40 CFR 62.14590 - What should I include in my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the... waste management measures already in place, the costs of additional measures, the emissions reductions...
Solid Waste Reduction--A Hands-on Study.
ERIC Educational Resources Information Center
Wiessinger, Diane
1991-01-01
This lesson plan uses grocery shopping to demonstrate the importance of source reduction in the handling of solid waste problems. Students consider different priorities in shopping (convenience, packaging, and waste reduction) and draw conclusions about the relationship between packaging techniques and solid waste problems. (MCO)
Waste reduction plan for The Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, R.M.
1990-04-01
The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associatedmore » with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.« less
40 CFR 60.2901 - What should I include in my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... management plan must include consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the use of recyclable materials. The plan... place, the costs of additional measures, the emissions reductions expected to be achieved, and any other...
40 CFR 60.2065 - What should I include in my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... include consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the use of recyclable materials. The plan must identify any..., the emissions reductions expected to be achieved, and any other environmental or energy impacts they...
Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less
40 CFR 60.2630 - What should I include in my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What should I include in my waste management plan? 60.2630 Section 60.2630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass...
40 CFR 60.2065 - What should I include in my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What should I include in my waste management plan? 60.2065 Section 60.2065 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or...
40 CFR 60.2901 - What should I include in my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What should I include in my waste management plan? 60.2901 Section 60.2901 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass...
40 CFR 60.2065 - What should I include in my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What should I include in my waste management plan? 60.2065 Section 60.2065 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or...
40 CFR 60.2901 - What should I include in my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What should I include in my waste management plan? 60.2901 Section 60.2901 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
...This action finalizes amendments to the federal plan and the new source performance standards for hospital/medical/infectious waste incinerators. This final action implements national standards promulgated in the 2009 amendments to the hospital/medical/infectious waste incinerator emissions guidelines that will result in reductions in emissions of certain pollutants from all affected units.
Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1993-12-01
US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less
NASA Astrophysics Data System (ADS)
Ginting, N.
2017-05-01
Indonesia committed to reduce its greenhouse gas (GHG) by 26% in 2020. At the UNFCCC (Conference of the United Nation Framework Convention on Climate Change) held in Paris in December 2015 Indonesia committed to reduce GHG; one way by promoting clean energy use for example biogas. Agricultural industry produces organic waste which contributes to global warming and climate change. In Karo District, mostly the people were farmers, either horticulture or fruit and produces massive organic waste. Biogas research was conducted in Karo District in May until July 2016 used 5 biodigesters. The purpose was to determine benefits of using biogas technology in order to reduct GHG emissions. The used design was Completely Randomized Design (CRD) with treatments: T1 (100% cow feces), T2 (75% cow feces + 25% horticultural waste), T3 (50% cow feces + 50% horticultural waste), T4 (25% cow feces + 75% horticultural waste) and T5 (100% horticultural waste). Parameter research were gas production, pH and temperature. The research result showed that T1 produced the highest methane ( P<0.05) compared to other treatments while T2 produced methane higher (P<0.05) compared to T4 or T5. There was no difference on methane production between T4 and T5. As conclusion application of biogas on agricultural waste supported local action plan for greenhouse gas emission reduction of North Sumatera Province 2010-2020. From horticultural waste, there were 2.1 × 106 ton CO2 eq in 2014 which were not calculated in RAD GRK (Regional Action Plan for Greenhouse Gas Emissions Reduction).
Ding, Zhikun; Yi, Guizhen; Tam, Vivian W Y; Huang, Tengyue
2016-05-01
A huge amount of construction waste has been generated from increasingly higher number of construction activities than in the past, which has significant negative impacts on the environment if they are not properly managed. Therefore, effective construction waste management is of primary importance for future sustainable development. Based on the theory of planned behaviors, this paper develops a system dynamic model of construction waste reduction management at the construction phase to simulate the environmental benefits of construction waste reduction management. The application of the proposed model is shown using a case study in Shenzhen, China. Vensim is applied to simulate and analyze the model. The simulation results indicate that source reduction is an effective waste reduction measure which can reduce 27.05% of the total waste generation. Sorting behaviors are a premise for improving the construction waste recycling and reuse rates which account for 15.49% of the total waste generated. The environmental benefits of source reduction outweigh those of sorting behaviors. Therefore, to achieve better environmental performance of the construction waste reduction management, attention should be paid to source reduction such as low waste technologies and on-site management performance. In the meantime, sorting behaviors encouragement such as improving stakeholders' waste awareness, refining regulations, strengthening government supervision and controlling illegal dumping should be emphasized. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transuranic Waste Test Facility Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looper, M.G.
1987-05-05
This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2011 CFR
2011-10-01
....13 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... plans for waste reduction, storage and disposal) specifying for each of its permanent stations, field... past activities (i.e., traverses, fuel depots, field bases, crashed aircraft) so that such locations...
2007 SB14 Source Reduction Plan/Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L
2007-07-24
Aqueous solutions (mixed waste) generated from various LLNL operations, such as debris washing, sample preparation and analysis, and equipment maintenance and cleanout, were combined for storage in the B695 tank farm. Prior to combination the individual waste streams had different codes depending on the particular generating process and waste characteristics. The largest streams were CWC 132, 791, 134, 792. Several smaller waste streams were also included. This combined waste stream was treated at LLNL's waste treatment facility using a vacuum filtration and cool vapor evaporation process in preparation for discharge to sanitary sewer. Prior to discharge, the treated waste streammore » was sampled and the results were reviewed by LLNL's water monitoring specialists. The treated solution was discharged following confirmation that it met the discharge criteria. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. Quarterly waste generation data prepared by the Environmental Protection Department's P2 Team are regularly provided to engineering shops as well as other facilities so that generators can track the effectiveness of their waste minimization efforts.« less
Developing a master plan for hospital solid waste management: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamouz, Mohammad; Zahraie, Banafsheh; Kerachian, Reza
2007-07-01
Disposal of about 1750 tons of solid wastes per day is the result of a rapid population growth in the province of Khuzestan in the south west of Iran. Most of these wastes, especially hospital solid wastes which have contributed to the pollution of the environment in the study area, are not properly managed considering environmental standards and regulations. In this paper, the framework of a master plan for managing hospital solid wastes is proposed considering different criteria which are usually used for evaluating the pollution of hospital solid waste loads. The effectiveness of the management schemes is also evaluated.more » In order to rank the hospitals and determine the share of each hospital in the total hospital solid waste pollution load, a multiple criteria decision making technique, namely analytical hierarchy process (AHP), is used. A set of projects are proposed for solid waste pollution control and reduction in the proposed framework. It is partially applied for hospital solid waste management in the province of Khuzestan, Iran. The results have shown that the hospitals located near the capital city of the province, Ahvaz, produce more than 43% of the total hospital solid waste pollution load of the province. The results have also shown the importance of improving management techniques rather than building new facilities. The proposed methodology is used to formulate a master plan for hospital solid waste management.« less
The 3R's of Solid Waste & the Population Factor for a Sustainable Planet.
ERIC Educational Resources Information Center
Wagner, Joan
1995-01-01
Opens with a brief history of human awareness of our effect upon the environment. Culminates with a discussion of a strategy to handle solid wastes. This plan includes the 3R's: (1) source reduction; (2) direct reuse of products; and (3) recycling. Also provides statistics on recycling practices of some countries. (ZWH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
DUNCAN JB; GUTHRIE MD
2008-08-29
This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.
Yang, Dewei; Xu, Lingxing; Gao, Xueli; Guo, Qinghai; Huang, Ning
2018-06-01
Waste-related greenhouse gas (GHG) emissions have been recognized as one of the prominent contributors to global warming. Current urban waste regulations, however, face increasing challenges from stakeholders' trade-offs and hierarchic management. A combined method, i.e., life cycle inventories and scenario analysis, was employed to investigate waste-related GHG emissions during 1995-2015 and to project future scenarios of waste-driven carbon emissions by 2050 in a pilot low carbon city, Xiamen, China. The process-based carbon analysis of waste generation (prevention and separation), transportation (collection and transfer) and disposal (treatment and recycling) shows that the main contributors of carbon emissions are associated with waste disposal processes, solid waste, the municipal sector and Xiamen Mainland. Significant spatial differences of waste-related CO 2e emissions were observed between Xiamen Island and Xiamen Mainland using the carbon intensity and density indexes. An uptrend of waste-related CO 2e emissions from 2015 to 2050 is identified in the business as usual, waste disposal optimization, waste reduction and the integrated scenario, with mean annual growth rates of 8.86%, 8.42%, 6.90% and 6.61%, respectively. The scenario and sensitivity analysis imply that effective waste-related carbon reduction requires trade-offs among alternative strategies, actions and stakeholders in a feasible plan, and emphasize a priority of waste prevention and collection in Xiamen. Our results could benefit to the future modeling of urban multiple wastes and life-cycle carbon control in similar cities within and beyond China. Copyright © 2018 Elsevier B.V. All rights reserved.
Strategic Mobility 21: Baseline Joint Experimentation Campaign Plan
2008-06-19
including energy. The Value Stream Analysis Future State then designed Kaizens (process optimizations) for an improved Future State to help drive waste...Recommended Improvements and Experimentation Opportunities Initial recommended Kaizens (improvement opportunities) for waste reduction, constraint...Trucking, Service Craft Logistics, BNSF, and Madison Warehouse, Inc. • Kaizen 1 (Figure 17): Full upload electronically of the Dole ANS files • Kaizen
Economic analysis of waste-to-energy industry in China.
Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling
2016-02-01
The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 62.3854 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.3854 Identification of plan—negative declaration. Letter from the Iowa Department of Water, Air and Waste Management submitted on May...
40 CFR 62.3854 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.3854 Identification of plan—negative declaration. Letter from the Iowa Department of Water, Air and Waste Management submitted on May...
40 CFR 62.3854 - Identification of plan-negative declaration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.3854 Identification of plan—negative declaration. Letter from the Iowa Department of Water, Air and Waste Management submitted on May...
40 CFR 62.3854 - Identification of plan-negative declaration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.3854 Identification of plan—negative declaration. Letter from the Iowa Department of Water, Air and Waste Management submitted on May...
40 CFR 62.3854 - Identification of plan-negative declaration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.3854 Identification of plan—negative declaration. Letter from the Iowa Department of Water, Air and Waste Management submitted on May...
Change in MSW characteristics under recent management strategies in Taiwan.
Chang, Yu-Min; Liu, Chien-Chung; Hung, Chao-Yang; Hu, Allen; Chen, Shiao-Shing
2008-12-01
Reduction and recycling initiatives such as producer responsibility and pay-as-you-throw are being implemented in Taiwan. This paper presents a study assessing the impact of recently implemented municipal solid waste (MSW) reduction and recycling management strategies on the characteristics of waste feedstock for incineration in Taiwan. Through the periodic sampling of two typical MSW incineration plants, proximate and ultimate analyses were conducted according to standard methods to explore the influence of MSW reduction and recycling management strategies on incineration feed waste characteristics. It was observed that the annual amount of MSW generated in 2005 decreased by about 10% compared to 2003 and that the characteristics of MSW have changed significantly due to recent management strategies. The heating value of the MSW generated in Taiwan increased yearly by about 5% after program implementation. A comparison of the monthly variations in chemical concentrations indicated that the chlorine content in MSW has changed. This change results from usage reduction of PVC plastic due to the recycling fund management (RFM) program, and the food waste as well as salt content reduction due to the total recycling for kitchen garbage program. This achievement will improve the reduction of dioxin emissions from MSW incineration. In summary, management strategies must be conducted in tandem with the global trend to achieve a zero-waste-discharge country. When implementing these strategies and planning for future MSW management systems, it is important to consider the changes that may occur in the composition and characteristics of MSW over time.
Pakpour, Amir H; Zeidi, Isa Mohammadi; Emamjomeh, Mohammad Mahdi; Asefzadeh, Saeed; Pearson, Heidi
2014-06-01
Understanding the factors influencing recycling behaviour can lead to better and more effective recycling programs in a community. The goal of this study was to examine factors associated with household waste behaviours in the context of the theory of planned behaviour (TPB) among a community sample of Iranians that included data collection at time 1 and at follow-up one year later at time 2. Study participants were sampled from households under the coverage of eight urban health centers in the city of Qazvin. Of 2000 invited households, 1782 agreed to participate in the study. A self-reported questionnaire was used for assessing socio-demographic factors and the TPB constructs (i.e. attitude, subjective norms, perceived behavioural control, and intention). Furthermore, questions regarding moral obligation, self-identity, action planning, and past recycling behaviour were asked, creating an extended TPB. At time 2, participants were asked to complete a follow-up questionnaire on self-reported recycling behaviours. All TPB constructs had positive and significant correlations with each other. Recycling behaviour at time 1 (past behaviour) significantly related to household waste behaviour at time 2. The extended TPB explained 47% of the variance in household waste behaviour at time 2. Attitude, perceived behavioural control, intention, moral obligation, self-identity, action planning, and past recycling behaviour were significant predictors of household waste behaviour at time 2 in all models. The fact that the expanded TPB constructs significantly predicted household waste behaviours holds great promise for developing effective public campaigns and behaviour-changing interventions in a region where overall rates of household waste reduction behaviours are low. Our results indicate that educational materials which target moral obligation and action planning may be particularly effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
Monitoring and Testing the Parts Cleaning Stations, Abrasive Blasting Cabinets, and Paint Booths
NASA Technical Reports Server (NTRS)
Jordan, Tracee M.
2004-01-01
I have the opportunity to work in the Environmental Management Office (EMO) this summer. One of the EMO's tasks is to make sure the Environmental Management System is implemented to the entire Glenn Research Center (GRC). The Environmental Management System (EMS) is a policy or plan that is oriented toward minimizing an organization's impact to the environment. Our EMS includes the reduction of solid waste regeneration and the reduction of hazardous material use, waste, and pollution. With the Waste Management Team's (WMT) help, the EMS can be implemented throughout the NASA Glenn Research Center. The WMT is responsible for the disposal and managing of waste throughout the GRC. They are also responsible for the management of all chemical waste in the facility. My responsibility is to support the waste management team by performing an inventory on parts cleaning stations, abrasive cabinets, and paint booths through out the entire facility. These booths/stations are used throughout the center and they need to be monitored and tested for hazardous waste and material. My job is to visit each of these booths/stations, take samples of the waste, and analyze the samples.
Energy aspects of solid waste management: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less
Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finucane, K.G.; Thompson, L.E.; Abuku, T.
The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements.more » However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes are outlined. (authors)« less
Working towards a zero waste environment in Taiwan.
Young, Chea-Yuan; Ni, Shih-Piao; Fan, Kuo-Shuh
2010-03-01
It is essential to the achievement of zero waste that emphasis is concentrated on front-end preventions rather than end-of-pipe (EOP) treatment. Zero waste is primarily based on cleaner production, waste management, the reduction of unnecessary consumption and the effective utilization of waste materials. The aim of this study was to briefly review the tasks undertaken and future plans for achieving zero waste in Taiwan. Waste prevention, source reduction, waste to product, waste to energy, EOP treatment, and adequate disposal are the sequential principal procedures to achieve the goal of zero waste. Six strategies have been adopted to implement the zero waste policy in Taiwan. These are regulatory amendments, consumption education, financial incentives, technical support, public awareness, and tracking and reporting. Stepwise targets have been set for 2005, 2007, 2011, and 2020 for both the municipal solid waste (MSW) and industrial waste to reach the goal of zero waste. The eventual aim is to achieve 70% MSW minimization and 85% industrial waste minimization by 2020. Although tools and measures have been established, some key programmes have higher priority. These include the establishment of a waste recycling programme, promotion of cleaner production, a green procurement programme, and promotion of public awareness. Since the implementation of the zero waste policy started in 2003, the volume of MSW for landfill and incineration has declined dramatically. The recycling and/or minimization of MSW quantity in 2007 was 37%, which is much higher than the goal of 25%. Industrial waste reached almost 76% minimization by the end of 2006, which is 1 year before the target year.
Energy aspects of solid waste management: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-31
The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less
Hyeda, Adriano; Costa, Elide Sbardellotto Mariano da
2015-08-01
chemotherapy is essential to treat most types of cancer. Often, there is chemotherapy waste in the preparation of drugs prescribed to the patient. Leftover doses result in toxic waste production. the aim of the study was to analyze chemotherapy waste reduction at a centralized drug preparation unit. the study was cross-sectional, observational and descriptive, conducted between 2010 and 2012. The data were obtained from chemotherapy prescriptions made by oncologists linked to a health insurance plan in Curitiba, capital of the state of Paraná, in southern Brazil. Dose and the cost of chemotherapy waste were calculated in each application, considering the dose prescribed by the doctor and the drug dosages available for sale. The variables were then calculated considering a hypothetical centralized drug preparation unit. there were 176 patients with a cancer diagnosis, 106 of which underwent treatment with intravenous chemotherapy. There were 1,284 applications for intravenous anticancer medications. There was a total of 63,824mg in chemotherapy waste, the cost of which was BRL 448,397.00. The average cost of chemotherapy waste per patient was BRL 4,607.00. In the centralized model, there was 971.80mg of chemotherapy waste, costing BRL 13,991.64. The average cost of chemotherapy waste per patient was BRL 132.00. the use of centralized drug preparation units may be a strategy to reduce chemotherapy waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.
Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammablemore » gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.« less
Landfill reduction experience in The Netherlands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scharff, Heijo, E-mail: h.scharff@afvalzorg.nl
Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction.more » This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a ‘safety net’ in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erhart, Steven C.; Spencer, Charles G.
The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP), while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. The mission of the Y-12 Energy Management program is to incorporate energy-efficient technologies site-wide and to position Y-12more » to meet NNSA energy requirement needs through 2025 and beyond. This plan addresses: Greenhouse Gas Reduction and Comprehensive Greenhouse Gas Inventory; Buildings, ESPC Initiative Schedule, and Regional and Local Planning; Fleet Management; Water Use Efficiency and Management; Pollution Prevention and Waste Reduction; Sustainable Acquisition; Electronic Stewardship and Data Centers; Renewable Energy; Climate Change; and Budget and Funding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanochko, Ronald M.; Corcoran, Connie
The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, whichmore » mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)« less
Review of LLNL Mixed Waste Streams for the Application of Potential Waste Reduction Controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belue, A; Fischer, R P
2007-01-08
In July 2004, LLNL adopted the International Standard ISO 14001 as a Work Smart Standard in lieu of DOE Order 450.1. In support of this new requirement the Director issued a new environmental policy that was documented in Section 3.0 of Document 1.2, ''ES&H Policies of LLNL'', in the ES&H Manual. In recent years the Environmental Management System (EMS) process has become formalized as LLNL adopted ISO 14001 as part of the contract under which the laboratory is operated for the Department of Energy (DOE). On May 9, 2005, LLNL revised its Integrated Safety Management System Description to enhance existingmore » environmental requirements to meet ISO 14001. Effective October 1, 2005, each new project or activity is required to be evaluated from an environmental aspect, particularly if a potential exists for significant environmental impacts. Authorizing organizations are required to consider the management of all environmental aspects, the applicable regulatory requirements, and reasonable actions that can be taken to reduce negative environmental impacts. During 2006, LLNL has worked to implement the corrective actions addressing the deficiencies identified in the DOE/LSO audit. LLNL has begun to update the present EMS to meet the requirements of ISO 14001:2004. The EMS commits LLNL--and each employee--to responsible stewardship of all the environmental resources in our care. The generation of mixed radioactive waste was identified as a significant environmental aspect. Mixed waste for the purposes of this report is defined as waste materials containing both hazardous chemical and radioactive constituents. Significant environmental aspects require that an Environmental Management Plan (EMP) be developed. The objective of the EMP developed for mixed waste (EMP-005) is to evaluate options for reducing the amount of mixed waste generated. This document presents the findings of the evaluation of mixed waste generated at LLNL and a proposed plan for reduction.« less
40 CFR 62.10140 - Identification of plan-negative declaration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS South Carolina Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.10140... submitted on May 3, 1983, a letter certifying that there are no existing primary aluminum plants in the... gases, Organic Compounds And Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With The...
40 CFR 62.10140 - Identification of plan-negative declaration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTANTS South Carolina Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.10140... submitted on May 3, 1983, a letter certifying that there are no existing primary aluminum plants in the... gases, Organic Compounds And Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With The...
40 CFR 62.10140 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTANTS South Carolina Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.10140... submitted on May 3, 1983, a letter certifying that there are no existing primary aluminum plants in the... gases, Organic Compounds And Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With The...
40 CFR 62.10140 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS South Carolina Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.10140... submitted on May 3, 1983, a letter certifying that there are no existing primary aluminum plants in the... gases, Organic Compounds And Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With The...
40 CFR 62.10140 - Identification of plan-negative declaration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTANTS South Carolina Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.10140... submitted on May 3, 1983, a letter certifying that there are no existing primary aluminum plants in the... gases, Organic Compounds And Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With The...
Landfill reduction experience in The Netherlands.
Scharff, Heijo
2014-11-01
Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
Waste diminution in Construction projects: Environmental Predicaments
NASA Astrophysics Data System (ADS)
Gharehbaghi, Koorosh; Scott-Young, Christina
2018-03-01
Waste diminution in construction projects is not only a behavioural issue, but also an energy consumption and reduction concern. With construction waste equating to the significant amount of exhausted energy together with increased pollution, this contributes to a series of environmental predicaments. The overall goal of construction solid Waste Management is to collect, treat and dispose of solid wastes generated by project activities in an environmentally and socially satisfactory manner, using the most economical means available. As cities expand, their construction activities and consumption patterns further drive up the solid waste quantities. Governments are usually authorized to have responsibility for providing solid Waste Management services, and various administrative laws give them exclusive ownership over the waste produced. In addition, construction waste processing can be further controlled and minimized according to specialized authorities such as Environmental Protection Agencies (EPA) and their relevant acts and regulations. Moreover, a Construction Environmental Management Plan (CEMP) can further control the treatment of waste and therefore, reduce the amount produced. Key elements of a CEMP not only include complying with relevant legislation, standards and guidance from the EPA; however, also to ensuring that there are systems in place to resolve any potential problems associated with site activities. Accordingly, as a part of energy consumption and lessening strategies, this paper will discuss various effective waste reduction methods for construction projects. Finally, this paper will also examine tactics to further improve energy efficiency through innovative construction Waste Management strategies (including desirability rating of most favourable options) to promote the lessening of overall CO2production.
Solid Waste Management Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-26
The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.
Environmental Policy--a Priority for Schools in the '90s.
ERIC Educational Resources Information Center
Ehrhardt, Cathryn
1989-01-01
A transformation of public attitudes on the environment has resulted in more stringent standards on almost all school programs for hazardous waste management, air quality, groundwater, and emergency planning and response. A comprehensive environmental risk reduction and management policy should highlight the potential for environmental risks in…
Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.
Utkin, S S; Linge, I I
2016-11-22
The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m 3 of liquid radioactive waste with a total activity of some 5 × 10 15 Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kumar, Adarsh; Maiti, Subodh Kumar
2015-01-01
The abandoned chromite-asbestos mines are located in the Roro hills, West Singhbhum, Jharkhand, India, where mining operation ceased in 1983, and since then these mines are causing environmental pollution. The present study was planned to phytoremediate these metalloid and metal contaminated mine waste by using two aromatic grasses, Cymbopogon citratus and Chrysopogon zizanioides by applying different proportions of amendments (chicken manure, farmyard manure and garden soil). Mine waste has neutral pH, low electrical conductivity and organic carbon with higher concentration of total metals (Cr and Ni) as compared to soil. Application of manures resulted significant improvements of mine waste characteristics and plant growth, reduction in the availability of total extractable toxic metals (Cr, Ni) and increase in Mn, Zn and Cu concentration in the substrate. The maximum growth and biomass production for C. citratus and C. zizanioides were found in T-IV combination comprising of mine waste (90%), chicken manure (2.5%), farmyard manure (2.5%) and garden soil (5%). Addition of T-IV combination also resulted in low Cr and Ni accumulation in roots and reduction in translocation to shoots. Study indicates that C. citratus and C. zizanioides can be used for phytostabilization of abandoned chromite-asbestos mine waste with amendments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Charles G
2012-12-01
The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 tomore » meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.« less
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
Towards Zero Waste in emerging countries - A South African experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matete, Ntlibi; Trois, Cristina
2008-07-01
The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management , which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selectedmore » as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa.« less
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
Engineering design and test plan for demonstrating DETOX treatment of mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldblatt, S.; Dhooge, P.
1995-03-01
DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit,more » and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).« less
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...
NASA Astrophysics Data System (ADS)
Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.
2003-12-01
The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged over fivefold the "typical" values for comparable landfill waste. In terms of "greenhouse benefit," fractional VOC and methane energy recovery are estimated to exceed 90%, with corresponding methane and VOC emission reductions. Analyses done for the greenhouse gas mitigation program of the U.S. Department of Energy National Energy Technology Laboratory indicate favorable economics justified on landfill life extension, as well as environmental benefits. The "controlled landfill" project findings suggest potential for low-cost mitigation of waste greenhouse methane emissions, maximum landfill carbon sequestration, and maximization of beneficial energy capture from landfills. Details and results obtained since 1994 will be presented.
A model to minimize joint total costs for industrial waste producers and waste management companies.
Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto
2004-12-01
The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.
Ranzi, Andrea; Ancona, Carla; Angelini, Paola; Badaloni, Chiara; Cernigliaro, Achille; Chiusolo, Monica; Parmagnani, Federica; Pizzuti, Renato; Scondotto, Salvatore; Cadum, Ennio; Forastiere, Francesco; Lauriola, Paolo
2014-01-01
The SESPIR Project (Epidemiological Surveillance of Health Status of Resident Population Around the Waste Treatment Plants) assessed the impact on health of residents nearby incinerators, landfills and mechanical biological treatment plants in five Italian regions (Emilia-Romagna, Piedmont, Lazio, Campania, and Sicily). The assessment procedure took into account the available knowledge on health effects of waste disposal facilities. Analyses were related to three different scenarios: a Baseline scenario, referred to plants active in 2008-2009; the regional future scenario, with plants expected in the waste regional plans; a virtuous scenario (Green 2020), based on a policy management of municipal solid waste (MSW) through the reduction of production and an intense recovery policy. Facing with a total population of around 24 million for the 5 regions, the residents nearby the plants were more than 380,000 people at Baseline. Such a population is reduced to approximately 330.000 inhabitants and 170.000 inhabitants in the regional and Green 2020 scenarios, respectively. The health impact was assessed for the period 2008-2040. At Baseline, 1-2 cases per year of cancer attributable to MSW plants were estimated, as well as 26 cases per year of adverse pregnancy outcomes (including low birth weight and birth defects), 102 persons with respiratory symptoms, and about a thousand affected from annoyance caused by odours. These annual estimates are translated into 2,725 years of life with disability (DALYs) estimated for the entire period. The DALYs are reduced by approximately 20% and 80% in the two future scenarios. Even in these cases, health impact is given by the greater effects on pregnancy and the annoyance associated with the odours of plants. In spite of the limitations due to the inevitable assumptions required by the present exercise, the proposed methodology is suitable for a first approach to assess different policies that can be adopted in regional planning in the field of waste management. The greatest reduction in health impact is achieved with a virtuous policy of reducing waste production and a significant increase in the collection and recycling of waste.
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Emory D; DelCul, Guillermo D; Terekhov, Dmitri
2011-01-01
Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF claddingmore » are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.« less
Evaluation and Analysis of Solid Waste at ISF Academy
NASA Astrophysics Data System (ADS)
Ma, D. W. J.
2017-12-01
Waste management is one of the biggest environmental problems in Hong Kong. According to a report from the HK government, in less than 3 years, which is 2020, all the local landfills will be filled with trash. Therefore, ISF Academy, a school in HK with 1800 students, is planning to reduce their solid waste on campus by evaluating and analysing all solid wastes, which can assist professionals to reform and innovate solutions for refuse disposal. Meanwhile, this project is designed for both raising students' awareness of the magnitude of waste and figuring out measures for waste reduction. For one thing, the project includes the promotion of Waste Audit to reach the former purpose by teaching students how to sort waste. In addition, the weight of each type of waste will be recorded as reference data for students to learn about varied degrees of quantities among different kinds of garbage and relate data to impacts brought by waste with diverse characteristics on the environment. For another, the researcher involved in this project will carry out solutions corresponding to various sorts of waste by applying scientific knowledge, carrying out surveys, organizing campaigns etc.
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What is a waste management plan? 62...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must my waste management plan be... POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious Waste Incinerators Constructed On Or Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for... Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xudong, E-mail: chen.xudong@nies.go.jp; National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506; Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601
Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developingmore » countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.« less
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no...
Development and validation of a building design waste reduction model.
Llatas, C; Osmani, M
2016-10-01
Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must my waste management plan be... Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60.2899 Section 60.2899 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...
WASTE ANALYSIS PLAN REVIEW ADVISOR - AN INTELLIGENT DATABASE TO ASSIST RCRA PERMIT REVIEWERS
The Waste Analysis Plan Review Advisor (WAPRA) system assists in the review of the Waste Analysis Plan Section of RCRA Part B facility permit applications. Specifically, this program automates two functions of the waste analysis plan review. First, the system checks all wastes wh...
40 CFR 60.55c - Waste management plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...
40 CFR 60.55c - Waste management plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ...
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for..., 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...
DOE Office of Scientific and Technical Information (OSTI.GOV)
DUNCAM JB; GUTHRIE MD; LUECK KJ
2007-07-18
This report describes the results from RPP-PLAN-32738, 'Test Plan for the Effluent Treatment Facility to Reduce Chrome(VI) to Chrome(I1I) in the Secondary Waste Stream', using sodium metabisulfite. Appendix A presents the report as submitted by the Center for Laboratory Sciences (CLS) to CH2M HILL Hanford Group, Inc. The CLS carried out the laboratory effort under Contract Number 21065, release Number 30. This report extracts the more pertinent aspects of the laboratory effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorpas, Antonis A., E-mail: antonis.zorpas@ouc.ac.cy; Lasaridi, Katia, E-mail: klasaridi@hua.gr; Voukkali, Irene
Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impactmore » on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes.« less
Test plan 241-C-103 natural breathing characteristics evaluation using the ultra sensitive flowmeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertelendy, N.A.
1995-02-13
To facilitate the reduction of worker exposure to hazardous fumes and vapors, it is imperative to characterize and measure flows out of waste tanks that breathe due to atmospheric pressure changes. These measurements will lead to a better understanding of how these tanks breathe and thus will aid in better worker exposure control at lower cost.
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
Towards zero waste in emerging countries - a South African experience.
Matete, Ntlibi; Trois, Cristina
2008-01-01
The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management [DEAT, 2001. Department of Environmental Affairs and Tourism, Government of South Africa. Polokwane Declaration. Drafted by Government, Civil Society and the Business Community. National Waste Summit, Polokwane, 26-28 September 2001], which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selected as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa.
Applying multi-criteria decision-making to improve the waste reduction policy in Taiwan.
Su, Jun-Pin; Hung, Ming-Lung; Chao, Chia-Wei; Ma, Hwong-wen
2010-01-01
Over the past two decades, the waste reduction problem has been a major issue in environmental protection. Both recycling and waste reduction policies have become increasingly important. As the complexity of decision-making has increased, it has become evident that more factors must be considered in the development and implementation of policies aimed at resource recycling and waste reduction. There are many studies focused on waste management excluding waste reduction. This study paid more attention to waste reduction. Social, economic, and management aspects of waste treatment policies were considered in this study. Further, a life-cycle assessment model was applied as an evaluation system for the environmental aspect. Results of both quantitative and qualitative analyses on the social, economic, and management aspects were integrated via the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method into the comprehensive decision-making support system of multi-criteria decision-making (MCDM). A case study evaluating the waste reduction policy in Taoyuan County is presented to demonstrate the feasibility of this model. In the case study, reinforcement of MSW sorting was shown to be the best practice. The model in this study can be applied to other cities faced with the waste reduction problems.
40 CFR 62.14431 - What must my waste management plan include?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...
40 CFR 62.14431 - What must my waste management plan include?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no later than the date specified in table 1 of this...
The Empirical Relationship between Mining Industry Development and Environmental Pollution in China.
Li, Gerui; Lei, Yalin; Ge, Jianping; Wu, Sanmang
2017-03-02
This study uses a vector autoregression (VAR) model to analyze changes in pollutants among different mining industries and related policy in China from 2001 to 2014. The results show that: (1) because the pertinence of standards for mining waste water and waste gas emissions are not strong and because the maximum permissible discharge pollutant concentrations in these standards are too high, ammonia nitrogen and industrial sulfur dioxide discharges increased in most mining industries; (2) chemical oxygen demand was taken as an indicator of sewage treatment in environmental protection plans; hence, the chemical oxygen demand discharge decreased in all mining industries; (3) tax reduction policies, which are only implemented in coal mining and washing and extraction of petroleum and natural gas, decreased the industrial solid waste discharge in these two mining industries.
ERIC Educational Resources Information Center
US Environmental Protection Agency, 2006
2006-01-01
The U.S. Environmental Protection Agency (EPA) developed this guide to provide advice, ideas, and inspiration to teachers, school administrators, and others for planning a hands-on environmental day at school. Many of the tips and ideas in this guide come from "Make a Difference Day" events supported by EPA. EPA launched its "Make a…
Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
SIMMONS, F.M.
2000-03-29
This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cellsmore » 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.« less
Grazhdani, Dorina
2016-02-01
Economic development, urbanization, and improved living standards increase the quantity and complexity of generated solid waste. Comprehensive study of the variables influencing household solid waste production and recycling rate is crucial and fundamental for exploring the generation mechanism and forecasting future dynamics of household solid waste. The present study is employed in the case study of Prespa Park. A model, based on the interrelationships of economic, demographic, housing structure and waste management policy variables influencing the rate of solid waste generation and recycling is developed and employed. The empirical analysis is based on the information derived from a field questionnaire survey conducted in Prespa Park villages for the year 2014. Another feature of this study is to test whether a household's waste generation can be decoupled from its population growth. Descriptive statistics, bivariate correlation analysis and F-tests are used to know the relationship between variables. One-way and two-way fixed effects models data analysis techniques are used to identify variables that determine the effectiveness of waste generation and recycling at household level in the study area. The results reveal that households with heterogeneous characteristics, such as education level, mean building age and income, present different challenges of waste reduction goals. Numerically, an increase of 1% in education level of population corresponds to a waste reduction of 3kg on the annual per capita basis. A village with older buildings, in the case of one year older of the median building age, corresponds to a waste generation increase of 12kg. Other economic and policy incentives such as the mean household income, pay-as-you-throw, percentage of population with access to curbside recycling, the number of drop-off recycling facilities available per 1000 persons and cumulative expenditures on recycling education per capita are also found to be effective measures in waste reduction. The mean expenditure for recycling education spent on a person for years 2010 and 2014 is 12 and 14 cents, respectively and it vary from 0 to €1. For years 2010 and 2014, the mean percentage of population with access to curbside recycling services is 38.6% and 40.3%, and the mean number of drop-off recycling centers per 1000 persons in the population is 0.29 and 0.32, respectively. Empirical evidence suggests that population growth did not necessarily result in increases in waste generation. The results provided are useful when planning, changing or implementing sustainable municipal solid waste management. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What is a waste management plan? 62.14580 Section 62.14580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A...
40 CFR 60.3012 - What should I include in my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... management plan? 60.3012 Section 60.3012 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3012 What should I include in my waste management plan? A...
WastePlan model implementation for New York State. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visalli, J.R.; Blackman, D.A.
1995-07-01
WastePlan is a computer software tool that models solid waste quantities, costs, and other parameters on a regional basis. The software was developed by the Tellus Institute, a nonprofit research and consulting firm. The project`s objective was to provide local solid waste management planners in New York State responsible to develop and implement comprehensive solid waste management plans authorized by the Solid Waste Management Act of 1988, with a WastePlan model specifically tailored to fit the demographic and other characteristics of New York State and to provide training and technical support to the users. Two-day workshops were held in 1992more » to introduce planners to the existing versions; subsequently, extensive changes were made to the model and a second set of two-day workshops were held in 1993 to introduce planners to the enhanced version of WastePlan. Following user evaluations, WastePlan was further modified to allow users to model systems using a simplified version, and to incorporate report forms required by New York State. A post-project survey of trainees revealed limited regular use of software. Possible reasons include lack of synchronicity with NYSDEC planning process; lack of computer literacy and aptitude among trainees; hardware limitations; software user-friendliness; and the work environment of the trainees. A number of recommendations are made to encourage use of WastePlan by local solid waste management planners.« less
Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.
1988-02-01
In 1970, the US Atomic Energy Commission established a transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containingmore » mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs.« less
Regenerative Life Support Evaluation
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Thompson, C. D.
1977-01-01
This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.
Waste policies gone soft: An analysis of European and Swedish waste prevention plans.
Johansson, Nils; Corvellec, Hervé
2018-04-30
This paper presents an analysis of European and Swedish national and municipal waste prevention plans to determine their capability of preventing the generation of waste. An analysis of the stated objectives in these waste prevention plans and the measures they propose to realize them exposes six problematic features: (1) These plans ignore what drives waste generation, such as consumption, and (2) rely as much on conventional waste management goals as they do on goals with the aim of preventing the generation of waste at the source. The Swedish national and local plans (3) focus on small waste streams, such as food waste, rather than large ones, such as industrial and commercial waste. Suggested waste prevention measures at all levels are (4) soft rather than constraining, for example, these plans focus on information campaigns rather than taxes and bans, and (5) not clearly connected to incentives and consequences for the actors involved. The responsibility for waste prevention has been (6) entrusted to non-governmental actors in the market such as companies that are then free to define which proposals suit them best rather than their being guided by planners. For improved waste prevention regulation, two strategies are proposed. First, focus primarily not on household-related waste, but on consumption and production of products with high environmental impact and toxicity as waste. Second, remove waste prevention from the waste hierarchy to make clear that, by definition, waste prevention is not about the management of waste. Copyright © 2018 Elsevier Ltd. All rights reserved.
40 CFR 60.2755 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...
40 CFR 60.2755 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...
Water and wastewater minimization plan in food industries.
Ganjidoust, H; Ayati, B
2002-01-01
Iran is one of the countries located in a dry and semi-dry area. Many provinces like Tehran are facing problems in recent years because of less precipitation. For reduction in wastewater treatment cost and water consumption, many research works have been carried out. One of them concerns food industries group, which consumes a great amount of water in different units. For example, in beverage industries, washing of glass bottles seven times requires large amounts of water but use of plastic bottles can reduce water consumption. Another problem is leakage from pipelines, valves, etc. Their repair plays an important role in the wastage of water. The non-polluted wasted water can be used in washing halls, watering green yards, recycling to the process or reusing in cooling towers. In this paper, after a short review of waste minimization plans in food industries, problems concerning water consuming and wastewater producing units in three Iranian food industries have been investigated. At the end, some suggestions have been given for implementing the water and wastewater minimization plan in the companies.
40 CFR 60.2060 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...
40 CFR 60.2060 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...
40 CFR 60.2060 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...
Advanced High-Level Waste Glass Research and Development Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, David K.; Vienna, John D.; Schweiger, Michael J.
2015-07-01
The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less
Yuan, Hongping; Chini, Abdol R; Lu, Yujie; Shen, Liyin
2012-03-01
During the past few decades, construction and demolition (C&D) waste has received increasing attention from construction practitioners and researchers worldwide. A plethora of research regarding C&D waste management has been published in various academic journals. However, it has been determined that existing studies with respect to C&D waste reduction are mainly carried out from a static perspective, without considering the dynamic and interdependent nature of the whole waste reduction system. This might lead to misunderstanding about the actual effect of implementing any waste reduction strategies. Therefore, this research proposes a model that can serve as a decision support tool for projecting C&D waste reduction in line with the waste management situation of a given construction project, and more importantly, as a platform for simulating effects of various management strategies on C&D waste reduction. The research is conducted using system dynamics methodology, which is a systematic approach that deals with the complexity - interrelationships and dynamics - of any social, economic and managerial system. The dynamic model integrates major variables that affect C&D waste reduction. In this paper, seven causal loop diagrams that can deepen understanding about the feedback relationships underlying C&D waste reduction system are firstly presented. Then a stock-flow diagram is formulated by using software for system dynamics modeling. Finally, a case study is used to illustrate the validation and application of the proposed model. Results of the case study not only built confidence in the model so that it can be used for quantitative analysis, but also assessed and compared the effect of three designed policy scenarios on C&D waste reduction. One major contribution of this study is the development of a dynamic model for evaluating C&D waste reduction strategies under various scenarios, so that best management strategies could be identified before being implemented in practice. Copyright © 2011 Elsevier Ltd. All rights reserved.
The potential of household solid waste reduction in Sukomanunggal District, Surabaya
NASA Astrophysics Data System (ADS)
Warmadewanthi, I. D. A. A.; Kurniawati, S.
2018-01-01
The rapid population growth affects the amount of waste generated. Sukomanunggal Subdistrict is the densest area in West Surabaya which has a population of 100,602 inhabitants with a total area of 11.2 km2. The population growth significantly affects the problem of limited land for landfill facilities (final processing sites). According to the prevailing regulations, solid waste management solutions include the solid waste reduction and management. This study aims to determine the potential reduction of household solid waste at the sources. Household solid waste samplings were performed for eight consecutive days. The samples were then analyzed to obtain the generation rate, density, and composition so that the household solid waste reduction potential for the next 20 years could be devised. Results of the analysis showed that the value of waste is 0.27 kg/person/day, while the total household solid waste generation amounted to 27,162.58 kg/day or 187.70 m3/day. Concerning the technical aspects, the current solid waste reduction in Sukomanunggal Subdistrict has reached 2.1% through the application of waste bank, composting, and scavenging activities at the dumping sites by the garbage collectors. In the year of 2036, the potential reduction of household solid waste in Sukomanunggal Subdistrict has been estimated to reach 28.0%.
No-migration variance petition. Appendices A--B: Volume 2, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-03-01
Volume II contains Appendix A, emergency plan and Appendix B, waste analysis plan. The Waste Isolation Pilot Plant (WIPP) Emergency plan and Procedures (WP 12-9, Rev. 5, 1989) provides an organized plan of action for dealing with emergencies at the WIPP. A contingency plan is included which is in compliance with 40 CFR Part 265, Subpart D. The waste analysis plan provides a description of the chemical and physical characteristics of the wastes to be emplaced in the WIPP underground facility. A detailed discussion of the WIPP Waste Acceptance Criteria and the rationale for its established units are also included.
40 CFR 60.2755 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Recordkeeping and Reporting § 60.2755 When must I submit my waste management plan? You must submit the waste management plan...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit...
Lean implementation in primary care health visiting services in National Health Service UK.
Grove, A L; Meredith, J O; Macintyre, M; Angelis, J; Neailey, K
2010-10-01
This paper presents the findings of a 13-month lean implementation in National Health Service (NHS) primary care health visiting services from May 2008 to June 2009. Lean was chosen for this study because of its reported success in other healthcare organisations. Value-stream mapping was utilised to map out essential tasks for the participating health visiting service. Stakeholder mapping was conducted to determine the links between all relevant stakeholders. Waste processes were then identified through discussions with these stakeholders, and a redesigned future state process map was produced. Quantitative data were provided through a 10-day time-and-motion study of a selected number of staff within the service. This was analysed to provide an indication of waste activity that could be removed from the system following planned improvements. The value-stream map demonstrated that there were 67 processes in the original health visiting service studied. Analysis revealed that 65% of these processes were waste and could be removed in the redesigned process map. The baseline time-and-motion data demonstrate that clinical staff performed on average 15% waste activities, and the administrative support staff performed 46% waste activities. Opportunities for significant waste reduction have been identified during the study using the lean tools of value-stream mapping and a time-and-motion study. These opportunities include simplification of standard tasks, reduction in paperwork and standardisation of processes. Successful implementation of these improvements will free up resources within the organisation which can be redirected towards providing better direct care to patients.
The Empirical Relationship between Mining Industry Development and Environmental Pollution in China
Li, Gerui; Lei, Yalin; Ge, Jianping; Wu, Sanmang
2017-01-01
This study uses a vector autoregression (VAR) model to analyze changes in pollutants among different mining industries and related policy in China from 2001 to 2014. The results show that: (1) because the pertinence of standards for mining waste water and waste gas emissions are not strong and because the maximum permissible discharge pollutant concentrations in these standards are too high, ammonia nitrogen and industrial sulfur dioxide discharges increased in most mining industries; (2) chemical oxygen demand was taken as an indicator of sewage treatment in environmental protection plans; hence, the chemical oxygen demand discharge decreased in all mining industries; (3) tax reduction policies, which are only implemented in coal mining and washing and extraction of petroleum and natural gas, decreased the industrial solid waste discharge in these two mining industries. PMID:28257126
Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.
40 CFR 62.4178 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Municipal Solid Waste Landfills § 62.4178 Identification of plan. (a) Identification of plan. Kansas plan for control of landfill gas emissions from existing municipal solid waste landfills and... to all existing municipal solid waste landfills for which construction, reconstruction, or...
Idaho National Laboratory Site Pollution Prevention Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. D. Sellers
2007-03-01
It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Managementmore » System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.« less
Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi
2011-01-01
With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.
Premakumara, Dickella Gamaralalage Jagath; Canete, Aloysius Mariae L; Nagaishi, Masaya; Kurniawan, Tonni Agustiono
2014-06-01
Municipal Solid Waste Management (MSWM) is considered to be one of the most serious environmental issues in the Philippines. The annual waste generation was estimated at 10.6 million tonnes in 2012 and this is expected to double in 2025. The Republic Act (RA) No. 9003, widely known as the Ecological Solid Waste Management Act of 2000, provides the required policy framework, institutional mechanisms and mandate to the Local Government Units (LGUs) to achieve 25% waste reduction target through establishing an integrated solid waste management plan based on the 3Rs (reduce, reuse and recycling). Although the initial impact of the LGUs is still very limited in implementing the national mandate, this article highlights the successful experiences of Cebu, the second largest city in the Philippines, in reducing its MSW generation by more than 30% in the past three years. This study also explores the implementation process, innovative actions taken by the Cebu City Government in implementing the national mandate at local level and identifies the factors that influence the policy implementation. The findings suggest that the impacts of the national mandate can be achieved if the LGUs have the high degree of political commitment, planning and development of effective local strategies in a collaborative manner to meet with local conditions, partnership building with other stakeholders, capacity development, adequate financing and incentives, and in the close monitoring and evaluation of performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zorpas, Antonis A; Lasaridi, Katia; Voukkali, Irene; Loizia, Pantelitsa; Chroni, Christina
2015-04-01
Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impact on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oak Ridge Reservation Waste Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1995-02-01
This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.
The EPA-Wide Plan to Provide Solid Waste Management Capacity Assistance to Tribes
This Plan is a strategy for building tribal capacity to manage solid waste. The Plan promotes the development and implementation of integrated waste management plans and describes how EPA will prioritize its resources to maximize environmental benefits.
76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
...-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Reopening of comment... for public comment a draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management that updates the 1981 Policy Statement on Low-Level Waste Volume Reduction. The revised Policy...
Potential reduction of non-residential solid waste in Sukomanunggal district West Surabaya
NASA Astrophysics Data System (ADS)
Warmadewanthi, I. D. A. A.; Reswari, S. A.
2018-01-01
Sukomanunggal district a development unit 8 with the designation as a regional trade and services, industrial, education, healthcare, offices, and shopping center. The development of this region will make an increasing solid waste generation, especially waste from non-residential facilities. The aims of this research to know the potential reduction of waste source. The method used is the Likert scale questionnaire to determine the knowledge, attitude, and behavior of non-residential facilities manager. Results from this research are the existing reduction of non-residential solid waste is 5.34%, potential reduction of the waste source is optimization of plastic and paper waste with the reduction rate up to 19,52%. The level of public participation existing amounted to 46.79% with a willingness to increase recycling efforts amounted to 72.87%. Efforts that can be developed to increase public awareness of 3R are providing three types of bins, modification of solid waste collection schedule according to a type of waste that has been sorted, the provision of the communal bin.
Secondary Waste Cast Stone Waste Form Qualification Testing Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westsik, Joseph H.; Serne, R. Jeffrey
2012-09-26
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less
Vermi composting--organic waste management and disposal.
Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada
2012-01-01
Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.
1995-03-01
This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less
Reductive capacity measurement of waste forms for secondary radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey
2015-12-01
The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper boundmore » for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.« less
40 CFR 62.1950 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.1950 Identification of plan. Section 111(d) plan for municipal solid waste landfills and the associated Delaware Department of Natural Resources, Division of Air and Waste Management, Regulation No. 20, Section 28, as submitted on...
This study addressed three questions of interest in national-scale solid and hazardous waste management decision-making within the United States: 1) can we quantify the reduction in risk to human and ecological receptors resulting from the reduction of certain industrial waste s...
Waste reduction and recycling initiatives in Japanese cities: lessons from Yokohama and Kamakura.
Hotta, Yasuhiko; Aoki-Suzuki, Chika
2014-09-01
Waste reduction and recycling at the city level will acquire greater significance in the near future due to rising global volumes of waste. This paper seeks to identify policy-relevant drivers for successful promotion of waste reduction and recycling. Factors influencing the success of waste reduction and recycling campaigns are identified. Two case study cities in Japan which depict the successful use of the 3Rs (reduce, reuse and recycle) at the municipal level are presented. In these cases, the existence of incinerators, which are generally considered as disincentives for recycling, was not functioning as a disincentive but rather as an incentive for waste reduction. Owing to the high cost of incineration facilities, the movement to close incinerators has become a strong incentive for waste reduction and recycling in these two cities. The study suggests that careful consideration is necessary when making decisions concerning high-cost waste treatment facilities with high installation, maintenance and renewal outlays. In addition, intensive source separation and other municipal recycling initiatives have a high potential for producing positive results. © The Author(s) 2014.
40 CFR 60.2060 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Commercial and Industrial Solid Waste Incineration Units Waste Management Plan § 60.2060 When must I submit...
40 CFR 60.2060 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Commercial and Industrial Solid Waste Incineration Units Waste Management Plan § 60.2060 When must I submit...
40 CFR 62.14590 - What should I include in my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14590 What should I include... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What should I include in my waste...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must I submit my waste management...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
...] Chronic Wasting Disease Management Plan/Environmental Impact Statement, Shenandoah National Park AGENCY... National Park Service (NPS) is preparing a Chronic Wasting Disease Management Plan and Environmental Impact Statement (CWD Management Plan/EIS) for Shenandoah National Park, Virginia. Action is needed at this time...
Assessment of medical waste management at a primary health-care center in Sao Paulo, Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, A.M.M., E-mail: anamariainforme@hotmail.com; Guenther, W.M.R.
Highlights: Black-Right-Pointing-Pointer Assessment of medical waste management at health-care center before/after intervention. Black-Right-Pointing-Pointer Qualitative and quantitative results of medical waste management plan are presented. Black-Right-Pointing-Pointer Adjustments to comply with regulation were adopted and reduction of waste was observed. Black-Right-Pointing-Pointer The method applied could be useful for similar establishments. - Abstract: According to the Brazilian law, implementation of a Medical Waste Management Plan (MWMP) in health-care units is mandatory, but as far as we know evaluation of such implementation has not taken place yet. The purpose of the present study is to evaluate the improvements deriving from the implementation of amore » MWMP in a Primary Health-care Center (PHC) located in the city of Sao Paulo, Brazil. The method proposed for evaluation compares the first situation prevailing at this PHC with the situation 1 year after implementation of the MWMP, thus allowing verification of the evolution of the PHC performance. For prior and post-diagnosis, the method was based on: (1) application of a tool (check list) which considered all legal requirements in force; (2) quantification of solid waste subdivided into three categories: infectious waste and sharp devices, recyclable materials and non-recyclable waste; and (3) identification of non-conformity practices. Lack of knowledge on the pertinent legislation by health workers has contributed to non-conformity instances. The legal requirements in force in Brazil today gave origin to a tool (check list) which was utilized in the management of medical waste at the health-care unit studied. This tool resulted into an adequate and simple instrument, required a low investment, allowed collecting data to feed indicators and also conquered the participation of the unit whole staff. Several non-conformities identified in the first diagnosis could be corrected by the instrument utilized. Total waste generation increased 9.8%, but it was possible to reduce the volume of non-recyclable materials (11%) and increase the volume of recyclable materials (4%). It was also possible to segregate organic waste (7%), which was forwarded for production of compost. The rate of infectious waste generation in critical areas decreased from 0.021 to 0.018 kg/procedure. Many improvements have been observed, and now the PHC complies with most of legal requirements, offers periodic training and better biosafety conditions to workers, has reduced the volume of waste sent to sanitary landfills, and has introduced indicators for monitoring its own performance. This evaluation method might subsidize the creation and evaluation of medical waste management plans in similar heath institutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, T.D.; Shaw, P.J.; Williams, I.D., E-mail: idw@soton.ac.uk
Highlights: • Critical analysis of municipal waste management practices and performance in England. • Trends visualised via innovative ternary plots and changes and reasons explored. • Performance 1996–2013 moved slowly away from landfill dominance. • Large variations in %s of waste landfilled, incinerated and recycled/composted. • Progress to resource efficiency slow; affected by poor planning and hostile disputes. - Abstract: European nations are compelled to reduce reliance on landfill as a destination for household waste, and should, in principle, achieve this goal with due recognition of the aims and principles of the waste hierarchy. Past research has predominantly focused onmore » recycling, whilst interactions between changing waste destinies, causes and drivers of household waste management change, and potential consequences for the goal of the waste hierarchy are less well understood. This study analysed Local Authority Collected Waste (LACW) for England, at national, regional and sub-regional level, in terms of the destination of household waste to landfill, incineration and recycling. Information about waste partnerships, waste management infrastructure and collection systems was collected to help identify and explain changes in waste destinies. Since 1996, the proportion of waste landfilled in England has decreased, in tandem with increases in recycling and incineration. At the regional and sub-regional (Local Authority; LA) level, there have been large variations in the relative proportions of waste landfilled, incinerated and recycled or composted. Annual increases in the proportion of household waste incinerated were typically larger than increases in the proportion recycled. The observed changes took place in the context of legal and financial drivers, and the circumstances of individual LAs (e.g. landfill capacity) also explained the changes seen. Where observed, shifts from landfill towards incineration constitute an approach whereby waste management moves up the waste hierarchy as opposed to an attempt to reach the most preferred option(s); in terms of resource efficiency, this practice is sub-optimal. The requirement to supply incinerators with a feedstock over their lifespan reduces the benefits of developing of recycling and waste reduction, although access to incineration infrastructure permits short-term and marked decreases in the proportion of LACW landfilled. We conclude that there is a need for clearer national strategy and co-ordination to inform and guide policy, practice, planning and investment in infrastructure such that waste management can be better aligned with the principles of the circular economy and resource efficiency. If the ongoing stand-off between national political figures and the waste sector continues, England’s waste policy remains destined for indecision.« less
To help solid waste planners and organizations track/report GHG emissions reductions from various waste management practices. To assist in calculating GHG emissions of baseline and alternative waste management practices and provide the history of WARM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk; Poon, C.S.; Wong, Agnes
Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS)more » to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).
Method and apparatus for reducing mixed waste
Elliott, Michael L.; Perez, Jr., Joseph M.; Chapman, Chris C.; Peters, Richard D.
1995-01-01
The present invention is a method and apparatus for in-can waste reduction. The method is mixing waste with combustible material prior to placing the waste into a waste reduction vessel. The combustible portion is ignited, thereby reducing combustible material to ash and non-combustible material to a slag. Further combustion or heating may be used to sinter or melt the ash. The apparatus is a waste reduction vessel having receiving canister connection means on a first end, and a waste/combustible mixture inlet on a second end. An oxygen supply is provided to support combustion of the combustible mixture.
Technical assistance for hazardous-waste reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, F.M.; McComas, C.A.
1987-12-01
Minnesota's Waste Management Board has established, developed, and funded the Minnesota Technical Assistance Program (MnTAP). The MnTAP programs offers technical assistance to generators of hazardous waste by offering telephone and onsite consultation, a waste reduction resource bank, information dissemination, a student intern program, and research awards for waste reduction projects. The program has completed three years of successful operation. The increasing interest in and use of MnTAP's services by hazardous-waste generators has justified the belief that state technical assistance programs have an important role to play in helping generators to reduce their waste production.
Force Provider Solid Waste Characterization Study
2004-08-01
energy converter (WEC) and/or composter . For a five-day period in June 2000, the solid waste generated by soldiers at the Force Provider Training Module...MATERIALS REDUCTION WASTE DISPOSAL MILITARY FACILITIES SANITARY ENGINEERING DISPOSAL FORCE PROVIDER FIELD FEEDING COMPOSTS WASTES GARBAGE WASTE RECYCLING...waste reduction through onsite waste-to-energy conversion and/or composting . The work was performed by Hughes Associates, Inc., 3610 Commerce
Development of demand forecasting tool for natural resources recouping from municipal solid waste.
Zaman, Atiq Uz; Lehmann, Steffen
2013-10-01
Sustainable waste management requires an integrated planning and design strategy for reliable forecasting of waste generation, collection, recycling, treatment and disposal for the successful development of future residential precincts. The success of the future development and management of waste relies to a high extent on the accuracy of the prediction and on a comprehensive understanding of the overall waste management systems. This study defies the traditional concepts of waste, in which waste was considered as the last phase of production and services, by putting forward the new concept of waste as an intermediate phase of production and services. The study aims to develop a demand forecasting tool called 'zero waste index' (ZWI) for measuring the natural resources recouped from municipal solid waste. The ZWI (ZWI demand forecasting tool) quantifies the amount of virgin materials recovered from solid waste and subsequently reduces extraction of natural resources. In addition, the tool estimates the potential amount of energy, water and emissions avoided or saved by the improved waste management system. The ZWI is tested in a case study of waste management systems in two developed cities: Adelaide (Australia) and Stockholm (Sweden). The ZWI of waste management systems in Adelaide and Stockholm is 0.33 and 0.17 respectively. The study also enumerates per capita energy savings of 2.9 GJ and 2.83 GJ, greenhouse gas emissions reductions of 0.39 tonnes (CO2e) and 0.33 tonnes (CO2e), as well as water savings of 2.8 kL and 0.92 kL in Adelaide and Stockholm respectively.
Drug waste minimization as an effective strategy of cost-containment in Oncology
2014-01-01
Background Sustainability of cancer care is a crucial issue for health care systems worldwide, even more during a time of economic recession. Low-cost measures are highly desirable to contain and reduce expenditures without impairing the quality of care. In this paper we aim to demonstrate the efficacy of drug waste minimization in reducing drug-related costs and its importance as a structural measure in health care management. Methods We first recorded intravenous cancer drugs prescription and amount of drug waste at the Oncology Department of Udine, Italy. Than we developed and applied a protocol for drug waste minimization based on per-pathology/per-drug scheduling of chemotherapies and pre-planned rounding of dosages. Results Before the protocol, drug wastage accounted for 8,3% of the Department annual drug expenditure. Over 70% of these costs were attributable to six drugs (cetuximab, docetaxel, gemcitabine, oxaliplatin, pemetrexed and trastuzumab) that we named ‘hot drugs’. Since the protocol introduction, we observed a 45% reduction in the drug waste expenditure. This benefit was confirmed in the following years and drug waste minimazion was able to limit the impact of new pricely drugs on the Department expenditures. Conclusions Facing current budgetary constraints, the application of a drug waste minimization model is effective in drug cost containment and may produce durable benefits. PMID:24507545
Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less
WASTE REDUCTION OF TECHNOLOGY EVALUATIONS OF THE U.S. EPA WRITE PROGRAM
The Waste Reduction Innovative Technology Evaluation (WRITE)Program was established in 1989 to provide objective, accurate performance and cost data about waste reducing technologies for a variety of industrial and commercial application. EPA's Risk Reduction Engineering Laborato...
WASTE REDUCTION TECHNOLOGY EVALUATIONS AT THREE PRINTED WIRE BOARD MANUFACTURERS
Technologies at three printed wire board (PWB) manufacturers were evaluated for waste reduction, and costs were compared to existing operations. rom 1989 to 1993, these evaluations were conducted under US EPA's Waste Reduction Innovative Technology Evaluation (WRITE) Program, in ...
Josimović, Boško; Marić, Igor; Milijić, Saša
2015-02-01
Strategic Environmental Assessment (SEA) is one of the key instruments for implementing sustainable development strategies in planning in general; in addition to being used in sectoral planning, it can also be used in other areas such as waste management planning. SEA in waste management planning has become a tool for considering the benefits and consequences of the proposed changes in space, also taking into account the capacity of space to sustain the implementation of the planned activities. In order to envisage both the positive and negative implications of a waste management plan for the elements of sustainable development, an adequate methodological approach to evaluating the potential impacts must be adopted and the evaluation results presented in a simple and clear way, so as to allow planners to make relevant decisions as a precondition for the sustainability of the activities planned in the waste management sector. This paper examines the multi-criteria evaluation method for carrying out an SEA for the Waste Management Plan for the city of Belgrade (BWMP). The method was applied to the evaluation of the impacts of the activities planned in the waste management sector on the basis of the environmental and socioeconomic indicators of sustainability, taking into consideration the intensity, spatial extent, probability and frequency of impact, by means of a specific planning approach and simple and clear presentation of the obtained results. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hazardous-waste analysis plan for LLNL operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R.S.
The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less
Nurses lead on waste reduction.
2016-06-29
Waste in the NHS accounts for about 20% of health expenditure. This article examines the literature on reducing waste, analyses some approaches to waste reduction, and identifies the role of nurses and other health professionals in developing a sustainable NHS.
Nitrate Waste Treatment Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil-Holterman, Luciana R.; Martinez, Patrick Thomas; Garcia, Terrence Kerwin
2017-07-05
This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).
Solid waste information and tracking system server conversion project management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAY, D.L.
1999-04-12
The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.
Guha, Saumyen; Bhargava, Puja
2005-01-01
Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.
Tribal Waste Journal: What Is an Integrated Waste Management Plan (Issue 7)
Integrated Waste Management Plans (IWMPs) may offer tribes an efficient and cost-effective way to reduce open dumping, effectively manage solid waste, and protect human health and the environment for this generation and the next.
40 CFR 62.3916 - Identification of Plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Commercial and Industrial Solid Waste Incineration Units § 62.3916 Identification of Plan. (a... reference subpart III of 40 CFR part 62, the commercial and industrial solid waste incineration rule, which... plan applies to all applicable existing Commercial and Industrial Solid Waste Incineration Units for...
40 CFR 62.3916 - Identification of Plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Commercial and Industrial Solid Waste Incineration Units § 62.3916 Identification of Plan. (a... reference subpart III of 40 CFR part 62, the commercial and industrial solid waste incineration rule, which... plan applies to all applicable existing Commercial and Industrial Solid Waste Incineration Units for...
NASA Astrophysics Data System (ADS)
Ng, L. S.; Tan, L. W.; Seow, T. W.
2017-11-01
The effectiveness of the implementation of construction waste reduction through 3R reflects the sustainability in construction waste management. Weak implementation of construction waste reduction through 3R among contractors will lead to unsustainable construction waste management. Increase in construction waste on landfills is critical especially on islands where land is very limited for solid waste disposal. This aim of this paper is to investigate current practice of construction waste reduction through 3R practice among contractors in Penang, Malaysia. The findings reported herein is based on feedbacks from 143 construction contractors of grade CIDB G7, G6 and G5 in Penang and experts from Penang Local Authority, CIDB in Penang and its Headquarters, National Solid Waste Management Department, and Headquarters of Solid Waste and Public Cleansing Management Corporation. Interviews and questionnaire surveys have been found that 3R practice is not mandatory in construction waste management in Penang. Only 39.8% construction contractors practiced 3R in managing their waste. Therefore, 3R practices should be emphasized in construction industry. Reducing wastes through 3R practices in construction industry is a way forward towards sustainable construction waste management especially in expanding the lifetime of landfill.
Liquid secondary waste. Waste form formulation and qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Dixon, K. L.; Hill, K. A.
The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less
Development of an Integrated Waste Plan for Chalk River Laboratories - 13376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, L.
2013-07-01
To further its Strategic Planning, the Atomic Energy of Canada Limited (AECL) required an effective approach to developing a fully integrated waste plan for its Chalk River Laboratories (CRL) site. Production of the first Integrated Waste Plan (IWP) for Chalk River was a substantial task involving representatives from each of the major internal stakeholders. Since then, a second revision has been produced and a third is underway. The IWP remains an Interim IWP until all gaps have been resolved and all pathways are at an acceptable level of detail. Full completion will involve a number of iterations, typically annually formore » up to six years. The end result of completing this process is a comprehensive document and supporting information that includes: - An Integrated Waste Plan document summarizing the entire waste management picture in one place; - Details of all the wastes required to be managed, including volume and timings by waste stream; - Detailed waste stream pathway maps for the whole life-cycle for each waste stream to be managed from pre-generation planning through to final disposition; and - Critical decision points, i.e. decisions that need to be made and timings by when they need to be made. A waste inventory has been constructed that serves as the master reference inventory of all waste that has been or is committed to be managed at CRL. In the past, only the waste that is in storage has been effectively captured, and future predictions of wastes requiring to be managed were not available in one place. The IWP has also provided a detailed baseline plan at the current level of refinement. Waste flow maps for all identified waste streams, for the full waste life cycle complete to disposition have been constructed. The maps identify areas requiring further development, and show the complexities and inter-relationships between waste streams. Knowledge of these inter-dependencies is necessary in order to perform effective options studies for enabling facilities that may be necessary for multiple related waste streams. The next step is to engage external stakeholders in the optioneering work required to provide enhanced confidence that the path forward identified within future iterations of the IWP will be acceptable to all. (authors)« less
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60.2055 Section 60.2055 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60...
Codigestion of manure and organic wastes in centralized biogas plants: status and future trends.
Angelidaki, I; Ellegaard, L
2003-01-01
Centralized biogas plants in Denmark codigest mainly manure, together with other organic waste such as industrial organic waste, source sorted household waste, and sewage sludge. Today 22 large-scale centralized biogas plants are in operation in Denmark, and in 2001 they treated approx 1.2 million tons of manure as well as approx 300,000 of organic industrial waste. Besides the centralized biogas plants there are a large number of smaller farm-scale plants. The long-term energy plan objective is a 10-fold increase of the 1998 level of biogas production by the year 2020. This will help to achieve a target of 12-14% of the national energy consumption being provided by renewable energy by the year 2005 and 33% by the year 2030. A major part of this increase is expected to come from new centralized biogas plants. The annual potential for biogas production from biomass resources available in Denmark is estimated to be approx 30 Peta Joule (PJ). Manure comprises about 80% of this potential. Special emphasis has been paid to establishing good sanitation and pathogen reduction of the digested material, to avoid risk of spreading pathogens when applying the digested manure as fertilizer to agricultural soils.
This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste...
Waste reduction through consumer education. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, E.Z.
The Waste Reduction through Consumer Education research project was conducted to determine how environmental educational strategies influence purchasing behavior in the supermarket. The objectives were to develop, demonstrate, and evaluate consumer education strategies for waste reduction. The amount of waste generated by packaging size and form, with an adjustment for local recyclability of waste, was determined for 14 product categories identified as having more waste generating and less waste generating product choices (a total of 484 products). Using supermarket scan data and shopper identification numbers, the research tracked the purchases of shoppers in groups receiving different education treatments for 9more » months. Statistical tests applied to the purchase data assessed patterns of change between the groups by treatment period. Analysis of the data revealed few meaningful statistical differences between study groups or changes in behavior over time. Findings suggest that broad brush consumer education about waste reduction is not effective in changing purchasing behaviors in the short term. However, it may help create a general awareness of the issues surrounding excess packaging and consumer responsibility. The study concludes that the answer to waste reduction in the future may be a combination of voluntary initiatives by manufacturers and retailers, governmental intervention, and better-informed consumers.« less
Constraints to 3R construction waste reduction among contractors in Penang
NASA Astrophysics Data System (ADS)
Ng, L. S.; Tan, L. W.; Seow, T. W.
2018-04-01
Rapid development of construction industry increases construction waste on landfill leading to shorter life span of the landfill. Waste reduction through Reduce, Reuse and Recycle (3R) practice has been encouraged in construction industry towards sustainable waste management since couple of decades ago. However, waste reduction through 3R is still at its infancy in construction industry in Penang, Malaysia. The aim of this paper is to determinate the constraints to construction waste reduction through 3R among contractors in Penang. The findings reported herein is based on feedbacks from 143 construction contractors of grade CIDB G7, G6 and G5 based in Penang, experts from Penang Local Authority, CIDB in Penang and its headquarters, National Solid Waste Management Department, and headquarters of Solid Waste and Public Cleansing Management Corporation (SWCorp). Based on interviews and questionnaire surveys, constraints identified are Time and cost, Contractor’s attitude and low participation, Lack of enforcement law and regulation, Lack of awareness and knowledge, Lack of coordination, and Lack of space. Awareness and knowledge, and enforcement law and regulation are the major barriers which influence others constraints as well. Therefore, these constraints should be emphasized by the authorities in order to improve the implementation of 3R construction waste reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barariu, G.
2008-07-01
The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facilitymore » at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of materials to be managed in the near future raise some issues that need to be solved swiftly, such as treatment of aluminum and lead and graphite management. It is envisaged that these materials to be treated to Subsidiary for Nuclear Research (SCN) Pitesti. (authors)« less
NASA Astrophysics Data System (ADS)
Teibe, I.; Bendere, R.; Arina, D.
2013-12-01
In the work, the life-cycle assessment approach is applied to the planning of waste management development in a seaside region (Piejūra) using the Waste Management Planning System (WAMPS) program. In Latvia, the measures to be taken for the climate change mitigation are of utmost importance - especially as related to the WM performance, since a disposal of biodegradable waste presents the primary source of GHG emissions. To reduce the amount of such waste is therefore one of the most significant goals in the State WM plan for 2013-2020, whose adoption is the greatest challenge for municipalities. The authors analyse seven models which involve widely employed biomass processing methods, are based on experimental data and intended for minimising the direct disposal of organic mass at the solid waste landfills. The numerical results obtained evidence that the thermal or biotechnological treatment of organic waste substantially reduces the negative environmental impact of WM practices - by up to 6% as compared with the currently existing. Klimata pārmaiņu samazināšanas pasākumi Latvijā atkritumu saimniecības sektorā ir īpaši svarīgi. jo bioloģiski sadalāmo atkritumu apglabāšana ir viens no būtiskākajiem SEG emisiju avotiem valstī. Pētījumā modelēti virkne sadzīves atkritumu apsaimniekošanas modeļi. kas ietver plašāk izmantotās biomasas pārstrādes metodes un samazina tiešu organiskās masas apglabāšanu cieto sadzīves atkritumu poligonos. Atkritumu apsaimniekošanas modeļu radītās vides ietekmes novērtēšanai izmantota WAMPS (Waste Management Planning System) programma, kas balstīta uz atkritumu apsaimniekošanas procesu dzīves cikla novērtējumu vienā no desmit Latvijas atkritumu apsaimniekošanas reģioniem - Piejūra. Iegūtie kvantitatīvie rezultāti norāda. ka organiskās atkritumu masas pārstrāde un stabilizēšana, izmantojot biotehnoloģijas vai termisko pārstrādi, būtiski samazina atkritumu apsaimniekošanas radīto negatīvo vides ietekmi. līdz pat 6% attiecībā pret esošās atkritumu saimniecības vides ietekmi.
A BIM-based system for demolition and renovation waste estimation and planning.
Cheng, Jack C P; Ma, Lauren Y H
2013-06-01
Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control. Copyright © 2013 Elsevier Ltd. All rights reserved.
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR 60.2630 - What should I include in my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... management plan? 60.2630 Section 60.2630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2630 What should I include in my...
Waste in the U.S. Health care system: a conceptual framework.
Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B
2008-12-01
Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that-by improving the market for health insurance and health care-will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system.
40 CFR 60.55c - Waste management plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum cans, metals-containing devices); segregation of non-recyclable wastes (e.g., polychlorinated biphenyl... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management plan. 60.55c Section...
Research and development plan for the Slagging Pyrolysis Incinerator. [For TRU waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedahl, T.G.; McCormack, M.D.
1979-01-01
Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance. (DLC)
Sandulescu, Elena
2004-12-01
Waste management is a key process to protect the environment and conserve resources. The contribution of appropriate waste management measures to the reduction of greenhouse gas (GHG) emissions from the city of Bucharest was studied. An analysis of the distribution of waste flows into various treatment options was conducted using the material flows and stocks analysis (MFSA). An optimum scenario (i.e. municipal solid waste stream managed as: recycling of recoverable materials, 8%; incineration of combustibles, 60%; landfilling of non-combustibles, 32%) was modelled to represent the future waste management in Bucharest with regard to its relevance towards the potential for GHG reduction. The results indicate that it can contribute by 5.5% to the reduction of the total amount of GHGs emitted from Bucharest.
Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio
2013-09-01
The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. Copyright © 2013 Elsevier Ltd. All rights reserved.
40 CFR 62.1950 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Delaware Landfill Gas Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.1950 Identification of plan. Section 111(d) plan for municipal solid waste landfills and the associated Delaware Department of...
40 CFR 62.9630 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Pennsylvania Landfill Gas Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.9630 Identification of plan. Section 111(d) plan for municipal solid waste landfills and the associated Allegheny County...
Waste Reduction Model (WARM) Resources for State and Local Government/Solid Waste Planners
This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by state and local government/solid waste planners. The page includes a brief summary of uses of WARM for the audience and links to other resources.
Domingos, Hélde Araujo; De Melo Faria, Alexandre Magno; Fuinhas, José Alberto; Marques, António Cardoso
2017-08-01
In the last two decades, there has been a rich debate about the environmental degradation that results from exposure to solid urban waste. Growing public concern with environmental issues has led to the implementation of various strategic plans for waste management in several developed countries, especially in the European Union. In this paper, the relationships were assessed between economic growth, renewable energy extraction and greenhouse gas (GHG) emissions in the waste sector. The Environmental Kuznets Curve hypothesis was analysed for the member states of the European Union, in the presence of electricity generation, landfill and GHG emissions for the period 1995 to 2012. The results revealed that there is no inverted-U-shaped relationship between income and GHG emissions in European Union countries. The renewable fuel extracted from waste contributes to a reduction in GHG, and although the electricity produced also increases emissions somewhat, they would be far greater if the waste-based generation of renewable energy did not take place. The waste sector needs to strengthen its political, economic, institutional and social communication instruments to meet its aims for mitigating the levels of pollutants generated by European economies. To achieve the objectives of the Horizon 2020 programme, currently in force in the countries of the European Union, it will be necessary to increase the share of renewable energy in the energy mix.
SHC Project 3.63, Task 2, Beneficial Use of Waste Materials ...
SHC Project 3.63, Task 2, “Beneficial Use of Waste Materials”, is designed to conduct research and analyses to characterize and quantify the risks and benefits of using or reusing waste materials. There are 6 primary research areas in Task 2 that cover a broad spectrum of topics germane to the beneficial use of waste materials and address Agency, Office, Region and other client needs. The 6 research areas include: 1) Materials Recovery Technology, 2) Beneficial Use of Materials Optimization, 3) Novel Products from Waste Materials, 4) Land Application of Biosolids, 5) Soil Remediation Amendments and 6) Improved Leaching Methods for More Accurate Prediction of Environmental Release of Metals. The objectives of each research area, their intended products and progress to date will be presented. The products of this Task will enable communities and the Agency to better protect and enhance human health, well-being and the environment for current and future generations, through the reduction in material consumption, reuse, and recycling of materials. This presentation is designed to convey the rational, purpose and planned research in EPAs Safe and Healthy Communities (SHC) National Research Program Project 3.63 (Sustainable Materials Management) Task 2, “Beneficial Use of Waste Materials”, which is designed to conduct research and analyses to characterize and quantify the risks and benefits of using or reusing waste materials. . This presentation has bee
1980-06-01
and water pollution are not the only areas of recent environmental concern and congressional legislation. The effects of solid waste, pesticides , noise...41:Section 4). Pesticide use has historically been a major contributor to human welfare (25:167). It has been estimated that a ban on the use of all... pesticides would result in a 25 to 30 per- cent reduction in U.S. crop and livestock yields. Unfortunately, the widespread use of pesticides has not
Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua
2017-11-01
In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6 t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3 t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 265.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... contingency plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 265.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... contingency plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 265.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... contingency plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 265.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT..., explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water. (b) The provisions of the plan must be carried out immediately...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water. (b) The provisions of the plan must be carried out immediately whenever there...
40 CFR 256.01 - Purpose and scope of the guidelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose... guidelines is to assist in the development and implementation of State solid waste management plans, in accordance with section 4002(b) of the Solid Waste Disposal Act, as amended by the Resource Conservation and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
Estimate of the Potential Amount of Low-Level Waste from the Fukushima Prefecture - 12370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Carolyn; Olson, Eric A.J.; Elmer, John
2012-07-01
The amount of waste generated by the cleanup of the Fukushima Prefecture (Fukushima-ken) following the releases from the Fukushima Daiichi nuclear power plant accident (March 2011) is dependent on many factors, including: - Contamination amounts; - Cleanup levels determined for the radioisotopes contaminating the area; - Future land use expectations and human exposure scenarios; - Groundwater contamination considerations; - Costs and availability of storage areas, and eventually disposal areas for the waste; and - Decontamination and volume reduction techniques and technologies used. For the purposes of estimating these waste volumes, Fukushima-ken is segregated into zones of similar contamination level andmore » expected future use. Techniques for selecting the appropriate cleanup methods for each area are shown in a decision tree format. This approach is broadly applied to the 20 km evacuation zone and the total amounts and types of waste are estimated; waste resulting from cleanup efforts outside of the evacuation zone is not considered. Some of the limits of future use and potential zones where residents must be excluded within the prefecture are also described. The size and design of the proposed intermediate storage facility is also discussed and the current situation, cleanup, waste handling, and waste storage issues in Japan are described. The method for estimating waste amounts outlined above illustrates the large amount of waste that could potentially be generated by remediation of the 20 km evacuation zone (619 km{sup 2} total) if the currently proposed cleanup goals are uniformly applied. The Japanese environment ministry estimated in early October that the 1 mSv/year exposure goal would make the government responsible for decontaminating about 8,000 km{sup 2} within Fukushima-ken and roughly 4,900 km{sup 2} in areas outside the prefecture. The described waste volume estimation method also does not give any consideration to areas with localized hot spots. Land use and area dose rate estimates for the 20 km evacuation zone indicate there are large areas where doses to the public can be mitigated through methods other than removal and disposal of soil and other wastes. Several additional options for waste reduction can also be considered, including: - Recycling/reusing or disposing of as municipal waste material that can be unconditionally cleared; - Establishing additional precautionary (e.g., liners) and monitoring requirements for municipal landfills to dispose of some conditionally-cleared material; and - Using slightly-contaminated material in construction of reclamations, banks and roads. Waste estimates for cleanup will continue to evolve as decontamination plans are drafted and finalized. (authors)« less
Sasao, Toshiaki
2014-11-01
Waste taxes, such as landfill and incineration taxes, have emerged as a popular option in developed countries to promote the 3Rs (reduce, reuse, and recycle). However, few studies have examined the effectiveness of waste taxes. In addition, quite a few studies have considered both dynamic relationships among dependent variables and unobserved individual heterogeneity among the jurisdictions. If dependent variables are persistent, omitted variables cause a bias, or common characteristics exist across the jurisdictions that have introduced waste taxes, the standard fixed effects model may lead to biased estimation results and misunderstood causal relationships. In addition, most existing studies have examined waste in terms of total amounts rather than by categories. Even if significant reductions in total waste amounts are not observed, some reduction within each category may, nevertheless, become evident. Therefore, this study analyzes the effects of industrial waste taxation on quantities of waste in landfill in Japan by applying the bias-corrected least-squares dummy variable (LSDVC) estimators; the general method of moments (difference GMM); and the system GMM. In addition, the study investigates effect differences attributable to industrial waste categories and taxation types. This paper shows that industrial waste taxes in Japan have minimal, significant effects on the reduction of final disposal amounts thus far, considering dynamic relationships and waste categories. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 62.600 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Arizona Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.600 Identification of plan. The Arizona... Section 111(d) Plan for Existing Municipal Solid Waste Landfills. ...
40 CFR 62.9635 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Pennsylvania Landfill Gas Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.9635 Identification of plan. Section 111(d) plan for municipal solid waste landfills, as submitted on July 1, 1997, and as...
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a...
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a...
NASA Astrophysics Data System (ADS)
Pandia, S.; Tanata, S.; Rachel, M.; Octiva, C.; Sialagan, N.
2018-02-01
The waste from tapioca industry is as an organic waste that contains many important compounds such as carbohydrate, protein, and glucose. This research as aimed to know the effect of fermentation time from solid waste combined with waste-water from the tapioca industry to percentage reduction of TSS. The study was started by mixing the solid and liquid wastes from tapioca industry at a ratio of 70:30, 60:40, 50:50, 40:60, and 30:70 (w/w) with a starter from solid waste of cattle in a batch anaerobic digester. The percentage reduction of TSS was 72.2289 at a ratio by weight of the composition of solid and liquid wastes from tapioca industry was 70:30 after 30 days of fermentation time.
Serrona, Kevin Roy B; Yu, Jeongsoo; Aguinaldo, Emelita; Florece, Leonardo M
2014-09-01
The Philippines has been making inroads in solid waste management with the enactment and implementation of the Republic Act 9003 or the Ecological Waste Management Act of 2000. Said legislation has had tremendous influence in terms of how the national and local government units confront the challenges of waste management in urban and rural areas using the reduce, reuse, recycle and recovery framework or 4Rs. One of the sectors needing assistance is the informal waste sector whose aspiration is legal recognition of their rank and integration of their waste recovery activities in mainstream waste management. To realize this, the Philippine National Solid Waste Management Commission initiated the formulation of the National Framework Plan for the Informal Waste Sector, which stipulates approaches, strategies and methodologies to concretely involve the said sector in different spheres of local waste management, such as collection, recycling and disposal. What needs to be fleshed out is the monitoring and evaluation component in order to gauge qualitative and quantitative achievements vis-a-vis the Framework Plan. In the process of providing an enabling environment for the informal waste sector, progress has to be monitored and verified qualitatively and quantitatively and measured against activities, outputs, objectives and goals. Using the Framework Plan as the reference, this article developed monitoring and evaluation indicators using the logical framework approach in project management. The primary objective is to institutionalize monitoring and evaluation, not just in informal waste sector plans, but in any waste management initiatives to ensure that envisaged goals are achieved. © The Author(s) 2014.
Govindan, Siva Shangari; Agamuthu, P
2014-10-01
Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills. © The Author(s) 2014.
Waste in the U.S. Health Care System: A Conceptual Framework
Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B
2008-01-01
Context Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. Methods This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Findings Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Conclusions Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that—by improving the market for health insurance and health care—will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system. PMID:19120983
ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Jarek
2005-08-29
The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input,more » which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates have no impact on the model developed in this report.« less
40 CFR 256.11 - Recommendations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... authorized State hazardous waste management program under subtitle C of the Act. (e) The State plan should... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Identification of Responsibilities...
40 CFR 256.11 - Recommendations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... authorized State hazardous waste management program under subtitle C of the Act. (e) The State plan should... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Identification of Responsibilities...
300 Area waste acid treatment system closure plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
LUKE, S.N.
1999-05-17
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josimović, Boško, E-mail: bosko@iaus.ac.rs; Marić, Igor; Milijić, Saša
2015-02-15
Highlights: • The paper deals with the specific method of multi-criteria evaluation applied in drafting the SEA for the Belgrade WMP. • MCE of the planning solutions, assessed according to 37 objectives of the SEA and four sets of criteria, was presented in the matrix form. • The results are presented in the form of graphs so as to be easily comprehensible to all the participants in the decision-making process. • The results represent concrete contribution proven in practice. - Abstract: Strategic Environmental Assessment (SEA) is one of the key instruments for implementing sustainable development strategies in planning in general;more » in addition to being used in sectoral planning, it can also be used in other areas such as waste management planning. SEA in waste management planning has become a tool for considering the benefits and consequences of the proposed changes in space, also taking into account the capacity of space to sustain the implementation of the planned activities. In order to envisage both the positive and negative implications of a waste management plan for the elements of sustainable development, an adequate methodological approach to evaluating the potential impacts must be adopted and the evaluation results presented in a simple and clear way, so as to allow planners to make relevant decisions as a precondition for the sustainability of the activities planned in the waste management sector. This paper examines the multi-criteria evaluation method for carrying out an SEA for the Waste Management Plan for the city of Belgrade (BWMP). The method was applied to the evaluation of the impacts of the activities planned in the waste management sector on the basis of the environmental and socioeconomic indicators of sustainability, taking into consideration the intensity, spatial extent, probability and frequency of impact, by means of a specific planning approach and simple and clear presentation of the obtained results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, HakSoo; Chung, SungHwan; Maeng, SungJun
2013-07-01
The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactivemore » waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)« less
Reduction experiment of iron scale by adding waste plastics.
Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao
2009-01-01
The special features of waste plastics in China are huge in total amount, various in type and dispersive in deposition. Therefore, it is necessary to try some new ways that are fit to Chinese situation for disposing waste plastics as metallurgical raw materials more effectively and flexibly. Owing to its high ferrous content and less impurity, the iron scale became ideal raw material to produce pure iron powder. One of the methods to produce pure iron powder is Hoganas Method, by which, after one or multistage of reduction steps, the iron scale can be reduced pure iron powder. However, combining utilization of waste plastics and iron powder production, a series of reduction experiments were arranged and investigated, which is hoped to take use of both thermal and chemical energy contained in waste plastics as well as to improve the reducing condition of iron scale, and hence to develop a new metallurgical way of disposing waste plastics. The results show that under these experimental conditions, the thermal-decomposition of water plastics can conduce to an increase of porosity in the reduction systems. Moreover, better thermodynamics and kinetics conditions for the reduction of scale can be reached. As a result, the reduction rate is increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anast, Kurt Roy; Funk, David John; Hargis, Kenneth Marshall
The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively) at Los Alamos National Laboratory (LANL). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquidmore » fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of adding zeolite currently planned for implementation at LANL’s Waste Characterization, Reduction, and Repackaging Facility (WCRRF). The course of this work verified the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that WypAlls, cheesecloth, and Celotex absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). Sensitivity testing and an analysis were conducted to evaluate the waste form for reactivity. Tests included subjecting surrogate material to mechanical impact, friction, electrostatic discharge and thermal insults. The testing confirmed that the waste does not exhibit the characteristic of reactivity (D003). Follow-on testing was conducted to demonstrate the effectiveness of zeolite stabilization for ignitable WypAll and cheesecloth debris and additional nitrate salt solutions (those exhibiting the oxidizer characteristic) to demonstrate the effectiveness of the remedy. Follow-on testing also included testing of surrogate materials containing Waste Lock 770, which is present in four of the RNS containers, and potential items of debris such as plywood and Celotex material. Testing to evaluate the effectiveness of the remedy was performed using the specific remediation processes that are planned for use at the WCRRF. Finally, testing was also performed to evaluate the holding capacity of zeolite using a highly acidic surrogate solution and to characterize the composition of gases generated during mixing of zeolite with surrogate solutions. All these tests demonstrated the effectiveness of adding zeolite as the planned remedy.« less
40 CFR 62.8870 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Ohio Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.8870 Identification of plan. The Ohio State Implementation Plan for implementing the Federal Municipal Solid Waste Landfill Emission Guidelines including...
40 CFR 62.3330 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Illinois Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.3330 Identification of plan. The Illinois Plan for implementing the Federal Municipal Solid Waste Landfill Emission Guidelines to control air...
SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Todd, Terry A.; Peterson, Mary E.
2012-11-26
This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.
Akulume, Martha; Kiwanuka, Suzanne N
2016-01-01
Objective . The goal of this study was to assess the appropriateness of the theory of planned behavior in predicting health care waste segregation behaviors and to examine the factors that influence waste segregation behaviors. Methodology . One hundred and sixty-three health workers completed a self-administered questionnaire in a cross-sectional survey that examined the theory of planned behavior constructs (attitudes, subjective norms, perceived behavioral control, and intention) and external variables (sociodemographic factors, personal characteristics, organizational characteristics, professional characteristics, and moral obligation). Results . For their most recent client 21.5% of the health workers reported that they most definitely segregated health care waste while 5.5% did not segregate. All the theory of planned behavior constructs were significant predictors of health workers' segregation behavior, but intention emerged as the strongest and most significant ( r = 0.524, P < 0.001). The theory of planned behavior model explained 52.5% of the variance in health workers' segregation behavior. When external variables were added, the new model explained 66.7% of the variance in behavior. Conclusion . Generally, health workers' health care waste segregation behavior was high. The theory of planned behavior significantly predicted health workers' health care waste segregation behaviors.
40 CFR 62.1350 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions from Existing Municipal Solid Waste Landfills § 62.1350 Identification of plan. “111(d) Plan for Existing Municipal Solid Waste Landfills Existing in Colorado” and the associated State regulations in Part...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
Medical waste management plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Todd W.; VanderNoot, Victoria A.
2004-12-01
This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.
A multi-echelon supply chain model for municipal solid waste management system.
Zhang, Yimei; Huang, Guo He; He, Li
2014-02-01
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.
A multi-echelon supply chain model for municipal solid waste management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yimei, E-mail: yimei.zhang1@gmail.com; Huang, Guo He; He, Li
2014-02-15
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions ofmore » the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.« less
Waste treatability guidance program. User`s guide. Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, C.
1995-12-21
DOE sites across the country generate and manage radioactive, hazardous, mixed, and sanitary wastes. It is necessary for each site to find the technologies and associated capacities required to manage its waste. One role of DOE HQ Office of Environmental Restoration and Waste Management is to facilitate the integration of the site- specific plans into coherent national plans. DOE has developed a standard methodology for defining and categorizing waste streams into treatability groups based on characteristic parameters that influence waste management technology needs. This Waste Treatability Guidance Program automates the Guidance Document for the categorization of waste information into treatabilitymore » groups; this application provides a consistent implementation of the methodology across the National TRU Program. This User`s Guide provides instructions on how to use the program, including installations instructions and program operation. This document satisfies the requirements of the Software Quality Assurance Plan.« less
Waste audit study: Research and educational institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-08-15
This document reports on hazardous-waste reduction audits performed at three diverse research/educational institutions in southern California. Waste-reduction opportunities identified include: utilizing microscale experiments; chemical substitution; treating waste chemicals in the final step in experiments; and recycle, recovery, and treatment options. A generic self-audit was developed for use by educational and research institutions throughout the state.
40 CFR 256.42 - Recommendations for assuring facility development.
Code of Federal Regulations, 2014 CFR
2014-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Facility Planning and Implementation § 256.42 Recommendations for assuring facility development. (a) The State plan... facilities, and (4) Development of schedules of implementation. (d) The State plan should encourage private...
40 CFR 256.42 - Recommendations for assuring facility development.
Code of Federal Regulations, 2012 CFR
2012-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Facility Planning and Implementation § 256.42 Recommendations for assuring facility development. (a) The State plan... facilities, and (4) Development of schedules of implementation. (d) The State plan should encourage private...
40 CFR 256.42 - Recommendations for assuring facility development.
Code of Federal Regulations, 2013 CFR
2013-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Facility Planning and Implementation § 256.42 Recommendations for assuring facility development. (a) The State plan... facilities, and (4) Development of schedules of implementation. (d) The State plan should encourage private...
WASTE MINIMIZATION OPPORTUNITY ASSESSMENT: PHILADELPHIA NAVAL SHIPYARD
The Waste Reduction Evaluation at Federal Sites (WREAFS) Program consists of a series of demonstration and evaluation projects for waste reduction conducted cooperatively by EPA and various parts of the Department of Defense (DOD), Department of Energy (DOE), and other Federal ag...
40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
40 CFR 62.14570 - What must I do if I plan to permanently close my CISWI unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... alternative waste treatment technology before you shut down your CISWI (1) Date when you will enter into a... evaluation of the option to transport your waste offsite to a commercial or municipal waste treatment and/or...
40 CFR 62.14570 - What must I do if I plan to permanently close my CISWI unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... alternative waste treatment technology before you shut down your CISWI (1) Date when you will enter into a... evaluation of the option to transport your waste offsite to a commercial or municipal waste treatment and/or...
Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos
2015-06-01
This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hazardous waste management at the local level; The Anchorage, Alaska experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigglesworth, D.
1989-07-01
The need to manage hazardous wastes in the municipality of Anchorage, Alaska, has become increasingly evident in recent years. A task force, representing a broad cross-section of the community, was appointed by the mayor to develop a waste management plan that would address community concerns. Between 1984 and 1986, the Anchorage Hazardous Waste Task Force, supported by municipal staff, local consultants and volunteers from the community developed a plan emphasizing local responsibility and pollution prevention, using management capabilities and technical assistance. This paper describes the development of a non-regulatory hazardous waste management program in Anchorage, Alaska. Plan elements, program fundingmore » and the key role of the local Hazardous Waste Task Force are discussed.« less
Nessi, Simone; Rigamonti, Lucia; Grosso, Mario
2015-09-01
A life cycle assessment was carried out to evaluate the effects of two packaging waste prevention activities on the overall environmental performance of the integrated municipal waste management system of Lombardia region, Italy. The activities are the use of refined tap water instead of bottled water for household consumption and the substitution of liquid detergents packaged in single-use containers by those distributed 'loose' through self-dispensing systems and refillable containers. A 2020 baseline scenario without waste prevention is compared with different waste prevention scenarios, where the two activities are either separately or contemporaneously implemented, by assuming a complete substitution of the traditional product(s). The results show that, when the prevention activities are carried out effectively, a reduction in total waste generation ranging from 0.14% to 0.66% is achieved, corresponding to a 1-4% reduction of the affected packaging waste fractions (plastics and glass). However, the improvements in the overall environmental performance of the waste management system can be far higher, especially when bottled water is substituted. In this case, a nearly 0.5% reduction of the total waste involves improvements ranging mostly between 5 and 23%. Conversely, for the substitution of single-use packaged liquid detergents (0.14% reduction of the total waste), the achieved improvements do not exceed 3% for nearly all impact categories. © The Author(s) 2015.
40 CFR 265.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the wastes, application of advanced technology, or alternative disposal, treatment, or re-use.... 265.118 Section 265.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT...
40 CFR 62.650 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Commercial/industrial Solid Waste Incineration Units § 62.650 Identification of plan. (a) The... are no existing commercial/industrial solid waste incineration units within the Department's.../industrial solid waste incineration units within the Department's jurisdiction that are subject to 40 CFR...
40 CFR 62.650 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Commercial/industrial Solid Waste Incineration Units § 62.650 Identification of plan. (a) The... are no existing commercial/industrial solid waste incineration units within the Department's.../industrial solid waste incineration units within the Department's jurisdiction that are subject to 40 CFR...
3 Steps to Developing a Tribal Integrated Waste Management Plan (IWMP)
An Integrated Waste Management Plan (IWMP) is the blueprint of a comprehensive waste management program. The steps to developing an IWMP are collect background data, map out the tribal IWMP framework, and write and implement the tribal IWMP.
Program Planning Concepts in Solid Waste Management
ERIC Educational Resources Information Center
Brown, Sanford M., Jr.
1972-01-01
Presents a brief review of the program planning process, and uses the example of a solid waste program to illustrate what has or has not been accomplished through the use of the planning process. (LK)
LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tunesi, Simonetta, E-mail: s.tunesi@ucl.ac.uk
An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy willmore » result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The contribution and relative importance of recycling and treatment/recovery processes change with the impact category. The lack of reprocessing plants in the area of the case study has shown the relevance of transport distances for recyclate material in reducing the efficiency of a WM system. Highly relevant to the current English WM infrastructural debate, these results for the first time highlight the risk of a significant reduction in the energy that could be recovered by local WM strategies relying only on the market to dispose of the 'fuel from waste' in a non dedicated plant in the case that the SRF had to be sent to landfill for lack of treatment capacity.« less
Tunesi, Simonetta
2011-03-01
An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The contribution and relative importance of recycling and treatment/recovery processes change with the impact category. The lack of reprocessing plants in the area of the case study has shown the relevance of transport distances for recyclate material in reducing the efficiency of a WM system. Highly relevant to the current English WM infrastructural debate, these results for the first time highlight the risk of a significant reduction in the energy that could be recovered by local WM strategies relying only on the market to dispose of the 'fuel from waste' in a non dedicated plant in the case that the SRF had to be sent to landfill for lack of treatment capacity. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, K.A.; Mitchell, M.M.; Jean, D.
1997-09-01
This report contains the Appendices A-L including Voluntary Corrective Measure Plans, Waste Management Plans, Task-Specific Health and Safety Plan, Analytical Laboratory Procedures, Soil Sample Results, In-Situ Gamma Spectroscopy Results, Radionuclide Activity Summary, TCLP Soil Sample Results, Waste Characterization Memoranda, Waste Drum Inventory Data, Radiological Risk Assessment, and Summary of Site-Specific Recommendations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Compliance Schedule...) You must submit a waste management plan no later than April 5, 2004. (3) You must achieve final... October 4, 2004. (2) You must submit a waste management plan no later than April 5, 2004. (3) You must...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, G.R.; Loar, J.M.; Ryon, M.G.
Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bearmore » Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.« less
40 CFR 62.1350 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Colorado Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.1350 Identification of plan. “111(d) Plan for Existing Municipal Solid Waste Landfills Existing in Colorado” and the associated State regulations in Part...
40 CFR 62.6600 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Montana Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.6600 Identification of plan. “Section 111(d) Plan for Municipal Solid Waste Landfills” and the associated State regulations in sections 17.8.302(1...
40 CFR 62.3630 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Indiana Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.3630 Identification of plan. “Section 111(d) Plan for Municipal Solid Waste Landfills” and the associated State regulations found in Title 326: Air...
Parmagnani, Federica; Ranzi, Andrea; Ancona, Carla; Angelini, Paola; Chiusolo, Monica; Cadum, Ennio; Lauriola, Paolo; Forastiere, Francesco
2014-01-01
The Project Epidemiological Surveillance of Health Status of Resident Population Around the Waste Treatment Plants (SESPIR) included five Italian regions (Emilia-Romagna, Piedmont, Lazio, Campania, and Sicily) and the National Institute of Health in the period 2010-2013. SESPIR was funded by the Ministry of Health as part of the National centre for diseases prevention and control (CCM) programme of 2010 with the general objective to provide methods and operational tools for the implementation of surveillance systems for waste and health, aimed at assessing the impact of the municipal solid waste (MSW) treatment cycle on the health of the population. The specific objective was to assess health impacts resulting from the presence of disposal facilities related to different regional scenarios of waste management. Suitable tools for analysis of integrated assessment of environmental and health impact were developed and applied, using current demographic, environmental and health data. In this article, the methodology used for the quantitative estimation of the impact on the health of populations living nearby incinerators, landfills and mechanical biological treatment plants is showed, as well as the analysis of three different temporal scenarios: the first related to the existing plants in the period 2008-2009 (baseline), the second based on regional plans, the latter referring to MSW virtuous policy management based on reduction of produced waste and an intense recovery policy.
29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVEGRADE ...
29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVE-GRADE FLOOR LEVEL. INEEL DRAWING NUMBER 200-0633-00-287-106354. FLUOR NUMBER 5775-CPP-633-A-4. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
40 CFR 62.13106 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Control of Air Emissions of Designated Pollutants from Existing Hospital, Medical, and Infectious Waste.../Infectious Waste Incinerators. (b) Identification of sources: The plan applies to all applicable existing hospital/medical/infectious waste incinerators for which construction commenced on or before June 20, 1996...
40 CFR 62.8354 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... North Carolina Air Emissions from Commercial and Industrial Solid Waste Incineration Units § 62.8354..., certifying that there are no Commercial and Industrial Solid Waste Incineration units subject to 40 CFR part... Waste Incineration (CISWI) Units—Section 111(d)/129 Plan ...
40 CFR 62.10629 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Tennessee Air Emissions from Commercial and Industrial Solid Waste Incineration Units § 62.10629..., respectively, certifying that there are no Commercial and Industrial Solid Waste Incineration units subject to... Industrial Solid Waste Incineration (CISWI) Units—Section 111(d)/129 Plan ...
40 CFR 62.10629 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTANTS Tennessee Air Emissions from Commercial and Industrial Solid Waste Incineration Units § 62.10629..., respectively, certifying that there are no Commercial and Industrial Solid Waste Incineration units subject to... Industrial Solid Waste Incineration (CISWI) Units—Section 111(d)/129 Plan ...
40 CFR 62.8354 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... North Carolina Air Emissions from Commercial and Industrial Solid Waste Incineration Units § 62.8354..., certifying that there are no Commercial and Industrial Solid Waste Incineration units subject to 40 CFR part... Waste Incineration (CISWI) Units—Section 111(d)/129 Plan ...
40 CFR 62.5150 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Maryland Landfill Gas Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.5150 Identification of..., Emissions Guidelines for Municipal Solid Waste Landfills. ...
Jaillon, L; Poon, C S; Chiang, Y H
2009-01-01
As Hong Kong is a compact city with limited available land and high land prices, the construction of high-rise buildings is prevalent. The construction industry produces a significant amount of building waste. In 2005, about 21.5 million tonnes of construction waste were generated, of which 11% was disposed of in landfills and 89% in public filling areas. At the present rate, Hong Kong will run out of both public filling areas and landfill space within the next decade. The government is taking action to tackle the problem, such as by introducing a construction waste landfill charge, and promoting prefabrication to reduce on-site waste generation. This paper reports an ongoing study on the use of prefabrication in buildings and its impact on waste reduction in Hong Kong. A questionnaire survey was administered to experienced professionals, and case studies of recently completed building projects were conducted. The results revealed that construction waste reduction is one of the major benefits when using prefabrication compared with conventional construction. The average wastage reduction level was about 52%. This implies that a wider use of prefabrication could considerably reduce construction waste generation in Hong Kong and alleviate the burdens associated with its management.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
...-9460. 4. Mail: Steven Brown, Atmospheric Section, Air Planning and Development Branch, Air and Waste..., Kansas 66101. 5. Hand Delivery or Courier: Steven Brown, Atmospheric Section, Air Planning and... Atmospheric Section, Air Planning and Development Branch, Air Waste and Management Division, U.S...
40 CFR 62.8600 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS North Dakota Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.8600 Identification of plan. “Section 111(d) Plan for Municipal Solid Waste Landfills” and the associated State regulation in section 33-15-12-02 of...
40 CFR 62.8104 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS New York Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.8104 Identification of plan. (a) The New York... Municipal Solid Waste Landfills” on October 8, 1998. (b) Identification of sources: The plan applies to all...
40 CFR 62.5860 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Minnesota Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.5860 Identification of plan. “Section 111(d) Plan for Municipal Solid Waste Landfills,” submitted by the State on March 4, 1997. [63 FR 40052, July...
Solid Waste Management Planning--A Methodology
ERIC Educational Resources Information Center
Theisen, Hilary M.; And Others
1975-01-01
This article presents a twofold solid waste management plan consisting of a basic design methodology and a decision-making methodology. The former provides a framework for the developing plan while the latter builds flexibility into the design so that there is a model for use during the planning process. (MA)
Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less
Optimizing Anesthesia-Related Waste Disposal in the Operating Room: A Brief Report.
Hubbard, Richard M; Hayanga, Jeremiah A; Quinlan, Joseph J; Soltez, Anita K; Hayanga, Heather K
2017-10-01
Misappropriation of noncontaminated waste into regulated medical waste (RMW) containers is a source of added expense to health care facilities. The operating room is a significant contributor to RMW waste production. This study sought to determine whether disposing of anesthesia-related waste in standard waste receptacles before patient entry into the operating room would produce a reduction in RMW. A median of 0.35 kg of waste was collected from 51 cases sampled, with a potential annual reduction of 13,800 kg of RMW to the host institution, and a cost savings of $2200.
Controlling changes - lessons learned from waste management facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B.M.; Koplow, A.S.; Stoll, F.E.
This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less
Yu, Ann T W; Poon, C S; Wong, Agnes; Yip, Robin; Jaillon, Lara
2013-01-01
Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C&D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C&D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C&D waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
40 CFR 62.8602 - Effective date.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS North Dakota Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.8602 Effective date. The effective date of the plan for municipal solid waste landfills is February 13, 1998. Air Emissions From Hospital/Medical/Infectious Waste...
31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR ...
31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR AT MEZZANINE AND LOWER LEVELS. INEEL DRAWING NUMBER 200-0633-00-287-106352. FLUOR NUMBER 5775-CPP-633-A-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
40 CFR 62.14620 - What site-specific documentation is required?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...) Procedures for receiving, handling, and charging waste. (3) Incinerator startup, shutdown, and malfunction... limits. (7) Reporting and recordkeeping procedures. (8) The waste management plan required under §§ 62...
Tank waste remediation system tank waste retrieval risk management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimper, S.C.
1997-11-07
This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
1996-07-31
This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authoritymore » of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.« less
Significant volume reduction of tank waste by selective crystallization: 1994 Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herting, D.L.; Lunsford, T.R.
1994-09-27
The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO{sub 3}) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects ofmore » crystallization parameters on the size and crystal habit of product NaNO{sub 3} crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO{sub 3} crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO{sub 3} in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet.« less
30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE ...
30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE GRADE AND AT LEVEL OF OPERATING CORRIDOR. INEEL DRAWING NUMBER 200-0633-00-287-106351. FLUOR NUMBER 5775-CPP-633-A-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
37. PLAN OF ACCESS CORRIDOR PIPING INCLUDES WASTE HOLD TANK ...
37. PLAN OF ACCESS CORRIDOR PIPING INCLUDES WASTE HOLD TANK CELL, OFFGAS CELL, ADSORBER CELL, AND OFFGAS FILTER CELL. INEEL DRAWING NUMBER 200-0633-00-287-106453. FLUOR NUMBER 5775-CPP-P-58. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
75 FR 29786 - Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... plans for managing spent nuclear fuel and high-level radioactive waste. Pursuant to its authority under... of Energy (DOE) plans for managing spent nuclear fuel (SNF) and high-level radioactive waste (HLW... the packaging and movement of the waste, how the recent decision to terminate the Yucca Mountain...
40 CFR 62.13108 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Industrial Solid Waste Incineration Units. The State Plan includes revisions to Rule 102 and Rule 405 of the... Industrial Solid Waste Incineration Units for which construction commenced on or before November 30, 1999... Control of Air Emissions of Designated Pollutants from Existing Commercial and Industrial Solid Waste...
Code of Federal Regulations, 2013 CFR
2013-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2012 CFR
2012-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2014 CFR
2014-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2011 CFR
2011-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2010 CFR
2010-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
The purpose of this guide is to educate young people about the problems associated with solid waste. The activities encourage them to think about options for reducing the amount of waste they generate and how they can help by recycling and learning about other waste management alternatives. The lesson plans deal specifically with garbage and…
Monitoring environmental burden reduction from household waste prevention.
Matsuda, Takeshi; Hirai, Yasuhiro; Asari, Misuzu; Yano, Junya; Miura, Takahiro; Ii, Ryota; Sakai, Shin-Ichi
2018-01-01
In this study, the amount of prevented household waste in Kyoto city was quantified using three methods. Subsequently, the greenhouse gas (GHG) emission reduction by waste prevention was calculated in order to monitor the impact of waste prevention. The methods of quantification were "relative change from baseline year (a)," "absolute change from potential waste generation (b)," and "absolute amount of activities (c)." Method (a) was popular for measuring waste prevention, but method (b) was the original approach to determine the absolute amount of waste prevention by estimating the potential waste generation. Method (c) also provided the absolute value utilizing the information of activities. Methods (b) and (c) enable the evaluation of the waste prevention activities with a similar baseline for recycling. Methods (b) and (c) gave significantly higher GHG reductions than method (a) because of the difference in baseline between them. Therefore, setting a baseline is very important for evaluating waste prevention. In practice, when focusing on the monitoring of a specific policy or campaign, method (a) is an appropriate option. On the other hand, when comparing the total impact of waste prevention to that of recycling, methods (b) and (c) should be applied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.
2014-09-12
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
NASA Astrophysics Data System (ADS)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan
2014-09-01
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
Final Inventory Work-Off Plan for ORNL transuranic wastes (1986 version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, L.S.
1988-05-01
The Final Inventory Work-Off Plan (IWOP) for ORNL Transuranic Wastes addresses ORNL's strategy for retrieval, certification, and shipment of its stored and newly generated contact-handled (CH) and remote-handled (RH) transuranic (TRU) wastes to the Waste Isolation Pilot Plant (WIPP), the proposed geologic repository near Carlsbad, New Mexico. This document considers certification compliance with the WIPP waste acceptance criteria (WAC) and is consistent with the US Department of Energy's Long-Range Master Plan for Defense Transuranic Waste Management. This document characterizes Oak Ridge National Laboratory's (ORNL's) TRU waste by type and estimates the number of shipments required to dispose of it; describesmore » the methods, facilities, and systems required for its certification and shipment; presents work-off strategies and schedules for retrieval, certification, and transportation; discusses the resource needs and additions that will be required for the effort and forecasts costs for the long-term TRU waste management program; and lists public documentation required to support certification facilities and strategies. 22 refs., 6 figs., 10 tabs.« less
GIS-based planning system for managing the flow of construction and demolition waste in Brazil.
Paz, Diogo Henrique Fernandes da; Lafayette, Kalinny Patrícia Vaz; Sobral, Maria do Carmo
2018-05-01
The objective of this article was to plan a network for municipal management of construction and demolition waste in Brazil with the assistance of a geographic information system, using the city of Recife as a case study. The methodology was carried out in three stages. The first was to map the illegal construction and demolition of waste disposal points across Recife and classify the waste according to its recyclability. In sequence, a method for indicating suitable areas for installation of voluntary delivery points, for small waste generators, are presented. Finally, a method for indicating suitable areas for the installation of trans-shipment and waste sorting areas, developed for large generators, is presented. The results show that a geographic information system is an essential tool in the planning of municipal construction and demolition waste management, in order to facilitate the spatial analysis and control the generation, sorting, collection, transportation, and final destination of construction and demolition waste, increasing the rate of recovery and recycling of materials.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... Quality Plans for Designated Facilities and Pollutants, State of Iowa; Control of Emissions From Existing Hospital/ Medical/Infectious Waste Incinerator Units, Negative Declaration and 111(d) Plan Rescission... declaration and withdrawal of its section 111(d)/129 plan for Hospital Medical Infectious Waste Incinerators...
TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
BURBANK, D.A.
This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as themore » basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.« less
Local Gov`t assistance in commercial waste reduction & recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannah, C.W.
This paper outlines programs and strategies for reducing the waste stream by targeting the commercial, industrial and institutional sectors. The programs described are implemented by the Wake County Solid Waste Management Division, North Carolina. Findings and recommendations of a task force focusing on the role of the private sector in meeting state waste reduction mandates are summarized. Commercial initiatives, educational initiatives, and a grant program are described. Several case studies are provided which overview the variety of businesses and waste materials addressed.
WASTE REDUCTION PRACTICES AT TWO CHROMATED COPPER ARSENATE WOOD-TREATING PLANTS
Two chromated copper arsenate (CCA) wood-treating plants were assessed for their waste reduction practices. The objectives of this study were to estimate the amount of hazardous wastes that a well-designed and well-main- tained CCA treatment facility would generate and to iden- t...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
.../Infectious Waste Incinerators'' (HMIWI). The Illinois Environmental Protection Agency (IEPA) submitted the... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 [EPA-R05-OAR-2012-0087; FRL-9663-4] Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan for Designated Facilities and...
40 CFR 62.4845 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (LVHC) systems, steam strippers, and waste water treatment plants. Changes have also been made to... municipal waste combustors, submitted on April 15, 1998. (5) A revision to the plan controlling TRS from.... (3) Existing municipal waste combustors. [54 FR 22896, May 30, 1989, as amended at 55 FR 38548, Sept...
40 CFR 62.4845 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (LVHC) systems, steam strippers, and waste water treatment plants. Changes have also been made to... municipal waste combustors, submitted on April 15, 1998. (5) A revision to the plan controlling TRS from.... (3) Existing municipal waste combustors. [54 FR 22896, May 30, 1989, as amended at 55 FR 38548, Sept...
40 CFR 62.14350 - Scope and delegation of authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to May 30... designated pollutants from certain municipal solid waste landfills in accordance with section 111(d) of the Clean Air Act and 40 CFR part 60, subpart B. This municipal solid waste landfills Federal plan applies...
40 CFR 62.14350 - Scope and delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to May 30... designated pollutants from certain municipal solid waste landfills in accordance with section 111(d) of the Clean Air Act and 40 CFR part 60, subpart B. This municipal solid waste landfills Federal plan applies...
40 CFR 62.14770 - When must I achieve final compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...
40 CFR 62.14770 - When must I achieve final compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...
40 CFR 62.14350 - Scope and delegation of authority.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to May 30... designated pollutants from certain municipal solid waste landfills in accordance with section 111(d) of the Clean Air Act and 40 CFR part 60, subpart B. This municipal solid waste landfills Federal plan applies...
40 CFR 62.14770 - When must I achieve final compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...
40 CFR 60.1050 - Who must submit a materials separation plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separation plan for your municipal waste combustion unit if you commence construction of a new small municipal waste combustion unit after December 6, 2000. (b) If you commence construction of your municipal...
40 CFR 62.14770 - When must I achieve final compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...
40 CFR 60.1050 - Who must submit a materials separation plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separation plan for your municipal waste combustion unit if you commence construction of a new small municipal waste combustion unit after December 6, 2000. (b) If you commence construction of your municipal...
40 CFR 62.14770 - When must I achieve final compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...
100-D Ponds closure plan. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, S.W.
1997-09-01
The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit ismore » clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.« less
Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
Vanneste, J; Van Gerven, T; Vander Putten, E; Van der Bruggen, B; Helsen, L
2011-09-01
This paper investigates the potential CO(2) emission reductions related to a partial switch from fossil fuel-based heat and electricity generation to renewable wood waste-based systems in Flanders. The results show that valorization in large-scale CHP (combined heat and power) systems and co-firing in coal plants have the largest CO(2) reduction per TJ wood waste. However, at current co-firing rates of 10%, the CO(2) reduction per GWh of electricity that can be achieved by co-firing in coal plants is five times lower than the CO(2) reduction per GWh of large-scale CHP. Moreover, analysis of the effect of government support for co-firing of wood waste in coal-fired power plants on the marginal costs of electricity generation plants reveals that the effect of the European Emission Trading Scheme (EU ETS) is effectively counterbalanced. This is due to the fact that biomass integrated gasification combined cycles (BIGCC) are not yet commercially available. An increase of the fraction of coal-based electricity in the total electricity generation from 8 to 10% at the expense of the fraction of gas-based electricity due to the government support for co-firing wood waste, would compensate entirely for the CO(2) reduction by substitution of coal by wood waste. This clearly illustrates the possibility of a 'rebound' effect on the CO(2) reduction due to government support for co-combustion of wood waste in an electricity generation system with large installed capacity of coal- and gas-based power plants, such as the Belgian one. Copyright © 2011 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...
Code of Federal Regulations, 2012 CFR
2012-07-01
... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...
Code of Federal Regulations, 2014 CFR
2014-07-01
... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...
Code of Federal Regulations, 2010 CFR
2010-07-01
... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...
Code of Federal Regulations, 2011 CFR
2011-07-01
... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...
Waste reduction possibilities for manufacturing systems in the industry 4.0
NASA Astrophysics Data System (ADS)
Tamás, P.; Illés, B.; Dobos, P.
2016-11-01
The industry 4.0 creates some new possibilities for the manufacturing companies’ waste reduction for example by appearance of the cyber physical systems and the big data concept and spreading the „Internet of things (IoT)”. This paper presents in details the fourth industrial revolutions’ more important achievements and tools. In addition there will be also numerous new research directions in connection with the waste reduction possibilities of the manufacturing systems outlined.
NASA Astrophysics Data System (ADS)
Ikeda, Tetsuya; Amano, Kunihiko; Kishida, Hiroyuki
In the field of infrastructure construction including river works, construction materials such as concrete are used, and it needs to transport them for the long distance. Due to recent growth of public awareness on the environmental issues, it becomes more important to estimate and reduce the environmental loads brought by the infrastructure construction. In the infrastructure construction, it is necessary to take notice of carbon dioxide and waste materials as the broad-based and long-range environmental loads. On the other hand, it is necessary to conduct the quantitative evaluation on these environmental loads and to investigate the reduction measures by considering the actual situation of construction. Focusing on the river works, this paper estimates the cost of construction, the carbon dioxide emission and final disposal volume on the several alternative plans at the designing stage, compares the significance of different environmental loads by using the integrated factors of LIME2, and analyzes the effectiveness of reduction measures. It also establishes the reduction scenarios of the environmental loads, and analyzes the effectiveness compared to the base-line scenario in which the materials are newly extracted and produced. Based on the results, it establishes the procedure intending to reduce the environmental loads at the time of river planning and construction, which will be referentialized by river managers, construction consultants and constructors nationwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jack C.P., E-mail: cejcheng@ust.hk; Ma, Lauren Y.H., E-mail: yingzi@ust.hk
Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R wastemore » disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D and R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control.« less
Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.
1996-01-01
In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.
40 CFR 62.5152 - Effective date.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Maryland Landfill Gas Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.5152 Effective date. The effective date of the plan for municipal solid waste landfills is November 8, 1999. Emissions From Existing Hospital...
40 CFR 62.1952 - Effective date.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Delaware Landfill Gas Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.1952 Effective date. The effective date of the plan for municipal solid waste landfills is November 16, 1999. Emissions From Existing...
30 CFR 784.23 - Operation plan: Maps and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage and discharge... structure, permanent water impoundment, refuse pile, and coal mine waste impoundment for which plans are...; (12) Location of each water and subsidence monitoring point; (13) Location of each facility that will...
Environmental restoration and waste management: Five-year plan, Fiscal Years 1992--1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleman, L.I.
1990-06-01
This document reflects DOE's fulfillment of a major commitment of the Environmental Restoration and Waste Management Five-Year Plan: reorganization to create an Office of Environmental Restoration and Waste Management (EM) responsible for the consolidated environmental management of nuclear-related facilities and sites formerly under the Assistant Secretaries for Defense Programs and Nuclear Energy and the Director of the Office of Energy Research. The purposes of this Plan for FY 1992--1996 are to measure progress in meeting DOE's compliance, cleanup, and waste management agenda; to incorporate a revised and condensed version of the Draft Research Development, Demonstration, Testing, and Evaluation (RDDT E)more » Plan (November 1989) to describe DOE's process for developing the new technologies critically needed to solve its environmental problems; to show DOE's current strategy and planned activities through FY 1996, including reasons for changes required to meet compliance and cleanup commitments; and to increase the involvement of other agencies and the public in DOE's planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigsby V.P.
2009-02-12
In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement slab], roofing, structural steel supports, interior walls, and exterior walls) and support system components including the recirculation cooling water (RCW); electrical; communication; fire protection; ventilation; process coolant; process lube oil; utilities such as steam, water and drain lines; (2) Process Piping; (3) Seal Exhaust Headers; (4) Seal Exhaust Traps; (5) Process Valves; (6) Differential Blind Multipliers (DBM)/Partial Blind Multipliers (PBM); and (7) Aftercoolers (also known as Intercell coolers). Converters and compressors while components of the process gas system, are not included in this commingled waste lot. On January 6, 2009, a meeting was held with EPA, TDEC, DOE and the team for the sole purpose of finalizing the objectives, format, and content of WPXL 6.999. The objective of WPXL 6.999 was to provide a crosswalk to the building structure and the PGE components profiles. This was accomplished by providing tables with references to the specific section of the individual profiles for each of the WLs. There are two building profiles and eight PGE profiles. All of the waste identified in the individual profiles will be commingled, shipped, and disposed exclusively under WPXL 6.999. The individual profiles were provided to the EPA and Tennessee Department of Environment and Conservation (TDEC) for information purposes only. This summary WPXL 6.999 will be submitted to EPA, TDEC, and DOE for review and approval. The format agreed upon by the regulators and DOE form the basis for WPXL 6.999. The agreed format is found on pages v and vi of the CONTENTS section of this profile. The disposal of this waste will be executed in accordance with the Action Memorandum for the Decontamination and Decommissioning of the K-25 and K-27 Buildings, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2002), Removal Action Work Plan for the K-25 and K-27 Buildings, Process Equipment Removal and Demolition, K-25/K-27 Project, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008a); Waste Handling Plan for Demolition of the K-25 and K-27 Building Structures and Remaining Components Located at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005); and Waste Handling Plan for Building K-25 West Wing Process Equipment and Piping at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008b).« less
WASTE REDUCTION EVALUATION OF SOY-BASED INK AT A SHEET-FED OFFSET PRINTER
This Waste Reduction Innovative Technology Evaluation (WRITE) project quantifies and compares wastes generated from the use of soy-based and petroleum-based inks in sheet-fed offset printing. Data were collected in a full-scale print run on a Miller TP104 Plus 6-color press in Ju...
Tribal Waste Management Program
The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.
40 CFR 62.14590 - What should I include in my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What should I include in my waste management plan? 62.14590 Section 62.14590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the...
40 CFR 62.14590 - What should I include in my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What should I include in my waste management plan? 62.14590 Section 62.14590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the...
40 CFR 62.14590 - What should I include in my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What should I include in my waste management plan? 62.14590 Section 62.14590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the...
40 CFR 60.2630 - What should I include in my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What should I include in my waste management plan? 60.2630 Section 60.2630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the use...
40 CFR 62.14471 - When must I comply with this subpart if I plan to shut down?
Code of Federal Regulations, 2010 CFR
2010-07-01
... FACILITIES AND POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious Waste Incinerators... documentation must include an evaluation of the option to transport your waste offsite to a commercial medical... an onsite alternative waste treatment technology before you shut down your HMIWI, Date when you will...
40 CFR 256.05 - Annual work program.
Code of Federal Regulations, 2012 CFR
2012-07-01
....05 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements... implementation of the State plan. ...
40 CFR 62.7100 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Nevada Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.7100 Identification of plan. (a) The Washoe... municipal solid waste landfills in Washoe County subject to 40 CFR part 60, subpart Cc. (b) The Nevada...
40 CFR 62.9632 - Effective date.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Pennsylvania Landfill Gas Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.9632 Effective date. The effective date of the plan for municipal solid waste landfills is April 16, 1999. [64 FR 13078, Mar. 17, 1999] ...
Role of waste management with regard to climate protection: a case study.
Hackl, Albert; Mauschitz, Gerd
2008-02-01
According to the Kyoto Protocol and the burden-sharing agreement of the European Union, Austria is required to cut greenhouse gas (GHG) emissions during the years 2008 to 2012 in order to achieve an average reduction of 13%, based on the level of emissions for the year 1990. The present contribution gives an overview of the history of GHG emission regulation in Austria and identifies the progress made towards the realization of the national climate strategy to attain the GHG emission targets. The contribution uses Austria as an example of the way in which proper waste management can help to reduce GHG emissions. The GHG inventories show that everything must be done to minimize the carbon input due to waste deposition at landfill sites. The incineration of waste is particularly helpful in reducing GHG emissions. The waste-to-energy by incineration plants and recovery of energy yield an ecologically proper treatment of waste using state-of-the-art techniques of a very high standard. The potential for GHG reduction of conventional waste treatment technologies has been estimated by the authors. A growing number of waste incinerators and intensified co-incineration of waste in Austrian industry will both help to reduce national GHG emissions substantially. By increasing the number and capacity of plants for thermal treatment of waste the contribution of proper waste management to the national target for reduction of GHG emissions will be in the range of 8 to 14%. The GHG inventories also indicate that a potential CO2 reduction of about 500 000 t year(-1) is achievable by co-incineration of waste in Austrian industry.
40 CFR 256.05 - Annual work program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 256.05 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements... implementation of the State plan. ...
40 CFR 256.05 - Annual work program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 256.05 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements... implementation of the State plan. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
KIRKBRIDE, R.A.
The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.
40 CFR 256.03 - State plan submission, adoption, and revision.
Code of Federal Regulations, 2014 CFR
2014-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose... promulgation of these guidelines. (b) Prior to submission to EPA, the plan shall be adopted by the State... requirements of these guidelines; (2) Information has become available which demonstrates the inadequacy of the...
40 CFR 256.03 - State plan submission, adoption, and revision.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose... promulgation of these guidelines. (b) Prior to submission to EPA, the plan shall be adopted by the State... requirements of these guidelines; (2) Information has become available which demonstrates the inadequacy of the...
40 CFR 256.03 - State plan submission, adoption, and revision.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose... promulgation of these guidelines. (b) Prior to submission to EPA, the plan shall be adopted by the State... requirements of these guidelines; (2) Information has become available which demonstrates the inadequacy of the...
40 CFR 256.03 - State plan submission, adoption, and revision.
Code of Federal Regulations, 2012 CFR
2012-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose... promulgation of these guidelines. (b) Prior to submission to EPA, the plan shall be adopted by the State... requirements of these guidelines; (2) Information has become available which demonstrates the inadequacy of the...
40 CFR 256.03 - State plan submission, adoption, and revision.
Code of Federal Regulations, 2013 CFR
2013-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose... promulgation of these guidelines. (b) Prior to submission to EPA, the plan shall be adopted by the State... requirements of these guidelines; (2) Information has become available which demonstrates the inadequacy of the...
40 CFR 60.2615 - What must I do if I plan to permanently close my CISWI unit and not restart it?
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model... plan is due. Model Rule—Waste Management Plan ...
40 CFR 60.2615 - What must I do if I plan to permanently close my CISWI unit and not restart it?
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model... plan is due. Model Rule—Waste Management Plan ...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Templeton, K.J.
1996-05-23
For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year tomore » maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.« less
Small Engine Component Technology (SECT) study
NASA Technical Reports Server (NTRS)
Larkin, T. R.
1986-01-01
The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.
Chinese life cycle impact assessment factors.
Yang, J X; Nielsen, P H
2001-04-01
The methodological basis and procedures for determination of Chinese normalization references and weighting factors according to the EDIP-method is described. According to Chinese industrial development intensity and population density, China was divided into three regions and the normalization references for each region were calculated on the basis of an inventory of all of the region's environmental emissions in 1990. The normalization reference was determined as the total environmental impact potential for the area in question in 1990 (EP(j)90) divided by the population. The weighting factor was determined as the normalization reference (ER(j)90) divided by society's target contribution in the year 2000 based on Chinese political reduction plans, ER(j)T2000. This paper presents and discuss results obtained for eight different environmental impact categories relevant for China: global warming, stratospheric ozone depletion, acidification, nutrient enrichment, photochemical ozone formation and generation of bulk waste, hazardous waste and slag and ashes.
Nasa langley research center and the tidewater interagency pollution prevention program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houlihan, J.; Binkley, K.
1994-09-01
National Aeronautics and Space Administration (NASA)`s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. LaRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implemented through specific projects. Over twenty specific source reduction or recycling projects have been initiated since 1991. Recycling activities and use of conservation measures have reduced the use of various freon chlorofluorocarbons, ozone depleting substances (ODCs), by 84 percent in 1993 compared with 1990 figures. In addition, improved silver recovery procedures reduced the amount of photographic laboratory waste by 70 percent, or 11,982more » pounds, during 1993. Total hazardous waste, excluding abrasive blasting debris generated by specific remediation projects, has been reduced by 25 percent, or about 50,000 pounds, in 1993 compared to 1992.« less
Comparison of waste composition in a continuing-care retirement community.
Kim, T; Shanklin, C W; Su, A Y; Hackes, B L; Ferris, D
1997-04-01
To determine the composition of wastes generated in a continuing-care retirement community (CCRC) and to analyze the effects of source-reduction activities and meal delivery system change on the amount of waste generated in the facility. A waste stream analysis was conducted at the same CCRC during spring 1994 (period 1: baseline), spring 1995 (period 2: source reduction intervention), and fall 1995 (period 3: service delivery intervention). Weight, volume, and collapsed volume were determined for food and packaging wastes. Tray service and wait staff service are provided to 70 residents in a health care unit, and family-style service is an optional service available to 130 residents in the independent-living units. A mean of 229 meals are served per day. Intervention included the implementation of source-reduction activities and a change in a service-delivery system in periods 2 and 3, respectively. Descriptive statistics were used to determine the composition of waste. Analysis of variance and a multiple comparison method (least significant difference) were used to compare mean weight and volume of waste generated in period 1 with data collected during periods 2 and 3. Mean waste generated per meal by weight and volume ranged from 0.93 to 1.00 lb and 1.44 to 1.65 gal, respectively. Significantly less production waste by weight (0.18 lb/meal) and volume (0.12 gal/meal) was generated in period 2 than in period 1 (0.32 lb/meal and 0.16 gal/meal, respectively). Significantly less service waste by weight (0.31 lb/meal) and volume (0.05 gal/meal) was discarded in period 3 than in period 1 (0.37 lb/meal and 0.15 gal/meal, respectively). Significantly less total waste and plastic by weight was disposed of after the interventions. The study conclusions indicated that implementing source-reduction practices and changing the meal-delivery system affected the composition of waste generated. Knowledge of waste stream composition can help other foodservice professionals and consulting dietitians identify waste-reduction activities and recycling opportunities. The quantity and type of waste generated should be considered when operational decisions are made relative to market form of food, menu choices, service-delivery systems, and production forecast and controls.
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are exempt from... Construction On or Before November 30, 1999 Applicability of State Plans § 60.2555 What combustion units are... combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste as defined...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What combustion units are exempt from... Construction On or Before November 30, 1999 Applicability of State Plans § 60.2555 What combustion units are... combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste as defined...
40 CFR 62.14560 - How do I comply with the increment of progress for submittal of a control plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Compliance Schedule and... requirements of this subpart. (2) The type(s) of waste to be burned. (3) The maximum design waste burning...
40 CFR 62.14560 - How do I comply with the increment of progress for submittal of a control plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Compliance Schedule and... requirements of this subpart. (2) The type(s) of waste to be burned. (3) The maximum design waste burning...
40 CFR 62.14560 - How do I comply with the increment of progress for submittal of a control plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Compliance Schedule and... requirements of this subpart. (2) The type(s) of waste to be burned. (3) The maximum design waste burning...
40 CFR 62.14570 - What must I do if I plan to permanently close my CISWI unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Compliance Schedule and Increments of Progress § 62... evaluation of the option to transport your waste offsite to a commercial or municipal waste treatment and/or...
Environmental evaluation of municipal waste prevention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H., E-mail: thho@env.dtu.dk
Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail,more » beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.« less
Felder, M A; Petrell, R J; Duff, S J
2001-08-01
A novel design for a solid waste audit was developed and applied to the University of British Columbia, Canada, in 1998. This audit was designed to determine the characteristics of the residual solid waste generated by the campus and provide directions for waste reduction. The methodology was constructed to address complications in solid waste sampling, including spatial and temporal variation in waste, extrapolation from the study area, and study validation. Accounting for spatial effects decreased the variation in calculating total waste loads. Additionally, collecting information on user flow provided a means to decrease daily variation in solid waste and allow extrapolation over time and space. The total annual waste estimated from the experimental design was compared to documented values and was found to differ by -18%. The majority of this discrepancy was likely attributable to the unauthorised disposal of construction and demolition waste. Several options were proposed to address waste minimisation goals. These included: enhancing the current recycling program, source reduction of plastic materials, and/or diverting organic material to composting (maximum diversion: approximately 320, approximately 270, and approximately 1510 t yr(-1), respectively). The greatest diversion by weight would be accomplished through the diversion of organic material, as it was estimated to comprise 70% of the projected waste stream. The audit methodology designed is most appropriate for facilities/regions that have a separate collection system for seasonal wastes and have a means for tracking user flow.
40 CFR 62.5151 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.5151 Identification of sources. The plan applies to all Maryland existing municipal solid waste landfills for which...
40 CFR 62.1951 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills (section 111(d) Plan) § 62.1951 Identification of sources. The plan applies to all Delaware existing municipal solid waste landfills for which...
40 CFR 62.660 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Arizona Emissions from Existing Other Solid Waste Incineration Units § 62.660 Identification of plan... 14, 2008, certifying that there are no existing other solid waste incineration units in its...
40 CFR 62.660 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Arizona Emissions from Existing Other Solid Waste Incineration Units § 62.660 Identification of plan... 14, 2008, certifying that there are no existing other solid waste incineration units in its...
System analyses on advanced nuclear fuel cycle and waste management
NASA Astrophysics Data System (ADS)
Cheon, Myeongguk
To evaluate the impacts of accelerator-driven transmutation of waste (ATW) fuel cycle on a geological repository, two mathematical models are developed: a reactor system analysis model and a high-level waste (HLW) conditioning model. With the former, fission products and residual trans-uranium (TRU) contained in HLW generated from a reference ATW plant operations are quantified and the reduction of TRU inventory included in commercial spent-nuclear fuel (CSNF) is evaluated. With the latter, an optimized waste loading and composition in solidification of HLW are determined and the volume reduction of waste packages associated with CSNF is evaluated. WACOM, a reactor system analysis code developed in this study for burnup calculation, is validated by ORIGEN2.1 and MCNP. WACOM is used to perform multicycle analysis for the reference lead-bismuth eutectic (LBE) cooled transmuter. By applying the results of this analysis to the reference ATW deployment scenario considered in the ATW roadmap, the HLW generated from the ATW fuel cycle is quantified and the reduction of TRU inventory contained in CSNF is evaluated. A linear programming (LP) model has been developed for determination of an optimized waste loading and composition in solidification of HLW. The model has been applied to a US-defense HLW. The optimum waste loading evaluated by the LP model was compared with that estimated by the Defense Waste Processing Facility (DWPF) in the US and a good agreement was observed. The LP model was then applied to the volume reduction of waste packages associated with CSNF. Based on the obtained reduction factors, the expansion of Yucca Mountain Repository (YMR) capacity is evaluated. It is found that with the reference ATW system, the TRU contained in CSNF could be reduced by a factor of ˜170 in terms of inventory and by a factor of ˜40 in terms of toxicity under the assumed scenario. The number of waste packages related to CSNF could be reduced by a factor of ˜8 in terms of volume and by factor of ˜10 on the basis of electricity generation when a sufficient cooling time for discharged spent fuel and zero process chemicals in HLW are assumed. The expansion factor of Yucca Mountain Repository capacity is estimated to be a factor of 2.4, much smaller than the reduction factor of CSNF waste packages, due to the existence of DOE-owned spent fuel and HLW. The YMR, however, could support 10 times greater electricity generation as long as the statutory capacity of DOE-owned SNF and HLW remains unchanged. This study also showed that the reduction of the number of waste packages could strongly be subject to the heat generation rate of HLW and the amount of process chemicals contained in HLW. For a greater reduction of the number of waste packages, a sufficient cooling time for discharged fuel and efforts to minimize the amount of process chemicals contained in HLW are crucial.
Waste Analysis Plan and Waste Characterization Survey, Barksdale AFB, Louisiana
1991-03-01
review to assess if analysis is needed, any analyses that are to be provided by generators, and methods to be used to meet specific waste analysis ...sampling method , sampling frequency, parameters of analysis , SW 846 test methods , Department of Transportation (DOT) shipping name and hazard class...S.e.iceA w/Atchs 2. HQ SAC/DEV Ltr, 28 Sep 90 19 119 APPENDIX B Waste Analysis Plan Rationale 21 APPENDIX B 1. SAMPLING METHOD RATIONALE: Composite Liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R.E.
1994-11-02
This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.
Versions of the Waste Reduction Model (WARM)
This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.
Defense Waste Processing Facility Process Enhancements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bricker, Jonathan
2010-11-01
Jonathan Bricker provides an overview of process enhancements currently being done at the Defense Waste Processing Facility (DWPF) at SRS. Some of these enhancements include: melter bubblers; reduction in water use, and alternate reductant.
Versions of the Waste Reduction Model (WARM)
2017-02-14
This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.
Risk Reduction and Training using Simulation Based Tools - 12180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Irin P.
2012-07-01
Process Modeling and Simulation (M and S) has been used for many years in manufacturing and similar domains, as part of an industrial engineer's tool box. Traditionally, however, this technique has been employed in small, isolated projects where models were created from scratch, often making it time and cost prohibitive. Newport News Shipbuilding (NNS) has recognized the value of this predictive technique and what it offers in terms of risk reduction, cost avoidance and on-schedule performance of highly complex work. To facilitate implementation, NNS has been maturing a process and the software to rapidly deploy and reuse M and Smore » based decision support tools in a variety of environments. Some examples of successful applications by NNS of this technique in the nuclear domain are a reactor refueling simulation based tool, a fuel handling facility simulation based tool and a tool for dynamic radiation exposure tracking. The next generation of M and S applications include expanding simulation based tools into immersive and interactive training. The applications discussed here take a tool box approach to creating simulation based decision support tools for maximum utility and return on investment. This approach involves creating a collection of simulation tools that can be used individually or integrated together for a larger application. The refueling simulation integrates with the fuel handling facility simulation to understand every aspect and dependency of the fuel handling evolutions. This approach translates nicely to other complex domains where real system experimentation is not feasible, such as nuclear fuel lifecycle and waste management. Similar concepts can also be applied to different types of simulation techniques. For example, a process simulation of liquid waste operations may be useful to streamline and plan operations, while a chemical model of the liquid waste composition is an important tool for making decisions with respect to waste disposition. Integrating these tools into a larger virtual system provides a tool for making larger strategic decisions. The key to integrating and creating these virtual environments is the software and the process used to build them. Although important steps in the direction of using simulation based tools for nuclear domain, the applications described here represent only a small cross section of possible benefits. The next generation of applications will, likely, focus on situational awareness and adaptive planning. Situational awareness refers to the ability to visualize in real time the state of operations. Some useful tools in this area are Geographic Information Systems (GIS), which help monitor and analyze geographically referenced information. Combined with such situational awareness capability, simulation tools can serve as the platform for adaptive planning tools. These are the tools that allow the decision maker to react to the changing environment in real time by synthesizing massive amounts of data into easily understood information. For the nuclear domains, this may mean creation of Virtual Nuclear Systems, from Virtual Waste Processing Plants to Virtual Nuclear Reactors. (authors)« less
40 CFR 62.14431 - What must my waste management plan include?
Code of Federal Regulations, 2013 CFR
2013-07-01
.... In developing your waste management plan, you must consider the American Hospital Association (AHA... publication (AHA Catalog Number 057007) is available for purchase from AHA Services, Inc., Post Office Box...
40 CFR 62.14431 - What must my waste management plan include?
Code of Federal Regulations, 2014 CFR
2014-07-01
.... In developing your waste management plan, you must consider the American Hospital Association (AHA... publication (AHA Catalog Number 057007) is available for purchase from AHA Services, Inc., Post Office Box...
40 CFR 62.7140 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Nevada Emissions from Existing Other Solid Waste Incineration Units § 62.7140 Identification of plan..., 2006, certifying that there are no existing other solid waste incineration units subject to 40 CFR part...
40 CFR 62.7140 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Nevada Emissions from Existing Other Solid Waste Incineration Units § 62.7140 Identification of plan..., 2006, certifying that there are no existing other solid waste incineration units subject to 40 CFR part...
40 CFR 62.14505 - What are the principal components of this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...) through (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c...
Iraq liquid radioactive waste tanks maintenance and monitoring program plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad
2011-10-01
The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tankmore » inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.« less
Ribić, Bojan; Voća, Neven; Ilakovac, Branka
2017-02-01
Improvement of the current waste management is one of the main challenges for most municipalities in Croatia, mainly due to legal obligations set in different European Union (EU) directives regarding waste management, such as reduction of waste generation and landfilling, or increase of separately collected waste and recycling rates. This paper highlights the current waste management in the city of Zagreb by analyzing the waste generation, collection, and disposal scenario along with the regulatory and institutional framework. Since the present waste management system mainly depends upon landfilling, with the rate of separate waste collection and recycling far from being adequate, it is necessary to introduce a new system that will take into account the current situation in the city as well as the obligations imposed by the EU. Namely, in the coming years, the Waste Framework and Landfill Directives of the European Union will be a significant driver of change in waste management practices and governance of the city of Zagreb. At present, the yearly separate waste collection makes somewhat less than 5 kg per capita of various waste fractions, i.e., far below the average value for the (28) capital cities of the EU, which is 108 kg per capita. This is possible to achieve only by better and sustainable planning of future activities and facilities, taking into account of environmental, economic, and social aspects of waste management. This means that the city of Zagreb not only will have to invest in new infrastructure to meet the targets, but also will have to enhance public awareness in diverting this waste at the household level. The solution for the new waste management proposed in this paper will certainly be a way of implementing circular economy approach to current waste management practice in the city of Zagreb. Municipal waste management in the developing countries in the EU (new eastern EU members) is often characterized by its limited utilization of recycling activities, inadequate management of nonindustrial hazardous waste, and inadequate landfill disposal. Many cities in Eastern Europe and Zagreb as well are facing serious problems in managing municipal wastes due to the existing solid waste management system that is found to be highly inefficient. The proposed scenario for city of Zagreb in the paper is an innovative upgrading of municipal waste management based on the waste management hierarchy and circular economy approach.
Taghipour, Hassan; Aslhashemi, Ahmad; Assadi, Mohammad; Khodaei, Firoz; Mardangahi, Baharak; Mosaferi, Mohammad; Roshani, Babak
2012-10-01
Although a fundamental prerequisite for the successful implementation of any waste management plan is the availability of sufficient and accurate data, there are few available studies regarding the characterization and management of gas distribution company waste (GDCW). This study aimed to characterize the industrial waste generated by the East Azerbaijan Gas Distribution Company (EAGDC) and to present environmental management strategies. The EAGDC serves 57 cities and 821 villages with a total population of more than 2.5 million as well as numerous industrial units. The methodology of this study was based on a checklist of data collected from each zone of the company, site visits (observation), and quantity and quality analysis according to the formal data available from different zones. The results indicate that more than 35 different kinds of industrial solid waste are generated in different industrial installations. The most important types of generated waste include empty barrels (including mercaptans, diesel fuel, deionized waters and oil), faulty gas meters and regulators, a variety of industrial oils, sleeves, filter elements and faulty pipes, valves and fittings. The results indicated that, currently, GDCW is generally handled and disposed of with domestic waste, deposited in companies' installation yards and stores or, sometimes, recycled through non-scientific approaches that can create health risks to the public and the environment, even though most of the GDCW was determined to be recyclable or reusable materials. This study concludes that gas distribution companies must pay more attention to source reduction, recycling and reusing of waste to preserve natural resources, landfill space and the environment.
Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo
2015-04-01
The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge
2016-01-15
The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. Copyright © 2015 Elsevier B.V. All rights reserved.
Gidarakos, E; Havas, G; Ntzamilis, P
2006-01-01
A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.
40 CFR 60.2065 - What should I include in my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What should I include in my waste management plan? 60.2065 Section 60.2065 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., plastics, glass, batteries, or metals; or the use of recyclable materials. The plan must identify any...
40 CFR 60.2065 - What should I include in my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What should I include in my waste management plan? 60.2065 Section 60.2065 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., plastics, glass, batteries, or metals; or the use of recyclable materials. The plan must identify any...
40 CFR 60.2901 - What should I include in my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What should I include in my waste management plan? 60.2901 Section 60.2901 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... paper, cardboard, plastics, glass, batteries, or metals; or the use of recyclable materials. The plan...
40 CFR 60.2901 - What should I include in my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What should I include in my waste management plan? 60.2901 Section 60.2901 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... paper, cardboard, plastics, glass, batteries, or metals; or the use of recyclable materials. The plan...
40 CFR 270.18 - Specific part B information requirements for waste piles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... complied with or detailed plans and an engineering report describing how the requirements of § 264.90(b)(2) will be met. (c) Detailed plans and an engineering report describing how the waste pile is designed and...(b) of this chapter, submit detailed plans, and engineering and hydrogeological reports, as...
40 CFR 270.18 - Specific part B information requirements for waste piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... complied with or detailed plans and an engineering report describing how the requirements of § 264.90(b)(2) will be met. (c) Detailed plans and an engineering report describing how the waste pile is designed and...(b) of this chapter, submit detailed plans, and engineering and hydrogeological reports, as...
30 CFR 780.14 - Operation plan: Maps and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and non-coal waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage... water impoundment, refuse pile, and coal mine waste impoundment for which plans are required by § 780.25... architecture. [44 FR 15357, Mar. 13, 1979; 44 FR 49685, Aug. 24, 1979, as amended at 45 FR 51550, Aug. 4, 1980...
Rethink Disposable: Packaging Waste Source Reduction Pilot Project
Information about the SFBWQP Rethink Disposable: Packaging Waste Source Reduction Pilot Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.
Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil.
Li, Bo; Wang, Xubin; Wang, Hua; Wei, Yonggang; Hu, Jianhang
2017-05-25
To improve the recovery of copper, the viscosity of copper molten slag is decreased by the reduction of magnetic iron, which, in turn, accelerates the settling and separation of copper droplets from the slag. A new technology is proposed in which waste cooking oil is used as a reductant to reduce magnetic iron in the copper smelting slag and consequently reduce carbon emissions in the copper smelting process. A kinetic model of the reduction of magnetic iron in copper slag by waste cooking oil was built using experimental data, and the accuracy of the model was verified. The results indicated that the magnetic iron content in the copper slag decreased with increasing reduction time and an increase in temperature more efficiently reduced magnetic iron in the copper slag. The magnetic iron in the copper slag gradually transformed to fayalite, and the viscosity of the copper molten slag decreased as the magnetic iron content decreased during the reduction process. The reduction of magnetic iron in the copper molten slag using waste cooking oil was a first-order reaction, and the rate-limiting step was the mass transfer of Fe 3 O 4 through the liquid boundary layer.
The state of municipal solid waste management in Israel.
Daskal, Shira; Ayalon, Ofira; Shechter, Mordechai
2018-06-01
Regulation is a key tool for implementing municipal solid waste (MSW) management strategies and plans. While local authorities in Israel are responsible for the storage, collection, and disposal of MSW, Israel's Ministry of Environmental Protection (MoEP) is responsible for the formulation and implementation of waste management policies and legislation. For the past 12 years, about 80% of the MSW in Israel has been landfilled and recycling rates have not increased, despite regulations. This paper presents the state of MSW management in Israel in light of the MoEP's strategic goal of landfilling reduction, the regulations and legislation designed and implemented for achieving this goal, and the ensuing results. Among other things, the results indicate the importance of monitoring and assessing policy and regulations to examine whether regulation is in fact effective and whether it keeps track of its own targets and goals or not. It is also concluded that even when there is an extensive regulation that includes a wide range of laws, economic penalties and financial incentives (such as landfill levy and financing of MSW separation at source arrangements), this does not guarantee proper treatment or even an improvement in waste management. The key to success is first and foremost a suitable infrastructure that will enable achievement of the desired results.
300 Area waste acid treatment system closure plan. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.
40 CFR 62.3917 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Air Emissions from Existing âotherâ Solid Waste Incineration Units § 62.3917 Identification of plan..., certifying that there are no commercial and industrial solid waste incineration units subject to 40 CFR part...
40 CFR 62.3917 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Air Emissions from Existing âotherâ Solid Waste Incineration Units § 62.3917 Identification of plan..., certifying that there are no commercial and industrial solid waste incineration units subject to 40 CFR part...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghipour, Hassan, E-mail: hteir@yahoo.com; Amjad, Zahra; Jafarabadi, Mohamad Asghari
2014-07-15
Highlights: • Heavy metals in spent compact fluorescent lamps (CFLs) determined. • Current waste management condition of CFLs in Iran assessed. • Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. • We propose extended producer responsibility (EPR) for CFLs waste management. - Abstract: From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability ofmore » sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place.« less
Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin
2018-06-21
Municipal solid waste is a significant problem, particularly in developing countries that lack sufficient infrastructure and useable land mass to process it in an appropriate manner. Some developing nations are experiencing a combination of issues that prevent proper management of solid waste. This paper reviews the management of municipal solid waste in northeast Thailand, using the Tha Khon Yang Sub-district Municipality (TKYSM) in Maha Sarakham Province as a case study. The combination of rapid population and economic growth and its associated affluence has led to an increase in the use of consumer items and a concomitant increase in the production of municipal solid waste. In the TKYSM there is pressure on local government to establish a suitable waste management program to resolve the escalating waste crisis. The aim of this study is to provide viable solutions to waste management challenges in the TKYSM, and potentially to offer guidance to other similar localities also facing the same challenges. It is well established that successful changes to waste management require an understanding of local context and consideration of specific issues within a region. Therefore, extensive community consultation and engagement with local experts was undertaken to develop an understanding of the particular waste management challenges of the TKYSM. Research methods included observations, one-on-one interviews and focus groups with a range of different stakeholders. The outcomes of this research highlight a number of opportunities to improve local infrastructure and operational capacity around solid waste management. Waste management in rural and urban areas needs to be approached differently. Solutions include: development of appropriate policy and implementation plans (based around the recommendations of this paper); reduction of the volume of waste going to landfill by establishing a waste separation system; initiation of a collection service that supports waste separation at source; educating the citizens of the municipality; and the local government staff, and for the local government to seek external support from the local temples and expertise from the nearby university.
Discusses how a person can perform waste analyses and develop waste analysis plans (WAPs) in accordance with the federal hazardous waste regulations of the Resource Conservation and Recovery Act (RCRA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, S.M.
1997-04-30
This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.
Liquid secondary waste: Waste form formulation and qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Dixon, K. L.; Hill, K. A.
The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity and water characteristic curves) were comparable to the properties measured on the Savannah River Site (SRS) Saltstone waste form. Future testing should include efforts to first; 1) determine the rate and amount of ammonia released during each unit operation of the treatment process to determine if additional ammonia management is required, then; 2) reduce the ammonia content of the ETF concentrated brine prior to solidification, making the waste more amenable to grouting, or 3) manage the release of ammonia during production and ongoing release during storage of the waste form, or 4) develop a lower pH process/waste form thereby precluding ammonia release.« less
Analysis of municipal waste generation rate in Poland compared to selected European countries
NASA Astrophysics Data System (ADS)
Klojzy-Karczmarczyk, Beata; Makoudi, Said
2017-10-01
The generated municipal waste rates provided in the planning documents are a tool for forecasting the mass of waste generated in individual waste management regions. An important issue is the decisive separation of two concepts: waste generated and waste collected. The study includes analysis of the generation rate for Poland with division into urban and rural areas. The estimated and projected rate of municipal waste generation for Poland provided in subsequent editions of National Waste Management Plans (KPGO) changed since 2000 within wide range from about 300 to more than 500 kg per capita in an individual year (kg/pc/year). Currently, the National Waste Management Plan for the years 2017-2022 estimates municipal waste generation rate at approx. 270 kg/per capita/year with a projected increase to 330 kg/per capita/year in 2030. Most European countries adopt higher municipal waste generation rate, often exceeding 600 kg/per capita/year. The objective of the paper is therefore to analyze the causes of this difference in the declared values. The morphological composition of municipal waste stream in Poland and in selected European countries (e.g. France, Belgium, Switzerland) was analyzed. At present it is not possible to balance the value of the generation rate with the rate of waste collection in Poland. The conducted analyzes allow for determining a number of reasons for variation of the rate value in particular countries, mostly morphological composition of municipal waste, inclusion of household-like waste from infrastructure facilities or not and amount of waste collected in rural areas. The differences in the generation rates and provided possible reasons indicate the need to harmonize the methodology for estimating rates of municipal waste generation in various countries, including Poland.
Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan
2012-06-01
In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.
Zhang, Xiaodong; Huang, Gordon
2014-03-15
Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sudjarwo, Wisnu Arfian A.; Bee, Mei Magdayanti F.
2017-06-01
Synthesis of silica gel from waste glass bottles was conducted with aims to characterize the product and to analyze its application forthe reduction of free fatty acid (FFA) on waste cooking oil. Silica source taken from waste glass bottles was synthesized into silica gel by using the sol-gel method. Several types of silica gel were produced with three different weight ratios of waste glass and sodium hydroxide as an extractor. They were: 1:1, 1:2, and 1:3. The results indicated that synthesized silica possessed morphology innano-sizedranging from 85 nm to 459 nm. Adsorption performance was investigated by a batch system atthe temperature between 70°C and 110°C by a range of 10°C in an hour. Analysis of the adsorption characteristic showed that the highest efficiency value of FFA reduction of 91% was obtained by silica gel with ratiosof 1:1 (SG 1) and 1:3 (SG 3). Their performances were also followed by the decline of the refractive index and the density of waste cooking oil.
Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2005-03-02
This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soilmore » at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for former waste management units, legacy contamination source areas and distribution of contamination in soils, and environmental infrastructure (e.g., caps, monitoring systems, etc.) that is in place or planned in association with RAs. (3) Regulatory considerations and processes for management and disposition of waste soil upon generation, including regulatory drivers, best management practices (BMPs), waste determination protocols, waste acceptance criteria, and existing waste management procedures and BMPs for Y-12. This Soil Management Plan provides information to project planners to better coordinate their activities with other organizations and programs with a vested interest in soil disturbance activities at Y-12. The information allows project managers and maintenance personnel to evaluate and anticipate potential contaminant levels that may be present at a proposed soil disturbance site prior to commencement of activities and allows a more accurate assessment of potential waste management requirements.« less
Waste Reduction Model (WARM) Resources for Students
This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by students. The page includes a brief summary of uses of WARM for the audience and links to other resources.
Test Plan: WIPP bin-scale CH TRU waste tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molecke, M.A.
1990-08-01
This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientificmore » benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.« less
Ryan-Fogarty, Yvonne; Becker, Genevieve; Moles, Richard; O'Regan, Bernadette
2017-03-01
Food waste in hospitals is of major concern for two reasons: one, healthcare needs to move toward preventative and demand led models for sustainability and two, food system sustainability needs to seek preventative measures such as diet adaptation and waste prevention. The impact of breast-milk substitute use on health services are well established in literature in terms of healthcare implications, cost and resourcing, however as a food demand and waste management issue little has been published to date. This paper presents the use of a desk based backcasting method to analyse food waste prevention, mitigation and management options within the Irish Maternity Service. Best practice in healthcare provision and waste management regulations are used to frame solutions. Strategic problem orientation revealed that 61% of the volume of ready to use breast-milk substitutes purchased by maternity services remains unconsumed and ends up as waste. Thirteen viable strategies to prevent and manage this waste were identified. Significant opportunities exist to prevent waste and also decrease food demand leading to both positive health and environmental outcomes. Backcasting methods display great promise in delivering food waste management strategies in healthcare settings, especially where evidenced best practice policies exist to inform solution forming processes. In terms of food waste prevention and management, difficulties arise in distinguishing between demand reduction, waste prevention and waste reduction measures under the current Waste Management Hierarchy definitions. Ultimately demand reduction at source requires prioritisation, a strategy which is complimentary to health policy on infant feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.
An overview of the sustainability of solid waste management at military installations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borglin, S.; Shore, J.; Worden, H.
2009-08-15
Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presentedmore » indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.« less
40 CFR 62.14575 - What must I do if I close my CISWI unit and then restart it?
Code of Federal Regulations, 2011 CFR
2011-07-01
... FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration... necessary process changes and air pollution control devices operate as designed. Waste Management Plan ...
van der Wulp, Simon A; Dsikowitzky, Larissa; Hesse, Karl Jürgen; Schwarzbauer, Jan
2016-09-30
In order to take actions against the annual flooding in Jakarta, the construction of a Giant Seawall has been proposed in the Master Plan for National Capital Integrated Coastal Development. The seawall provides a combination of technical solutions against flooding, but these will heavily modify the mass transports in the near-coastal area of Jakarta Bay. This study presents numerical simulations of river flux of total nitrogen and N,N-diethyl-m-toluamide, a molecular tracer for municipal waste water for similar scenarios as described in the Master Plan. Model results demonstrate a strong accumulation of municipal wastes and nutrients in the planned reservoirs to extremely high levels which will result in drastic adverse eutrophication effects if the treatment of municipal waste water is not dealt with in the same priority as the construction of the Giant Seawall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sheng, Yuxing; Cao, Hongbin; Li, Yuping; Zhang, Yi
2010-07-15
The current study focused on the influences of various pretreatments, including alkaline, ultrasonic and thermal pretreatments on biological sulfate reduction with waste activated sludge (WAS) as sole electron donor. Our results showed that thermal and ultrasonic pretreatments increased the sulfate reduction percentage by 14.8% and 7.1%, respectively, compared with experiment with raw WAS, while alkaline pretreatment decreased the sulfate reduction percentage by 46%. By analyzing the WAS structure, particle size distribution, organic component, and enzyme activity after different pretreatments, we studied the effects of these pretreatments on WAS as well as on the mechanisms of how biological sulfate reduction was affected. The reduction of WAS and variation of WAS structure in the process of sulfate reduction were investigated. Our results showed that biosulfidogenesis was an efficient method of diminishing WAS, and various pretreatments could enhance the reduction efficiency of volatile solid in the WAS. 2010 Elsevier B.V. All rights reserved.
Managing and Transforming Waste Streams – A Tool for Communities
The Managing and Transforming Waste Streams Tool features 100 policy and program options communities can pursue to increase rates of recycling, composting, waste reduction, and materials reuse across waste stream generators.
Iodine retention during evaporative volume reduction
Godbee, H.W.; Cathers, G.I.; Blanco, R.E.
1975-11-18
An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less
Farmer, T D; Shaw, P J; Williams, I D
2015-05-01
European nations are compelled to reduce reliance on landfill as a destination for household waste, and should, in principle, achieve this goal with due recognition of the aims and principles of the waste hierarchy. Past research has predominantly focused on recycling, whilst interactions between changing waste destinies, causes and drivers of household waste management change, and potential consequences for the goal of the waste hierarchy are less well understood. This study analysed Local Authority Collected Waste (LACW) for England, at national, regional and sub-regional level, in terms of the destination of household waste to landfill, incineration and recycling. Information about waste partnerships, waste management infrastructure and collection systems was collected to help identify and explain changes in waste destinies. Since 1996, the proportion of waste landfilled in England has decreased, in tandem with increases in recycling and incineration. At the regional and sub-regional (Local Authority; LA) level, there have been large variations in the relative proportions of waste landfilled, incinerated and recycled or composted. Annual increases in the proportion of household waste incinerated were typically larger than increases in the proportion recycled. The observed changes took place in the context of legal and financial drivers, and the circumstances of individual LAs (e.g. landfill capacity) also explained the changes seen. Where observed, shifts from landfill towards incineration constitute an approach whereby waste management moves up the waste hierarchy as opposed to an attempt to reach the most preferred option(s); in terms of resource efficiency, this practice is sub-optimal. The requirement to supply incinerators with a feedstock over their lifespan reduces the benefits of developing of recycling and waste reduction, although access to incineration infrastructure permits short-term and marked decreases in the proportion of LACW landfilled. We conclude that there is a need for clearer national strategy and co-ordination to inform and guide policy, practice, planning and investment in infrastructure such that waste management can be better aligned with the principles of the circular economy and resource efficiency. If the ongoing stand-off between national political figures and the waste sector continues, England's waste policy remains destined for indecision. Copyright © 2015 Elsevier Ltd. All rights reserved.
Let's Recycle! Lesson Plans for Grades K-6 and 7-12.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Solid Waste Management Office.
The purpose of this guide is to inform students of solid waste problems and disposal options. Lesson plans deal specifically with waste and recycling and include interdisciplinary approaches to these problems. The manual is divided in two sections - K-6 and 7-12. Activities are designed to allow the teacher maximum flexibility, and plans may be…
Solid waste management complex site development plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greager, T.M.
1994-09-30
The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30more » years so that future facilities and infrastructure will be properly integrated.« less
Examples of Disposition Alternatives for WTP Solid Secondary Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, R.
The Hanford Waste Treatment and Immobilization Plant is planned to produce a variety of solid secondary wastes that will require disposal at the Integrated Disposal Facility on the Hanford Site. Solid secondary wastes include a variety of waste streams that are a result of waste treatment and processing activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DUNCAN, J.B.
2007-06-27
The Effluent Treatment Facility has developed a method to regenerate spent resin from the groundwater pump and treat intercepting chrome(VI) plumes (RPP-RPT-32207, Laboratory Study on Regeneration of Spent DOWEX 21K 16-20 Mesh Ion Exchange Resin). Subsequent laboratory studies have shown that the chrome(VI) may be reduced to chrome(III) by titrating with sodium metabisulfite to an oxidation reduction potential (ORP) of +280 mV at a pH of 2. This test plan describes the use of cyclic potentiodynamic polarization and linear polarization techniques to ascertain the electrochemical corrosion and pitting propensity of the 304 and 316L stainless steel in the acidified reducingmore » the solution that will be contained in either the secondary waste receiver tank or concentrate tank.« less
AAFES Shopping Center Environmental Assessment
2009-08-01
Plan H2S Hydrogen Sulfide SO2 Sulfur Dioxide HWMP Hazardous Waste Management Plan SMW Strategic Missile Wing ICBM Intercontinental Ballistic Missile...the no-action alternative. Land Management and Use. A waiver would be needed prior to construction to change the land use designation from Open...occur under the no-action alternative. Hazardous Materials and Waste Management . No changes to hazardous materials or waste streams would occur
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2011 CFR
2011-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Taghipour, Hassan; Amjad, Zahra; Jafarabadi, Mohamad Asghari; Gholampour, Akbar; Norouz, Prviz
2014-07-01
From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products' useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place. Copyright © 2014 Elsevier Ltd. All rights reserved.
Documentation for the Waste Reduction Model (WARM)
This page describes the WARM documentation files and provides links to all documentation files associated with EPA’s Waste Reduction Model (WARM). The page includes a brief summary of the chapters documenting the greenhouse gas emission and energy factors.
2014 Zero Waste Strategic Plan Executive Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wrons, Ralph J.
Sandia National Laboratories/New Mexico is located in Albuquerque, New Mexico, primarily on Department of Energy (DOE) permitted land on approximately 2,800 acres of Kirtland Air Force Base. There are approximately 5.5 million square feet of buildings, with a workforce of approximately 9200 personnel. Sandia National Laboratories Materials Sustainability and Pollution Prevention (MSP2) program adopted in 2008 an internal team goal for New Mexico site operations for Zero Waste to Landfill by 2025. Sandia solicited a consultant to assist in the development of a Zero Waste Strategic Plan. The Zero Waste Consultant Team selected is a partnership of SBM Management Servicesmore » and Gary Liss & Associates. The scope of this Plan is non-hazardous solid waste and covers the life cycle of material purchases to the use and final disposal of the items at the end of their life cycle.« less
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-14
The projected ability of the Tank Farm to support DWPF startup and continued operation has diminished somewhat since revision 1 of this Plan. The 13 month delay in DWPF startup, which actually helps the Tank Farm condition in the near term, was more than offset by the 9 month delay in ITP startup, the delay in the Evaporator startups and the reduction to Waste Removal funding. This Plan does, however, describe a viable operating strategy for the success of the HLW System and Mission, albeit with less contingency and operating flexibility than in the past. HLWM has focused resources frommore » within the division on five near term programs: The three evaporator restarts, DWPF melter heatup and completion of the ITP outage. The 1H Evaporator was restarted 12/28/93 after a 9 month shutdown for an extensive Conduct of Operations upgrade. The 2F and 2H Evaporators are scheduled to restart 3/94 and 4/94, respectively. The RHLWE startup remains 11/17/97.« less
Notice of Approval of the Renewable Fuel Standard Program Municipal Solid Waste Separation Plan
EPA's response documents and federal register notices on Fiberight's plan to separate recyclables from municipal solid waste intended for use as feedstock for renewable fuel production at its biorefinery in Blairstown, Iowa.
WASTE OPPORTUNITY ASSESSMENT: A PHOTOFINISHING FACILITY
A waste minimization opportunity assessment was performed which identified areas for waste reduction at a photofinishing facility. The study followed procedures in the EPA Waste Minimization Opportunity Assessment Manual. The report identifies potential options to achieve further...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, A.K.; Sikdar, S.K.
In this study, the authors introduced several modifications to the WAR (waste reduction) algorithm developed earlier. These modifications were made for systematically handling sensitivity analysis and various tasks of waste minimization. A design hierarchy was formulated to promote appropriate waste reduction tasks at designated levels of the hierarchy. A sensitivity coefficient was used to measure the relative impacts of process variables on the pollution index of a process. The use of the WAR algorithm was demonstrated by a fermentation process for making penicillin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Illinois Solid Waste Management Act, enacted in September 1986, established the State`s commitment to adress solid waste handling, based on a solid waste management hierarchy as folloew: (1) volume reduction at the source; (2) recycling and reuse; (3) combustion with energy recovery; (4) combustion for volume reduction; and (5) disposal in landfill facilities. Under this Act, the Illinois Environmental Protection Agency (IEPA) is required to publish an annual report `regarding the projected disposal capacity available for solid waste in sanitary landfills`. The information presented in this report reflects the reporting period January 1, 1994 - Decenber 31, 1994.