground storage procedures include provisions for covering the waste containment boxes to prevent exposure to rainwater and subsequent corrosion if the storage period is to extend beyond one year.« less
Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.
1993-09-01
An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: tomore » determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.« less
Challenges in disposing of anthrax waste.
Lesperance, Ann M; Stein, Steve; Upton, Jaki F; Toomey, Chris
2011-09-01
Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration's (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist in the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material would require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussions was the identification of 3 primary topical areas that must be addressed: planning, unresolved research questions, and resolving regulatory issues.
Challenges in Disposing of Anthrax Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesperance, Ann M.; Stein, Steven L.; Upton, Jaki F.
2011-09-01
Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration’s (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material will require decontamination and disposal. Accordingly, IBRD facilitated the development of debrismore » management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussion was the identification of three primary topical areas that must be addressed: 1) Planning; 2) Unresolved research questions, and resolving regulatory issues.« less
2018-04-01
The International Forum is held once a year by the ESR and its international radiological partner societies with the aim to address and discuss selected topics of global relevance in radiology. In 2017, the issue of the position of interventional radiology (IR) within radiology was analysed. IR is expanding because of the increased patient demand for minimally invasive therapies performed under imaging guidance, and its success in improving patient outcomes, reducing in-hospital stays, reducing morbidity and mortality of treatment in many organs and organ-systems. Despite the many successes of IR, public awareness about it is quite low. IR requires specific training and, in most countries, the majority of interventional radiologists do not dedicate their time completely to IR but perform diagnostic radiology investigations as well. Turf battles in IR are common in many countries. To preserve and keep IR within radiology, it is necessary to focus more on direct and longitudinal patient care. Having beds dedicated to IR within radiology departments is very important to increase clinical involvement of interventional radiologists. IR procedures fit perfectly within "value-based healthcare", but the metrics have to be developed. • IR should stay a prominent subspecialty within radiology. • Dedicated IR training pathways are mandatory. • Measures to increase recruitment of young doctors to IR and to increase public awareness of IR are needed. • Beds dedicated to IR within radiology departments are important in order to increase clinical involvement of interventional radiologists.
Investigation of the radiological impact on the coastal environment surrounding a fertilizer plant.
El Samad, O; Aoun, M; Nsouli, B; Khalaf, G; Hamze, M
2014-07-01
This investigation was carried out in order to assess the marine environmental radioactive pollution and the radiological impact caused by a large production plant of phosphate fertilizer, located in the Lebanese coastal zone. Natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Po, (210)Pb, (40)K) and anthropogenic (137)Cs were measured by alpha and gamma spectrometry in seawater, sediment, biota and coastal soil samples collected from the area impacted by this industry. The limited environmental monitoring program within 2 km of the plant indicates localized contamination with radionuclides of the uranium decay chain mainly due to the transport, the storage of raw materials and the free release of phosphogypsum waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
Application of RAD-BCG calculator to Hanford's 300 area shoreline characterization dataset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonio, Ernest J.; Poston, Ted M.; Tiller, Brett L.
2003-07-01
Abstract. In 2001, a multi-agency study was conducted to characterize potential environmental effects from radiological and chemical contaminants on the near-shore environment of the Columbia River at the 300 Area of the U.S. Department of Energy’s Hanford Site. Historically, the 300 Area was the location of nuclear fuel fabrication and was the main location for research and development activities from the 1940s until the late 1980s. During past waste handling practices uranium, copper, and other heavy metals were routed to liquid waste streams and ponds near the Columbia River shoreline. The Washington State Department of Health and the Pacific Northwestmore » National Laboratory’s Surface Environmental Surveillance Project sampled various environmental components including river water, riverbank spring water, sediment, fishes, crustaceans, bivalve mollusks, aquatic insects, riparian vegetation, small mammals, and terrestrial invertebrates for analyses of radiological and chemical constituents. The radiological analysis results for water and sediment were used as initial input into the RAD-BCG Calculator. The RAD-BCG Calculator, a computer program that uses an Excel® spreadsheet and Visual Basic® software, showed that maximum radionuclide concentrations measured in water and sediment were lower than the initial screening criteria for concentrations to produce dose rates at existing or proposed limits. Radionuclide concentrations measured in biota samples were used to calculate site-specific bioaccumulation coefficients (Biv) to test the utility of the RAD-BCG-Calculator’s site-specific screening phase. To further evaluate site-specific effects, the default Relative Biological Effect (RBE) for internal alpha particle emissions was reduced by half and the program’s kinetic/allometric calculation approach was initiated. The subsequent calculations showed the initial RAD-BCG Calculator results to be conservative, which is appropriate for screening purposes.« less
Emerging Technologies and Techniques for Wide Area Radiological Survey and Remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M.; Zhao, P.
2016-03-24
Technologies to survey and decontaminate wide-area contamination and process the subsequent radioactive waste have been developed and implemented following the Chernobyl nuclear power plant release and the breach of a radiological source resulting in contamination in Goiania, Brazil. These civilian examples of radioactive material releases provided some of the first examples of urban radiological remediation. Many emerging technologies have recently been developed and demonstrated in Japan following the release of radioactive cesium isotopes (Cs-134 and Cs-137) from the Fukushima Dai-ichi nuclear power plant in 2011. Information on technologies reported by several Japanese government agencies, such as the Japan Atomic Energymore » Agency (JAEA), the Ministry of the Environment (MOE) and the National Institute for Environmental Science (NIES), together with academic institutions and industry are summarized and compared to recently developed, deployed and available technologies in the United States. The technologies and techniques presented in this report may be deployed in response to a wide area contamination event in the United States. In some cases, additional research and testing is needed to adequately validate the technology effectiveness over wide areas. Survey techniques can be deployed on the ground or from the air, allowing a range of coverage rates and sensitivities. Survey technologies also include those useful in measuring decontamination progress and mapping contamination. Decontamination technologies and techniques range from non-destructive (e.g., high pressure washing) and minimally destructive (plowing), to fully destructive (surface removal or demolition). Waste minimization techniques can greatly impact the long-term environmental consequences and cost following remediation efforts. Recommendations on technical improvements to address technology gaps are presented together with observations on remediation in Japan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonio, Ernest J.; Tiller, Brett L.; Domotor, S. L.
2005-08-01
Abstract. In 2001, a multi-agency study was conducted to characterize potential environmental effects from radiological and chemical contaminants on the near-shore environment of the Columbia River at the 300 Area of the U.S. Department of Energy’s Hanford Site. Historically, the 300 Area was the location of nuclear fuel fabrication and was the main location for research and development activities from the 1940s until the late 1980s. During past waste handling practices uranium, copper, and other heavy metals were routed to liquid waste streams and ponds near the Columbia River shoreline. The Washington State Department of Health and the Pacific Northwestmore » National Laboratory’s Surface Environmental Surveillance Project sampled various environmental components including river water, riverbank spring water, sediment, fishes, crustaceans, bivalve mollusks, aquatic insects, riparian vegetation, small mammals, and terrestrial invertebrates for analyses of radiological and chemical constituents. The radiological analysis results for water and sediment were used as initial input into the RESRAD BIOTA. The RESRAD BIOTA code showed that maximum radionuclide concentrations measured in water and sediment were lower than the initial screening criteria for concentrations to produce dose rates at existing or proposed limits. Radionuclide concentrations measured in biota samples were used to calculate site-specific bioaccumulation coefficients (Biv) to test the utility of the RESRAD BIOTA’s site-specific screening phase. To further evaluate site-specific effects, the default Relative Biological Effect (RBE) for internal alpha particle emissions was reduced by half and the program’s kinetic/allometric calculation approach was initiated. The subsequent calculations showed the initial RESRAD BIOTA results to be conservative, which is appropriate for screening purposes.« less
Which is the best way of performing a Micturating Cystourethrogram in children?
Al-Imam, Ola Ali; Al-Nsour, Nareeman Moh'd; Al-Khulaifat, Samih
2008-01-01
The Micturating Cystourethrogram (MCU) is a tough and stressful examination for patients and their parents as well as the radiologists and pediatric radiology nurses. Even though, it is one of the most commonly used fluoroscopic procedures in pediatric radiology practice, there is no definite agreement as to the best way to perform it, considering that this examination results in the children receiving a high dose of radiation to the gonadal region. This review was undertaken to determine the best way to perform the MCU in modern pediatric radiology practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esser, B K; McConachie, W; Fischer, R
2005-09-16
The Department of Toxic Substance Control (DTSC) requested that Lawrence Livermore National Laboratory (LLNL) evaluate the treatment process currently employed at the Department's Stringfellow Superfund Site Pretreatment Plant (PTP) site to determine if wastes originating from the site were properly managed with regards to their radioactivity. In order to evaluate the current management strategy, LLNL suggested that DTSC characterize the effluents from the waste treatment system for radionuclide content. A sampling plan was developed; samples were collected and analyzed for radioactive constituents. Following is brief summary of those results and what implications for waste characterization may be made. (1) Themore » sampling and analysis provides strong evidence that the radionuclides present are Naturally Occurring Radioactive Material (NORM). (2) The greatest source of radioactivity in the samples was naturally occurring uranium. The sample results indicate that the uranium concentration in the filter cake is higher than the Granular Activated Carbon (GAC) samples. (11 -14 and 2-6 ppm respectively). (3) No radiologic background for geologic materials has been established for the Stringfellow site, and comprehensive testing of the process stream has not been conducted. Without site-specific testing of geologic materials and waste process streams, it is not possible to conclude if filter cake and spent GAC samples contain radioactivity concentrated above natural background levels, or if radionuclides are being concentrated by the waste treatment process. Recommendation: The regulation of Technologically Enhanced, Naturally Occurring Radioactive Materials (T-NORM) is complex. Since the results of this study do not conclusively demonstrate that natural radioactive materials have not been concentrated by the treatment process it is recommended that the DTSC consult with the Department of Health Services (DHS) Radiological Health Branch to determine if any further action is warranted. If it were deemed desirable to establish a background for the Stringfellow setting LLNL would recommend that additional samples be taken and analyzed by LLNL using the same methods presented in this report.« less
Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.
Osmanlioglu, Ahmet Erdal
2014-05-01
In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.
Lim-Dunham, Jennifer E; Ensminger, David C; McNulty, John A; Hoyt, Amy E; Chandrasekhar, Arcot J
2016-02-01
The principles of Collins' cognitive apprenticeship model were used to design a radiology curriculum in which medical students practice radiological skills using online case-based modules. The modules are embedded within clinical third-year clerkships, and students are provided with personalized feedback from the instructors. We describe the development of the vertical online radiology curriculum and evaluate its impact on student achievement and learning process using a mixed method approach. The curriculum was developed over a 2-year period. Student participation was voluntary in the first year and mandatory in the second year. For quantitative curriculum evaluation, student metrics for voluntary versus mandatory groups were assessed using independent sample t tests and variable entry method regression analysis. For qualitative analysis, responses from a survey of students about the value of the curriculum were organized into defined themes using consensus coding. Mandatory participation significantly improved (p = .001) the mean radiology examination score (82 %) compared to the voluntary group (73%), suggesting that mandatory participation had a beneficial effect on student performance. Potential preexisting differences in underlying general academic performance were accounted for by including mean basic science grades as the first variable in the regression model. The significant increase in R(2) from .16 to .28 when number of radiology cases completed was added to the original model, and the greater value of the standardized beta for this variable, suggest that the curriculum made a significant contribution to students' radiology examination scores beyond their baseline academic performance. Five dominant themes about curricular characteristics that enhanced student learning and beneficial outcomes emerged from consensus coding. These themes were (1) self-paced design, (2) receiving feedback from faculty, (3) clinical relevance of cases, (4) gaining confidence in interpreting radiological images, and (5) transfer of conceptual knowledge to actual practice. The vertically integrated online radiology curriculum can positively impact student performance and learning process in the context of the cognitive apprenticeship model. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Smith, Karen P; Arnish, John J; Williams, Gustavious P; Blunt, Deborah L
2003-05-15
Certain petroleum production activities cause naturally occurring radioactive materials (NORM) to accumulate in concentrations above natural background levels, making safe and cost-effective management of such technologically enhanced NORM (TENORM) a key issue for the petroleum industry. As a result, both industry and regulators are interested in identifying cost-effective disposal alternatives that provide adequate protection of human health and the environment One such alternative, currently allowed in Michigan with restrictions, is the disposal of TENORM wastes in nonhazardous waste landfills. The disposal of petroleum industry wastes containing radium-226 (Ra-226) in nonhazardous landfills was modeled to evaluate the potential radiological doses and health risks to workers and the public. Multiple scenarios were considered in evaluating the potential risks associated with landfill operations and the future use of the property. The scenarios were defined, in part, to evaluate the Michigan policy; sensitivity analyses were conducted to evaluate the impact of key parameters on potential risks. The results indicate that the disposal of petroleum industry TENORM wastes in nonhazardous landfills in accordance with the Michigan policy and existing landfill regulations presents a negligible risk to most of the potential receptors considered in this study.
Thakur, Punam; Runyon, Tim
2018-04-09
Three years ago, the Waste Isolation Pilot Plant (WIPP) experienced its first minor accident involving a radiological release. Late in the evening on February 14, 2014, a waste container in the repository underwent a chemical reaction that caused the container to overheat and breach, releasing its contents into the underground. Following a lengthy recovery process, the facility recently resumed waste disposal operations. The accident released significant levels of radioactivity into the disposal room and adjacent exhaust drifts, and although no one was present in the underground at the time of the release, a total of 22 workers tested positive for very low level of radiation, presumably from some of the radioactive material that was released above ground through a small leak in the HEPA filtration system. The dominant radionuclides released were 241 Am and 239 + 240 Pu in a ratio that matched the content of the drum from Los Alamos National Laboratory (LANL) that was eventually identified as the breached container. From the air particulate monitoring and plume modeling, it was concluded that the dose, at the nearest location accessible to the general public, from this radiation release event would have been less than 0.01 mSv (< 1 mrem/year). This level is well below the 0.1 mSv/year (10 mrem/year) regulatory limit for DOE facilities established by the US Environmental Protection Agency (EPA).While no long-term impacts to public health or the environment are expected as a result of the WIPP radiation release, the limited ventilation and residual contamination levels in the underground are still a concern and pose a major challenge for the full recovery of WIPP. This article provides an up-to-date overview of environmental monitoring results through the WIPP recovery and an estimate of the long-term impacts of the accident on the natural and human environment.
A reference standard-based quality assurance program for radiology.
Liu, Patrick T; Johnson, C Daniel; Miranda, Rafael; Patel, Maitray D; Phillips, Carrie J
2010-01-01
The authors have developed a comprehensive radiology quality assurance (QA) program that evaluates radiology interpretations and procedures by comparing them with reference standards. Performance metrics are calculated and then compared with benchmarks or goals on the basis of published multicenter data and meta-analyses. Additional workload for physicians is kept to a minimum by having trained allied health staff members perform the comparisons of radiology reports with the reference standards. The performance metrics tracked by the QA program include the accuracy of CT colonography for detecting polyps, the false-negative rate for mammographic detection of breast cancer, the accuracy of CT angiography detection of coronary artery stenosis, the accuracy of meniscal tear detection on MRI, the accuracy of carotid artery stenosis detection on MR angiography, the accuracy of parathyroid adenoma detection by parathyroid scintigraphy, the success rate for obtaining cortical tissue on ultrasound-guided core biopsies of pelvic renal transplants, and the technical success rate for peripheral arterial angioplasty procedures. In contrast with peer-review programs, this reference standard-based QA program minimizes the possibilities of reviewer bias and erroneous second reviewer interpretations. The more objective assessment of performance afforded by the QA program will provide data that can easily be used for education and management conferences, research projects, and multicenter evaluations. Additionally, such performance data could be used by radiology departments to demonstrate their value over nonradiology competitors to referring clinicians, hospitals, patients, and third-party payers. Copyright 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Environmental health program activities
NASA Technical Reports Server (NTRS)
Bergtholdt, C. P.
1969-01-01
Activities reported include studies on toxic air contaminants, excessive noise, poor lighting, food sanitation, water pollution, and exposure to nonionizing radiation as health hazards. Formulations for a radiological health manual provide guidance to personnel in the procurement and safe handling of radiation producing equipment and Apollo mission planning. A literature search and development of a water analysis laboratory are outlined to obtain information regarding microbiological problems involving potable water, waste management, and personal hygiene.
Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.
Influence of physical parameters on radiation protection and image quality in intra-oral radiology
NASA Astrophysics Data System (ADS)
Belinato, W.; Souza, D. N.
2011-10-01
In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide "Medical radiology: security and performance of equipment." In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.
Radiological risk assessment and biosphere modelling for radioactive waste disposal in Switzerland.
Brennwald, M S; van Dorp, F
2009-12-01
Long-term safety assessments for geological disposal of radioactive waste in Switzerland involve the demonstration that the annual radiation dose to humans due to the potential release of radionuclides from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv. Here, we describe the simple but robust approach used by Nagra (Swiss National Cooperative for the Disposal of Radioactive Waste) to quantify the dose to humans as a result to time-dependent release of radionuclides from the geosphere into the biosphere. The model calculates the concentrations of radionuclides in different terrestrial and aquatic compartments of the surface environment. The fluxes of water and solids within the environment are the drivers for the exchange of radionuclides between these compartments. The calculated radionuclide concentrations in the biosphere are then used to estimate the radiation doses to humans due to various exposure paths (e.g. ingestion of radionuclides via drinking water and food, inhalation of radionuclides, external irradiation from radionuclides in soils). In this paper we also discuss recent new achievements and planned future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funk, David John
2016-05-05
The sampling of unremediated nitrate salts (UNS) was originally proposed by the U.S. Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) (collectively, the Permittees) as a means to ensure adequate understanding and characterization of the problematic waste stream created when the Permittees remediated these nitrate salts-bearing waste with an organic absorbent. The proposal to sample the UNS was driven by a lack of understanding with respect to the radioactive contamination release that occurred within the underground repository at the Waste Isolation Pilot Plant (WIPP) in February 14, 2014, as well as recommendations made by a Peer Reviewmore » Team. As discussed, the Permittees believe that current knowledge and understanding of the waste has sufficiently matured such that this additional sampling is not required. Perhaps more importantly, the risk of both chemical and radiological exposure to the workers sampling the UNS drum material is unwarranted. This memo provides the technical justification and rationale for excluding the UNS sampling from the treatment studies.« less
The Direct Path To WIPP - 12471
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spoerner, M.T.; Burger, M.J.; Garcia, J.
2012-07-01
Sandia National Laboratories/New Mexico (SNL/NM), designated as a small quantity site (SQS) by the National TRU Program (NTP), generated contact-handled (CH) and remote-handled (RH) transuranic (TRU) waste primarily from the decontamination and clean-out of glove boxes at the Hot Cell Facility (HCF) at Technical Area (TA) V. All of the waste required repackaging, with the CH TRU waste being repackaged from late 2007 through 2011. Three shipments of CH were completed in October 2011, which de-inventoried SNL/NM's legacy TRU waste. In FY11, RH TRU waste was repackaged at the Auxiliary Hot Cell Facility (AHCF) located in TAV with the supportmore » of the Central Characterization Project (CCP). The waste was originally packaged in SNL/NM fabricated casks, cement or lead-lined 55-gallon drums, or 30-gallon drums. The AHCF is a small hot cell, with access only through a roof port which presented challenges for inserting and removing waste from the hot cell. The CCP provided visual examination operators (VEOs) to observe and document each waste item repackaged, removal of prohibited items, and radiological sampling. Dose-to-Curie measurements were calculated by CCP after a radiological report was prepared using scaling factors determined by the analysis of swipe samples. Finally, headspace gas samples were taken and sent to the Advanced Mixed Waste Treatment Project (AMWTP) for analysis. Despite the challenges, the RH waste is on track to be shipped to WIPP in early FY12. The processes used and procedures developed to conduct the repackaging operations, the issues identified and mitigated were challenging but the cooperation between SNL/NM and the Central Characterization Program (CCP) enabled SNL/NM to complete the repackaging and support the characterization and shipment. An inventory list, identification of the campaigns, discussion of the challenges and mitigations, and the final loading of the RH 72-B casks at TA-V for direct shipment to the Waste Isolation Pilot Plant (WIPP) will be discussed. Lessons learned from the RH campaigns are: - Some containers that were originally identified as HC-3 have been re-evaluated and became < HC-3 due to the conservative estimates made by the original generators - Operators at the AHCF were not accustomed to the detail required by the VE operators. However, they worked well together and the repackaging was completed ahead of schedule. - The AK was not always accurate as was demonstrated by the solid waste found in the drum during the first visit by EPA. That waste has since been determined to be low-level. - Two drums originally thought to be RH turned out to be CH and arrangement for RTR had to be made quickly. - Six of the original RH repacked drums became low level. - Lessons learned from the CH campaigns were helpful in avoiding many issues. The RH repackaging effort has been a success due to the expertise of the AHCF operators, supervisor, and manager, the conscientious attention to detail of the CCP VE operators, the experience of the CCP DTC and headspace gas sampling staff, and the guidance and support from CCP and CBFO. Sometimes schedules had to be adjusted, processes updated, and issues discussed, but the communication between CCP and SNL/NM was good. SNL/NM hopes to have the legacy RH TRU waste shipped off-site by early 2012. (authors)« less
Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Shuman, Rob
2012-06-26
Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a mannermore » that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have been made to utilize the remaining disposal capacity within MDA G to the greatest extent possible. One approach for doing this has been to dispose of low-activity waste from cleanup operations at LANL in the headspace of selected disposal pits. Waste acceptance criteria (WAC) for the material placed in the headspace of pits 15, 37, and 38 have been developed (LANL, 2010) and the impacts of placing waste in the headspace of these units has been evaluated (LANL, 2012a). The efforts to maximize disposal efficiency have taken on renewed importance because of the disposal demands placed on MDA G by the large volumes of waste that are being generated at LANL by cleanup efforts. For example, large quantities of waste were recently generated by the retrieval of waste formerly disposed of at TA-21, MDA B. A portion of this material has been disposed of in the headspace of pit 38 in compliance with the WAC developed for that disposal strategy; a large amount of waste has also been sent to off-site facilities for disposal. Nevertheless, large quantities of MDA B waste remain that require disposal. An extension of pit 38 was proposed to provide the disposal capacity that will be needed to dispose of institutional waste and MDA B waste through 2013. A special analysis was prepared to evaluate the impacts of the pit extension (LANL, 2012b). The analysis concluded that the disposal unit could be extended with modest increases in the exposures projected for the Area G performance assessment and composite analysis, as long as limits were placed on the radionuclide concentrations in the waste that is placed in the headspace of the pit. Based, in part, on the results of the special analysis, the extension of pit 38 was approved and excavation of the additional disposal capacity was started in May 2012. The special analysis presented here uses performance modeling to identify a disposal plan for the placement of waste in pit 38. The modeling uses a refined design of the disposal unit and updated radionuclide inventories to identify a disposal configuration that promotes efficient utilization of the pit and ensures continued compliance with DOE Order 435.1 performance objectives. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3. The disposal plan for pit 38 is provided in Section 4 and the conclusions of the investigation are provided in Section 5. Throughout the report, pit 38 is used to refer to the entire disposal unit, including the existing pit and the extension that is currently under construction. Where a distinction between the two portions of the pit is necessary, the existing unit is referred to as pit 38 proper and the new portion of the pit as the pit 38 extension or, more simply, the extension.« less
Isupov, Inga; McInnes, Matthew D F; Hamstra, Stan J; Doherty, Geoffrey; Gupta, Ashish; Peddle, Susan; Jibri, Zaid; Rakhra, Kawan; Hibbert, Rebecca M
2017-04-01
The purpose of this study is to develop a tool to assess the procedural competence of radiology trainees, with sources of evidence gathered from five categories to support the construct validity of tool: content, response process, internal structure, relations to other variables, and consequences. A pilot form for assessing procedural competence among radiology residents, known as the RAD-Score tool, was developed by evaluating published literature and using a modified Delphi procedure involving a group of local content experts. The pilot version of the tool was tested by seven radiology department faculty members who evaluated procedures performed by 25 residents at one institution between October 2014 and June 2015. Residents were evaluated while performing multiple procedures in both clinical and simulation settings. The main outcome measure was the percentage of residents who were considered ready to perform procedures independently, with testing conducted to determine differences between levels of training. A total of 105 forms (for 52 procedures performed in a clinical setting and 53 procedures performed in a simulation setting) were collected for a variety of procedures (eight vascular or interventional, 42 body, 12 musculoskeletal, 23 chest, and 20 breast procedures). A statistically significant difference was noted in the percentage of trainees who were rated as being ready to perform a procedure independently (in postgraduate year [PGY] 2, 12% of residents; in PGY3, 61%; in PGY4, 85%; and in PGY5, 88%; p < 0.05); this difference persisted in the clinical and simulation settings. User feedback and psychometric analysis were used to create a final version of the form. This prospective study describes the successful development of a tool for assessing the procedural competence of radiology trainees with high levels of construct validity in multiple domains. Implementation of the tool in the radiology residency curriculum is planned and can play an instrumental role in the transition to competency-based radiology training.
LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS
2000-09-01
The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less
Data analysis and review of radiology services at Glasgow 2014 Commonwealth Games.
Bethapudi, Sarath; Ritchie, David; Bongale, Santosh; Gordon, Jonny; MacLean, John; Mendl, Liz
2015-10-01
Medical services at the Glasgow 2014 Commonwealth Games (CWG) were provided though a purpose-built medical polyclinic, which had a fully equipped radiology department along with other services, set up within the main Games Village. Data analysis of radiology services offered at CWG has not been published before. Imaging services within the polyclinic, Athletes Village, Glasgow 2014 CWG. The aim of the paper is to analyse data on radiological investigations and assess the demand and distribution of workload on imaging services at CWG 2014. Data on radiology investigations at the CWG 2014 was retrieved from the Carestream picture archiving and communication system (PACS) and Pharmasys (CWG official centralised electronic database system) and analysed. Six hundred ninety-seven diagnostic and interventional procedures were performed. Of these 37.9% were magnetic resonance imaging (MRI) scans, 22% were diagnostic ultrasound (US) examinations, 33.1% were radiographs, 4.3% were computed tomography (CT) scans and 2.7% were imaging-guided interventional procedures. 88% of imaging was performed on athletes and the remainder were performed on team officials and workforce. Demand on radiology services gradually picked up through the pre-competition period and peaked half way through the CWG. Radiology played a vital role in the successful provision of medical services at the Glasgow 2014 CWG. High demand on imaging services can be expected at major international sporting events and therefore pre-event planning is vital. Having back-up facilities in case of technical failure should be given due importance when planning radiology services at future CWG events.
Use of the ICRP system for the protection of marine ecosystems.
Telleria, D; Cabianca, T; Proehl, G; Kliaus, V; Brown, J; Bossio, C; Van der Wolf, J; Bonchuk, I; Nilsen, M
2015-06-01
The International Commission on Radiological Protection (ICRP) recently reinforced the international system of radiological protection, initially focused on humans, by identifying principles of environmental protection and proposing a framework for assessing impacts of ionising radiation on non-human species, based on a reference flora and fauna approach. For this purpose, ICRP developed dosimetric models for a set of Reference Animals and Plants, which are representative of flora and fauna in different environments (terrestrial, freshwater, marine), and produced criteria based on information on radiation effects, with the aim of evaluating the level of potential or actual radiological impacts, and as an input for decision making. The approach developed by ICRP for flora and fauna is consistent with the approach used to protect humans. The International Atomic Energy Agency (IAEA) includes considerations on the protection of the environment in its safety standards, and is currently developing guidelines to assess radiological impacts based on the aforementioned ICRP approach. This paper presents the method developed by IAEA, in a series of meetings with international experts, to enable assessment of the radiological impact to the marine environment in connection with the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter 1972 (London Convention 1972). This method is based on IAEA's safety standards and ICRP's recommendations, and was presented in 2013 for consideration by representatives of the contracting parties of the London Convention 1972; it was approved for inclusion in its procedures, and is in the process of being incorporated into guidelines. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Amar, Ravnesh
2010-09-01
This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Dassler, David
2012-09-01
This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Amar, Ravnesh
2011-09-01
This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Dassler, David
2013-09-01
This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
Mixed waste focus area alternative technologies workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.
1995-05-24
This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), themore » Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.« less
Common procedures and strategies for anaesthesia in interventional radiology.
Landrigan-Ossar, Mary
2015-08-01
This review describes the range of cases now available in the interventional radiology suite and summarizes suggestions for their anaesthetic and perioperative management. The type and complexity of interventional radiology cases being performed increases from year to year. Anaesthesiologists' presence in interventional radiology is increasing in turn, due to increasingly ill patients and intricate procedures requiring more than local anaesthesia for well tolerated completion. The literature available describing this is largely written by radiologists, with little attention paid to anaesthetic considerations. Cases in interventional radiology are complex in terms of the logistics of working in an unfamiliar area, frequency of patient comorbidity and unfamiliar procedures. Ensuring familiarity with the variety of interventional radiology procedures and their periprocedure requirements can increase anaesthesiologists' comfort in interventional radiology.
Monte-Carlo Application for Nondestructive Nuclear Waste Analysis
NASA Astrophysics Data System (ADS)
Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.
2014-06-01
Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum, neutron flux distribution. The validation of the measurements simulations with Mont-Carlo transport codes for the design, optimization and data analysis of further P&DGNAA facilities is performed in collaboration with LMN CEA Cadarache. The performance of the prompt gamma neutron activation analysis (PGNAA) for the nondestructive determination of actinides in small samples is investigated. The quantitative determination of actinides relies on the precise knowledge of partial neutron capture cross sections. Up to today these cross sections are not very accurate for analytical purpose. The goal of the TANDEM (Trans-uranium Actinides' Nuclear Data - Evaluation and Measurement) Collaboration is the evaluation of these cross sections. Cross sections are measured using prompt gamma activation analysis facilities in Budapest and Munich. Geant4 is used to optimally design the detection system with Compton suppression. Furthermore, for the evaluation of the cross sections it is strongly needed to correct the results to the self-attenuation of the prompt gammas within the sample. In the framework of cooperation RWTH Aachen University, Forschungszentrum Jülich and the Siemens AG will study the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA). The system is based on a 14 MeV neutron source and an advanced detector system (a-Si flat panel) linked to an exclusive converter/scintillator for fast neutrons. For shielding and radioprotection studies the codes MCNPX and Geant4 were used. The two codes were benchmarked in processing time and accuracy in the neutron and gamma fluxes. Also the detector response was simulated with Geant4 to optimize components of the system.
INDUSTRIAL/MILITARY ACTIVITY-INITIATED ACCIDENT SCREENING ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.A. Kalinich
1999-09-27
Impacts due to nearby installations and operations were determined in the Preliminary MGDS Hazards Analysis (CRWMS M&O 1996) to be potentially applicable to the proposed repository at Yucca Mountain. This determination was conservatively based on limited knowledge of the potential activities ongoing on or off the Nevada Test Site (NTS). It is intended that the Industrial/Military Activity-Initiated Accident Screening Analysis provided herein will meet the requirements of the ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987) in establishing whether this external event can be screened from further consideration or must be includedmore » as a design basis event (DBE) in the development of accident scenarios for the Monitored Geologic Repository (MGR). This analysis only considers issues related to preclosure radiological safety. Issues important to waste isolation as related to impact from nearby installations will be covered in the MGR performance assessment.« less
Kumar, Vinod; Goel, Rajeev; Chawla, Raman; Silambarasan, M.; Sharma, Rakesh Kumar
2010-01-01
Chemical, biological, radiological, and nuclear (CBRN) decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination. PMID:21829318
NASA Astrophysics Data System (ADS)
Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas
2018-05-01
The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field
Validation of the Proficiency Examination for Diagnostic Radiologic Technology. Final Report.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ.
The validity of the Proficiency Examination for Diagnostic Radiologic Technology was investigated, using 140 radiologic technologists who took both the written Proficiency Examination and a performance test. As an additional criterion measure of job proficiency, supervisors' assessments were obtained for 128 of the technologists. The resulting…
Code of Federal Regulations, 2010 CFR
2010-10-01
... physician. Radiologist service means radiology services performed only by, or under the direction of, a physician who is certified, or eligible to be certified, by the American Board of Radiology or for whom radiology services account for at least 50 percent of the total amount of charges made under part B of title...
Variable thickness transient ground-water flow model. Volume 3. Program listings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisenauer, A.E.
1979-12-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.« less
Mineralogical conversion of asbestos containing materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulsford, S.K.; Foltz, A.D.; Ek, R.B.
The principal objective of the Technical Task Plan (TTP) is to demonstrate a thermal-chemical mineralogical asbestos conversion unit at the Hanford Site, which converts non-radiological asbestos containing materials (ACMs) into an asbestos-free material. The permanent thermal-chemical mineralogical conversion of ACMs to a non-toxic, non-hazardous, potentially marketable end product should not only significantly reduce the waste stream volumes but terminate the {open_quotes}cradle to grave{close_quotes} ownership liabilities.
Monteiro, Alexandra M V; Corrêa, Diogo Goulart; Santos, Alair Augusto Sarmet M D; Cavalcanti, Silvio A; Sakuno, Telma; Filgueiras, Tereza; Just, Eduardo; Santos, Munique; Messina, Luiz Ary; Haddad, Ana Estela; Marchiori, Edson
2011-12-01
To report the experience of the Brazilian Program of Pediatric Teleradiology in combining teleconferencing and a virtual learning environment for services integration, collaborative research, and continuing education in pediatric radiology. We performed virtual meetings from March 2005 to October 2010 on pediatric radiology-related themes, using a combination of videoconferences and Web conferences, which were recorded and made available in an open-source software (Moodle) for reuse. We performed 58 virtual sessions: 29 anatomical-clinical-radiological sessions, 28 on upgrading themes, and 1 virtual symposium. The average of connected points was 12 by videoconference and 39 by Web conference, and of 450 participants per event. At the time of this writing, 318 physicians and students are registered in the virtual learning environment, with a total of 14,678 accesses. Telemedicine is being included in pediatric radiology practice, as a means for distance education, training, and continuing integration between groups.
A Business Analytics Software Tool for Monitoring and Predicting Radiology Throughput Performance.
Jones, Stephen; Cournane, Seán; Sheehy, Niall; Hederman, Lucy
2016-12-01
Business analytics (BA) is increasingly being utilised by radiology departments to analyse and present data. It encompasses statistical analysis, forecasting and predictive modelling and is used as an umbrella term for decision support and business intelligence systems. The primary aim of this study was to determine whether utilising BA technologies could contribute towards improved decision support and resource management within radiology departments. A set of information technology requirements were identified with key stakeholders, and a prototype BA software tool was designed, developed and implemented. A qualitative evaluation of the tool was carried out through a series of semi-structured interviews with key stakeholders. Feedback was collated, and emergent themes were identified. The results indicated that BA software applications can provide visibility of radiology performance data across all time horizons. The study demonstrated that the tool could potentially assist with improving operational efficiencies and management of radiology resources.
Towbin, Alexander J; Hall, Seth; Moskovitz, Jay; Johnson, Neil D; Donnelly, Lane F
2011-01-01
Communication of acute or critical results between the radiology department and referring clinicians has been a deficiency of many radiology departments. The failure to perform or document these communications can lead to poor patient care, patient safety issues, medical-legal issues, and complaints from referring clinicians. To mitigate these factors, a communication and documentation tool was created and incorporated into our departmental customer service program. This article will describe the implementation of a comprehensive customer service program in a hospital-based radiology department. A comprehensive customer service program was created in the radiology department. Customer service representatives were hired to answer the telephone calls to the radiology reading rooms and to help convey radiology results. The radiologists, referring clinicians, and customer service representatives were then linked via a novel workflow management system. This workflow management system provided tools to help facilitate the communication needs of each group. The number of studies with results conveyed was recorded from the implementation of the workflow management system. Between the implementation of the workflow management system on August 1, 2005, and June 1, 2009, 116,844 radiology results were conveyed to the referring clinicians and documented in the system. This accounts for more than 14% of the 828,516 radiology cases performed in this time frame. We have been successful in creating a comprehensive customer service program to convey and document communication of radiology results. This program has been widely used by the ordering clinicians as well as radiologists since its inception.
Educational treasures in radiology: a free online program for Radiology Boards preparation.
Talanow, Roland
2011-01-01
An objective tool is desired, which optimally prepares for Radiology boards examination. Such program should prepare examinees with pertinent radiological contents and simulations as expected in the real examination. Many countries require written boards examinations for Radiology certification eligibility. No objective measure exists to tell if the examinee is ready to pass the exam or not. Time pressure and computer environment might be unfamiliar to examinees. Traditional preparation lectures don't simulate the "real" Radiology exam because they don't provide the special environment with multiple choice questions and timing. This online program consists of 4 parts. The entry section allows to create questions with additional fields for comprehensive information. Sections include Pediatrics/Mammography/GI/IR/Nucs/Thoracic/Musculoskeletal/GU/Neuro/Ultrasound/Cardiac/OB/GYN and Miscellaneous. Experienced radiologists and educators evaluate and release/delete these entries in the administrator section. In the exam section users can create (un)timed customized exams for individual needs and learning pace. Exams can either include all sections or only specific sections to gear learning towards areas with weaker performance. Comprehensive statistics unveil the user's strengths and weaknesses to help focussing on "weak" areas. In the search section a comprehensive search and review can be performed by searching the entire database for keywords/topics or only searching within specific sections. www.RadiologyBoards.org is a new working concept of Radiology boards preparation to detect and improve the examinee's weaknesses and finally to increase the examinee's confidence level for the final exam. It is beneficial for Radiology residents and also board certified radiologists to refresh/maintain radiological knowledge.
Radiology Undergraduate and Resident Curricula: A Narrative Review of the Literature
Linaker, Kathleen L.
2015-01-01
Objective The purpose of this study was to examine the literature regarding radiology curricula for both undergraduates and residents. Methods A review of the literature was performed using relevant key words. Articles were retrieved through December 2012 using PubMed, ScienceDirect, ERIC, Proquest, and ICL databases along with a manual review of references. Results Of the 4716 unique abstracts reviewed by the author, 142 were found to be relevant to the purpose of this study. Undergraduate radiology education, radiology curriculum, and radiology pedagogy vary widely between disciplines and between colleges within disciplines. Formal radiology education is not taught at all medical programs and little radiology training is incorporated into non-radiology residencies. This results in some medical graduates not being taught how to interpret basic radiology images and not learning contraindications and indications for ordering diagnostic imaging tests. There are no definitive studies examining how to incorporate radiology into the curriculum, how to teach radiology to either undergraduates or residents, or how to assess this clinical competency. Conclusions This review shows that radiology education is perceived to be important in undergraduate and residency programs. However, some programs do not include radiology training, thus graduates from those programs do not learn radiology essentials. PMID:26770172
Machine Learning in Radiology: Applications Beyond Image Interpretation.
Lakhani, Paras; Prater, Adam B; Hutson, R Kent; Andriole, Kathy P; Dreyer, Keith J; Morey, Jose; Prevedello, Luciano M; Clark, Toshi J; Geis, J Raymond; Itri, Jason N; Hawkins, C Matthew
2018-02-01
Much attention has been given to machine learning and its perceived impact in radiology, particularly in light of recent success with image classification in international competitions. However, machine learning is likely to impact radiology outside of image interpretation long before a fully functional "machine radiologist" is implemented in practice. Here, we describe an overview of machine learning, its application to radiology and other domains, and many cases of use that do not involve image interpretation. We hope that better understanding of these potential applications will help radiology practices prepare for the future and realize performance improvement and efficiency gains. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Defining quality in radiology.
Blackmore, C Craig
2007-04-01
The introduction of pay for performance in medicine represents an opportunity for radiologists to define quality in radiology. Radiology quality can be defined on the basis of the production model that currently drives reimbursement, codifying the role of radiologists as being limited to the production of timely and accurate radiology reports produced in conditions of maximum patient safety and communicated in a timely manner. Alternately, quality in radiology can also encompass the professional role of radiologists as diagnostic imaging specialists responsible for the appropriate use, selection, interpretation, and application of imaging. Although potentially challenging to implement, the professional model for radiology quality is a comprehensive assessment of the ways in which radiologists add value to patient care. This essay is a discussion of the definition of radiology quality and the implications of that definition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gigase, Yves
2007-07-01
Available in abstract form only. Full text of publication follows: The uncertainty on characteristics of radioactive LILW waste packages is difficult to determine and often very large. This results from a lack of knowledge of the constitution of the waste package and of the composition of the radioactive sources inside. To calculate a quantitative estimate of the uncertainty on a characteristic of a waste package one has to combine these various uncertainties. This paper discusses an approach to this problem, based on the use of the log-normal distribution, which is both elegant and easy to use. It can provide asmore » example quantitative estimates of uncertainty intervals that 'make sense'. The purpose is to develop a pragmatic approach that can be integrated into existing characterization methods. In this paper we show how our method can be applied to the scaling factor method. We also explain how it can be used when estimating other more complex characteristics such as the total uncertainty of a collection of waste packages. This method could have applications in radioactive waste management, more in particular in those decision processes where the uncertainty on the amount of activity is considered to be important such as in probability risk assessment or the definition of criteria for acceptance or categorization. (author)« less
Physical and cognitive task analysis in interventional radiology.
Johnson, S; Healey, A; Evans, J; Murphy, M; Crawshaw, M; Gould, D
2006-01-01
To identify, describe and detail the cognitive thought processes, decision-making, and physical actions involved in the preparation and successful performance of core interventional radiology procedures. Five commonly performed core interventional radiology procedures were selected for cognitive task analysis. Several examples of each procedure being performed by consultant interventional radiologists were videoed. The videos of those procedures, and the steps required for successful outcome, were analysed by a psychologist and an interventional radiologist. Once a skeleton algorithm of the procedures was defined, further refinement was achieved using individual interview techniques with consultant interventional radiologists. Additionally a critique of each iteration of the established algorithm was sought from non-participating independent consultant interventional radiologists. Detailed task descriptions and decision protocols were developed for five interventional radiology procedures (arterial puncture, nephrostomy, venous access, biopsy-using both ultrasound and computed tomography, and percutaneous transhepatic cholangiogram). Identical tasks performed within these procedures were identified and standardized within the protocols. Complex procedures were broken down and their constituent processes identified. This might be suitable for use as a training protocol to provide a universally acceptable safe practice at the most fundamental level. It is envisaged that data collected in this way can be used as an educational resource for trainees and could provide the basis for a training curriculum in interventional radiology. It will direct trainees towards safe practice of the highest standard. It will also provide performance objectives of a simulator model.
Radiologically occult medulloblastoma with hydrocephalus: case report.
Honma, Hirokuni; Ogiwara, Hideki
2017-09-01
There have been no reports of occult medulloblastoma nor noncommunicating hydrocephalus due to radiologically occult brain tumors. Herein, we report radiologically occult medulloblastoma with noncommunicating hydrocephalus. A 3-year-old boy presented with macrocephaly, visual field constriction, and papilledema. Neuroimagings showed enlargement of the ventricles without any mass lesions. The CT cisternography did not show influx of the contrast into the ventricles, which suggested local cerebrospinal fluid (CSF) circulatory disturbance at the outlet of the fourth ventricle. Due to possible obstructive nature of hydrocephalus, endoscopic third ventriculostomy (ETV) was performed. Three months after the ETV, he presented with repeated vomiting. Neuroimagings showed a 3-cm fourth ventricular mass with progressive hydrocephalus. Surgical resection was performed, which revealed the pathology was medulloblastoma. We report the case of radiologically occult medulloblastoma which was demonstrated radiologically in the follow-up period of ETV for noncommunicating hydrocephalus of uncertain etiology. This is the first description of a radiologically occult medulloblastoma and also the first description of an occult brain tumor with noncommunicating hydrocephalus. The occult brain tumor may be included in the etiology of hydrocephalus.
Analysis of Operation TEAPOT nuclear test BEE radiological and meteorological data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, V.E.
This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the BEE nuclear test of Operation TEAPOT. Inconsistencies in the radiological data and their resolution are discussed. The methods of normalizing the radiological data to a standard time and estimating fallout-arrival times are presented. The meteorological situations on event day and the following day are described. A comparison of the WSNSO fallout analysis with an analysis performed in the 1950's is presented. The radiological data used to derive the WSNSO fallout pattern are tabulated in an appendix.
The abandoned ice sheet base at Camp Century, Greenland, in a warming climate
NASA Astrophysics Data System (ADS)
Colgan, William; Machguth, Horst; MacFerrin, Mike; Colgan, Jeff D.; As, Dirk; MacGregor, Joseph A.
2016-08-01
In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75 years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.
The Abandoned Ice Sheet Base at Camp Century, Greenland, in a Warming Climate
NASA Technical Reports Server (NTRS)
Colgan, William; Machguth, Horst; Macferrin, Mike; Colgan, Jeff D.; Van As, Dirk; Macgregor, Joseph A.
2016-01-01
In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, Roger; Kumano, Yumiko; Bailey, Lucy
2014-01-09
The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energymore » Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.« less
Chemical and radiological risk factors associated with waste from energy production.
Christensen, T; Fuglestvedt, J; Benestad, C; Ehdwall, H; Hansen, H; Mustonen, R; Stranden, E
1992-04-01
We have tried to estimate the toxic potential of waste from nuclear power plants and from power plants burning fossil fuels. The potential risks have been expressed as 'risk potentials' or 'person equivalents.' These are purely theoretical units and represent only an attempt to quantify the potential impact of different sources and substances on human health. Existing concentration limits for effects on human health are used. The philosophy behind establishing limits for several carcinogenic chemicals is based on a linear dose-effect curve. That is, no lower concentration of no effect exists and one has to accept a certain small risk by accepting the concentration limit. This is in line with the establishment of limits for radiation. Waste products from coal combustion have the highest potential risk among the fossil fuel alternatives. The highest risk is caused by metals, and the fly ash represents the effluent stream giving the largest contribution to the potential risk. The waste from nuclear power production has a lower potential risk than coal if today's limit values re used. If one adjusts the limits for radiation dose and the concentration limit values so that a similar risk is accepted by the limits, nuclear waste seems to have a much higher potential risk than waste from fossil fuel. The possibility that such risk estimates may be used as arguments for safe storage of the different types of waste is discussed. In order to obtain the actual risk from the potential risk, the dispersion of the waste in the environment and its uptake and effects in man have to be taken into account.
Hanford Site ground-water monitoring for 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresel, P.E.; Luttrell, S.P.; Evans, J.C.
This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less
Radionuclide Retention in Concrete Wasteforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.
2012-09-24
Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, J.K.; Rodriguez, R.E.; Uziel, M.S.
1991-09-01
A surface radiological scoping survey of accessible areas at the White Wing Scrap Yard (Waste Area Grouping 11 (WAG 11)) was conducted intermittently from December 1989 through July 1991 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of Environmental Restoration Program personnel at ORNL. The White Wing Scrap Yard is an estimated 30-acre, predominately wooded area located on the western edge of East Fork Ridge in the McNew Hollow area on the US Department of Energy's Oak Ridge Reservation. The scrap yard was formerly used formore » aboveground storage of contaminated material (e.g., steel tanks, metal, glass, concrete, and miscellaneous industrial trash) from the Oak Ridge K-25 Site, Oak Ridge Y-12 Plant, and ORNL. The purposes of this cursory investigation were (1) to provide an updated contamination status of the site by locating and interpreting the presence, nature, and extent of surface radiological contamination and (2) to provide a basis for the formulation of interim corrective action to limit human exposures to radioactivity and minimize the potential for contaminant dispersion. 13 refs., 17 figs., 5 tabs.« less
Assessment of the radiological impact of oil refining industry.
Bakr, W F
2010-03-01
The field of radiation protection and corresponding national and international regulations has evolved to ensure safety in the use of radioactive materials. Oil and gas production processing operations have been known to cause naturally occurring radioactive materials (NORMs) to accumulate at elevated concentrations as by-product waste streams. A comprehensive radiological study on the oil refining industry in Egypt was carried out to assess the radiological impact of this industry on the workers. Scales, sludge, water and crude oil samples were collected at each stage of the refining process. The activity concentration of (226)Ra, (232)Th and (40)K were determined using high-resolution gamma spectrometry. The average activity concentrations of the determined isotopes are lower than the IAEA exempt activity levels for NORM isotopes. Different exposure scenarios were studied. The average annual effective dose for workers due to direct exposure to gamma radiation and dust inhalation found to be 0.6 microSv and 3.2 mSv, respectively. Based on the ALARA principle, the results indicate that special care must be taken during cleaning operations in order to reduce the personnel's exposure due to maintenance as well as to avoid contamination of the environment. 2009 Elsevier Ltd. All rights reserved.
Machine Learning and Radiology
Wang, Shijun; Summers, Ronald M.
2012-01-01
In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077
Homeland Security Research Improves the Nation's Ability to ...
Technical Brief Homeland Security (HS) Research develops data, tools, and technologies to minimize the impact of accidents, natural disasters, terrorist attacks, and other incidents that can result in toxic chemical, biological or radiological (CBR) contamination. HS Research develops ways to detect contamination, sampling strategies, sampling and analytical methods, cleanup methods, waste management approaches, exposure assessment methods, and decision support tools (including water system models). These contributions improve EPA’s response to a broad range of environmental disasters.
REMOVAL OF 137Cs FROM DISSOLVED HANFORD TANK SALTCAKE BY TREATMENT WITH IONSIV IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapko, Brian M.; Sinkov, Serguei I.; Levitskaia, Tatiana G.
2005-03-01
This paper describes the preparation of a 137Cs-depleted form of dissolved Hanford tank saltcake. A composite feed solution was treated with IONSIV{reg_sign} IE-911, which effectively reduced the concentration of 137Cs. This allowed for subsequent testing of waste immobilization without significant radiological hazard. Limited characterization of the initial feed solution and a more extensive characterization of the 137Cs-depleted material also are provided.
Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.
Brown, Steven H; Chambers, Douglas B
2017-07-01
All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.
Pit 9 Category of Transuranic Waste Stored Below Ground within Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth M.
2014-01-08
A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP).This report summarizes available information on the origin, configuration, and composition of the waste containers within Pit 9, their physical and radiological characteristics, and issues that may be encountered in their retrieval and processing. Review of the available information indicates that Pit 9 should present no major issues in retrieval and processing, and most drums contain TRU waste that can be shipped to WIPP. The primary concern in retrieval is the integrity of containers that have been stored below-ground for 35 to 40 years. The most likely issue that will be encountered in processing containers retrieved from Pit 9 is the potential for items that are prohibited at WIPP such as sealed containers greater than four liters in size and free liquids that exceed limits for WIPP.« less
N Reactor Deactivation Program Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, J.L.
1993-12-01
This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directivemore » to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.« less
2014-01-01
Background The radiological quality of 226Ra, 232Th and 40K in some samples of water resources collected in Anarak-Khour a desertic area, Iran has been measured by direct gamma ray spectroscopy using high purity germanium detector in this paper. Result The concentration ranged from ≤0.5 to 9701 mBq/L for 226Ra; ≤0.2 to 28215 mBq/L for 232Th and < MDA to 10332 mBq/L for 40K. The radium equivalent activity was well below the defined limit of 370Bq/L. The calculated external hazard indices were found to be less than 1 which shows a low dose. Conclusion These results can be contributed to the database of this area because it may be used as disposal sites of nuclear waste in future. PMID:24883192
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, P.J.; Vance, J.N.
1990-08-01
Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less
"EcoRadiology"--pulling the plug on wasted energy in the radiology department.
McCarthy, Colin J; Gerstenmaier, Jan F; O' Neill, Ailbhe C; McEvoy, Sinead H; Hegarty, Chris; Heffernan, Eric J
2014-12-01
We sought to evaluate the power consumption of various devices around the radiology department, audit our use of recycling, and review efforts by vendors to reduce the environmental impact of their products. Using a readily available power monitor, we calculated the power consumption of different devices around our department. In particular, we calculated the financial and environmental cost of leaving equipment on overnight and/or at weekends. When it was not possible to measure energy usage directly, we obtained and reviewed relevant technical manuals. We contacted vendors directly to document how the environmental impact of new technology and decommissioning aging technology is being tackled. We found that 29 of 43 desktop computers and 25 of 27 picture archiving and communications system (PACS) reporting stations were left on needlessly overnight and/or at weekends, resulting in estimated electrical running costs while not in use of approximately $7253 per year, and CO2 emissions equivalent to the annual emissions of over 10 passenger cars. We discovered that none of our PACS reporting stations supported energy-saving modes such as "sleep" or "hibernate." Despite encouraging staff to turn off computers when not in use, a reaudit found no improvement in results. Simple steps such as turning off computers and air-conditioning units can produce very significant financial and environmental savings. Radiology can lead the way in making hospitals more energy efficient. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Aerial Measurement Systems
2012-07-31
The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergenciesmore » where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.« less
[Survey and analysis of radiation safety education at radiological technology schools].
Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio
2004-10-01
We carried out a questionnaire survey of all radiological technology schools, to investigate the status of radiation safety education. The questionnaire consisted of questions concerning full-time teachers, measures being taken for the Radiation Protection Supervisor Qualifying Examination, equipment available for radiation safety education, radiation safety education for other departments, curriculum of radiation safety education, and related problems. The returned questionnaires were analyzed according to different groups categorized by form of education and type of establishment. The overall response rate was 55%, and there were statistically significant differences in the response rates among the different forms of education. No statistically significant differences were found in the items relating to full-time teachers, measures for Radiation Protection Supervisor Qualifying Examination, and radiation safety education for other departments, either for the form of education or type of establishment. Queries on the equipment used for radiation safety education revealed a statistically significant difference in unsealed radioisotope institutes among the forms of education. In terms of curriculum, the percentage of radiological technology schools which dealt with neither the shielding calculation method for radiation facilities nor with the control of medical waste was found to be approximately 10%. Other educational problems that were indicated included shortages of full-time teachers and equipment for radiation safety education. In the future, in order to improve radiation safety education at radiological technology schools, we consider it necessary to develop unsealed radioisotope institutes, to appoint more full-time teachers, and to educate students about risk communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.Y.
2013-07-01
In August 2008, the U.S. Department of Homeland Security (DHS) issued its final Protective Action Guide (PAG) for radiological dispersal device (RDD) and improvised nuclear device (IND) incidents. This document specifies protective actions for public health during the early and intermediate phases and cleanup guidance for the late phase of RDD or IND incidents, and it discusses approaches to implementing the necessary actions. However, while the PAG provides specific guidance for the early and intermediate phases, it prescribes no equivalent guidance for the late-phase cleanup actions. Instead, the PAG offers a general description of a complex process using a site-specificmore » optimization approach. This approach does not predetermine cleanup levels but approaches the problem from the factors that would bear on the final agreed-on cleanup levels. Based on this approach, the decision-making process involves multifaceted considerations including public health, the environment, and the economy, as well as socio-political factors. In an effort to fully define the process and approach to be used in optimizing late-phase recovery and site restoration following an RDD or IND incident, DHS has tasked the NCRP with preparing a comprehensive report addressing all aspects of the optimization process. Preparation of the NCRP report is a three-year (2010-2013) project assigned to a scientific committee, the Scientific Committee (SC) 5-1; the report was initially titled, Approach to Optimizing Decision Making for Late- Phase Recovery from Nuclear or Radiological Terrorism Incidents. Members of SC 5-1 represent a broad range of expertise, including homeland security, health physics, risk and decision analysis, economics, environmental remediation and radioactive waste management, and communication. In the wake of the Fukushima nuclear accident of 2011, and guided by a recent process led by the White House through a Principal Level Exercise (PLE), the optimization approach has since been expanded to include off-site contamination from major nuclear power plant accidents as well as other nuclear or radiological incidents. The expanded application under the current guidance has thus led to a broadened scope of the report, which is reflected in its new title, Decision Making for Late-Phase Recovery from Nuclear or Radiological Incidents. The NCRP report, which is due for publication in 2013, will substantiate the current DHS guidance by clarifying and elaborating on the processes required for the development and implementation of procedures for optimizing decision making for late-phase recovery, enabling the establishment of cleanup goals on a site-specific basis. The report will contain a series of topics addressing important issues related to the long-term recovery from nuclear or radiological incidents. Special topics relevant to supporting the optimization of the decision-making process will include cost-benefit analysis, radioactive waste management, risk communication, stakeholder interaction, risk assessment, and decontamination approaches and techniques. The committee also evaluated past nuclear and radiological incidents for their relevance to the report, including the emerging issues associated with the Fukushima nuclear accident. Thus, due to the commonality of the late-phase issues (such as the potential widespread contamination following an event), the majority of the information pertaining to the response in the late-phase decision-making period, including site-specific optimization framework and approach, could be used or adapted for use in case of similar situations that are not due to terrorism, such as those that would be caused by major nuclear facility accidents or radiological incidents. To ensure that the report and the NCRP recommendations are current and relevant to the effective implementation of federal guidance, SC 5-1 has actively coordinated with the agencies of interest and other relevant stakeholders throughout the duration of the project. The resulting report will be an important resource to guide those involved in late-phase recovery efforts following a nuclear or radiological incident. (authors)« less
Radiology operations: what you don't know could be costing you millions.
Joffe, Sam; Drew, Donna; Bansal, Manju; Hase, Michael
2007-01-01
Rapid growth in advanced imaging procedures has left hospital radiology departments struggling to keep up with demand, resulting in loss of patients to facilities that can offer service more quickly. While the departments appear to be working at full capacity, an operational analysis of over 400 hospital radiology departments in the US by GE Healthcare has determined that, paradoxically, many departments are in fact underutilized and operating for below their potential capacity. While CT cycle time in hospitals that were studied averaged 35 minutes, top performing hospitals operated the same equipment at a cycle time of 15 minutes, yielding approximately double the throughput volume. Factors leading to suboptimal performance include accounting metrics that mask true performance, leadership focus on capital investment rather than operations, under staffing, under scheduling, poorly aligned incentives, a fragmented view of operations, lack of awareness of latent opportunities, and lack of sufficient skills and processes to implement improvements. The study showed how modest investments in radiology operations can dramatically improve access to services and profitability.
Radiological Scoping Survey of the Scotia Depot Scotia, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. N. Bailey
2005-02-05
At the request of the Defense Logistics Agency, the Oak Ridge Institute for Science and Education conducted radiological scoping surveys of the Scotia Depot during the period of September 24 through 27, 2007. The scoping survey included visual inspections and limited radiological surveys performed in accordance with area classification that included surface scans, total and removable activity measurements, and soil sampling.
Classification of Radiological Changes in Burst Fractures
Şentürk, Salim; Öğrenci, Ahmet; Gürçay, Ahmet Gürhan; Abdioğlu, Ahmet Atilla; Yaman, Onur; Özer, Ali Fahir
2018-01-01
AIM: Burst fractures can occur with different radiological images after high energy. We aimed to simplify radiological staging of burst fractures. METHODS: Eighty patients whom exposed spinal trauma and had burst fracture were evaluated concerning age, sex, fracture segment, neurological deficit, secondary organ injury and radiological changes that occurred. RESULTS: We performed a new classification in burst fractures at radiological images. CONCLUSIONS: According to this classification system, secondary organ injury and neurological deficit can be an indicator of energy exposure. If energy is high, the clinical status will be worse. Thus, we can get an idea about the likelihood of neurological deficit and secondary organ injuries. This classification has simplified the radiological staging of burst fractures and is a classification that gives a very accurate idea about the neurological condition. PMID:29531604
Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finucane, K.G.; Thompson, L.E.; Abuku, T.
The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements.more » However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes are outlined. (authors)« less
Machine learning and radiology.
Wang, Shijun; Summers, Ronald M
2012-07-01
In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ault, Timothy M.
The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.
Almahayni, T
2014-12-01
The BIOMASS methodology was developed with the objective of constructing defensible assessment biospheres for assessing potential radiological impacts of radioactive waste repositories. To this end, a set of Example Reference Biospheres were developed to demonstrate the use of the methodology and to provide an international point of reference. In this paper, the performance of the Example Reference Biosphere model ERB 2B associated with the natural release scenario, discharge of contaminated groundwater to the surface environment, was evaluated by comparing its long-term projections of radionuclide dynamics and distribution in a soil-plant system to those of a process-based, transient advection-dispersion model (AD). The models were parametrised with data characteristic of a typical rainfed winter wheat crop grown on a sandy loam soil under temperate climate conditions. Three safety-relevant radionuclides, (99)Tc, (129)I and (237)Np with different degree of sorption were selected for the study. Although the models were driven by the same hydraulic (soil moisture content and water fluxes) and radiological (Kds) input data, their projections were remarkably different. On one hand, both models were able to capture short and long-term variation in activity concentration in the subsoil compartment. On the other hand, the Reference Biosphere model did not project any radionuclide accumulation in the topsoil and crop compartments. This behaviour would underestimate the radiological exposure under natural release scenarios. The results highlight the potential role deep roots play in soil-to-plant transfer under a natural release scenario where radionuclides are released into the subsoil. When considering the relative activity and root depth profiles within the soil column, much of the radioactivity was taken up into the crop from the subsoil compartment. Further improvements were suggested to address the limitations of the Reference Biosphere model presented in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental Fuels Facility Re-categorization Based on Facility Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiss, Troy P.; Andrus, Jason
The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the DOE-ID Supplemental Guidance for DOE-STD-1027-92 based on the proposed downgrade of the initial facility categorization of Hazard Category 2.« less
Compliance of Iranian dentists with safety standards of oral radiology
Shahab, S; Kavosi, A; Nazarinia, H; Mehralizadeh, S; Mohammadpour, M; Emami, M
2012-01-01
Objectives Dentists use radiographs in their daily practice. Their knowledge and behaviour towards radiographic examination can affect patients' exposure to radiation. The aim of this study was to survey the knowledge and behaviour of Iranian dentists regarding oral radiology safety standards. Methods 1000 questionnaires were given to the participants of the 48th Annual Congress of the Iranian Dental Association, of which 700 were returned. The participants were asked about demographic data, primary knowledge of radiation protection, selection criteria, radiographic equipment and technique, methods of patient and personnel protection and management of radiographic waste. Descriptive analysis of data was performed. Results 44% of respondents said the initial radiograph they took was of the periapical view of a limited area. 12% preferred the periapical paralleling technique. F-speed film was used by 9% and E-speed film by 62%. Only 2% had digital receptors. Proper exposure time was selected by 26.5%. The use of long and rectangular collimators was 15% and 6%, respectively. 34% occasionally covered their patients with both thyroid shields and lead aprons. 36% used the position and distance rule correctly for their own protection. Proper disposal of the used processing solutions and the lead foils were done by only 1% and 3%, respectively. Conclusions It can be concluded that the majority of dentists in the study group did not select the proper method, material and equipment in order to minimize the exposure of their patient to unnecessary radiation in dental radiography. PMID:22301640
Wide Area Recovery and Resiliency Program (WARRP) Decon-13 Subject Matter Expert Meeting
2012-08-14
Japan, Chernobyl , Goiania Waste Screening Workshop August 14, 2012 Edward A. Tupin Center for Radiological Emergency Response Radiation Protection...Total release -10% - 20% of releases from Chernobyl (37 PBq = 1,000,000 Curies) L~:lCl.~== ~ Wide Ar£>a Contamination ~ MEXT data as of S£>pt£>mber...and longer-tenn interim storage - disposal likely will take more time 2 1 On April 26, 1986, Unit 4 of the Chernobyl Nuclear Power Plant suffered
Paschoa, A S
1998-03-01
The immense volume of naturally occurring radioactive materials (NORM) wastes produced annually by extracting industries throughout the world deserves to come to the attention of international and national environmental protection agencies and regulatory bodies. Although a great deal of work has been done in the fields of radiation protection and remedial actions concerning uranium and other mines, the need to dispose of diffuse NORM wastes will have environmental and regulatory implications that thus far are not fully appreciated. NORM wastes constitute, by and large, unwanted byproducts of industrial activities as diverse as thorium and uranium milling, niobium, tin and gold mining extraction, water treatment, and the production of oil, gas, phosphate fertilizer, coal fire and aluminum. The volumes of NORM wastes produced annually could reach levels so high that the existing low level radioactive waste (LLRW) facilities would be readily occupied by NORM if controlled disposal procedures were not adopted. On the other hand, NORM cannot just be ignored as being below radiological concern (BRC) or lower than exempt concentration levels (ECLs), because sometimes NORM concentrations reach levels as high as 1 x 10(3) kBq/kg for 226Ra, and not much less for 228Ra. Unfortunately, thus far there is not enough information available concerning NORM wastes in key industries, though the international scientific community has been concerned, for a long time now, with technologically enhanced natural radiation exposures (TENRE). This article is written with the intention of examining, to the extent possible, the potential environmental and regulatory implications of NORM wastes being produced in selected industries.
[Controlling instruments in radiology].
Maurer, M
2013-10-01
Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.
Lee, Young Han
2012-01-01
The objectives are (1) to introduce an easy open-source macro program as connection software and (2) to illustrate the practical usages in radiologic reading environment by simulating the radiologic reading process. The simulation is a set of radiologic reading process to do a practical task in the radiologic reading room. The principal processes are: (1) to view radiologic images on the Picture Archiving and Communicating System (PACS), (2) to connect the HIS/EMR (Hospital Information System/Electronic Medical Record) system, (3) to make an automatic radiologic reporting system, and (4) to record and recall information of interesting cases. This simulation environment was designed by using open-source macro program as connection software. The simulation performed well on the Window-based PACS workstation. Radiologists practiced the steps of the simulation comfortably by utilizing the macro-powered radiologic environment. This macro program could automate several manual cumbersome steps in the radiologic reading process. This program successfully acts as connection software for the PACS software, EMR/HIS, spreadsheet, and other various input devices in the radiologic reading environment. A user-friendly efficient radiologic reading environment could be established by utilizing open-source macro program as connection software. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Open Access Journal Policies: A Systematic Analysis of Radiology Journals.
Narayan, Anand; Lobner, Katie; Fritz, Jan
2018-02-01
The open access movement has pushed for greater access to scientific knowledge by expanding access to scientific journal articles. There is limited information about the extent to which open access policies have been adopted by radiology journals. We performed a systematic analysis to ascertain the proportion of radiology journals with open access options. A search was performed with the assistance of a clinical informationist. Full and mixed English-language diagnostic and interventional radiology Web of Science journals (impact factors > 1.0) were included. Nuclear medicine, radiation oncology, physics, and solicitation-only journals were excluded. Primary outcome was open access option (yes or no) with additional outcomes including presence or absence of embargo, complete or partial copyright transfer, publication fees, and self-archiving policies. Secondary outcomes included journal citations, journal impact factors, immediacy, Eigenfactor, and article influence scores. Independent double readings were performed with differences resolved by consensus, supplemented by contacting editorial staff at each journal. In all, 125 journals were identified; review yielded 49 journals (39%, mean impact factor of 2.61). Thirty-six of the journals had open access options (73.4%), and four journals were exclusively open access (8.2%). Twelve-month embargoes were most commonly cited (90.6%) with 28.6% of journals stating that they did not require a complete transfer of copyright. Prices for open access options ranged from $750 to $4,000 (median $3,000). No statistically significant differences were found in journal impact measures comparing journals with open access options to journals without open access options. Diagnostic and interventional radiology journals have widely adopted open access options with a few radiology journals being exclusively open access. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Atrophy of the quadriceps muscle in children with a painful hip.
Robben, S G; Lequin, M H; Meradji, M; Diepstraten, A F; Hop, W C
1999-09-01
The objective of this study was to determine the degree of muscle wasting of various components of the quadriceps muscle in children with a painful hip. Between January 1994 and September 1997, 327 consecutive children with a unilateral painful hip and/or limping were evaluated prospectively with ultrasonography. Quadriceps thickness was measured on both sides. Moreover, muscle thickness was measured in 59 control subjects. The patients were divided into eight groups; transient synovitis (n = 134), Perthes' disease (n = 35), slipped capital femoral epiphysis (n = 5), osteomyelitis (n = 4), aspecific synovitis (n = 5), rheumatoid arthritis (n = 3) and miscellaneous (n = 16). In 125 patients, no sonographic and radiological abnormalities were found and during follow-up the symptoms disappeared ('no pathology' group). Ipsilateral muscle wasting was present in all patient groups, whereas the control subjects showed no significant difference in muscle thickness between legs. The degree of muscle wasting was compared between transient synovitis, the 'no pathology' group, Perthes' disease and control subjects. For both quadriceps and vastus intermedius muscles, there was a significant difference between these groups, except between control subjects and the 'no pathology' group. For the rectus femoris muscle, there was a significant difference between these groups, except between transient synovitis and 'no pathology'. Muscle wasting showed a positive correlation with duration of symptoms and pre-existing muscle mass. In conclusion, different diseases show different degrees of muscle wasting, and there are different patterns of muscle wasting of various components of the quadriceps femoris muscle.
AMS measurements of 14C and 129I in seawater around radioactive waste dump sites
NASA Astrophysics Data System (ADS)
Povinec, P. P.; Oregioni, B.; Jull, A. J. T.; Kieser, W. E.; Zhao, X.-L.
2000-10-01
According to a recent IAEA compilation of inventories of radioactive wastes dumped in the world ocean, a total of 85 PBq of radioactive wastes were dumped, in the Atlantic (45 PBq), the Pacific (1.4 PBq) and the Arctic (38 PBq) Oceans and their marginal seas between 1946 and 1993, mostly in the form of low-level wastes. 3H, and 14C formed an important part of the beta-activity of these dumped wastes. Because of its long half-life, 14C will be the main constituent in possible leakages from the wastes in the future. On the other hand, 14C and 129I are important radioactive tracers which have been artificially introduced into the oceans. Small amounts of 14C and 129I can be easily measured by accelerator mass spectrometry (AMS) on mg-size samples of carbon and iodine extracted from 500 ml seawater samples. The high analytical sensitivity enables one therefore to find even trace amounts of 14C and 129I which could be released from radioactive wastes, and to compare the measured levels with the global distribution of these radionuclides. The IAEAs Marine Environment Laboratory (IAEA-MEL) has been engaged in an assessment program related to radioactive waste dumping in the oceans since 1992 and has participated in several expeditions to the Atlantic, Arctic, Indian and Pacific Oceans to sample seawater, biota and sediment for radiological assessment studies. In the present paper, we report on methods of 14C and 129I measurements in seawater by AMS and present data on the NE Atlantic, the Arctic and the NW Pacific Ocean dumping sites. A small increase of 14C was observed at the NE Atlantic dumping site.
Marshall, Nina L; Spooner, Muirne; Galvin, P Leo; Ti, Joanna P; McElvaney, N Gerald; Lee, Michael J
2011-01-01
A preliminary audit of orders for computed tomography was performed to evaluate the typical performance of interns ordering radiologic examinations. According to the audit, the interns showed only minimal improvement after 8 months of work experience. The online radiology ordering module (ROM) program included baseline assessment of student performance (part I), online learning with the ROM (part II), and follow-up assessment of performance with simulated ordering with the ROM (part III). A curriculum blueprint determined the content of the ROM program, with an emphasis on practical issues, including provision of logistic information, clinical details, and safety-related information. Appropriate standards were developed by a committee of experts, and detailed scoring systems were devised for assessment. The ROM program was successful in addressing practical issues in a simulated setting. In the part I assessment, the mean score for noting contraindications for contrast media was 24%; this score increased to 59% in the part III assessment (P = .004). Similarly, notification of methicillin-resistant Staphylococcus aureus status and pregnancy status and provision of referring physician contact information improved significantly. The quality of the clinical notes was stable, with good initial scores. Part III testing showed overall improvement, with the mean score increasing from 61% to 76% (P < .0001). In general, medical students lack the core knowledge that is needed for good-quality ordering of radiology services, and the experience typically afforded to interns does not address this lack of knowledge. The ROM program was a successful intervention that resulted in statistically significant improvements in the quality of radiologic examination orders, particularly with regard to logistic and radiation safety issues.
Analysis of operation UPSHOT-KNOTHOLE nuclear test BADGER radiological and meteorological data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, V.E.
1986-04-01
This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the BADGER nuclear test of Operation UPSHOT-KNOTHOLE. Inconsistencies in the radiological data and their resolution are discussed. The methods of normalizing the radiological data to a standard time, of converting the aerial data to equivalent ground-level values, and of estimating fallout-arrival times are presented. The meteorological situations on event day and the following day are described. A comparison of the WSNSO fallout analysis with an analysis performed during the 1950's is presented. The radiological data used to derive the WSNSO falloutmore » pattern are tabulated in an appendix.« less
Occupational necessity and educational invention: resident teaching of radiologic technologists.
Gunderman, Richard B; Fraley, Ronald; Jackson, Valerie; Robinson, Susan; Williamson, Kenneth
2003-04-01
Radiology faces a severe and growing shortage of radiologic technologists. One way of redressing this problem is to improve the quality of education provided to radiologic technology students. Yet growing clinical demands increasingly erode faculty time for teaching. This study examined whether radiology residents could provide equivalent instruction in radiologic technology at lower cost, and whether such experience could enhance residents' interest in teaching as part of their careers. Course evaluation forms completed by the students in a required radiologic pathology course were reviewed, and student-reported faculty and resident performances in teaching were compared. Residents also were surveyed for their reactions to the experience of teaching this course. Ninety percent of students (27 of 30) either agreed or strongly agreed that the course was well taught by radiology faculty members, and 97% (29 of 30) either agreed or strongly agreed that the course was well taught by radiology residents. The total direct cost of instruction by radiology residents was 73% lower than the cost of instruction by faculty. Residents who participated in teaching found the experience worthwhile, and they described a wide variety of personal and educational benefits. Involving radiology residents in teaching can help redress the growing shortage of radiologic technologists, relieve some of the pressure on faculty time, and contribute to the professional development of the next generation of radiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitratemore » waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Most, W. A.; Kehrman, R.; Gist, C.
2002-02-26
The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. Themore » DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.« less
Vitamin D, a modulator of musculoskeletal health in chronic kidney disease.
Molina, Pablo; Carrero, Juan J; Bover, Jordi; Chauveau, Philippe; Mazzaferro, Sandro; Torres, Pablo Ureña
2017-10-01
The spectrum of activity of vitamin D goes beyond calcium and bone homeostasis, and growing evidence suggests that vitamin D contributes to maintain musculoskeletal health in healthy subjects as well as in patients with chronic kidney disease (CKD), who display the combination of bone metabolism disorder, muscle wasting, and weakness. Here, we review how vitamin D represents a pathway in which bone and muscle may interact. In vitro studies have confirmed that the vitamin D receptor is present on muscle, describing the mechanisms whereby vitamin D directly affects skeletal muscle. These include genomic and non-genomic (rapid) effects, regulating cellular differentiation and proliferation. Observational studies have shown that circulating 25-hydroxyvitamin D levels correlate with the clinical symptoms and muscle morphological changes observed in CKD patients. Vitamin D deficiency has been linked to low bone formation rate and bone mineral density, with an increased risk of skeletal fractures. The impact of low vitamin D status on skeletal muscle may also affect muscle metabolic pathways, including its sensitivity to insulin. Although some interventional studies have shown that vitamin D may improve physical performance and protect against the development of histological and radiological signs of hyperparathyroidism, evidence is still insufficient to draw definitive conclusions. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S.K.; Cole, C.R.; Bond, F.W.
1979-12-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow.« less
Improved understanding of human anatomy through self-guided radiological anatomy modules.
Phillips, Andrew W; Smith, Sandy G; Ross, Callum F; Straus, Christopher M
2012-07-01
To quantifiably measure the impact of self-instructed radiological anatomy modules on anatomy comprehension, demonstrated by radiology, gross, and written exams. Study guides for independent use that emphasized structural relationships were created for use with two online radiology atlases. A guide was created for each module of the first year medical anatomy course and incorporated as an optional course component. A total of 93 of 96 eligible students participated. All exams were normalized to control for variances in exam difficulty and body region tested. An independent t-test was used to compare overall exam scores with respect to guide completion or incompletion. To account for aptitude differences between students, a paired t-test of each student's exam scores with and without completion of the associated guide was performed, thus allowing students to serve as their own controls. Twenty-one students completed no study guides; 22 completed all six guides; and 50 students completed between one and five guides. Aggregate comparisons of all students' exam scores showed significantly improved mean performance when guides were used (radiology, 57.8% [percentile] vs. 45.1%, P < .001; gross, 56.9% vs. 46.5%, P = .001; written, 57.8% vs. 50.2%, P = .011). Paired comparisons among students who completed between one and five guides demonstrated significantly higher mean practical exam scores when guides were used (radiology, 49.3% [percentile] vs. 36.0%, P = .001; gross, 51.5% vs. 40.4%, P = .005), but not higher written scores. Radiological anatomy study guides significantly improved anatomy comprehension on radiology, gross, and written exams. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
Sanders, Vicki L; Flanagan, Jennifer
2015-01-01
The purpose of the literature review was to assess the origins of radiology physician extenders and examine the current roles found in the literature of advanced practice physician extenders within medical imaging. Twenty-six articles relating to physician assistants (PAs), nurse practitioners (NPs), radiologist assistants (RAs), and nuclear medicine advanced associates (NMAAs) were reviewed to discern similarities and differences in history, scope of practice, and roles in the medical imaging field. The literature showed PAs and NPs are working mostly in interventional radiology. PAs, NPs, and RAs perform similar tasks in radiology, including history and physicals, evaluation and management, preprocedure work-up, obtaining informed consent, initial observations/reports, and post-procedure follow-up. NPs and PAs perform a variety of procedures but most commonly vascular access, paracentesis, and thoracentesis. RAs perform gastrointestinal, genitourinary, nonvascular invasive fluoroscopy procedures, and vascular access procedures. The review revealed NMAAs are working in an advanced role, but no specific performances of procedures was found in the literature, only suggested tasks and clinical competencies. PAs, NPs, and RAs are currently the three main midlevel providers used in medical imaging. These midlevel providers are being used in a variety of ways to increase the efficiency of the radiologist and provide diagnostic and therapeutic radiologic procedures to patients. NMAAs are being used in medical imaging but little literature is available on current roles in clinical practice. More research is needed to assess the exact procedures and duties being performed by these medical imaging physician extenders.
Carral, Florentino; Ayala, María del Carmen; Jiménez, Ana Isabel; García, Concepción
2016-02-01
Routine thyroid ultrasound examination in a single medical appointment is rarely performed in Spain. The objective of this study was to evaluate the care and economic impact of thyroid US examination in a single endocrine appointment. A prospective, observational, descriptive study was conducted to analyze data from 2274 patients (mean age, 59±16 years; 83% females) performed at least one thyroid US in a single visit to an endocrinology clinic during 2013 and 2014. The number of endocrine acts with thyroid US, single endocrine and US acts without review, and the change in the number of thyroid US requested by endocrinologists to the radiology department and total thyroid US examinations performed at the radiology department during the study period were assessed. In 2013 and 2014, 2558 endocrine acts with thyroid US were performed, of which 42.2% were single endocrine and US appointments without a second endocrine act, with estimated savings of €58,946.40. As compared to 2012, the number of thyroid US requested by endocrinologists to the radiology department decreased by 43.3% and 86.0% in 2013 and 2014 respectively, and total thyroid US performed by the radiology department decreased by 28.1% and 68.3% respectively, with estimated savings of €94,441.36. Thyroid US examination in a single endocrine appointment allows for decreasing the number of both second endocrine acts and thyroid US examinations performed at the radiology department, thus reducing the number of unnecessary clinic visits and promoting considerable economic savings. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dionne, B.J.; Morris, S.C. III; Baum, J.W.
1998-01-01
The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example ofmore » a risk-based decision technique. This document contains the Appendices for the report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haudebourg, Raphael; Fichet, Pascal; Goutelard, Florence
The detection (location and quantification) of nuclear facilities to be dismantled possible contamination with low-range particles emitters ({sup 3}H, other low-energy β emitters, a emitters) remains a tedious and expensive task. Indeed, usual remote counters show a too low sensitivity to these non-penetrating radiations, while conventional wipe tests are irrelevant for fixed radioactivity evaluation. The only method to accurately measure activity levels consists in sampling and running advanced laboratory analyses (spectroscopy, liquid scintillation counting, pyrolysis...). Such measurements generally induce sample preparation, waste production (destructive analyses, solvents), nuclear material transportation, long durations, and significant labor mobilization. Therefore, the search for themore » limitation of their number and cost easily conflicts with the necessity to perform a dense screening for sampling (to maximize the representativeness of the samples), in installations of thousands of square meters (floors, wells, ceilings), plus furniture, pipes, and other wastes. To overcome this contradiction, Digital Autoradiography (D. A.) was re-routed from bio molecular research to radiological mapping of nuclear installations under dismantling and to waste and sample analysis. After in-situ exposure to the possibly-contaminated areas to investigate, commercial reusable radiosensitive phosphor screens (of a few 100 cm{sup 2}) were scanned in the proper laboratory device and sharp quantitative images of the radioactivity could be obtained. The implementation of geostatistical tools in the data processing software enabled the exhaustive characterization of concrete floors at a rate of 2 weeks / 100 m{sup 2}, at lowest costs. Various samples such as drilled cores, or tank and wood pieces, were also successfully evaluated with this method, for decisive results. Thanks to the accurate location of potential contamination spots, this approach ensures relevant and representative sampling for further laboratory analyses and should be inserted in the range of common tools used in dismantling. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, D.
2012-05-14
Cellulosic materials include wood, paper, rags, and cardboard products. These materials are co-disposed with radiological waste at the Savannah River Site's (SRS) E-Area Low-Level Waste Facility (ELLWF). Cellulosic materials readily degrade in the environment to form cellulose degradation products (CDP) that will partition to the sediment or remain mobile in the groundwater. Savannah River National Lab (SRNL) has conducted studies to estimate the impact of CDP on radionuclide sorption to SRS sediments (Kd values). It was found that CDP impact on radionuclide sorption varies with radionuclide and CDP concentration. Furthermore, it was found that the amount of carbon (C) inmore » the system could increase or decrease Kd values with respect to the base case of when no CDP was added. Throughout the expected pH range of the ELLWF, a low concentration of CDP in the system would increase Kd values (because C would sorb to the sediment and provide more exchange sites for radionuclides to sorb), whereas greater concentrations of CDP ({ge}20 mg/L C) would decrease Kd values (because C would remain in solution and complex the radionuclide and not permit the radionuclide to sorb to the sediment). A review of >230 dissolved organic carbon (DOC) groundwater concentrations in the Old Radioactive Waste Burial Ground (ORWBG) at the SRS indicated that the average DOC concentration, a gross measure of CDP, was 5 mg/L C. At approximately this DOC concentration, the laboratory studies demonstrated that no anions (Tc, I, or Se) or cations (Ni, Sr, Ce, Eu, Zr, or Th) have decreased sorption in the presence of carbon (an analogue for CDP).« less
Bonczyk, Michal; Michalik, Boguslaw; Chmielewska, Izabela
2017-03-01
The radioactive lead isotope 210 Pb occurs in waste originating from metal smelting and refining industry, gas and oil extraction and sometimes from underground coal mines, which are deposited in natural environment very often. Radiation risk assessment requires accurate knowledge about the concentration of 210 Pb in such materials. Laboratory measurements seem to be the only reliable method applicable in environmental 210 Pb monitoring. One of the methods is gamma-ray spectrometry, which is a very fast and cost-effective method to determine 210 Pb concentration. On the other hand, the self-attenuation of gamma ray from 210 Pb (46.5 keV) in a sample is significant as it does not depend only on sample density but also on sample chemical composition (sample matrix). This phenomenon is responsible for the under-estimation of the 210 Pb activity concentration level often when gamma spectrometry is applied with no regard to relevant corrections. Finally, the corresponding radiation risk can be also improperly evaluated. Sixty samples of coal mining solid tailings (sediments created from underground mining water) were analysed. Slightly modified and adapted to the existing laboratory condition, a transmission method has been applied for the accurate measurement of 210 Pb concentration . The observed concentrations of 210 Pb range between 42.2 ÷ 11,700 Bq·kg -1 of dry mass. Experimentally obtained correction factors related to a sample density and elemental composition range between 1.11 and 6.97. Neglecting this factor can cause a significant error or underestimations in radiological risk assessment. The obtained results have been used for environmental radiation risk assessment performed by use of the ERICA tool assuming exposure conditions typical for the final destination of such kind of waste.
ERIC Educational Resources Information Center
van der Gijp, A.; Ravesloot, C. J.; Jarodzka, H.; van der Schaaf, M. F.; van der Schaaf, I. C.; van Schaik, J. P.; ten Cate, Th. J.
2017-01-01
Eye tracking research has been conducted for decades to gain understanding of visual diagnosis such as in radiology. For educational purposes, it is important to identify visual search patterns that are related to high perceptual performance and to identify effective teaching strategies. This review of eye-tracking literature in the radiology…
Otogenic Meningitis: A Comparison of Diagnostic Performance of Surgery and Radiology.
Bruschini, Luca; Fortunato, Simona; Tascini, Carlo; Ciabotti, Annalisa; Leonildi, Alessandro; Bini, Belinda; Giuliano, Simone; Abbruzzese, Arturo; Berrettini, Stefano; Menichetti, Francesco
2017-01-01
Development of intracranial complications from middle ear infections might be difficult to diagnose. We compared radiological and surgical findings of 26 patients affected by otogenic meningitis. Results of our analysis showed that surgery is more reliable than imaging in revealing bone defects. Therefore, suggest that surgery be performed for diagnosis and eventual management of all cases of suspected otogenic meningitis.
An honest day's work: pay for performance in a pediatric radiology department.
Bisset, George S
2017-06-01
Compensation models in radiology take a variety of forms, but regardless of practice type, successful models must reward productivity, be simple, and epitomize fairness. The ideal model should also be flexible enough to transition, based upon the changing strategic goals of a department. The plan should be constructed around rewarding the behaviors that the organization values. In this minisymposium article the author presents the value of different types of compensation plans and discusses advantages and disadvantages. Finally, the author presents a pay-for-performance model that has had long-term success at a private-turned-academic practice in pediatric radiology.
Nagy, Paul G; Warnock, Max J; Daly, Mark; Toland, Christopher; Meenan, Christopher D; Mezrich, Reuben S
2009-11-01
Radiology departments today are faced with many challenges to improve operational efficiency, performance, and quality. Many organizations rely on antiquated, paper-based methods to review their historical performance and understand their operations. With increased workloads, geographically dispersed image acquisition and reading sites, and rapidly changing technologies, this approach is increasingly untenable. A Web-based dashboard was constructed to automate the extraction, processing, and display of indicators and thereby provide useful and current data for twice-monthly departmental operational meetings. The feasibility of extracting specific metrics from clinical information systems was evaluated as part of a longer-term effort to build a radiology business intelligence architecture. Operational data were extracted from clinical information systems and stored in a centralized data warehouse. Higher-level analytics were performed on the centralized data, a process that generated indicators in a dynamic Web-based graphical environment that proved valuable in discussion and root cause analysis. Results aggregated over a 24-month period since implementation suggest that this operational business intelligence reporting system has provided significant data for driving more effective management decisions to improve productivity, performance, and quality of service in the department.
Darras, Kathryn E; Worthington, Anne; Russell, David; Hou, Daniel J; Forster, Bruce B; Hague, Cameron J; Mar, Colin; Chang, Silvia D
2016-07-01
In order to ease the transition from internship to diagnostic radiology residency, a year-long didactic introduction to radiology course was offered to post-graduate year one (PGY-1) diagnostic radiology residents during their internship, which consisted of 27 hours of lecture over 9 months. The purpose of this study was to determine the quantitative and qualitative educational value of this course and its effect with respect to on-call preparedness. Two consecutive cohorts of Diagnostic Radiology residents were included: the first cohort (PGY-1s in 2011-2012) did not participate in the new course (Old Curriculum Residents) and the second cohort (PGY-1s in 2012-2013) completed the new course (New Curriculum Residents). These two cohorts were compared both qualitatively and quantitatively. Scores were compared from the standardized Canadian National Pre-Call Observed Standardized Clinical Examination and American College of Radiology Diagnostic Radiology In-Training examination, which are taken in the PGY-2 year, at months 5 and 7, respectively. In addition, staff observation of on-call resident performance and resident self-reported preparedness were considered. Cohorts were compared using Mann-Whitney U test with significance defined as P value <0.05. P values from 0.05 to 0.10 were noted as possibly significant and further analyzed using a Cohen d test where the difference was determined to be small (0.2), medium (0.5), or large (0.8). New Curriculum Residents reported that the content of the PGY1 curriculum was more appropriate than the old curriculum to prepare them for call in PGY2 (P = 0.013). New Curriculum Residents scored better than the Old Curriculum Residents on the Diagnostic Radiology In-Training examination (P = 0.039) and on the emergency cases of the Canadian National Pre-Call Observed Standardized Clinical Examination (P = 0.035). Staff radiologists, who were not blinded, reported that the New Curriculum Residents were better prepared for daytime (P = 0.006) and overnight (P = 0.008) independent call were better prepared to perform common ultrasound examinations alone (P = 0.049), and required less guidance while on call for nine competency areas. There was, however, no statistical difference between the residents' self-reported preparedness for independent call. Participation in a lecture-based introductory radiology curriculum during the PGY-1 internship year improved both radiology residents' preparedness for call and their performance in PGY-2. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Is Radiologic Evaluation Necessary to Find out Foreign Bodies in Nasal Cavity?
Oh, Hoon; Min, Hyun Jin; Yang, Hoon Shik; Kim, Kyung Soo
2016-01-01
Although there were previous studies on the clinical aspects such as etiology, treatment modalities, studies regarding the necessity of radiologic evaluation for nasal foreign body were limited. The aim of this study is to evaluate the necessity and indication of radiologic evaluation for nasal foreign bodies. There are consecutive patients aged less than 10 years who presented with suspected foreign bodies in nasal cavity. We reviewed the patient's age and sex, including the methods of evaluation, management tools, and types of foreign bodies. There were 35 cases (11.4%) on whom radiographs were performed in the 24 uncooperative patients and 11 cooperative patients who were not identified with any foreign bodies via nasal endoscopy. Among them, only 4 cases had positive reports of foreign body and the others were normal radiologic findings. We suggest that the radiologic evaluation is always not necessary to find the location of nasal foreign bodies. It, however, should be performed in cases of negative findings of physical examination with anterior rhinoscopy or sinus endoscopy and unwitnessed foreign bodies to rule out metallic contents, especially button type battery.
Hansmann, Jan; Henzler, Thomas; Gaba, Ron C; Morelli, John N
2017-01-01
We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms "interventional/computed tomography" and "radiation dose/radiation dose reduction." A PubMed query using the above-mentioned search terms for the years of 2005-2015 was performed. Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6-27) and 246±105 diagnostic radiology abstracts (range, 112-389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79-187) and 1205±307 publications (range, 829-1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted.
Hansmann, Jan; Henzler, Thomas; Gaba, Ron C.; Morelli, John N.
2017-01-01
PURPOSE We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. METHODS Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms “interventional/computed tomography” and “radiation dose/radiation dose reduction.” A PubMed query using the above-mentioned search terms for the years of 2005–2015 was performed. RESULTS Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6–27) and 246±105 diagnostic radiology abstracts (range, 112–389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79–187) and 1205±307 publications (range, 829–1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). CONCLUSION The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted. PMID:28287072
Itri, Jason N; Lawson, Leslie M
2016-07-01
Radiology leaders can have a profound impact on the success and working environment of a radiology department, promoting core values and inspiring staff members to achieve the organization's mission. On the other hand, ineffective leaders can have a devastating effect on a radiology department by impairing communication among members, undermining staff commitment to the organization's success, and stifling the development of other staff members and leaders in the organization. One of the most important investments a radiology department can make is in identifying, cultivating, and promoting new leaders. The authors describe 13 habits and characteristics of new leaders that lead these individuals to address situations in both ineffective and counterproductive ways, impeding the performance of a radiology department and its capacity to play a meaningful role in shaping the future of radiology. New leaders must continually learn and improve their leadership skills if they are to avoid the destructive habits of ineffective leaders and successfully overcome the challenges facing radiology today. Senior leaders may also benefit from understanding the pitfalls that make leaders ineffective and should strive to continually improve their leadership skills given the critical role of leadership in the success of radiology departments. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Paats, A; Alumäe, T; Meister, E; Fridolin, I
2018-04-30
The aim of this study was to analyze retrospectively the influence of different acoustic and language models in order to determine the most important effects to the clinical performance of an Estonian language-based non-commercial radiology-oriented automatic speech recognition (ASR) system. An ASR system was developed for Estonian language in radiology domain by utilizing open-source software components (Kaldi toolkit, Thrax). The ASR system was trained with the real radiology text reports and dictations collected during development phases. The final version of the ASR system was tested by 11 radiologists who dictated 219 reports in total, in spontaneous manner in a real clinical environment. The audio files collected in the final phase were used to measure the performance of different versions of the ASR system retrospectively. ASR system versions were evaluated by word error rate (WER) for each speaker and modality and by WER difference for the first and the last version of the ASR system. Total average WER for the final version throughout all material was improved from 18.4% of the first version (v1) to 5.8% of the last (v8) version which corresponds to relative improvement of 68.5%. WER improvement was strongly related to modality and radiologist. In summary, the performance of the final ASR system version was close to optimal, delivering similar results to all modalities and being independent on user, the complexity of the radiology reports, user experience, and speech characteristics.
Nevada National Security Site Environmental Report Summary 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wills, Cathy
This document is a summary of the full 2016 Nevada National Security Site Environmental Report (NNSSER) prepared by the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/ NFO). This summary provides an abbreviated and more readable version of the full NNSSER. NNSA/NFO prepares the NNSSER to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the Nevada National Security Site (NNSS) to protect the public and the environment from radiation hazards and from potential nonradiological impacts. It is a comprehensive report of environmental activities performed at the NNSS andmore » offsite facilities over the previous calendar year. The NNSS is currently the nation’s unique site for ongoing national security–related missions and high-risk operations. The NNSS is located about 65 miles northwest of Las Vegas. The approximately 1,360-square-mile site is one of the largest restricted access areas in the United States. It is surrounded by federal installations with strictly controlled access as well as by lands that are open to public entry. In 2016, National Security Technologies, LLC (NSTec), was the NNSS Management and Operations Contractor accountable for ensuring work was performed in compliance with environmental regulations. NNSS activities in 2016 continued to be diverse, with the primary goal to ensure that the existing U.S. stockpile of nuclear weapons remains safe and reliable. Other activities included weapons of mass destruction first responder training; the controlled release of hazardous material at the Nonproliferation Test and Evaluation Complex (NPTEC); remediation of legacy contamination sites; characterization of waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico, or the Idaho National Laboratory in Idaho Falls, Idaho; disposal of low-level and mixed low-level radioactive waste; and environmental research. Facilities and centers that support the National Security/Defense mission include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility (DAF), National Criticality Experiments Research Center (NCERC) located in the DAF, Joint Actinide Shock Physics Experimental Research (JASPER) Facility, Dense Plasma Focus (DPF) Facility located in the Los Alamos Technical Facility (LATF), and the Radiological/ Nuclear Countermeasures Test and Evaluation Complex (RNCTEC). Facilities that support the Environmental Management mission include the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS), which has been in cold standby since 2006.« less
Radiological Environmental Protection for LCLS-II High Power Operation
NASA Astrophysics Data System (ADS)
Liu, James; Blaha, Jan; Cimeno, Maranda; Mao, Stan; Nicolas, Ludovic; Rokni, Sayed; Santana, Mario; Tran, Henry
2017-09-01
The LCLS-II superconducting electron accelerator at SLAC plans to operate at up to 4 GeV and 240 kW average power, which would create higher radiological impacts particularly near the beam loss points such as beam dumps and halo collimators. The main hazards to the public and environment include direct or skyshine radiation, effluent of radioactive air such as 13N, 15O and 41Ar, and activation of groundwater creating tritium. These hazards were evaluated using analytic methods and FLUKA Monte Carlo code. The controls (mainly extensive bulk shielding and local shielding around high loss points) and monitoring (neutron/photon detectors with detection capabilities below natural background at site boundary, site-wide radioactive air monitors, and groundwater wells) were designed to meet the U.S. DOE and EPA, as well as SLAC requirements. The radiological design and controls for the LCW systems [including concrete housing shielding for 15O and 11C circulating in LCW, 7Be and erosion/corrosion products (22Na, 54Mn, 60Co, 65Zn, etc.) captured in resin and filters, leak detection and containment of LCW with 3H and its waste water discharge; explosion from H2 build-up in surge tank and release of radionuclides] associated with the high power beam dumps are also presented.
MARSAME Radiological Release Report for Archaeological Artifacts Excavated from Area L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruedig, Elizabeth; Whicker, Jeffrey Jay; Gillis, Jessica Mcdonnel
In 1991 Los Alamos National Laboratory’s (LANL’s) cultural resources team excavated archaeological site LA 4618 located at Technical Area 54, within Material Disposal Area L (MDA L). MDA L received non-radioactive chemical waste from the early 1960s until 1985. Further development of the MDA required excavation of several cultural sites under National Historic Preservation Act requirements; artifacts from these sites have been subsequently stored at LANL. The LANL cultural resources group would now like to release these artifacts to the Museum of Indian Arts and Culture in Santa Fe for curation. The history of disposal at Area L suggests thatmore » the artifact pool is unlikely to be chemically contaminated and LANL staff washed each artifact at least once following excavation. Thus, it is unlikely that the artifacts present a chemical hazard. LANL’s Environmental Stewardship group (EPC-ES) has evaluated the radiological survey results for the Area L artifact pool and found that the items described in this report meet the criteria for unrestricted radiological release under Department of Energy (DOE) Order 458.1 Radiation Protection of the Public and the Environment and are candidates for release without restriction from LANL control. This conclusion is based on the known history of MDA L and on radiation survey data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-09-28
Activities carried out by the American College of Radiology are described. Guidelines on radiographic techniques for radiological technicians were developed. Annual training sessions for technologists and physicians were conducted by the American College of Radiology Task Force on Pneumoconiosis. Regulations for performing chest x rays were reviewed. Program activities such as the 12-point International Labor Organization (ILO) classification scale for diagnosis of coal workers' pneumoconiosis, and the reporting form for use of the 1980 ILO classification system were reviewed. The American College of Radiology maintained liaison between NIOSH and other medical specialty societies such as the American College of Chestmore » Physicians, the College of American Pathologists, the American Medical Association, and the American Osteopathic College of Radiology. The American College of Radiology assisted NIOSH with the initiation, development, and maintenance of a quality control method to monitor and advise physicians on the reading of radiographs.« less
Updates on Percutaneous Radiologic Gastrostomy/Gastrojejunostomy and Jejunostomy
Park, Auh-Whan
2010-01-01
Gastrostomy placement for nutritional support for patients with inadequate oral intake has been attempted using surgical, endoscopic, and, more recently, percutaneous radiologically guided methods. Surgical gastrostomy has been superseded by both endoscopic and radiologic gastrostomy. We describe herein the indications, contraindications, patient preparations, techniques, complications, and aftercare with regard to radiologic gastrostomy. In addition, we discuss the available tube types and their perceived advantages. There remain some controversies regarding gastropexy performance and primary percutaneous gastrojejunostomy. Percutaneous jejunostomy is indicated for patients whose stomach is inaccessible for gastrostomy placement or for those who have had a previous gastrectomy. PMID:21103291
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M.
The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology.more » The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marceau, Thomas E.; Watson, Thomas L.
One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historicmore » or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.« less
1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, C.H.; Duncan, D.; Sanchez, R.
1997-08-01
Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiologicalmore » effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
This Readiness Assessment Plan has been prepared to document operational readiness for the following maintenance action: (1) removal of sediment from the White Oak Creek and Melton Branch Weir Stilling Pools and (2) disposal of the radiologically contaminated sediment in another location upstream of the weirs in an area previously contaminated by stream overflow from Melton Branch in Waste Area Grouping 2 (WAG) at Oak Ridge National Laboratory. This project is being performed as a maintenance action rather than an action under the Comprehensive Environmental Response, Compensation, and Liability Act because the risk to human health and environment is wellmore » below the US Environmental Protection Agency`s level of concern. The decision to proceed as a maintenance action was documented by an interim action proposed plan, which is included in the administrative record. The administrative record is available for review at the US Department of Energy Information Resource Center, 105 Broadway Avenue, Oak Ridge, Tennessee 37830.« less
Waste Isolation Pilot Plant Site Environmental Report for 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooda, Balwan S.; Allen, Vivian L.
This 1998 annual Site Environmental Report (SER) was prepared in accordance with U.S. Department of Energy (DOE) Order 5400.1, ''General Environmental Protection Program''; DOE Order 231.1, ''Environmental Safety and Health Reporting''; the ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' (DOE/EH-0173T); and the Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an SER to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of the SER is to provide a comprehensive description of operational environmental monitoring activities, an abstract of environmental activities conducted tomore » characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year ( CY) 1998. The content of this SER is not restricted to a synopsis of the required data. Information pertaining to new and continued monitoring and compliance activities during CY 1998 are also included.« less
PO*WW*ER mobile treatment unit process hazards analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, R.B.
1996-06-01
The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented PO*WW*ER mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat aqueous mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses evaporation to separate organics and water from radionuclides and solids, and catalytic oxidation to convert the hazardous into byproducts. This process hazards analysis evaluated a number of accident scenarios not directly related to the operation of the MTU, such as natural phenomena damagemore » and mishandling of chemical containers. Worst case accident scenarios were further evaluated to determine the risk potential to the MTU and to workers, the public, and the environment. The overall risk to any group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.« less
Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.
Tang, An; Tam, Roger; Cadrin-Chênevert, Alexandre; Guest, Will; Chong, Jaron; Barfett, Joseph; Chepelev, Leonid; Cairns, Robyn; Mitchell, J Ross; Cicero, Mark D; Poudrette, Manuel Gaudreau; Jaremko, Jacob L; Reinhold, Caroline; Gallix, Benoit; Gray, Bruce; Geis, Raym
2018-05-01
Artificial intelligence (AI) is rapidly moving from an experimental phase to an implementation phase in many fields, including medicine. The combination of improved availability of large datasets, increasing computing power, and advances in learning algorithms has created major performance breakthroughs in the development of AI applications. In the last 5 years, AI techniques known as deep learning have delivered rapidly improving performance in image recognition, caption generation, and speech recognition. Radiology, in particular, is a prime candidate for early adoption of these techniques. It is anticipated that the implementation of AI in radiology over the next decade will significantly improve the quality, value, and depth of radiology's contribution to patient care and population health, and will revolutionize radiologists' workflows. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI working group with the mandate to discuss and deliberate on practice, policy, and patient care issues related to the introduction and implementation of AI in imaging. This white paper provides recommendations for the CAR derived from deliberations between members of the AI working group. This white paper on AI in radiology will inform CAR members and policymakers on key terminology, educational needs of members, research and development, partnerships, potential clinical applications, implementation, structure and governance, role of radiologists, and potential impact of AI on radiology in Canada. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Qualitative review of usability problems in health information systems for radiology.
Dias, Camila Rodrigues; Pereira, Marluce Rodrigues; Freire, André Pimenta
2017-12-01
Radiology processes are commonly supported by Radiology Information System (RIS), Picture Archiving and Communication System (PACS) and other software for radiology. However, these information technologies can present usability problems that affect the performance of radiologists and physicians, especially considering the complexity of the tasks involved. The purpose of this study was to extract, classify and analyze qualitatively the usability problems in PACS, RIS and other software for radiology. A systematic review was performed to extract usability problems reported in empirical usability studies in the literature. The usability problems were categorized as violations of Nielsen and Molich's usability heuristics. The qualitative analysis indicated the causes and the effects of the identified usability problems. From the 431 papers initially identified, 10 met the study criteria. The analysis of the papers identified 90 instances of usability problems, classified into categories corresponding to established usability heuristics. The five heuristics with the highest number of instances of usability problems were "Flexibility and efficiency of use", "Consistency and standards", "Match between system and the real world", "Recognition rather than recall" and "Help and documentation", respectively. These problems can make the interaction time consuming, causing delays in tasks, dissatisfaction, frustration, preventing users from enjoying all the benefits and functionalities of the system, as well as leading to more errors and difficulties in carrying out clinical analyses. Furthermore, the present paper showed a lack of studies performed on systems for radiology, especially usability evaluations using formal methods of evaluation involving the final users. Copyright © 2017 Elsevier Inc. All rights reserved.
A portrait of interventional radiologists in the United States.
Sunshine, Jonathan H; Lewis, Rebecca S; Bhargavan, Mythreyi
2005-11-01
In recognition of the emergence of interventional radiology as an important "new component of...radiology," the objective of our study was to provide an extensive and detailed portrait of interventional radiologists, their professional activities, and the practices in which they work. We tabulated data from the American College of Radiology's 2003 Survey of Radiologists, a stratified random-sample survey that oversampled interventionalists and achieved a 63% response rate with a total of 1,924 responses. Responses were weighted to make them representative of all radiologists in the United States. We compared information about interventionalists with that for other radiologists. Depending on the definition of who is an interventionalist, 8.5-11.5% of radiologists are interventionalists. By most definitions, only slightly under half of interventionalists spend 70% or more of their clinical work time performing interventional procedures. Interventionalists work, on average, 56-58 hr weekly, a few hours longer than other radiologists. The average interventionalist performs procedures in five of the seven categories of procedures into which we divided interventional radiology, compared with one or two categories for other radiologists. The average interventionalist performs procedures in five of the seven broad categories (such as MRI, CT, and nuclear medicine) into which we divided all of radiology, much the same breadth of practice as other subspecialists and also as nonsubspecialists. Interventionalists have become a sizable group within radiology. They are in some ways like other radiologists and in other ways different, but they do not spend as much of their time in their subspecialty as some assume and, overall, are not as different.
Survey of UK radiology trainees in the aftermath of ‘Modernising Medical Careers’
2012-01-01
Background Following implementation of Modernising Medical Careers (MMC) in the UK, potential radiology trainees must decide on their career and apply sooner than ever before. We aimed to determine whether current trainees were sufficiently informed to make an earlier career decision by comparing the early radiology experiences of Traditional and Foundation Trainees. Methods 344 radiology trainees were appointed through MMC in 2007/08. This cohort was surveyed online. Results Response rate was 174/344 (51%). Traditional Trainees made their career decision 2.6 years after graduation compared with 1.2 years for Foundation Trainees (57/167, 34%). Nearly half of responders (79/169, 47%) experienced no formal radiology teaching as undergraduates. Most trainees regularly attended radiology meetings, spent time in a radiology department and/or performed radiology research. Many trainees received no career advice specific to radiology (69/163, 42%) at any point prior to entering the specialty; this includes both formal and informal advice. Junior doctor experiences were more frequently cited as influencing career choice (98/164, 60%). An earlier career decision was associated with; undergraduate radiology projects (-0.72 years, p = 0.018), career advice (-0.63 years, p = 0.009) and regular attendance at radiology meetings (-0.65 years, p = 0.014). Conclusion Early experience of radiology enables trainees to make an earlier career decision, however current radiology trainees were not always afforded relevant experiences prior to entering training. Radiologists need to be more proactive in encouraging the next generation of trainees. PMID:23031228
OPERATING THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. GRUETZMACHER; ET AL
2001-01-01
Two prototype systems for low-density Green is Clean (GIC) waste at Los Alamos National Laboratory (LANL) have been in operation for three years at the Solid Waste Operation's (SWOs) non-destructive assay (NDA) building. The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) are used to verify the waste generator's acceptable knowledge (AK) that low-density waste is nonradioactive. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAs) that has been actively segregated as ''clean'' (i.e., nonradioactive) through the use of waste generator AK. GIC waste that is verifiedmore » clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from RCAs at LANL might be free of contamination. To date, with pilot programs at five facilities at LANL, 3000 cubic feet of GIC waste has been verified clean by these two prototype systems. Both the WAND and HERCULES systems are highly sensitive measurement systems optimized to detect very small quantities of common LANL radionuclides. Both of the systems use a set of phoswich scintillation detectors in close proximity to the waste, which have the capability of detecting plutonium-239 concentrations below 3 pCi per gram of low density waste. Both systems detect low-energy x-rays and a broad range of gamma rays (10-2000 keV), while the WAND system also detects high energy beta particles (>100 keV). The WAND system consists of a bank of six shielded detectors which screen low density shredded waste or stacked sheets of paper moving under the detectors in a twelve inch swath on a conveyor belt. The WAND system was developed and tested at the Los Alamos Plutonium Facility in conjunction with instrument system designers from the Los Alamos Safeguards Science and Technology group. The HERCULES system consists of a bank of three shielded detectors which screen low-density waste in two cubic foot cardboard boxes or in bags sitting on a turntable. Waste that does not pass the verification process can be examined within the facility to determine the type and quantity of the contamination and its origin within a waste container. The paper discusses lessons learned that have helped generators improve their AK segregation.« less
Incidence of Radiologically Isolated Syndrome: A Population-Based Study.
Forslin, Y; Granberg, T; Jumah, A Antwan; Shams, S; Aspelin, P; Kristoffersen-Wiberg, M; Martola, J; Fredrikson, S
2016-06-01
Incidental MR imaging findings resembling MS in asymptomatic individuals, fulfilling the Okuda criteria, are termed "radiologically isolated syndrome." Those with radiologically isolated syndrome are at high risk of their condition converting to MS. The epidemiology of radiologically isolated syndrome remains largely unknown, and there are no population-based studies, to our knowledge. Our aim was to study the population-based incidence of radiologically isolated syndrome in a high-incidence region for MS and to evaluate the effect on radiologically isolated syndrome incidence when revising the original radiologically isolated syndrome criteria by using the latest radiologic classification for dissemination in space. All 2272 brain MR imaging scans in 1907 persons obtained during 2013 in the Swedish county of Västmanland, with a population of 259,000 inhabitants, were blindly evaluated by a senior radiologist and a senior neuroradiologist. The Okuda criteria for radiologically isolated syndrome were applied by using both the Barkhof and Swanton classifications for dissemination in space. Assessments of clinical data were performed by a radiology resident and a senior neurologist. The cumulative incidence of radiologically isolated syndrome was 2 patients (0.1%), equaling an incidence rate of 0.8 cases per 100,000 person-years, in a region with an incidence rate of MS of 10.2 cases per 100,000 person-years. There was no difference in the radiologically isolated syndrome incidence rate when applying a modified version of the Okuda criteria by using the newer Swanton classification for dissemination in space. Radiologically isolated syndrome is uncommon in a high-incidence region for MS. Adapting the Okuda criteria to use the dissemination in space-Swanton classification may be feasible. Future studies on radiologically isolated syndrome may benefit from a collaborative approach to ensure adequate numbers of participants. © 2016 by American Journal of Neuroradiology.
Visscher, Kari L; Faden, Lisa; Nassrallah, Georges; Speer, Stacey; Wiseman, Daniele
2017-08-01
This article is a continuation of a qualitative study designed to explore how radiology exposures can impact medical student opinions and perceptions of radiology and radiologists. We focused on: 1) conducting a radiology exposure inventory from the perspective of the medical student; 2) student evaluation of the quality of the radiology exposures and suggestions for positive change; and 3) development of a framework to address the needs of medical students as it relates to radiology education in the undergraduate medical curriculum. Research methodology and design for this qualitative study were described in detail in a previous article by Visscher et al [1]. Participants included 28 medical students; 18 were in medical school years 1 and 2 (preclerkship), and 10 were in years 3 and 4 (clerkship). Specific to the focus of this article, the data revealed 3 major findings: 1) multiple exposures to radiology exist, and they are received and valued differently depending on the medical student's stage of professional development; 2) medical students value radiology education and want their radiology exposure to be comprehensive and high quality; 3) Medical students have constructive suggestions for improving the quality of both formal and informal radiology exposures. Performing a radiology exposure inventory from a medical student perspective is a useful way to explore how students receive and value radiology instruction. Medical students want a more comprehensive radiology education that can be summarized using the 5 C's of Radiology Education framework. The 5 C's (curriculum, coaching, collaborating, career and commitment) reflect medical students' desires to learn content that will support them in clinical practice, be supported in their professional development, and have the necessary information to make informed career decisions. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bungai, D.A.; Skalskij, A.S.; Dzhepo, S.P.
The `Red Forest` radioactive waste burials created during emergency clean-up activities at Chernobyl Nuclear Power Plant represent a serious source of radioactive contamination of the local ground water system with 9OSr concentration in ground water exceeding the drinking water standard by 3-4 orders of magnitude. In this paper we present results of our hydrogeological and radiological `Red Forest` site characterization studies, which allow us to estimate 9OSr subsurface migration parameters. We use then these parameters to assess long terrain radionuclide transport to groundwater and surface water, and to analyze associated health risks. Our analyses indicate that 9OSr transport via groundmore » water pathway from `Red Forest` burials to the adjacent Pripyat River is relatively insignificant due to slow release of 9OSr from the waste burials (less than 1% of inventory per year) and due to long enough ground water residence time in the subsurface, which allows substantial decay of the radioactive contaminant. Tins result and our previous analyses indicate, that though conditions of radioactive waste storage in burials do not satisfy Ukrainian regulation on radiation protection, health risks caused by radionuclide migration to ground water from `Red Forest` burials do not justify application of expensive countermeasures.« less
Experience with high-performance PACS
NASA Astrophysics Data System (ADS)
Wilson, Dennis L.; Goldburgh, Mitchell M.; Head, Calvin
1997-05-01
Lockheed Martin (Loral) has installed PACS with associated teleradiology in several tens of hospitals. The PACS that have been installed have been the basis for a shift to filmless radiology in many of the hospitals. the basic structure for the PACS and the teleradiology that is being used is outlined. The way that the PACS are being used in the hospitals is instructive. The three most used areas for radiology in the hospital are the wards including the ICU wards, the emergency room, and the orthopedics clinic. The examinations are mostly CR images with 20 percent to 30 percent of the examinations being CT, MR, and ultrasound exams. The PACS are being used to realize improved productivity for radiology and for the clinicians. For radiology the same staff is being used for 30 to 50 percent more workload. For the clinicians 10 to 20 percent of their time is being saved in dealing with radiology images. The improved productivity stems from the high performance of the PACS that has been designed and installed. Images are available on any workstation in the hospital within less than two seconds, even during the busiest hour of the day. The examination management functions to restrict the attention of any one user to the examinations that are of interest. The examination management organizes the workflow through the radiology department and the hospital, improving the service of the radiology department by reducing the time until the information from a radiology examination is available. The remaining weak link in the PACS system is transcription. The examination can be acquired, read, an the report dictated in much less than ten minutes. The transcription of the dictated reports can take from a few hours to a few days. The addition of automatic transcription services will remove this weak link.
McEvoy, Fintan J; Shen, Nicholas W; Nielsen, Dorte H; Buelund, Lene E; Holm, Peter
2017-02-01
Communicating radiological reports to peers has pedagogical value. Students may be uneasy with the process due to a lack of communication and peer review skills or to their failure to see value in the process. We describe a communication exercise with peer review in an undergraduate veterinary radiology course. The computer code used to manage the course and deliver images online is reported, and we provide links to the executable files. We tested to see if undergraduate peer review of radiological reports has validity and describe student impressions of the learning process. Peer review scores for student-generated radiological reports were compared to scores obtained in the summative multiple choice (MCQ) examination for the course. Student satisfaction was measured using a bespoke questionnaire. There was a weak positive correlation (Pearson correlation coefficient = 0.32, p < 0.01) between peer review scores students received and the student scores obtained in the MCQ examination. The difference in peer review scores received by students grouped according to their level of course performance (high vs. low) was statistically significant (p < 0.05). No correlation was found between peer review scores awarded by the students and the scores they obtained in the MCQ examination (Pearson correlation coefficient = 0.17, p = 0.14). In conclusion, we have created a realistic radiology imaging exercise with readily available software. The peer review scores are valid in that to a limited degree they reflect student future performance in an examination. Students valued the process of learning to communicate radiological findings but do not fully appreciated the value of peer review.
Huang, Yang; Lowe, Henry J; Klein, Dan; Cucina, Russell J
2005-01-01
The aim of this study was to develop and evaluate a method of extracting noun phrases with full phrase structures from a set of clinical radiology reports using natural language processing (NLP) and to investigate the effects of using the UMLS(R) Specialist Lexicon to improve noun phrase identification within clinical radiology documents. The noun phrase identification (NPI) module is composed of a sentence boundary detector, a statistical natural language parser trained on a nonmedical domain, and a noun phrase (NP) tagger. The NPI module processed a set of 100 XML-represented clinical radiology reports in Health Level 7 (HL7)(R) Clinical Document Architecture (CDA)-compatible format. Computed output was compared with manual markups made by four physicians and one author for maximal (longest) NP and those made by one author for base (simple) NP, respectively. An extended lexicon of biomedical terms was created from the UMLS Specialist Lexicon and used to improve NPI performance. The test set was 50 randomly selected reports. The sentence boundary detector achieved 99.0% precision and 98.6% recall. The overall maximal NPI precision and recall were 78.9% and 81.5% before using the UMLS Specialist Lexicon and 82.1% and 84.6% after. The overall base NPI precision and recall were 88.2% and 86.8% before using the UMLS Specialist Lexicon and 93.1% and 92.6% after, reducing false-positives by 31.1% and false-negatives by 34.3%. The sentence boundary detector performs excellently. After the adaptation using the UMLS Specialist Lexicon, the statistical parser's NPI performance on radiology reports increased to levels comparable to the parser's native performance in its newswire training domain and to that reported by other researchers in the general nonmedical domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, T.
The Nuclear Forensics Analysis Center (NFAC) is part of Savannah River National Laboratory (SRNL) and is one of only two USG National Laboratories accredited to perform nuclear forensic analyses to the requirements of ISO 17025. SRNL NFAC is capable of analyzing nuclear and radiological samples from bulk material to ultra-trace samples. NFAC provides analytical support to the FBI's Radiological Evidence Examination Facility (REEF), which is located within SRNL. REEF gives the FBI the capability to perform traditional forensics on material that is radiological and/or is contaminated. SRNL is engaged in research and development efforts to improve the USG technical nuclearmore » forensics capabilities. Research includes improving predictive signatures and developing a database containing comparative samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tharp, Tim; Donnelly, Jim
2012-07-01
The Y-12 National Security Complex (Y-12) is concluding a multi-year program to characterize and dispose of all legacy low-level waste (LLW). The inventory of legacy waste at Y-12 has been reduced from over 3500 containers in Fiscal Year (FY) 2000 to 6 containers at the end of FY2011. In addition, the site recently eliminated the inventory of other low-level waste that is greater than 365 days old (i.e., >365-Day LLW), to be in full compliance with DOE Order 435.1. A consistent technical characterization approach emerged for both of these populations of backlogged waste: (1) compile existing historical data and processmore » knowledge and conduct interviews with site personnel; (2) inspect the containers and any tags, labels, or other markings to confirm or glean additional data; (3) with appropriate monitoring, open the container, visually inspect and photograph the contents while obtaining preliminary radiological surveys; (4) obtain gross weight and field non-destructive assay (NDA) data as needed; (5) use the non-public Oak Ridge Reservation Haul Road to ship the container to a local offsite vendor for waste sorting and segregation; (6) sort, drain, sample, and remove prohibited items; and (7) compile final data and prepare for shipment to disposal. After disposing of this backlog, the focus has now turned to avoiding the recurrence of this situation by maintaining low inventories of low-level waste and shortening the duration between waste generation and disposal. An enhanced waste tracking system and monthly metric charts are used to monitor and report progress to contractor and federal site office management. During the past 2 years, the average age of LLW onsite at Y-12 has decreased from more than 180 days to less than 60 days. (authors)« less
Government of Canada Initiatives in Support of the Joint Convention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.A.; Metcalfe, D.E.; Lojk, R.
The Government of Canada strongly supported international efforts to bring into force the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the Joint Convention), and was the second country to ratify it. The Joint Convention places a number of obligations on Contracting Parties aimed at achieving and maintaining a high level of safety worldwide in spent fuel and radioactive waste management, ensuring that effective defenses against potential hazards are in place during all management stages, preventing accidents with radiological consequences and mitigating their consequences should they occur. In addition to establishingmore » and maintaining a modem regulatory framework and an independent regulatory body through the 2000 Nuclear Safety and Control Act, the Government of Canada has implemented a number of initiatives that address its responsibilities and serve to further enhance Canada's compliance with the Joint Convention. For nuclear fuel waste, the Government of Canada brought into force the Nuclear Fuel Waste Act in 2002 to require waste owners to develop, fund, organize and implement a long-term solution for Canada's nuclear fuel waste. The Act clearly reserves for Government the decision on the solution to be implemented in the best interests of Canadians, as well as oversight to ensure that waste owners are fulfilling their responsibilities. In the case of low-level radioactive waste, long-term solutions are being developed to ensure the protection of health, safety, and the environment, both now and in the future. Regarding uranium mine and mill tailings, current operators have state-of-the-art waste management facilities in place. The Government of Canada works with provincial governments to ensure that any potential abandoned or legacy mines sites where no owner can be held responsible are safely decommissioned and managed over the long term. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bearmore » Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants.« less
Approaching the Practice Quality Improvement Project in Interventional Radiology.
Reis, Stephen P; White, Benjamin; Sutphin, Patrick D; Pillai, Anil K; Kalva, Sanjeeva P; Toomay, Seth M
2015-12-01
An important component of maintenance of certification and quality improvement in radiology is the practice quality improvement (PQI) project. In this article, the authors describe several methodologies for initiating and completing PQI projects. Furthermore, the authors illustrate several tools that are vital in compiling, analyzing, and presenting data in an easily understandable and reproducible manner. Last, they describe two PQI projects performed in an interventional radiology division that have successfully improved the quality of care for patients. Using the DMAIC (define, measure, analyze, improve, control) quality improvement framework, interventional radiology throughput has been increased, to lessen mediport wait times from 43 to 8 days, and mediport infection rates have decreased from more than 2% to less than 0.4%. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Annual Site Environmental Report: 2008 (ASER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabba, D.
2009-11-09
This report provides information about environmental programs during the calendar year of 2008 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2008/2009 (October 2008 through May 2009), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental,more » Energy, and Transportation Management, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2008, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423 and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations and construction activities at SLAC. The annual management review and ranking of environmental aspects were completed this year by SLAC's EMS Steering Committee, the Environmental Safety Committee (ESC), and twelve objectives and targets were established for 2008. For each objective and target, a work plan, or Environmental Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management and the DOE SLAC Site Office (SSO). During 2008, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during the year. The following are amongst SLAC's environmental accomplishments for 2008: a composting program at SLAC's onsite cafeteria was initiated, greater than 800 cubic feet of legacy radioactive waste were packaged and shipped from SLAC, a chemical redistribution program was developed, SLAC reduced the number of General Services Administration leased vehicles from 221 to 164, recycling of municipal waste was increased by approximately 140 tons during 2008, and site-wide releases of sulfur hexafluoride were reduced by 50 percent. In 2008, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. Twenty eight generators were trained in 2008. As a best management practice, SLAC also reduced its tritium inventory by at least 95 percent by draining one of its accelerator cooling water systems; with the cooperation of the South Bayside System Authority, the West Bay Sanitary District and the DOE, SLAC discharged the cooling water to the sanitary sewer according to federal regulations and replenished the system with clean water. In 2008, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2008 submittals to the RWQCB were completed and submitted on time.« less
Grundmeier, Robert W; Masino, Aaron J; Casper, T Charles; Dean, Jonathan M; Bell, Jamie; Enriquez, Rene; Deakyne, Sara; Chamberlain, James M; Alpern, Elizabeth R
2016-11-09
Important information to support healthcare quality improvement is often recorded in free text documents such as radiology reports. Natural language processing (NLP) methods may help extract this information, but these methods have rarely been applied outside the research laboratories where they were developed. To implement and validate NLP tools to identify long bone fractures for pediatric emergency medicine quality improvement. Using freely available statistical software packages, we implemented NLP methods to identify long bone fractures from radiology reports. A sample of 1,000 radiology reports was used to construct three candidate classification models. A test set of 500 reports was used to validate the model performance. Blinded manual review of radiology reports by two independent physicians provided the reference standard. Each radiology report was segmented and word stem and bigram features were constructed. Common English "stop words" and rare features were excluded. We used 10-fold cross-validation to select optimal configuration parameters for each model. Accuracy, recall, precision and the F1 score were calculated. The final model was compared to the use of diagnosis codes for the identification of patients with long bone fractures. There were 329 unique word stems and 344 bigrams in the training documents. A support vector machine classifier with Gaussian kernel performed best on the test set with accuracy=0.958, recall=0.969, precision=0.940, and F1 score=0.954. Optimal parameters for this model were cost=4 and gamma=0.005. The three classification models that we tested all performed better than diagnosis codes in terms of accuracy, precision, and F1 score (diagnosis code accuracy=0.932, recall=0.960, precision=0.896, and F1 score=0.927). NLP methods using a corpus of 1,000 training documents accurately identified acute long bone fractures from radiology reports. Strategic use of straightforward NLP methods, implemented with freely available software, offers quality improvement teams new opportunities to extract information from narrative documents.
Radiological Control Center (RADCC) Renaming Ceremony
2017-03-31
Consoles in the Radiological Control Center at NASA's Kennedy Space Center are seen during ceremonies to name the facility in honor of Randy Scott. A professional health physicist of more than 40 years, Scott served as the Florida spaceport's Radiation Protection Officer for 14 years until his death June 17, 2016. Located in the Neil Armstrong Operations and Checkout building, the Randall E. Scott Radiological Control Center is staffed by technical and radiological experts from NASA, the U.S. Department of Energy, the U.S. Air Force 45th Space Wing and the state of Florida. The group performs data collection and assessment functions supporting launch site and field data collection activities.
Radiological Control Center (RADCC) Renaming Ceremony
2017-03-31
A portion of the Radiological Control Center at NASA's Kennedy Space Center is seen during ceremonies to name the facility in honor of Randy Scott. A professional health physicist of more than 40 years, Scott served as the Florida spaceport's Radiation Protection Officer for 14 years until his death June 17, 2016. Located in the Neil Armstrong Operations and Checkout building, the Randall E. Scott Radiological Control Center is staffed by technical and radiological experts from NASA, the U.S. Department of Energy, the U.S. Air Force 45th Space Wing and the state of Florida. The group performs data collection and assessment functions supporting launch site and field data collection activities.
NASA Astrophysics Data System (ADS)
Kim, Woojin; Boonn, William
2010-03-01
Data mining of existing radiology and pathology reports within an enterprise health system can be used for clinical decision support, research, education, as well as operational analyses. In our health system, the database of radiology and pathology reports exceeds 13 million entries combined. We are building a web-based tool to allow search and data analysis of these combined databases using freely available and open source tools. This presentation will compare performance of an open source full-text indexing tool to MySQL's full-text indexing and searching and describe implementation procedures to incorporate these capabilities into a radiology-pathology search engine.
Contrast reaction training in US radiology residencies: a COARDRI study.
LeBedis, Christina A; Rosenkrantz, Andrew B; Otero, Hansel J; Decker, Summer J; Ward, Robert J
To perform a survey-based assessment of current contrast reaction training in US diagnostic radiology residency programs. An electronic survey was distributed to radiology residency program directors from 9/2015-11/2015. 25.7% of programs responded. 95.7% of those who responded provide contrast reaction management training. 89.4% provide didactic lectures (occurring yearly in 71.4%). 37.8% provide hands-on simulation training (occurring yearly in 82.3%; attended by both faculty and trainees in 52.9%). Wide variability in contrast reaction education in US diagnostic radiology residency programs reveals an opportunity to develop and implement a national curriculum. Copyright © 2017 Elsevier Inc. All rights reserved.
Trends in radiology and experimental research.
Sardanelli, Francesco
2017-01-01
European Radiology Experimental , the new journal launched by the European Society of Radiology, is placed in the context of three general and seven radiology-specific trends. After describing the impact of population aging, personalized/precision medicine, and information technology development, the article considers the following trends: the tension between subspecialties and the unity of the discipline; attention to patient safety; the challenge of reproducibility for quantitative imaging; standardized and structured reporting; search for higher levels of evidence in radiology (from diagnostic performance to patient outcome); the increasing relevance of interventional radiology; and continuous technological evolution. The new journal will publish not only studies on phantoms, cells, or animal models but also those describing development steps of imaging biomarkers or those exploring secondary end-points of large clinical trials. Moreover, consideration will be given to studies regarding: computer modelling and computer aided detection and diagnosis; contrast materials, tracers, and theranostics; advanced image analysis; optical, molecular, hybrid and fusion imaging; radiomics and radiogenomics; three-dimensional printing, information technology, image reconstruction and post-processing, big data analysis, teleradiology, clinical decision support systems; radiobiology; radioprotection; and physics in radiology. The journal aims to establish a forum for basic science, computer and information technology, radiology, and other medical subspecialties.
Sen. Levin, Carl [D-MI
2011-04-14
Senate - 04/14/2011 Read twice and referred to the Committee on Homeland Security and Governmental Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
[Nuclear energy and environment: review of the IAEA environmental projects].
Fesenko, S; Fogt, G
2012-01-01
The review of the environmental projects of the International Atomic Energy Agency is presented. Basic IAEA documents intended to protect humans and the Environment are considered and their main features are discussed. Some challenging issues in the area of protection of the Environment and man, including the impact of nuclear facilities on the environment, radioactive waste management, and remediation of the areas affected by radiological accidents, nuclear testing and sites of nuclear facilities are also discussed. The need to maintain the existing knowledge in radioecology and protection of the environment is emphasised.
Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-01-01
The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less
ICPP environmental monitoring report CY-1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
Summarized in this report are the data collected through Environmental Monitoring programs conducted at the Idaho Chemical Processing Plant (ICPP) by the Environmental Protection Department. The ICPP is responsible for complying with all applicable Federal, State, Local and DOE Rules, Regulations and Orders. Radiological effluent and emissions are regulated by the DOE in accordance with the Derived Concentration Guides (DCGs). The State of Idaho regulates nonradiological waste resulting from the ICPP operations including airborne, liquid, and solid waste. The Environmental Department updated the Quality Assurance (QA) Project Plan for Environmental Monitoring activities during the third quarter of 1992. QA activitiesmore » have resulted in the ICPP`s implementation of the Environmental Protection Agency (EPA) rules and guidelines pertaining to the collection, analyses, and reporting of environmentally related samples. Where no EPA methods for analyses existed for radionuclides, Lockheed Idaho Technologies Company (LITCO) methods were used.« less
ICPP environmental monitoring report for CY-1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neff, J.K.
1997-06-01
Summarized in this report are the data collected through Environmental Monitoring programs conducted at the Idaho Chemical Processing Plant (ICPP) by the Environmental Affairs Department. This report is published in response to DOE Order 5400.1. The ICPP is responsible for complying with all applicable Federal, State, Local and DOE Rules, Regulations and Orders. Radiological effluent and emissions are regulated by the DOE in accordance with the Derived Concentration Guides (DCGs) as presented in DOE Order 5400.5. The State of Idaho regulates nonradiological waste resulting from the ICPP operations including airborne, liquid, and solid waste. Quality Assurance activities have resulted inmore » the ICPP`s implementation of the Environmental Protection Agency (EPA) rules and guidelines pertaining to the collection, analyses, and reporting of environmentally related samples. Where no EPA methods for analyses existed for radionuclides, Lockheed Martin Idaho Technologies Company (LMITCO) methods were used.« less
ICPP environmental monitoring report CY-1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
Summarized in this report are the data collected through Environmental Monitoring programs conducted at the Idaho Chemical Processing Plant (ICPP) by the Environmental Protection Department. The ICPP is responsible for complying with all applicable Federal, State, Local and DOE Rules, Regulations and Orders. Radiological effluent and emissions are regulated by the DOE in accordance with the Derived Concentration Guides (DCGs) as presented in DOE Order 5400.5. The State of Idaho regulates nonradiological waste resulting from the ICPP operations including airborne, liquid, and solid waste. The Environmental Department updated the Quality Assurance (QA) Project Plan for Environmental Monitoring activities during themore » third quarter of 1992. QA activities have resulted in the ICPP`s implementation of the Environmental Protection Agency (EPA) rules and guidelines pertaining to the collection, analyses, and reporting of environmentally related samples. Where no EPA methods for analyses existed for radionuclides, LITCO methods were used.« less
Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.
1986-01-01
The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.
Chisti, Mohammod J; Ahmed, Tahmeed; Ashraf, Hasan; Faruque, A S G; Bardhan, Pradip K; Dey, Sanjoy Kumer; Huq, Sayeeda; Das, Sumon Kumar; Salam, Mohammed A
2012-01-01
Clinical features of metabolic acidosis and pneumonia frequently overlap in young diarrheal children, resulting in differentiation from each other very difficult. However, there is no published data on the predictors of metabolic acidosis in diarrheal children also having pneumonia. Our objective was to evaluate clinical predictors of metabolic acidosis in under-five diarrheal children with radiological pneumonia, and their outcome. We prospectively enrolled all under-five children (n = 164) admitted to the Special Care Ward (SCW) of the Dhaka Hospital of icddr, b between September and December 2007 with diarrhea and radiological pneumonia who also had their total serum carbon-dioxide estimated. We compared the clinical features and outcome of children with radiological pneumonia and diarrhea with (n = 98) and without metabolic acidosis (n = 66). Children with metabolic acidosis more often had higher case-fatality (16% vs. 5%, p = 0.039) compared to those without metabolic acidosis on admission. In logistic regression analysis, after adjusting for potential confounders such as age of the patient, fever on admission, and severe wasting, the independent predictors of metabolic acidosis in under-five diarrheal children having pneumonia were clinical dehydration (OR 3.57, 95% CI 1.62-7.89, p = 0.002), and low systolic blood pressure even after full rehydration (OR 1.02, 95% CI 1.01-1.04, p = 0.005). Proportions of children with cough, respiratory rate/minute, lower chest wall indrawing, nasal flaring, head nodding, grunting respiration, and cyanosis were comparable (p>0.05) among the groups. Under-five diarrheal children with radiological pneumonia having metabolic acidosis had frequent fatal outcome than those without acidosis. Clinical dehydration and persistent systolic hypotension even after adequate rehydration were independent clinical predictors of metabolic acidosis among the children. However, metabolic acidosis in young diarrheal children had no impact on the diagnostic clinical features of radiological pneumonia which underscores the importance of early initiation of appropriate antibiotics to combat morbidity and deaths in such population.
Radiological interventions in malignant biliary obstruction
Madhusudhan, Kumble Seetharama; Gamanagatti, Shivanand; Srivastava, Deep Narayan; Gupta, Arun Kumar
2016-01-01
Malignant biliary obstruction is commonly caused by gall bladder carcinoma, cholangiocarcinoma and metastatic nodes. Percutaneous interventions play an important role in managing these patients. Biliary drainage, which forms the major bulk of radiological interventions, can be palliative in inoperable patients or pre-operative to improve liver function prior to surgery. Other interventions include cholecystostomy and radiofrequency ablation. We present here the indications, contraindications, technique and complications of the radiological interventions performed in patients with malignant biliary obstruction. PMID:27247718
The role of radiology in the Oklahoma City bombing.
Nye, P J; Tytle, T L; Jarman, R N; Eaton, B G
1996-08-01
To evaluate the role of radiologic services in the assessment of injuries and identification of deceased victims of the bombing of the Alfred P. Murrah Federal Building in Oklahoma City, Okla. In cooperation with the Oklahoma University Health Sciences Center Disaster Studies Group, all victims of the Oklahoma City bombing who were treated in hospitals were evaluated. All radiologic studies performed in these patients during a 4-week period after the bombing were recorded. Major injuries incurred by the victims were noted but were not documented. In addition, assistance provided by radiologic services to the medical examiner's office for identification of deceased victims was assessed. On the day of the bombing, 99% (480 of 485) of the imaging studies performed were either plain radiography, primarily of the extremities and chest, or computed tomography (CT), half of which were of the head. Six deceased victims were identified solely by means of characteristics on radiographs. Almost all bombing-related radiologic studies were either plain radiography or CT. Other modalities had only limited roles. In deceased victims, plain radiography aided identification, and in many other victims it allowed localization of materials that were potential pieces of evidence.
Zoetelief, J; Faulkner, K
2008-01-01
The past two decades have witnessed a technologically driven revolution in radiology. At the centre of these developments has been the use of computing. These developments have also been driven by the introduction of new detector and imaging devices in radiology and nuclear medicine, as well as the widespread application of computing techniques to enhance and extract information within the images acquired. Further advances have been introduced into digital practice. These technological developments, however, have not been matched by justification and optimisation studies to ensure that these new imaging devices and techniques are as effective as they might be, or performed at the lowest possible dose. The work programme of the SENTINEL Coordination Action was subdivided into eight work packages: functional performance and standards; efficacy and safety in digital radiology, dentistry and nuclear medicine, cardiology, interventional radiology, population screening/sensitive groups; justification, ethics and efficacy; good practice guidance and training; and project management. The intention of the work programme was to underwrite the safety, efficacy and ethical aspects of digital practice as well as to protect and add value to the equipment used in radiology.
NASA Astrophysics Data System (ADS)
Rugger, B.; Templeton, W. L.; Gurbutt, P.
1983-05-01
Sea dumping operations of certain types of packaged low and medium level radioactive wastes have been carried out since 1967 in the North-East Atlantic under the auspices of the OECD Nuclear Energy Agency. On the occasion of the 1980 review of the continued suitability of the North-East Atlantic site used for the disposal of radioactive waste, it was recommended that an effort should be made to increase the scientific data base relating to the oceanographic and biological characteristics of the dumping area. In particular, it was suggested that a site specific model of the transfer of radionuclides in the marine environment be developed, which would permit a better assessment of the potential radiation doses to man from the dumping of radioactive waste. To fulfill these objectives a research and environmental surveillance program related to sea disposal of radioactive waste was set up in 1981 with the participation of thirteen Member countries and the International Laboratory for Marine Radioactivity of the IAEA in Monaco. The research program is focused on five research areas which are directly relevant to the preparation of more site specific assessments in the future. They are: model development; physical oceanography; geochemistry; biology; and radiological surveillance. Promising results have already been obtained and more are anticipated in the not too distant future. An interim description of the NEA dumping site has been prepared which provides an excellent data base for this area.
Abuahmad, H
2015-06-01
This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Accountable care organizations and radiology: threat or opportunity?
Abramson, Richard G; Berger, Paul E; Brant-Zawadzki, Michael N
2012-12-01
Although the anticipated rise of accountable care organizations brings certain potential threats to radiologists, including direct threats to revenue and indirect systemic changes jeopardizing the bargaining leverage of radiology groups, accountable care organizations, and other integrated health care delivery models may provide radiology with an important opportunity to reassert its leadership and assume a more central role within health care systems. Capitalizing on this potential opportunity, however, will require radiology groups to abandon the traditional "film reader" mentality and engage actively in the design and implementation of nontraditional systems service lines aimed at adding differentiated value to larger health care organizations. Important interlinked and mutually reinforcing components of systems service lines, derived from radiology's core competencies, may include utilization management and decision support, IT leadership, quality and safety assurance, and operational enhancements to meet organizational goals. Such systems-oriented service products, tailored to the needs of individual integrated care entities and supported by objective performance metrics, may provide market differentiation to shield radiology from commoditization and could become an important source of new nonclinical revenue. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.
A practical approach for inexpensive searches of radiology report databases.
Desjardins, Benoit; Hamilton, R Curtis
2007-06-01
We present a method to perform full text searches of radiology reports for the large number of departments that do not have this ability as part of their radiology or hospital information system. A tool written in Microsoft Access (front-end) has been designed to search a server (back-end) containing the indexed backup weekly copy of the full relational database extracted from a radiology information system (RIS). This front end-/back-end approach has been implemented in a large academic radiology department, and is used for teaching, research and administrative purposes. The weekly second backup of the 80 GB, 4 million record RIS database takes 2 hours. Further indexing of the exported radiology reports takes 6 hours. Individual searches of the indexed database typically take less than 1 minute on the indexed database and 30-60 minutes on the nonindexed database. Guidelines to properly address privacy and institutional review board issues are closely followed by all users. This method has potential to improve teaching, research, and administrative programs within radiology departments that cannot afford more expensive technology.
[Comparison of time-oriented cost accounting catalogs to control a department of radiology].
Hackländer, T; Mertens, H; Cramer, B M
2005-03-01
Within a hospital, the radiology department has taken over the role of a cost center. Cost accounting can be applied to analyze the costs for the performance of services. By assigning the expenditures of resources to the service, the cash value can directly be distributed to the costs of equipment, material and rooms. Time-oriented catalogs of services are predefined to calculate the number of the employees for a radiology department. Using our own survey of time data, we examined whether such catalogs correctly represent the time consumed in a radiology department. Only services relevant for the turnover were compared. For 96 primary radiological services defined by the score-oriented German fee catalog for physicians (Gebuhrenordnung fur Arzte), a ranking list was made for the annual procedures in descending frequency order. According to the Pareto principle, the 11 services with the highest frequency were chosen and the time consumed for the technical and medical services was collected over a period of 2 months. This survey was compared with the time-oriented catalogs TARMED and EBM 2000plus. The included 11 relevant radiological services represented 80.3 % of the annual procedures of our radiology department. When comparing the technical services between the time-oriented catalogs and our own survey, TARMED gives a better description of the time consumed in 7 of the 11 services and EMB 2000plus in 3 services. When comparing the medical services, TARMED gives a better description of the time consumed in 6 of the 11 services and EBM 2000plus in 4 services. When averaging all the radiological services, TARMED overestimates the current number of physicians necessary for primary reading by a factor of 10.0 % and EBM 2000plus by a factor of 2.6 %. As to the time spent on performing the relevant radiological services, TARMED is slightly superior to describe the radiology department of a hospital than EBM 2000plus. For calculating the number of physicians necessary for primary reading, EBM 2000plus is superior to TARMED.
Brown, Steven H; Edge, Russel; Elmer, John; McDonald, Michael
2018-06-01
Thousands of former uranium mining sites in the United States, primarily in the southwestern states of Colorado, Arizona, New Mexico, Arizona, and Utah, are being identified and evaluated to assess their potential for causing public and environmental impacts. The common radiological contaminant of concern that characterizes these sites is naturally occurring uranium ore and associated wastes that may have been left behind postmining. The majority of these sites were abandoned and in general, are referred to as abandoned uranium mines, regardless of the government authority currently managing the land or in some cases, assigned responsibility for the oversight of assessment and remediation. The U.S. Department of Energy has identified over 4,000 defense-related uranium mine sites from which uranium ore was purchased by the U.S. government for nuclear defense programs prior to 1970. U.S. Department of Energy has established a program to inventory and perform environmental screening on defense-related uranium mine sites. The focus of this paper is the approximately 2,400 defense-related uranium mine sites located on federal land managed by the Bureau of Land Management and the U.S. Forest Service. This paper presents the results of an analysis to develop radiological screening criteria for U.S. Department of Energy's defense-related uranium mine sites that can be used as input to the overall ranking of these sites for prioritization of additional assessment, reclamation, or remedial actions. For these sites managed by Bureau of Land Management, public access is typically limited to short-term use, primarily for recreational purposes. This is a broad category that can cover a range of possible activities, including camping, hiking, hunting, biking, all-terrain vehicle use, and horseback riding. The radiological screening levels were developed by calculating the radiological dose to future recreational users of defense-related uranium mine sites assuming a future camper spends two weeks per year at the site engaged in recreational activities. Although a number of possible exposure pathways were included in this analysis (inhalation and ingestion of dust and soil, radon and progeny inhalation, and gamma radiation exposure from the soil), it is desirable as a practical matter to determine what gamma exposure rate would ensure that the annual acceptable exposure as determined by the regulatory authority will not be exceeded in the future. Because these sites are generally remote and located in semiarid environments, traditional exposure scenarios often applied in these types of analyses (e.g., subsistent farmers and ranchers), including exposure pathways for the ingestion of locally grown food products and water, were not considered relevant to short-term recreational use.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
...] Guidances for Industry and Food and Drug Administration Staff: Computer-Assisted Detection Devices Applied... Clinical Performance Assessment: Considerations for Computer-Assisted Detection Devices Applied to... guidance, entitled ``Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device...
Systematic Viewing in Radiology: Seeing More, Missing Less?
ERIC Educational Resources Information Center
Kok, Ellen M.; Jarodzka, Halszka; de Bruin, Anique B. H.; BinAmir, Hussain A. N.; Robben, Simon G. F.; van Merriënboer, Jeroen J. G.
2016-01-01
To prevent radiologists from overlooking lesions, radiology textbooks recommend "systematic viewing," a technique whereby anatomical areas are inspected in a fixed order. This would ensure complete inspection (full coverage) of the image and, in turn, improve diagnostic performance. To test this assumption, two experiments were…
2016 Annual Site Environmental Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Virginia
This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory’s (PPPL) operations. The results of the 2016 environmental surveillance and monitoring program for PPPL’s are presented and discussed. The report also summarizes environmental initiatives, assessments, and community involvement programs that were undertaken in 2016. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality – a clean,more » alternative energy source. 2016 marked the eighteenth year of National Spherical Torus Experiment and the first year of NSTX-U (Upgrade) operations. The NSTX-U Project is a collaboration among national laboratories, universities, and national and international research institutions and is a major element in the US Fusion Energy Sciences Program. Its design tests the physics principles of spherical torus (ST) plasmas, playing an important role in the development of smaller, more economical fusion reactors. NSTX-U began operations after its first upgrade that installed the new center stack magnets and second neutral beam, which would allow for hotter plasmas and greater field strength to maintain the fusion reaction longer. Due to operational issues with a poloidal coil, NSTX-U operated briefly in 2016. In 2016, PPPL’s radiological environmental monitoring program measured tritium in the air at the NSTX-U Stack and at on -site sampling stations. Using highly sensitive monitors, PPPL is capable of detecting small changes in the ambient levels of tritium. The operation of an in- stack monitor located on D-site is used to demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations. Also included in PPPL’s radiological environmental monitoring program, are water monitoring – ground and surface, and waste waters. PPPL’s radiological monitoring program characterized the background levels of tritium in the environment; the data are presented in this report. Ground water monitoring continued under the New Jersey Department of Environmental Protection’s Site Remediation Program. PPPL monitored for non-radiological contaminants, mainly volatile organic compounds (components of chlorinated degreasing solvents). In 2016, PPPL was in compliance with its permit limits for surface and sanitary discharges, excepting two elevated chlorine-produced oxidant concentration. PPPL was honored with awards for its waste reduction and recycling program, and its “EPEAT” electronics purchasing for the third consecutive year.« less
Li, Feng
2015-07-01
This review paper is based on our research experience in the past 30 years. The importance of radiologists' role is discussed in the development or evaluation of new medical images and of computer-aided detection (CAD) schemes in chest radiology. The four main topics include (1) introducing what diseases can be included in a research database for different imaging techniques or CAD systems and what imaging database can be built by radiologists, (2) understanding how radiologists' subjective judgment can be combined with technical objective features to improve CAD performance, (3) sharing our experience in the design of successful observer performance studies, and (4) finally, discussing whether the new images and CAD systems can improve radiologists' diagnostic ability in chest radiology. In conclusion, advanced imaging techniques and detection/classification of CAD systems have a potential clinical impact on improvement of radiologists' diagnostic ability, for both the detection and the differential diagnosis of various lung diseases, in chest radiology.
A novel quality assurance method in a university teaching paediatric radiology department.
Gallet, J M; Reed, M H; Hlady, J
2000-08-01
Primary diagnostic equipment in a paediatric radiology department must perform at optimal levels at all times. The Children's Hospital Radiology Department in Winnipeg, Canada, has developed an impartial means of reporting radiographic image quality. The main objectives of this study programme were two-fold. First, to monitor diagnostic X-ray equipment performance, and second, to improve the resultant image quality as a means of implementing the fundamental concepts of continuous quality improvement. Reading radiologists completed a quality assurance (QA) card when they identified a radiographic image quality problem. The cards were subsequently collected by the clinical instructor who then informed, in confidence, the radiographers of the written comments or concerns. QA cards have been conspicuously installed in the paediatric radiology reading room since the middle of 1993. Since its inception, equipment malfunction has been monitored and indicators for improving image quality developed. This component of the QA programme has shown itself to be a successful means of communicating with radiographers in maintaining superior image quality.
The Importance of Curriculum-Based Training and Assessment in Interventional Radiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belli, Anna-Maria, E-mail: anna.belli@stgeorges.nhs.uk; Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl; Lee, Michael, E-mail: mlee@rcsi.ie
Physician performance and outcomes are being scrutinised by health care providers to improve patient safety and cost efficiency. Patients are best served by physicians who have undergone appropriate specialist training and assessment and perform large numbers of cases to maintain their skills. The Cardiovascular and Interventional Radiological Society of Europe has put into place a curriculum for training in interventional radiology (IR) and a syllabus with an examination, the European Board of Interventional Radiology, providing evidence of attainment of an appropriate and satisfactory skill set for the safe practice of IR. This curriculum is appropriate for IR where there ismore » a high volume of image-guided procedures in vascular and nonvascular organ systems with cross-use of minimally invasive techniques in patients with a variety of disease processes. Other specialties may require different, longer, and more focused training if their experience is “diluted” by the need to master a different skill set.« less
Silvestri, Enzo; Barile, Antonio; Albano, Domenico; Messina, Carmelo; Orlandi, Davide; Corazza, Angelo; Zugaro, Luigi; Masciocchi, Carlo; Sconfienza, Luca Maria
2018-04-01
To perform an online survey among all members of the Italian College of Musculoskeletal Radiology to understand how therapeutic musculoskeletal procedures are performed in daily practice in Italy. We administered an online survey to all 2405 members about the use of therapeutic musculoskeletal procedures in their institutions asking 16 different questions. Subgroup analysis was performed between general and orthopaedic hospitals with Mann-Whitney U and χ 2 statistics. A total of 129/2405 answers (5.4% of members) were included in our analysis. A median of 142.5 (25th-75th percentiles: 50-535.5; range 10-5000) therapeutic musculoskeletal procedures per single institution was performed in 2016. Arthropathic pain was the main indication. The most common procedures were joint injection, bursal/tendon injection, and irrigation of calcific tendinopathy. Ultrasound-guided procedures were mainly performed in ultrasonography rooms (77.4%) rather than in dedicated interventional rooms (22.6%). Conversely, fluoroscopic procedures were performed almost with the same frequency in interventional radiology suites (52.4%) and in general radiology rooms (47.6%). In most institutions (72%), autologous blood or components were not used. The median number of therapeutic musculoskeletal procedures performed in orthopaedic hospitals was significantly higher than in general hospitals (P = 0.002), as well as for the use of autologous preparations (P = 0.004). Joint injection, bursal/tendon injection, and irrigation of calcific tendinopathy were the most common therapeutic musculoskeletal procedures, being arthropathic pain the main indication. The percentage of procedures and the use of autologous preparations were significantly higher in orthopaedic hospitals than in general hospitals.
Anesthesia Practice and Clinical Trends in Interventional Radiology: A European Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslam, Philip J.; Yap, Bernard; Mueller, Peter R.
Purpose: To determine current European practice in interventional radiology regarding nursing care, anesthesia, and clinical care trends.Methods: A survey was sent to 977 European interventional radiologists to assess the use of sedoanalgesia, nursing care, monitoring equipment, pre- and postprocedural care, and clinical trends in interventional radiology. Patterns of sedoanalgesia were recorded for both vascular and visceral interventional procedures. Responders rated their preferred level of sedoanalgesia for each procedure as follows: (a) awake/alert, (b) drowsy/arousable, (c) asleep/arousable, (d) deep sedation, and (e) general anesthesia. Sedoanalgesic drugs and patient care trends were also recorded. A comparison was performed with data derived frommore » a similar survey of interventional practice in the United States.Results: Two hundred and forty-three of 977 radiologists responded (25%). The total number of procedures analyzed was 210,194. The majority (56%) of diagnostic and therapeutic vascular procedures were performed at the awake/alert level of sedation, 32% were performed at the drowsy/arousable level, and 12% at deeper levels of sedation. The majority of visceral interventional procedures were performed at the drowsy/arousable level of sedation (41%), 29% were performed at deeper levels of sedation, and 30% at the awake/alert level. In general, more sedoanalgesia is used in the United States. Eighty-three percent of respondents reported the use of a full-time radiology nurse, 67% used routine blood pressure/pulse oximetry monitoring, and 46% reported the presence of a dedicated recovery area. Forty-nine percent reported daily patient rounds, 30% had inpatient hospital beds, and 51% had day case beds.Conclusion: This survey shows clear differences in the use of sedation for vascular and visceral interventional procedures. Many, often complex, procedures are performed at the awake/alert level of sedation in Europe, whereas deeper levels of sedation are used in the United States. Trends toward making interventional radiology a clinical specialty are evident, with 51% of respondents having day case beds, and 30% having inpatient beds.« less
Hassanpour, Saeed; Langlotz, Curtis P; Amrhein, Timothy J; Befera, Nicholas T; Lungren, Matthew P
2017-04-01
The purpose of this study is to evaluate the performance of a natural language processing (NLP) system in classifying a database of free-text knee MRI reports at two separate academic radiology practices. An NLP system that uses terms and patterns in manually classified narrative knee MRI reports was constructed. The NLP system was trained and tested on expert-classified knee MRI reports from two major health care organizations. Radiology reports were modeled in the training set as vectors, and a support vector machine framework was used to train the classifier. A separate test set from each organization was used to evaluate the performance of the system. We evaluated the performance of the system both within and across organizations. Standard evaluation metrics, such as accuracy, precision, recall, and F1 score (i.e., the weighted average of the precision and recall), and their respective 95% CIs were used to measure the efficacy of our classification system. The accuracy for radiology reports that belonged to the model's clinically significant concept classes after training data from the same institution was good, yielding an F1 score greater than 90% (95% CI, 84.6-97.3%). Performance of the classifier on cross-institutional application without institution-specific training data yielded F1 scores of 77.6% (95% CI, 69.5-85.7%) and 90.2% (95% CI, 84.5-95.9%) at the two organizations studied. The results show excellent accuracy by the NLP machine learning classifier in classifying free-text knee MRI reports, supporting the institution-independent reproducibility of knee MRI report classification. Furthermore, the machine learning classifier performed well on free-text knee MRI reports from another institution. These data support the feasibility of multiinstitutional classification of radiologic imaging text reports with a single machine learning classifier without requiring institution-specific training data.
Pediatric Interventional Radiology: Vascular Interventions.
Kandasamy, Devasenathipathy; Gamanagatti, Shivanand; Gupta, Arun Kumar
2016-07-01
Pediatric interventional radiology (PIR) comprises a range of minimally invasive diagnostic and therapeutic procedures that are performed using image guidance. PIR has emerged as an essential adjunct to various surgical and medical conditions. Over the years, technology has undergone dramatic and continuous evolution, making this speciality grow. In this review, the authors will discuss various vascular interventional procedures undertaken in pediatric patients. It is challenging for the interventional radiologist to accomplish a successful interventional procedure. There are many vascular interventional radiology procedures which are being performed and have changed the way the diseases are managed. Some of the procedures are life saving and have become the treatment of choice in those patients. The future is indeed bright for the practice and practitioners of pediatric vascular and non-vascular interventions. As more and more of the procedures that are currently being performed in adults get gradually adapted for use in the pediatric population, it may be possible to perform safe and successful interventions in many of the pediatric vascular lesions that are otherwise being referred for surgery.
Dubose, Cheryl
2011-01-01
The growing popularity and use of social media tools such as Facebook, YouTube, Twitter, blogging, and wikis have led to a social media revolution. Given this widespread influence, it is important for educators, administrators, and technologists to understand the risks of using social media in the classroom and workplace. To investigate popular social media sites and their effect on radiologic technology education and business practices. A comprehensive search of literature was performed to examine social media and its applications in education, health care, and business. Social media use is on the rise, affecting all aspects of mainstream society. Leaders in the radiologic sciences should be familiar with social media and cognizant of its risks. Future studies regarding social media use in the radiologic sciences are necessary to determine its effect on the radiologic science community. ©2011 by the American Society of Radiologic Technologists.
Kari, Jameela Abdulaziz; Tullus, Kjell
2013-12-01
Controversy and lack of consensus have been encountered in the management of pediatric urinary tract infection (UTI), including its diagnosis, radiological investigations and the use of antibiotic therapy. In this review, we discuss the need for radiological investigations and the extent of their use as well as the need for prophylactic antibiotics in children with UTI and vesicoureteral reflux. Only a small proportion of children with first UTI and no history of antenatal renal abnormalities have clinically important malformations. Renal ultrasound should be performed in febrile infants and young children with UTI; a micturating cystourethrogram should not be performed routinely after the first febrile UTI. Long-term antibiotics appear to reduce the risk of recurrent symptomatic UTI in susceptible children, although the clinical benefit is marginal. Current recommendations encourage performing radiological investigations only in children at risk and discourage routine prophylactic antibiotic use.
Performance Test on Polymer Waste Form - 12137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Se Yup
Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it ismore » believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation testing and water immersion testing, no degradation was observed in the waste forms. Also, by measuring the compressive strength after these tests, it was confirmed that the structural integrity was still retained. A leach test was performed by using non radioactive cobalt, cesium and strontium. The leaching of cobalt, cesium and strontium from the polymer waste forms was very low. Also, the polymer waste forms were found to possess adequate fire resistance. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, Performance tests with full scale polymer waste forms are on-going in order to obtain qualification certificate by the regulatory institute in Korea. (authors)« less
Role of conventional radiology and MRi defecography of pelvic floor hernias
2013-01-01
Background Purpose of the study is to define the role of conventional radiology and MRI in the evaluation of pelvic floor hernias in female pelvic floor disorders. Methods A MEDLINE and PubMed search was performed for journals before March 2013 with MeSH major terms 'MR Defecography' and 'pelvic floor hernias'. Results The prevalence of pelvic floor hernias at conventional radiology was higher if compared with that at MRI. Concerning the hernia content, there were significantly more enteroceles and sigmoidoceles on conventional radiology than on MRI, whereas, in relation to the hernia development modalities, the prevalence of elytroceles, edroceles, and Douglas' hernias at conventional radiology was significantly higher than that at MRI. Conclusions MRI shows lower sensitivity than conventional radiology in the detection of pelvic floor hernias development. The less-invasive MRI may have a role in a better evaluation of the entire pelvic anatomy and pelvic organ interaction especially in patients with multicompartmental defects, planned for surgery. PMID:24267789
Lääperi, A L
1996-01-01
The purpose of this study was to analyse the cost structure of radiological procedures in the intermediary referral hospitals and general practice and to develop a cost accounting system for radiological examinations that takes into consideration all relevant cost factors and is suitable for management of radiology departments and regional planning of radiological resources. The material comprised 174,560 basic radiological examinations performed in 1991 at 5 intermediate referral hospitals and 13 public health centres in the Pirkanmaa Hospital District in Finland. All radiological departments in the hospitals were managed by a specialist in radiology. The radiology departments at the public health care centres operated on a self-referral basis by general practitioners. The data were extracted from examination lists, inventories and balance sheets; parts of the data were estimated or calculated. The radiological examinations were compiled according to the type of examination and equipment used: conventional, contrast medium, ultrasound, mammography and roentgen examinations with mobile equipment. The majority of the examinations (87%) comprised conventional radiography. For cost analysis the cost items were grouped into 5 cost factors: personnel, equipment, material, real estate and administration costs. The depreciation time used was 10 years for roentgen equipment, 5 years for ultrasound equipment and 5 to 10 years for other capital goods. An annual interest rate of 10% was applied. Standard average values based on a sample at 2 hospitals were used for the examination-specific radiologist time, radiographer time and material costs. Four cost accounting versions with varying allocation of the major cost items were designed. Two-way analysis of variance of the effect of different allocation methods on the costs and cost structure of the examination groups was performed. On the basis of the cost analysis a cost accounting program containing both monetary and nonmonetary variables was developed. In it the radiologist, radiographer and examination-specific equipment costs were allocated to the examinations applying estimated cost equivalents. Some minor cost items were replaced by a general cost factor (GCF). The program is suitable for internal cost accounting of radiological departments as well as regional planning. If more accurate cost information is required, cost assignment employing the actual consumption of the resources and applying the principles of activity-based cost accounting is recommended. As an application of the cost accounting formula the average costs of the radiological examinations were calculated. In conventional radiography the average proportion of the cost factors in the total material was: personnel costs 43%, equipment costs 26%, material costs 7%, real estate costs 11%, administration and overheads 14%. The average total costs including radiologist costs in the hospitals were (FIM): conventional roentgen examinations 188, contrast medium examinations 695, ultrasound 296, mammography 315, roentgen examinations with mobile equipment 1578. The average total costs without radiologist costs in the public health centres were (FIM): conventional roentgen examinations 107, contrast medium examinations 988, ultrasound 203, mammography 557. The average currency rate of exchange in 1991 was USD 1 = FIM 4.046. The following formula is proposed for calculating the cost of a radiological examination (or a group of examinations) performed with a certain piece of equipment during a period of time (e.g. 1 year): a2/ sigma ax*ax+ b2/ sigma bx*bx+ d1/d5*dx+ e1 + [(c1+ c2) + d4 + (e2 - e3) + f5 + g1+ g2+ i]/n.
Pediatric interventional radiology workforce survey: 10-year follow-up.
Kaufman, Claire S; James, Charles A; Harned, Roger K; Connolly, Bairbre L; Roebuck, Derek J; Cahill, Anne M; Dubois, Josee; Morello, Frank P; Morgan, Robin K; Sidhu, Manrita K
2017-05-01
Pediatric interventional radiology is a distinct subspecialty differing from both pediatric diagnostic radiology and adult interventional radiology. We conducted a workforce survey in 2005 to evaluate the state of pediatric interventional radiology at that time. Since then there have been many advancements to the subspecialty, including the founding of the Society for Pediatric Interventional Radiology (SPIR). To evaluate the current state of the pediatric interventional radiology workforce and compare findings with those of the initial 2005 workforce survey. We sent a two-part survey electronically to members of SPIR, the Society for Pediatric Radiology (SPR), the Society of Chairmen of Radiology in Children's Hospitals (SCORCH) and the Society of Interventional Radiology (SIR). Part 1 focused on individual practitioners (n=177), while part 2 focused on group practices and was answered by a leader from each group (n=88). We examined descriptive statistics and, when possible, compared the results to the study from 2005. A total of 177 individuals replied (a 331% increase over the first study) and 88 pediatric interventional radiology (IR) service sites responded (a 131.6% increase). Pediatric IR has become a more clinically oriented specialty, with a statistically significant increase in services with admitting privileges, clinics and performance of daily rounds. Pediatric IR remains diverse in training and practice. Many challenges still exist, including anesthesia/hospital support, and the unknown impact of the new IR residency on pediatric IR training, although the workforce shortage has been somewhat alleviated, as demonstrated by the decreased mean call from 165 days/year to 67.2 days/year. Pediatric interventional radiology practitioners and services have grown significantly since 2005, although the profile of this small subspecialty has changed and some challenges remain.
The Importance of Human-Computer Interaction in Radiology E-learning.
den Harder, Annemarie M; Frijlingh, Marissa; Ravesloot, Cécile J; Oosterbaan, Anne E; van der Gijp, Anouk
2016-04-01
With the development of cross-sectional imaging techniques and transformation to digital reading of radiological imaging, e-learning might be a promising tool in undergraduate radiology education. In this systematic review of the literature, we evaluate the emergence of image interaction possibilities in radiology e-learning programs and evidence for effects of radiology e-learning on learning outcomes and perspectives of medical students and teachers. A systematic search in PubMed, EMBASE, Cochrane, ERIC, and PsycInfo was performed. Articles were screened by two authors and included when they concerned the evaluation of radiological e-learning tools for undergraduate medical students. Nineteen articles were included. Seven studies evaluated e-learning programs with image interaction possibilities. Students perceived e-learning with image interaction possibilities to be a useful addition to learning with hard copy images and to be effective for learning 3D anatomy. Both e-learning programs with and without image interaction possibilities were found to improve radiological knowledge and skills. In general, students found e-learning programs easy to use, rated image quality high, and found the difficulty level of the courses appropriate. Furthermore, they felt that their knowledge and understanding of radiology improved by using e-learning. In conclusion, the addition of radiology e-learning in undergraduate medical education can improve radiological knowledge and image interpretation skills. Differences between the effect of e-learning with and without image interpretation possibilities on learning outcomes are unknown and should be subject to future research.
Analysis of Factors that Influence Infiltration Rates using the HELP Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, J.; Shipmon, J.
The Hydrologic Evaluation of Landfill Performance (HELP) model is used by Savannah River National Laboratory (SRNL) in conjunction with PORFLOW groundwater flow simulation software to make longterm predictions of the fate and transport of radionuclides in the environment at radiological waste sites. The work summarized in this report supports preparation of the planned 2018 Performance Assessment for the E-Area Low-Level Waste Facility (LLWF) at the Savannah River Site (SRS). More specifically, this project focused on conducting a sensitivity analysis of infiltration (i.e., the rate at which water travels vertically in soil) through the proposed E-Area LLWF closure cap. A sensitivitymore » analysis was completed using HELP v3.95D to identify the cap design and material property parameters that most impact infiltration rates through the proposed closure cap for a 10,000-year simulation period. The results of the sensitivity analysis indicate that saturated hydraulic conductivity (Ksat) for select cap layers, precipitation rate, surface vegetation type, and geomembrane layer defect density are dominant factors limiting infiltration rate. Interestingly, calculated infiltration rates were substantially influenced by changes in the saturated hydraulic conductivity of the Upper Foundation and Lateral Drainage layers. For example, an order-of-magnitude decrease in Ksat for the Upper Foundation layer lowered the maximum infiltration rate from a base-case 11 inches per year to only two inches per year. Conversely, an order-of-magnitude increase in Ksat led to an increase in infiltration rate from 11 to 15 inches per year. This work and its results provide a framework for quantifying uncertainty in the radionuclide transport and dose models for the planned 2018 E-Area Performance Assessment. Future work will focus on the development of a nonlinear regression model for infiltration rate using Minitab 17® to facilitate execution of probabilistic simulations in the GoldSim® overall system model for the E-Area LLWF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
The Supreme Court rendered its decision in PG&E in April 1983. The decision involved a challenge by a nuclear utility to a California state moratorium on the construction of new commercial nuclear power plants until the State Energy Resources Conservation and Development Commission could determine that there is a demonstrated and federally approved solution for the permanent disposal of high-level nuclear waste. The moratorium was based not on a state concern with the radiological hazards associated with new nuclear plants but, ostensibly on a state concern with the economics of new nuclear plants. In particular, the state had concluded thatmore » a new nuclear plant, in the absence of a solution for the permanent disposal of the high-level nuclear waste it would generate, would be an uneconomical and uncertain source of electric power. The nuclear utility that challenged the moratorium argued that its prohibition to new nuclear plant construction was in fact based on a state concern with radiation hazards. However, the Court accepted California`s {open_quotes}avowed economic purpose{close_quotes} and declined to second-guess the basis for the moratorium. The Court rendered its decision in Silkwood in January 1984. The decision involved an action brought by the administrator of the estate for a deceased employee of a nuclear fuel facility regulated by the NRC. Brought under Oklahoma state common law of torts, the action was for damages for radiological injuries suffered as a result of alleged plutonium contamination. A jury returned a verdict for the administrator as well as an award of actual and punitive damages.« less
Dabadie, A; Soussan, J; Mancini, J; Vidal, V; Bartoli, J M; Gorincour, G; Petit, P
2016-09-01
The goals of this study were to develop and evaluate a joint theoretical/practical training course for radiology residents and technicians and to start a collaborative practice agreement enabling radiology technicians to perform PICC placement under the responsibility of an interventional radiologist. A joint training session based on literature evidences and international recommendations was designed. Participants were assessed before and after training, and were also asked to evaluate the program one month after completion of the training course. Practical post-training mentoring guidelines were laid down for radiologists supervising technicians. From January to April 2014, 6 radiology residents and 12 radiology technicians from the two interventional radiology departments of the University hospitals in Marseille took part in the training program. For both residents and technicians, significant improvement was observed between pretraining and post-training assessment. The majority of participants were satisfied with the program. Our experience suggests that combined theoretical and practical training in PICC placement allows improving technical skill and yields high degrees of satisfaction for both radiology residents and technicians. A collaborative practice agreement is now formally established to enable radiologists to delegate PICC placement procedures to radiology technicians. Copyright © 2016 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Activity-based costing in radiology. Application in a pediatric radiological unit.
Laurila, J; Suramo, I; Brommels, M; Tolppanen, E M; Koivukangas, P; Lanning, P; Standertskjöld-Nordenstam, G
2000-03-01
To get an informative and detailed picture of the resource utilization in a radiology department in order to support its pricing and management. A system based mainly on the theoretical foundations of activity-based costing (ABC) was designed, tested and compared with conventional costing. The study was performed at the Pediatric Unit of the Department of Radiology, Oulu University Hospital. The material consisted of all the 7,452 radiological procedures done in the unit during the first half of 1994, when both methods of costing where in use. Detailed cost data were obtained from the hospital financial and personnel systems and then related to activity data captured in the radiology information system. The allocation of overhead costs was greatly reduced by the introduction of ABC compared to conventional costing. The overhead cost as a percentage of total costs dropped to one-fourth of total costs, from 57% to 16%. The change of unit costs of radiological procedures varied from -42% to +82%. Costing is much more detailed and precise, and the percentage of unspecified allocated overhead costs diminishes drastically when ABC is used. The new information enhances effective departmental management, as the whole process of radiological procedures is identifiable by single activities, amenable to corrective actions and process improvement.
Characterization of radioactive wastes with respect to harmful materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugel, Karin; Steyer, Stefan; Brennecke, Peter
In addendum 4 to the license of the German KONRAD repository, which considers mainly radiological aspects, a water law permit was issued in order to prevent the pollution of the near-surface groundwater. The water law permit stipulates limitations for 10 radionuclides and 2 groups of radionuclides as well as mass limitations for 94 substances and materials relevant for water protection issues. Two collateral clauses, i.e. additional requirements imposed by the licensing authority, include demands on the monitoring, registering and balancing of non-radioactive harmful substances and materials /1/. In order to fulfill the requirements of the water law permit the Germanmore » Federal Office for Radiation Protection (BfS) being the operator of the KONRAD repository has developed a concept, which ensures the compliance with all requirements of the water law permit and which provides standardized easy manageable guidance for the waste producers to describe their wastes. On 15 March 2011 the competent water authority, the 'Niedersaechsischer Landesbetrieb fuer Wasserwirtschaft, Kuesten- und Naturschutz' (NLWKN) issued the approval for this concept. Being the most essential part of this concept the procedural method and the developed description of nonradioactive waste package constituents by use of standardized lists of materials and containers is addressed and presented in this paper. The waste producer has to describe his waste package in a standardized way on the base of the lists of materials and containers. For each material in the list a comprehensive description is given comprising the composition, scope of application, quality control measures, thresholds and other data. Each entry in the list has to be approved by NLWKN. The scope of the lists is defined by the waste producers' needs. Using some particular materials as examples, the approval procedure for including materials in the list is described. The procedure of describing the material composition has to be considered in the KONRAD waste acceptance requirements. The respective part of these requirements will be introduced. In order to clarify the procedure of describing waste packages by use of the standardized lists of materials and containers some examples of typical waste package descriptions will be presented. (authors)« less
EM-31 RETRIEVAL KNOWLEDGE CENTER MEETING REPORT: MOBILIZE AND DISLODGE TANK WASTE HEELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellinger, A.
2010-02-16
The Retrieval Knowledge Center sponsored a meeting in June 2009 to review challenges and gaps to retrieval of tank waste heels. The facilitated meeting was held at the Savannah River Research Campus with personnel broadly representing tank waste retrieval knowledge at Hanford, Savannah River, Idaho, and Oak Ridge. This document captures the results of this meeting. In summary, it was agreed that the challenges to retrieval of tank waste heels fell into two broad categories: (1) mechanical heel waste retrieval methodologies and equipment and (2) understanding and manipulating the heel waste (physical, radiological, and chemical characteristics) to support retrieval optionsmore » and subsequent processing. Recent successes and lessons from deployments of the Sand and Salt Mantis vehicles as well as retrieval of C-Area tanks at Hanford were reviewed. Suggestions to address existing retrieval approaches that utilize a limited set of tools and techniques are included in this report. The meeting found that there had been very little effort to improve or integrate the multiple proven or new techniques and tools available into a menu of available methods for rapid insertion into baselines. It is recommended that focused developmental efforts continue in the two areas underway (low-level mixing evaluation and pumping slurries with large solid materials) and that projects to demonstrate new/improved tools be launched to outfit tank farm operators with the needed tools to complete tank heel retrievals effectively and efficiently. This document describes the results of a meeting held on June 3, 2009 at the Savannah River Site in South Carolina to identify technology gaps and potential technology solutions to retrieving high-level waste (HLW) heels from waste tanks within the complex of sites run by the U. S. Department of Energy (DOE). The meeting brought together personnel with extensive tank waste retrieval knowledge from DOE's four major waste sites - Hanford, Savannah River, Idaho, and Oak Ridge. The meeting was arranged by the Retrieval Knowledge Center (RKC), which is a technology development project sponsored by the Office of Technology Innovation & Development - formerly the Office of Engineering and Technology - within the DOE Office of Environmental Management (EM).« less
Picard, Melissa; Nelson, Rachel; Roebel, John; Collins, Heather; Anderson, M Bret
2016-11-01
To determine the benefit of the addition of low-fidelity simulation-based training to the standard didactic-based training in teaching radiology residents common CT-guided procedures. This was a prospective study involving 24 radiology residents across all years in a university program. All residents underwent standard didactic lecture followed by low-fidelity simulation-based training on three common CT-guided procedures: random liver biopsy, lung nodule biopsy, and drain placement. Baseline knowledge, confidence, and performance assessments were obtained after the didactic session and before the simulation training session. Approximately 2 months later, all residents participated in a simulation-based training session covering all three of these procedures. Knowledge, confidence, and performance data were obtained afterward. These assessments covered topics related to preprocedure workup, intraprocedure steps, and postprocedure management. Knowledge data were collected based on a 15-question assessment. Confidence data were obtained based on a 5-point Likert-like scale. Performance data were obtained based on successful completion of predefined critical steps. There was significant improvement in knowledge (P = .005), confidence (P < .008), and tested performance (P < .043) after the addition of simulation-based training to the standard didactic curriculum for all procedures. This study suggests that the addition of low-fidelity simulation-based training to a standard didactic-based curriculum is beneficial in improving resident knowledge, confidence, and tested performance of common CT-guided procedures. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Shiraishi, Junji; Pesce, Lorenzo L.; Metz, Charles E.; Doi, Kunio
2009-01-01
Purpose: To provide a broad perspective concerning the recent use of receiver operating characteristic (ROC) analysis in medical imaging by reviewing ROC studies published in Radiology between 1997 and 2006 for experimental design, imaging modality, medical condition, and ROC paradigm. Materials and Methods: Two hundred ninety-five studies were obtained by conducting a literature search with PubMed with two criteria: publication in Radiology between 1997 and 2006 and occurrence of the phrase “receiver operating characteristic.” Studies returned by the query that were not diagnostic imaging procedure performance evaluations were excluded. Characteristics of the remaining studies were tabulated. Results: Two hundred thirty-three (79.0%) of the 295 studies reported findings based on observers' diagnostic judgments or objective measurements. Forty-three (14.6%) did not include human observers, with most of these reporting an evaluation of a computer-aided diagnosis system or functional data obtained with computed tomography (CT) or magnetic resonance (MR) imaging. The remaining 19 (6.4%) studies were classified as reviews or meta-analyses and were excluded from our subsequent analysis. Among the various imaging modalities, MR imaging (46.0%) and CT (25.7%) were investigated most frequently. Approximately 60% (144 of 233) of ROC studies with human observers published in Radiology included three or fewer observers. Conclusion: ROC analysis is widely used in radiologic research, confirming its fundamental role in assessing diagnostic performance. However, the ROC studies reported in Radiology were not always adequate to support clear and clinically relevant conclusions. © RSNA, 2009 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.2533081632/-/DC1 PMID:19864510
Abbasian Ardakani, Ali; Reiazi, Reza; Mohammadi, Afshin
2018-03-30
This study investigated the potential of a clinical decision support approach for the classification of metastatic and tumor-free cervical lymph nodes (LNs) in papillary thyroid carcinoma on the basis of radiologic and textural analysis through ultrasound (US) imaging. In this research, 170 metastatic and 170 tumor-free LNs were examined by the proposed clinical decision support method. To discover the difference between the groups, US imaging was used for the extraction of radiologic and textural features. The radiologic features in the B-mode scans included the echogenicity, margin, shape, and presence of microcalcification. To extract the textural features, a wavelet transform was applied. A support vector machine classifier was used to classify the LNs. In the training set data, a combination of radiologic and textural features represented the best performance with sensitivity, specificity, accuracy, and area under the curve (AUC) values of 97.14%, 98.57%, 97.86%, and 0.994, respectively, whereas the classification based on radiologic and textural features alone yielded lower performance, with AUCs of 0.964 and 0.922. On testing the data set, the proposed model could classify the tumor-free and metastatic LNs with an AUC of 0.952, which corresponded to sensitivity, specificity, and accuracy of 93.33%, 96.66%, and 95.00%. The clinical decision support method based on textural and radiologic features has the potential to characterize LNs via 2-dimensional US. Therefore, it can be used as a supplementary technique in daily clinical practice to improve radiologists' understanding of conventional US imaging for characterizing LNs. © 2018 by the American Institute of Ultrasound in Medicine.
Curriculum Development and Alignment in Radiologic Technology.
ERIC Educational Resources Information Center
Dowd, Steven B.
Before developing a curriculum for radiologic technology, one must first attempt to define the term "curriculum." The term is not easy to define precisely, although it does imply the necessity of a master plan that outlines institutional philosophy and goals, course descriptions, description of competency-based evaluation, performance objectives,…
42 CFR 413.122 - Payment for hospital outpatient radiology services and other diagnostic procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and other diagnostic procedures. 413.122 Section 413.122 Public Health CENTERS FOR MEDICARE & MEDICAID... radiology services and other diagnostic procedures. (a) Basis and purpose. (1) This section implements... services and other diagnostic procedures performed by a hospital on an outpatient basis. (2) For purposes...
21 CFR 1002.3 - Notification to user of performance and technical data.
Code of Federal Regulations, 2010 CFR
2010-04-01
... data. 1002.3 Section 1002.3 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH RECORDS AND REPORTS General Provisions § 1002.3 Notification to... Radiological Health, as authorized under delegated authority, may require a manufacturer of a radiation...
The Effectiveness of Hypermedia Instructional Modules for Radiology Residents.
ERIC Educational Resources Information Center
Shaw, Steven G.; And Others
1995-01-01
Details the development and field testing of hypermedia training materials for teaching radiology residents at the Montreal General Hospital (Canada). Compares results of randomly teaching 24 residents with either hypermedia or traditional classroom methods. Results indicate that residents who learned with hypermedia generally performed as well as…
ICPP tank farm closure study. Volume 2: Engineering design files
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of variousmore » water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.« less
Finally Underway: Implementation of the Port Hope Area Initiative - 13151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahey, Christine A.; Palmeter, Tim; Blanchette, Marcia
2013-07-01
Two distinct yet closely related waste remediation projects are finally underway in Canada under the Port Hope Area Initiative (PHAI) which aims to clean up 1.7 million cubic metres (m{sup 3}) of low-level radioactive waste (LLRW) arising from 60 years of uranium and radium operations. Under the PHAI, the Port Hope Project and the smaller Port Granby Project will result in the consolidation of the LLRW within two highly engineered, above-ground mounds, to be constructed within the municipalities of Port Hope and Clarington. These projects will fulfill the federal government commitment to the safe, long-term management of the LLRW, asmore » set out in the legal agreement signed by the government and the host municipalities in 2001. The federal authorization to commence PHAI Remediation and Construction Phase 2 was received in late 2011 and several enabling infrastructure construction and radiological survey contracts were awarded in 2012. The contracts to remediate the waste sites and construct the new engineered mounds will be tendered in 2013. At the end of Phase 2, environmental risks will be substantially mitigated, land development restrictions lifted, and an honourable legacy left for future generations. (authors)« less
Cf-252 Characterization Documents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Alexander
2014-03-14
Six documents were written by Vance and Associates under contract to the Off-Site Source Recovery Project of Los Alamos National Laboratory. These Six documents provided the basis for characterization of Californium-252 sealed sources and for the packaging and manifesting of this material for disposal at the Waste Isolation Pilot Project. The Six documents are: 1. VA-OSR-10, Development of radionuclide distributions for Cf-252 sealed sources. 2. VA-OSR-11, Uncertainty analysis for Cf-252 sealed sources. 3. VA-OSR-12, To determine the radionuclides in the waste drums containing Cf-252 sealed source waste that are required to be reported under the requirements of the WIPP WACmore » and the TRAMPAC. 4. VA-OSR-13, Development of the spreadsheet for the radiological calculations for the characterization of Cf-252 sources. 5. VA-OSR-14, Relative importance of neutron-induced fission in Cf-252 sources. 6. VA-OSR-15, Determine upper bound of decay product inventories from a drum of Cf-252 sources. These six documents provide the technical basis for the characterization of Cf-252 sources and will be part of the AK documentation required for submittal to the Central Characterization Project (CCP) of WIPP.« less
Treatment options for low-level radiologically contaminated ORNL filtercake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hom-Ti; Bostick, W.D.
1996-04-01
Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less
Rapid analysis method for the determination of 14C specific activity in irradiated graphite
Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras
2018-01-01
14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1–100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample. PMID:29370233
Rapid analysis method for the determination of 14C specific activity in irradiated graphite.
Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Plukienė, Rita; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras
2018-01-01
14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1-100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample.
NegBio: a high-performance tool for negation and uncertainty detection in radiology reports.
Peng, Yifan; Wang, Xiaosong; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald; Lu, Zhiyong
2018-01-01
Negative and uncertain medical findings are frequent in radiology reports, but discriminating them from positive findings remains challenging for information extraction. Here, we propose a new algorithm, NegBio, to detect negative and uncertain findings in radiology reports. Unlike previous rule-based methods, NegBio utilizes patterns on universal dependencies to identify the scope of triggers that are indicative of negation or uncertainty. We evaluated NegBio on four datasets, including two public benchmarking corpora of radiology reports, a new radiology corpus that we annotated for this work, and a public corpus of general clinical texts. Evaluation on these datasets demonstrates that NegBio is highly accurate for detecting negative and uncertain findings and compares favorably to a widely-used state-of-the-art system NegEx (an average of 9.5% improvement in precision and 5.1% in F1-score). https://github.com/ncbi-nlp/NegBio.
A Head and Neck Simulator for Radiology and Radiotherapy
NASA Astrophysics Data System (ADS)
Thompson, Larissa; Campos, Tarcísio P. R.
2013-06-01
Phantoms are suitable tools to simulate body tissues and organs in radiology and radiation therapy. This study presents the development of a physical head and neck phantom and its radiological response for simulating brain pathology. The following features on the phantom are addressed and compared to human data: mass density, chemical composition, anatomical shape, computerized tomography images and Hounsfield Units. Mass attenuation and kerma coefficients of the synthetic phantom and normal tissues, as well as their deviations, were also investigated. Radiological experiments were performed, including brain tumors and subarachnoid hemorrhage simulations. Computerized tomography images of such pathologies in phantom and human were obtained. The anthropometric dimensions of the phantom present anatomical conformation similar to a human head and neck. Elemental weight percentages of the equivalent tissues match the human ones. Hounsfield Unit values of the main developed structures are presented, approaching human data. Kerma and mass attenuation coefficients spectra from human and phantom are presented, demonstrating smaller deviations in the radiological X-ray spectral domain. In conclusion, the phantom presented suitable normal and pathological radiological responses relative to those observed in humans. It may improve radiological protocols and education in medical imaging.
Natural Language Processing in Radiology: A Systematic Review.
Pons, Ewoud; Braun, Loes M M; Hunink, M G Myriam; Kors, Jan A
2016-05-01
Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed. (©) RSNA, 2016 Online supplemental material is available for this article.
Festekjian, Ara; Kwan, Karen Y; Chang, Todd P; Lai, Hollie; Fahit, Margil; Liberman, Danica B
2017-12-21
After-hours radiologic interpretation by nonradiology attendings or resident radiologists introduces the risk of discrepancies. Clinical outcomes following radiologic discrepancies among pediatric emergency department (ED) patients are poorly described. In particular, children with special healthcare needs (CSHCN), have more opportunities for discrepancies and potential consequences than non- CSHCN. Our objective was to determine the rates and types of radiologic discrepancies, and to compare CSHCN to non-CSHCN. From July 2014 to February 2015, all children who underwent a diagnostic imaging study at a free-standing children's ED were included. Data collected included radiologic studies - type and location - and clinical details - chief complaint and CSHCN type. Differences between preliminary reads and final pediatric radiology attending reads were defined as discrepancies, and categorized by clinical significance. Descriptive statistics, z-tests, and chi-square were used. Over 8months, 8310 visits (7462 unique patients) had radiologic studies (2620 CSHCN, 5690 non-CSHCN). A total of 198 (2.4%) radiologic discrepancies [56 (28.3%) CSHCN, 142 (71.7%) non-CSHCN] were found. Chief complaints for CSCHN were more often within the cardiac, pulmonary and neurologic systems (p<0.001 for each), whereas non-CSHCN presented with more trauma (p<0.001). The rates of discrepancies (CSHCN 2.1%, non- CSHCN 2.5%, p=0.3) and severity of clinical consequences (p=0.6) were not significantly different between CSHCN and non-CSHCN. Though the frequency and type of radiologic studies performed between CSHCN and non-CSHCN were different, we found no significant difference in the rate of radiologic discrepancies or the rate of clinically significant radiologic discrepancies. Copyright © 2017 Elsevier Inc. All rights reserved.
Rubin, Geoffrey D; Krishnaraj, Arun; Mahesh, Mahadevappa; Rajendran, Ramji R; Fishman, Elliot K
2017-05-01
RadiologyInfo.org is a public information portal designed to support patient care and broaden public awareness of the essential role radiology plays in overall patient health care. Over the past 14 years, RadiologyInfo.org has evolved considerably to provide access to more than 220 mixed-media descriptions of tests, treatments, and diseases through a spectrum of mobile and desktop platforms, social media, and downloadable documents in both English and Spanish. In 2014, the RSNA-ACR Public Information Website Committee, which stewards RadiologyInfo.org, developed 3- to 5-year strategic and implementation plans for the website. The process was informed by RadiologyInfo.org user surveys, formal stakeholder interviews, focus groups, and usability testing. Metrics were established as key performance indicators to assess progress toward the stated goals of (1) optimizing content to enhance patient-centeredness, (2) enhancing reach and engagement, and (3) maintaining sustainability. Major changes resulting from this process include a complete redesign of the website, the replacement of text-rich PowerPoint presentations with conversational videos, and the development of an affiliate network. Over the past year, visits to RadiologyInfo.org have increased by 60.27% to 1,424,523 in August 2016 from 235 countries and territories. Twenty-two organizations have affiliated with RadiologyInfo.org with new organizations being added on a monthly basis. RadiologyInfo provides a tangible demonstration of how radiologists can engage directly with the global public to educate them on the value of radiology in their health care and to allay concerns and dispel misconceptions. Regular self-assessment and responsive planning will ensure its continued growth and relevance. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannell, Gary L.; Huth, Ralph J.; Hallum, Randall T.
2013-08-26
In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work inmore » a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.« less
Rosenkrantz, Andrew B; Lawson, Kirk; Ally, Rosina; Chen, David; Donno, Frank; Rittberg, Steven; Rodriguez, Joan; Recht, Michael P
2015-01-01
To evaluate sustainability of impact of rapid, focused process improvement (PI) events on process and performance within an academic radiology department. Our department conducted PI during 2011 and 2012 in CT, MRI, ultrasound, breast imaging, and research billing. PI entailed participation by all stakeholders, facilitation by the department chair, collection of baseline data, meetings during several weeks, definition of performance metrics, creation of an improvement plan, and prompt implementation. We explore common themes among PI events regarding initial impact and durability of changes. We also assess performance in each area pre-PI, immediately post-PI, and at the time of the current study. All PI events achieved an immediate improvement in performance metrics, often entailing both examination volumes and on-time performance. IT-based solutions, process standardization, and redefinition of staff responsibilities were often central in these changes, and participants consistently expressed improved internal leadership and problem-solving ability. Major environmental changes commonly occurred after PI, including a natural disaster with equipment loss, a change in location or services offered, and new enterprise-wide electronic medical record system incorporating new billing and radiology informatics systems, requiring flexibility in the PI implementation plan. Only one PI team conducted regular post-PI follow-up meetings. Sustained improvement was frequently, but not universally, observed: in the long-term following initial PI, measures of examination volume showed continued progressive improvements, whereas measures of operational efficiency remained stable or occasionally declined. Focused PI is generally effective in achieving performance improvement, although a changing environment influences the sustainability of impact. Thus, continued process evaluation and ongoing workflow modifications are warranted. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Huang, Yang; Lowe, Henry J.; Klein, Dan; Cucina, Russell J.
2005-01-01
Objective: The aim of this study was to develop and evaluate a method of extracting noun phrases with full phrase structures from a set of clinical radiology reports using natural language processing (NLP) and to investigate the effects of using the UMLS® Specialist Lexicon to improve noun phrase identification within clinical radiology documents. Design: The noun phrase identification (NPI) module is composed of a sentence boundary detector, a statistical natural language parser trained on a nonmedical domain, and a noun phrase (NP) tagger. The NPI module processed a set of 100 XML-represented clinical radiology reports in Health Level 7 (HL7)® Clinical Document Architecture (CDA)–compatible format. Computed output was compared with manual markups made by four physicians and one author for maximal (longest) NP and those made by one author for base (simple) NP, respectively. An extended lexicon of biomedical terms was created from the UMLS Specialist Lexicon and used to improve NPI performance. Results: The test set was 50 randomly selected reports. The sentence boundary detector achieved 99.0% precision and 98.6% recall. The overall maximal NPI precision and recall were 78.9% and 81.5% before using the UMLS Specialist Lexicon and 82.1% and 84.6% after. The overall base NPI precision and recall were 88.2% and 86.8% before using the UMLS Specialist Lexicon and 93.1% and 92.6% after, reducing false-positives by 31.1% and false-negatives by 34.3%. Conclusion: The sentence boundary detector performs excellently. After the adaptation using the UMLS Specialist Lexicon, the statistical parser's NPI performance on radiology reports increased to levels comparable to the parser's native performance in its newswire training domain and to that reported by other researchers in the general nonmedical domain. PMID:15684131
Lehman, V T; Doolittle, D A; Hunt, C H; Eckel, L J; Black, D F; Schwartz, K M; Diehn, F E
2014-01-01
Descriptions of uncommon diseases with intracranial imaging abnormalities are often difficult to find in the radiology literature. We hypothesized that reported imaging findings of such conditions in the recent literature were more frequent in clinical compared with radiology journals. PubMed searches from December 1, 2007 to December 1, 2012 were performed for 5 uncommon CNS diseases with intracranial imaging manifestations: 1) Susac syndrome; 2) amyloid β-related angiitis; 3) Parry-Romberg syndrome/en coup de sabre; 4) transient lesion of the splenium of the corpus callosum; and 5) reversible cerebral vasoconstriction syndrome. Articles were classified as a case report, case series, or original research. Journals were categorized as radiology or clinical. The 1- and 5-year Impact Factors of the journals were recorded. Two hundred two articles were identified for the 5 diseases, including 151 (74%) case reports, 26 case series (13%), and 25 original research articles (13%); 179 (89%) were published in nonradiology journals, compared with 23 (11%) in radiology journals. There was no significant difference between the mean 1- and 5-year Impact Factors of the radiology and clinical journals. Recent reports of the selected uncommon diseases with intracranial manifestations are more frequent in clinical journals when compared with dedicated radiology publications. Most publications are case reports. Radiologists should review both radiology and clinical journals when reviewing imaging features of uncommon diseases affecting the brain. Lack of reporting on such disease in the radiology literature may have significant practice, educational, and research implications for the radiology community.
Pediatric interventional radiology clinic - how are we doing?
Rubenstein, Jonathan; Zettel, Julie C; Lee, Eric; Cote, Michelle; Aziza, Albert; Connolly, Bairbre L
2016-07-01
Development of a pediatric interventional radiology clinic is a necessary component of providing a pediatric interventional radiology service. Patient satisfaction is important when providing efficient, high-quality care. To analyze the care provided by a pediatric interventional radiology clinic from the perspective of efficiency and parent satisfaction, so as to identify areas for improvement. The prospective study was both quantitative and qualitative. The quantitative component measured clinic efficiency (waiting times, duration of clinic visit, nurse/physician time allocation and assessments performed; n = 91). The qualitative component assessed parental satisfaction with their experience with the pediatric interventional radiology clinic, using a questionnaire (5-point Likert scale) and optional free text section for feedback (n = 80). Questions explored the family's perception of relevance of information provided, consent process and overall satisfaction with their pediatric interventional radiology clinic experience. Families waited a mean of 11 and 10 min to meet the physician and nurse, respectively. Nurses and physicians spent a mean of 28 and 21 min with the families, respectively. The average duration of the pediatric interventional radiology clinic consultation was 56 min. Of 80 survey participants, 83% were satisfied with their experience and 94% said they believed providing consent before the day of the procedure was helpful. Only 5% of respondents were not satisfied with the time-efficiency of the interventional radiology clinic. Results show the majority of patients/parents are very satisfied with the pediatric interventional radiology clinic visit. The efficiency of the pediatric interventional radiology clinic is satisfactory; however, adherence to stricter scheduling can be improved.
40 CFR 60.1440 - What is yard waste?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Construction, renovation, and demolition wastes that are exempt from the definition of “municipal solid waste... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is yard waste? 60.1440 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste...
40 CFR 60.1440 - What is yard waste?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Construction, renovation, and demolition wastes that are exempt from the definition of “municipal solid waste... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is yard waste? 60.1440 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste...
Hanford Radiological Protection Support Services Annual Report for 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
DE Bihl; JA MacLellan; ML Johnson
1999-05-14
During calendar year (CY) 1998, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations OffIce (RL) and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo measurements, 4) radiological records, 5) instrument calibra- tion and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology (MST). The services were provided under a number of projects as summarized here.
Masino, Aaron J.; Casper, T. Charles; Dean, Jonathan M.; Bell, Jamie; Enriquez, Rene; Deakyne, Sara; Chamberlain, James M.; Alpern, Elizabeth R.
2016-01-01
Summary Background Important information to support healthcare quality improvement is often recorded in free text documents such as radiology reports. Natural language processing (NLP) methods may help extract this information, but these methods have rarely been applied outside the research laboratories where they were developed. Objective To implement and validate NLP tools to identify long bone fractures for pediatric emergency medicine quality improvement. Methods Using freely available statistical software packages, we implemented NLP methods to identify long bone fractures from radiology reports. A sample of 1,000 radiology reports was used to construct three candidate classification models. A test set of 500 reports was used to validate the model performance. Blinded manual review of radiology reports by two independent physicians provided the reference standard. Each radiology report was segmented and word stem and bigram features were constructed. Common English “stop words” and rare features were excluded. We used 10-fold cross-validation to select optimal configuration parameters for each model. Accuracy, recall, precision and the F1 score were calculated. The final model was compared to the use of diagnosis codes for the identification of patients with long bone fractures. Results There were 329 unique word stems and 344 bigrams in the training documents. A support vector machine classifier with Gaussian kernel performed best on the test set with accuracy=0.958, recall=0.969, precision=0.940, and F1 score=0.954. Optimal parameters for this model were cost=4 and gamma=0.005. The three classification models that we tested all performed better than diagnosis codes in terms of accuracy, precision, and F1 score (diagnosis code accuracy=0.932, recall=0.960, precision=0.896, and F1 score=0.927). Conclusions NLP methods using a corpus of 1,000 training documents accurately identified acute long bone fractures from radiology reports. Strategic use of straightforward NLP methods, implemented with freely available software, offers quality improvement teams new opportunities to extract information from narrative documents. PMID:27826610
Azlan, C A; Ng, K H; Anandan, S; Nizam, M S
2006-09-01
Illuminance level in the softcopy image viewing room is a very important factor to optimize productivity in radiological diagnosis. In today's radiological environment, the illuminance measurements are normally done during the quality control procedure and performed annually. Although the room is equipped with dimmer switches, radiologists are not able to decide the level of illuminance according to the standards. The aim of this study is to develop a simple real-time illuminance detector system to assist the radiologists in deciding an adequate illuminance level during radiological image viewing. The system indicates illuminance in a very simple visual form by using light emitting diodes. By employing the device in the viewing room, illuminance level can be monitored and adjusted effectively.
ICRP special radiation protection issues in interventional radiology, digital and cardiac imaging.
Vano, E; Faulkner, K
2005-01-01
The International Commission on Radiological Protection (ICRP) has published two reports giving recommendations dealing with the avoidance of deterministic injuries in interventional radiology and the management of patient dose in digital radiology in 2001 and 2004, respectively. Another document, on radiation protection for cardiologists performing fluoroscopically guided procedures, will be produced during 2005. This paper highlights some of the topics of the published reports, their relevance to European legislation on medical exposures and the importance of radiation protection research in underpinning the ICRP task groups' work in to producing these documents. It is also anticipated that the results, obtained in the cardiology work package of the European research project, will be used in the new document on radiation protection for cardiologists.
Vassileva, J; Simeonov, F; Avramova-Cholakova, S
2015-07-01
According to the Bulgarian regulation for radiation protection at medical exposure, the National Centre of Radiobiology and Radiation Protection (NCRRP) is responsible for performing national dose surveys in diagnostic and interventional radiology and nuclear medicine and for establishing of national diagnostic reference levels (DRLs). The next national dose survey is under preparation to be performed in the period of 2015-16, with the aim to cover conventional radiography, mammography, conventional fluoroscopy, interventional and fluoroscopy guided procedures and CT. It will be performed electronically using centralised on-line data collection platform established by the NCRRP. The aim is to increase the response rate and to improve the accuracy by reducing human errors. The concept of the on-line dose data collection platform is presented. Radiological facilities are provided with a tool to determine local typical patient doses, and the NCRRP to establish national DRLs. Future work will include automatic retrieval of dose data from hospital picture archival and communicating system. The on-line data collection platform is expected to facilitate the process of dose audit and optimisation of radiological procedures in Bulgarian hospitals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Single-Center Experience With Isolated Limb Infusion: An Interventional Oncology Opportunity.
DeFoe, Adam; Heckman, Andrew; Slater, Dick; Silva-Lopez, Edibaldo; Foster, Jason; Bowden, Thom; Vargo, Christopher
2017-03-01
This retrospective review details our experience with isolated limb infusion for the treatment of melanoma, squamous cell carcinoma, and sarcoma in-transit metastases performed entirely in the interventional radiology suite. Eleven patients were treated over a 3-year period. Treatment response was assessed clinically and with PET/CT. Eight patients had either complete or partial response, giving an overall response rate of 72%. Isolated limb infusion can efficiently be performed entirely in the interventional radiology suite.
Levine, Marc S; Carucci, Laura R; DiSantis, David J; Einstein, David M; Hawn, Mary T; Martin-Harris, Bonnie; Katzka, David A; Morgan, Desiree E; Rubesin, Stephen E; Scholz, Francis J; Turner, Mary Ann; Wolf, Ellen L; Canon, Cheri L
2016-11-01
The Society of Abdominal Radiology established a panel to prepare a consensus statement on the role of barium esophagography in gastroesophageal reflux disease (GERD), as well as recommended techniques for performing the fluoroscopic examination and the gamut of findings associated with this condition. Because it is an inexpensive, noninvasive, and widely available study that requires no sedation, barium esophagography may be performed as the initial test for GERD or in conjunction with other tests such as endoscopy.
2006-02-01
Radiological and Nuclear Contamination Avoidance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Federation of American Scientists 1717 K St., NW Suite 209 Washington...DC 20036 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.
Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Jeremy; Baerlocher, Mark Otto; Asch, Murray R.
2007-09-15
Purpose. To describe the current state and limitations to interventional radiology (IR) in Canada through a large, national survey of Canadian interventional radiologists. Methods. An anonymous online survey was offered to members of the Canadian Interventional Radiology Association (CIRA). Only staff radiologists were invited to participate. Results. Seventy-five (75) responses were received from a total of 247, giving a response rate of 30%. Respondents were split approximately equally between academic centers (47%) and community practice (53%), and the majority of interventional radiologists worked in hospitals with either 200-500 (49%) or 500-1,000 (39%) beds. Procedures listed by respondents as most commonlymore » performed in their practice included PICC line insertion (83%), angiography and stenting (65%), and percutaneous biopsy (37%). Procedures listed as not currently performed but which interventional radiologists believed would benefit their patient population included radiofrequency ablation (36%), carotid stenting (34%), and aortic stenting (21%); the majority of respondents noted that a lack of support from referring services was the main reason for not performing these procedures (56%). Impediments to increasing scope and volume of practice in Canadian IR were most commonly related to room or equipment shortage (35%), radiologist shortage (33%), and a lack of funding or administrative support (28%). Conclusion. Interventional radiology in Canada is limited by a number of factors including funding, manpower, and referral support. A concerted effort should be undertaken by individual interventional radiologists and IR organizations to increase training capacity, funding, remuneration, and public exposure to IR in order to help advance the subspecialty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Phyllis C.
The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort wasmore » designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.« less
Bridging the Gap between Basic and Clinical Sciences: A Description of a Radiological Anatomy Course
ERIC Educational Resources Information Center
Torres, Anna; Staskiewicz, Grzegorz J.; Lisiecka, Justyna; Pietrzyk, Lukasz; Czekajlo, Michael; Arancibia, Carlos U.; Maciejewski, Ryszard; Torres, Kamil
2016-01-01
A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images…
Surgical waste audit of 5 total knee arthroplasties.
Stall, Nathan M; Kagoma, Yoan M; Bondy, Jennifer N; Naudie, Douglas
2013-04-01
Operating rooms (ORs) are estimated to generate up to one-third of hospital waste. At the London Health Sciences Centre, prosthetics and implants represent 17% of the institution's ecological footprint. To investigate waste production associated with total knee arthroplasties (TKAs), we performed a surgical waste audit to gauge the environmental impact of this procedure and generate strategies to improve waste management. We conducted a waste audit of 5 primary TKAs performed by a single surgeon in February 2010. Waste was categorized into 6 streams: regular solid waste, recyclable plastics, biohazard waste, laundered linens, sharps and blue sterile wrap. Volume and weight of each stream was quantified. We used Canadian Joint Replacement Registry data (2008-2009) to estimate annual weight and volume totals of waste from all TKAs performed in Canada. The average surgical waste (excluding laundered linens) per TKA was 13.3 kg, of which 8.6 kg (64.5%) was normal solid waste, 2.5 kg (19.2%) was biohazard waste, 1.6 kg (12.1%) was blue sterile wrap, 0.3 kg (2.2%) was recyclables and 0.3 kg (2.2%) was sharps. Plastic wrappers, disposable surgical linens and personal protective equipment contributed considerably to total waste. We estimated that landfill waste from all 47 429 TKAs performed in Canada in 2008-2009 was 407 889 kg by weight and 15 272 m3 by volume. Total knee arthroplasties produce substantial amounts of surgical waste. Environmentally friendly surgical products and waste management strategies may allow ORs to reduce the negative impacts of waste production without compromising patient care. Level IV, case series.
Ward, Rebecca; Carroll, William D; Cunningham, Paula; Ho, Sheng-Ang; Jones, Mary; Lenney, Warren; Thompson, David
2017-01-01
Objectives Cumulative radiation exposure is associated with increased risk of malignancy. This is important in cystic fibrosis (CF) as frequent imaging is required to monitor disease progression and diagnose complications. Previous estimates of cumulative radiation are outdated as the imaging was performed on older equipment likely to deliver higher radiation. Our objectives were to determine the radiation dose delivered to children during common radiological investigations using modern equipment and to identify the number of such investigations performed in a cohort of children with CF to calculate their cumulative radiation exposure. Design, setting and participants Data including age at investigation and radiation exposure measured as estimated effective dose (EED) were collected on 2827 radiological studies performed on children at one UK paediatric centre. These were combined with the details of all radiological investigations performed on 65 children with CF attending the same centre to enable calculation of each child’s cumulative radiation exposure. Results The mean EED for the common radiological investigations varied according to age. The range was 0.01–0.02 mSv for chest X-rays, 0.03–0.11 mSv for abdominal X-rays, 0.57–1.69 mSv for CT chest, 2.9–3.9 mSv for abdominal and pelvic CT, 0.20–0.21 mSv for sinus CT and 0.15–0.52 mSv for fluoroscopy-guided procedures. The mean EED was three to five times higher for helical compared with axial chest CT scans. The mean annual cumulative EED for our cohort of children with CF was 0.15 mSv/year with an estimated cumulative paediatric lifetime EED (0–18 years) of 3.5 mSv. Conclusions This study provides up-to-date estimations of the radiation exposure when using common radiological investigations. These doses and the estimates of cumulative radiation exposure in children with CF are lower than previously reported. This reflects the reduced EED associated with modern equipment and the use of age-specific scanning protocols. PMID:28827272
van der Gijp, A; Ravesloot, C J; Jarodzka, H; van der Schaaf, M F; van der Schaaf, I C; van Schaik, J P J; Ten Cate, Th J
2017-08-01
Eye tracking research has been conducted for decades to gain understanding of visual diagnosis such as in radiology. For educational purposes, it is important to identify visual search patterns that are related to high perceptual performance and to identify effective teaching strategies. This review of eye-tracking literature in the radiology domain aims to identify visual search patterns associated with high perceptual performance. Databases PubMed, EMBASE, ERIC, PsycINFO, Scopus and Web of Science were searched using 'visual perception' OR 'eye tracking' AND 'radiology' and synonyms. Two authors independently screened search results and included eye tracking studies concerning visual skills in radiology published between January 1, 1994 and July 31, 2015. Two authors independently assessed study quality with the Medical Education Research Study Quality Instrument, and extracted study data with respect to design, participant and task characteristics, and variables. A thematic analysis was conducted to extract and arrange study results, and a textual narrative synthesis was applied for data integration and interpretation. The search resulted in 22 relevant full-text articles. Thematic analysis resulted in six themes that informed the relation between visual search and level of expertise: (1) time on task, (2) eye movement characteristics of experts, (3) differences in visual attention, (4) visual search patterns, (5) search patterns in cross sectional stack imaging, and (6) teaching visual search strategies. Expert search was found to be characterized by a global-focal search pattern, which represents an initial global impression, followed by a detailed, focal search-to-find mode. Specific task-related search patterns, like drilling through CT scans and systematic search in chest X-rays, were found to be related to high expert levels. One study investigated teaching of visual search strategies, and did not find a significant effect on perceptual performance. Eye tracking literature in radiology indicates several search patterns are related to high levels of expertise, but teaching novices to search as an expert may not be effective. Experimental research is needed to find out which search strategies can improve image perception in learners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, M.G.; Coleman, G.H.
2006-07-01
The contents of a safety basis (SB) are based upon the facility's purpose of operation, radiological inventory, and safety systems in place to mitigate any releases to the employees, general public and environment. Specifically, the radiological inventory is used for facility categorizations (e.g., Category 2, Category 3) and determining the material at risk used in the associated nuclear safety analysis calculations. Radiological inventory discrepancies, referred to as 'mismatches', have the potential to adversely impact the SB. This paper summarizes a process developed to: 1) identify these 'mismatches' based on a facility's radiological inventory, 2) categorize these 'mismatches' according to availablemore » data, and then 3) determine if these 'mismatches' yield either trivial or significant cumulative impacts on credited assumptions associated with a particular facility's SB. The two facilities evaluated for 'mismatches' were the K-1065 Complex and the Above Grade Storage Facility (AGSF). The randomly selected containers from each facility were obtained along with screening the radiological inventories found in the Waste Information Tracking System (WITS) database and the Request for Disposal (RFD) forms. Ideally, the radiological inventory, which is comprised of isotopic data for each container, is maintained in the WITS database. However, the RFD is the official repository record for isotopic data for each container. Historically, neither WITS nor the RFDs were required to contain isotopic data. Based on the WITS and RFD data, the containers were then categorized into five (5) separate conditions: Condition 1) Isotopic data in the RFD matches the isotopic data in WITS; Condition 2) Isotopic data in the RFD does not match the isotopic data in WITS; Condition 3) Isotopic data are in the RFD, but are not in WITS; Condition 4) No isotopic data in the RFD, but isotopic data are found in WITS; Condition 5) No isotopic data found in either the RFD or WITS. The results show trivial cumulative impacts (i.e., no inherent data biases) on credited assumptions associated with the K-1065 Complex and AGSF SBs. Recent random comparisons of WITS and RFDs continue to verify and validate that the administrative and procedural controls are adequate to ensure compliance with the SB for these facilities, thus providing a useful model for evaluating other facilities located at the Department of Energy's Oak Ridge Reservation (DOE-ORR). (authors)« less
Spanish Radiology in the second half of the XX Century: a view from inside.
Bonmatí, José
2008-09-01
Radiology was born in 1896 with the immediate recognition of the diagnostic value of X-rays in medicine and progressed throughout the XX Century with the increasing knowledge of its properties and clinical applications. By mid-century Radiology was a respected clinical specialty in advanced countries, the radiological report was a requirement in hospital practice and radiologists' opinions requested in scientific meetings. In the last decades of the century has had a spectacular expansion with the emergence of new imaging modalities and revolutionary technologies that have transformed the specialty worldwide. In Spain Radiology lagged behind needs and demand in 1950. Radiological practice was unregulated and performance of X-ray exams by non-radiologists was common. Teaching of Radiology was non-existent in Medical Schools or postgraduation. The diagnostic value of the specialty was unrecognized by physicians and the role of radiologists ignored. Most hospital radiology services were poorly equipped and functionally inadequate. The shadow of the Civil War (1936-39) was conditioning Radiology in the country. The point of inflexion in the development of Radiology in Spain was the inclusion of film reading sessions in the 1965 academic program of the Society of Radiology. It was in the presentation of cases at these conferences that Clinical Radiology found the finest demonstration ground and as a result was immediately adopted by radiologists and progressively applied in scientific meetings, clinical practices and training programs. Its influence was important in reforming hospital practice, legislation on specialization and education, as well as in national health care plans. At the end of the century radiology in Spain was at a par with the standards of other western nations. The author was a witness of the evolution of Radiology during his 50 years of professional life. This article does not pretend to be exhaustive in names or contributions. It is an overview of the period from the perspective of his past experience and seen from the distance of events that influenced the course of developments. I hope that those interested in the subject find that the effort has been worthwhile and helpful.
Occupational dose in interventional radiology procedures.
Chida, Koichi; Kaga, Yuji; Haga, Yoshihiro; Kataoka, Nozomi; Kumasaka, Eriko; Meguro, Taiichiro; Zuguchi, Masayuki
2013-01-01
Interventional radiology tends to involve long procedures (i.e., long fluoroscopic times). Therefore, radiation protection for interventional radiology staff is an important issue. This study describes the occupational radiation dose for interventional radiology staff, especially nurses, to clarify the present annual dose level for interventional radiology nurses. We compared the annual occupational dose (effective dose and dose equivalent) among interventional radiology staff in a hospital where 6606 catheterization procedures are performed annually. The annual occupational doses of 18 physicians, seven nurses, and eight radiologic technologists were recorded using two monitoring badges, one worn over and one under their lead aprons. The annual mean ± SD effective dose (range) to the physicians, nurses, and radiologic technologists using two badges was 3.00 ± 1.50 (0.84-6.17), 1.34 ± 0.55 (0.70-2.20), and 0.60 ± 0.48 (0.02-1.43) mSv/y, respectively. Similarly, the annual mean ± SD dose equivalent range was 19.84 ± 12.45 (7.0-48.5), 4.73 ± 0.72 (3.9-6.2), and 1.30 ± 1.00 (0.2-2.7) mSv/y, respectively. The mean ± SD effective dose for the physicians was 1.02 ± 0.74 and 3.00 ± 1.50 mSv/y for the one- and two-badge methods, respectively (p < 0.001). Similarly, the mean ± SD effective dose for the nurses (p = 0.186) and radiologic technologists (p = 0.726) tended to be lower using the one-badge method. The annual occupational dose for interventional radiology staff was in the order physicians > nurses > radiologic technologists. The occupational dose determined using one badge under the apron was far lower than the dose obtained with two badges in both physicians and nonphysicians. To evaluate the occupational dose correctly, we recommend use of two monitoring badges to evaluate interventional radiology nurses as well as physicians.
(Lack of) Measurable Clinical or Knowledge Gains From Resident Participation in Noon Conference.
Meyer, Nathaniel B; Gaetke-Udager, Kara; Shampain, Kimberly L; Spencer, Amy; Cohan, Richard H; Davenport, Matthew S
2018-06-01
The objective of this study was to determine whether noon conference attendance by diagnostic radiology residents is predictive of measurable performance. This single-center retrospective Health Insurance and Portability and Accountability Act (HIPAA)-compliant cross-sectional study was considered "not regulated" by the institutional review board. All diagnostic radiology residents who began residency training from 2008 to 2012 were included (N = 54). Metrics of clinical performance and knowledge were collected, including junior and senior precall test results, American Board of Radiology scores (z-score transformed), American College of Radiology in-training scores (years 1-3), on-call "great call" and minor and major discrepancy rates, on-call and daytime case volumes, and training rotation scores. Multivariate regression models were constructed to determine if conference attendance, match rank order, or starting year could predict these outcomes. Pearson bivariate correlations were calculated. Senior precall test results were moderately correlated with American Board of Radiology (r = 0.41) and American College of Radiology (r = 0.38-0.48) test results and mean rotation scores (r = 0.41), indicating moderate internal validity. However, conference attendance, match rank order, and year of training did not correlate with (r = -0.16-0.16) or predict (P > .05) measurable resident knowledge. On multivariate analysis, neither match rank order (P = .14-.96) nor conference attendance (P = .10-.88) predicted measurable clinical efficiency or accuracy. Year started training predicted greater cross-sectional case volume (P < .0001, β = 0.361-0.516) and less faculty-to-resident feedback (P < 0.0001, β = [-0.628]-[-0.733]). Residents with lower conference attendance are indistinguishable from those who attend more frequently in a wide range of clinical and knowledge-based performance assessments, suggesting that required attendance may not be necessary to gain certain measurable core competencies. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Field characterization plan for the 216-U-8 vitrified clay pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, C.A.
1994-01-21
The 216-U-8 Crib was constructed in 1952 and received waste from 1952 to 1960 as described in Appendix A. This description of work details the field activities associated with the characterization of the vitrified clay pipe (VCP) delivery line to the 216-U-8 Crib and subsurface soil sampling along the pipe route in the 200 West Area of Hanford U Plant. It will serves as a field guide for those performing the work. Soil sampling locations will be determined by a combination of radiological surface surveys and internal camera surveys of the VCP line. Depending on the condition of the pipelinemore » and field conditions, the objectives are as follows: examine the internal condition of the VCP with a survey camera to the extent allowed by field conditions; determine precise location and depth of the VCP; document VCP integrity; document gamma radiation profile through the VCP; and correlate any relationships between surface contamination zones at grade above the VCP to identify breaches in the pipe integrity.« less
Kraus, Terry; Foster, Kevin
2014-08-01
The radiological assessment of the nuclear fallout (i.e., fission and neutron-activation radionuclides) from a nuclear detonation is complicated by the large number of fallout radionuclides. This paper provides the initial isotopic source term inventory of the fallout from a uranium-fueled nuclear detonation and identifies the significant and insignificant radiological dose producing radionuclides over 11 dose integration time periods (time phases) of interest. A primary goal of this work is to produce a set of consistent, time phase-dependent lists of the top dose-producing radionuclides that can be used to prepare radiological assessment calculations and data products (e.g., maps of areas that exceed protective action guidelines) in support of public and worker protection decisions. The ranked lists of top dose-producing radionuclides enable assessors to perform atmospheric dispersion modeling and radiological dose assessment modeling more quickly by using relatively short lists of radionuclides without significantly compromising the accuracy of the modeling and the dose projections. This paper also provides a superset-list of the top dose-producing fallout radionuclides from a uranium-fueled nuclear detonation that can be used to perform radiological assessments over any desired time phase. Furthermore, this paper provides information that may be useful to monitoring and sampling and laboratory analysis personnel to help understand which radionuclides are of primary concern. Finally, this paper may be useful to public protection decision makers because it shows the importance of quickly initiating public protection actions to minimize the radiological dose from fallout.
Final Environmental Impact Statement (EIS) for the Space Nuclear Thermal Propulsion (SNTP) program
NASA Astrophysics Data System (ADS)
1991-09-01
A program has been proposed to develop the technology and demonstrate the feasibility of a high-temperature particle bed reactor (PBR) propulsion system to be used to power an advanced second stage nuclear rocket engine. The purpose of this Final Environmental Impact Statement (FEIS) is to assess the potential environmental impacts of component development and testing, construction of ground test facilities, and ground testing. Major issues and goals of the program include the achievement and control of predicted nuclear power levels; the development of materials that can withstand the extremely high operating temperatures and hydrogen flow environments; and the reliable control of cryogenic hydrogen and hot gaseous hydrogen propellant. The testing process is designed to minimize radiation exposure to the environment. Environmental impact and mitigation planning are included for the following areas of concern: (1) Population and economy; (2) Land use and infrastructure; (3) Noise; (4) Cultural resources; (5) Safety (non-nuclear); (6) Waste; (7) Topography; (8) Geology; (9) Seismic activity; (10) Water resources; (11) Meteorology/Air quality; (12) Biological resources; (13) Radiological normal operations; (14) Radiological accidents; (15) Soils; and (16) Wildlife habitats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubart, Philippe; Hautot, Felix; Morichi, Massimo
Good management of dismantling and decontamination (D and D) operations and activities is requiring safety, time saving and perfect radiological knowledge of the contaminated environment as well as optimization for personnel dose and minimization of waste volume. In the same time, Fukushima accident has imposed a stretch to the nuclear measurement operational approach requiring in such emergency situation: fast deployment and intervention, quick analysis and fast scenario definition. AREVA, as return of experience from his activities carried out at Fukushima and D and D sites has developed a novel multi-sensor solution as part of his D and D research, approachmore » and method, a system with real-time 3D photo-realistic spatial radiation distribution cartography of contaminated premises. The system may be hand-held or mounted on a mobile device (robot, drone, e.g). In this paper, we will present our current development based on a SLAM technology (Simultaneous Localization And Mapping) and integrated sensors and detectors allowing simultaneous topographic and radiological (dose rate and/or spectroscopy) data acquisitions. This enabling technology permits 3D gamma activity cartography in real-time. (authors)« less
Pomberger, R; Sarc, R; Lorber, K E
2017-03-01
This contribution describes the dynamic visualisation of European (EU 28) municipal waste management performance, using the Ternary Diagram Method. Municipal waste management performance depends primarily on three treatment categories: recycling & composting, incineration and landfilling. The framework of current municipal waste management including recycling targets, etc. is given by the Waste Framework Directive - 2008/98/EC. The proposed Circular Economy Package should stimulate Europe's transition towards more sustainable resources and energy oriented waste management. The Package also includes a revised legislative proposal on waste that sets ambitious recycling rates for municipal waste for 2025 (60%) and 2030 (65%). Additionally, the new calculation method for monitoring the attainment of the targets should be applied. In 2014, ca. 240 million tonnes of municipal waste were generated in the EU. While in 1995, 17% were recycled and composted, 14% incinerated and 64% landfilled, in 2014 ca. 71% were recovered but 28% landfilled only. Considering the treatment performance of the individual EU member states, the EU 28 can be divided into three groups, namely: "Recovery Countries", "Transition Countries" and "Landfilling Countries". Using Ternary Diagram Method, three types of visualization for the municipal waste management performance have been investigated and extensively described. Therefore, for better understanding of municipal waste management performance in the last 20years, dynamic visualisation of the Eurostat table-form data on all 28 member states of the EU has been carried out in three different ways: 1. "Performance Positioning" of waste management unit(s) at a specific date; 2. "Performance dynamics" over a certain time period and; 3. "Performance development" expressed as a track(s). Results obtained show that the Ternary Diagram Method is very well suited to be used for better understanding of past developments and coherences, for monitoring of current situations and prognosis of future paths. One of the interesting coherences shown by the method is the linked development of recycling & composting (60-65%) with incineration (40-35%) performance over the last 20years in the EU 28. Copyright © 2017 Elsevier Ltd. All rights reserved.
Use of acceptable knowledge to demonstrate TRAMPAC compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitworth, J.; Becker, B.; Guerin, D.
2004-01-01
Recently, Los Alamos National Laboratory-Carlsbad Operations (LANL-CO) has supported the Central Characterization Project (CCP) managed by the U.S. Department of Energy (DOE) in the shipment of transuranic (TRU) waste from various small-quantity TRU waste generators to hub sites or other DOE sites in TRUPACT-II shipping containers. This support has involved using acceptable knowledge (AK) to demonstrate compliance with various requirements of Revision 19 of the TRUPACT-II Authorized Methods of Payload Compliance (TRAMPAC). LANL-CO has worked to facilitate TRUPACT-II shipments from the University of Missouri Research Reactor (MURR) and Lovelace Respiratory Research Institute (LRRI) to Argonne National Laboratory-East (ANL-E) and Losmore » Alamos National Laboratory (LANL), respectively. The latter two sites have TRU waste certification programs approved to ship waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In each case, AK was used to satisfy the necessary information to ship the waste to other DOE facilities. For the purposes of intersite shipment, AK provided data to WIPP Waste Information System (WWIS) transportation modules to ensure that required information was obtained prior to TRUPACT-II shipments. The WWIS modules were used for the intersite shipments, not to enter certification data into WWIS, but rather to take advantage of a validated system to ensure that the containers to be shipped were compliant with TRAMPAC requirements, particularly in the evaluation of quantitative criteria. LANL-CO also assisted with a TRAMPAC compliance demonstration for homogeneous waste containers shipped in TRUPACT-II containers from ANL-E to Idaho National Engineering and Environmental Laboratory (INEEL) for the purpose of core sampling. The basis for the TRAMPAC compliance determinations was AK regarding radiological composition, chemical composition, TRU waste container packaging, and absence of prohibited items. Also, even in the case where AK is not used to fully demonstrate TRAMPAC compliance, it may be used to identify problem areas for shippability of different waste streams. An example is the case of Pu-238-contaminated waste from the Savannah River Site that had a low probability of meeting decay heat limits and aspiration times due to several factors including large numbers of confinement layers. This paper will outline 17 TRAMPAC compliance criteria assessed and the types of information used to show compliance with all criteria other than dose rate and container weight, which are normally easily measured at load preparation.« less
Assessing the value of diagnostic imaging: the role of perception
NASA Astrophysics Data System (ADS)
Potchen, E. J.; Cooper, Thomas G.
2000-04-01
The value of diagnostic radiology rests in its ability to provide information. Information is defined as a reduction in randomness. Quality improvement in any system requires diminution in the variation in its performance. The major variation in performance of the system of diagnostic radiology occurs in observer performance and in the communication of information from the observer to someone who will apply that information to the benefit of the patient. The ability to provide information can be determined by observer performance studies using a receiver-operating characteristic (ROC) curve analysis. The amount of information provided by each observer can be measured in terms of the uncertainty they reduce. Using a set of standardized radiographs, some normal and some abnormal, sorting them randomly, and then asking an observer to redistribute them according to their probability of normality can measure the difference in the value added by different observers. By applying this observer performance measure, we have been able to characterize individual radiologists, groups of radiologists, and regions of the United States in their ability to add value in chest radiology. The use of these technologies in health care may improve upon the contribution of diagnostic imaging.
Aerospace vehicle water-waste management
NASA Technical Reports Server (NTRS)
Pecoraro, J. N.
1973-01-01
The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.
Code of Federal Regulations, 2011 CFR
2011-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2010 CFR
2010-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...