10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
The management of household hazardous waste in the United Kingdom.
Slack, R J; Gronow, J R; Voulvoulis, N
2009-01-01
Waste legislation in the United Kingdom (UK) implements European Union (EU) Directives and Regulations. However, the term used to refer to hazardous waste generated in household or municipal situations, household hazardous waste (HHW), does not occur in UK, or EU, legislation. The EU's Hazardous Waste Directive and European Waste Catalogue are the principal legislation influencing HHW, although the waste categories described are difficult to interpret. Other legislation also have impacts on HHW definition and disposal, some of which will alter current HHW disposal practices, leading to a variety of potential consequences. This paper discusses the issues affecting the management of HHW in the UK, including the apparent absence of a HHW-specific regulatory structure. Policy and regulatory measures that influence HHW management before disposal and after disposal are considered, with particular emphasis placed on disposal to landfill.
Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruhlke, J.M.; Galpin, F.L.
1991-12-31
The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to cleanmore » up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.« less
U.S. Nuclear Regulatory Commission natural analogue research program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovach, L.A.; Ott, W.R.
1995-09-01
This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.
Performance Test on Polymer Waste Form - 12137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Se Yup
Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it ismore » believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation testing and water immersion testing, no degradation was observed in the waste forms. Also, by measuring the compressive strength after these tests, it was confirmed that the structural integrity was still retained. A leach test was performed by using non radioactive cobalt, cesium and strontium. The leaching of cobalt, cesium and strontium from the polymer waste forms was very low. Also, the polymer waste forms were found to possess adequate fire resistance. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, Performance tests with full scale polymer waste forms are on-going in order to obtain qualification certificate by the regulatory institute in Korea. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...
DOE Office of Scientific and Technical Information (OSTI.GOV)
LEHMAN LL
2008-01-23
Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures aremore » different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose of this paper is to discuss implications of NUREG-1854 and to examine the feasibility and potential benefits of applying these provisions to waste determinations and supporting documents such as future performance assessments for tank residuals.« less
77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555... State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington...
78 FR 1155 - Low-Level Waste Disposal
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 [NRC-2011-0012] RIN 3150-AI92 Low-Level Waste... correcting a document appearing in the Federal Register on December 7, 2012 entitled, ``Low-Level Waste... and Submitting Comments, ``Regulatory Analysis for Proposed Revisions to Low-Level Waste Disposal...
77 FR 72997 - Low-Level Waste Disposal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
...-2011-0012] RIN 3150-AI92 Low-Level Waste Disposal AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Commission (NRC) is proposing to amend its regulations that govern low-level radioactive waste... development of criteria for waste acceptance based on the results of these analyses. These amendments will...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Heather; Flach, Greg; Smith, Frank
2015-01-27
The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods andmore » data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance assessments, and Nuclear Regulatory Commission reviews of commercial nuclear power plant (NPP) structures which are part of the overall US Energy Security program to extend the service life of NPPs. In addition, the CBP experimental programs have had a significant impact on the DOE complex by providing specific data unique to DOE sodium salt wastes at Hanford and SRS which are not readily available in the literature. Two recent experimental programs on cementitious phase characterization and on technetium (Tc) mobility have provided significant conclusions as follows: recent mineralogy characterization discussed in this paper illustrates that sodium salt waste form matrices are somewhat similar to but not the same as those found in blended cement matrices which to date have been used in long-term thermodynamic modeling and contaminant sequestration as a first approximation. Utilizing the CBP generated data in long-term performance predictions provides for a more defensible technical basis in performance evaluations. In addition, recent experimental studies related to technetium mobility indicate that conventional leaching protocols may not be conservative for direct disposal of Tc-containing waste forms in vadose zone environments. These results have the potential to influence the current Hanford supplemental waste treatment flow sheet and disposal conceptual design.« less
Waste Information Record Keeping System (WIRKS) in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogaru, D.M.; Raducea, D.; Dogaru, G.
2006-07-01
In Romania there is no common national WIRKS used by all waste management organizations. Each waste management organization uses an own WIRKS. The regulatory authority approves the WIRKS of each radioactive waste facility and checks the recordings during the process of authorization. This paper summarizes the regulatory requirements regarding to WIRKS, the types of the waste generators, facilities and their waste classification of radioactive waste. Also the paper summarizes the WIRKS applied to the most important waste generators. (authors)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...
Incentive regulation and performance measurement of the Portuguese solid waste management services.
Marques, Rui Cunha; Simões, Pedro
2009-03-01
Measuring the performance of solid waste management services usually uncovers very high potential for gains in efficiency and productivity. This circumstance occurs, naturally, due to the fact that these services are outside the market and because they are subjected to various market failures in their organizational framework. The aim of this study was to examine the Portuguese regulatory model and to measure the performance of the Portuguese solid waste management services in order to identify the major reforms carried out and their outcomes. As a first objective, the sunshine regulatory approach adopted in Portugal, in which performance comparison and its public discussion are the main tools, was investigated. The second objective was to compute the efficiency of the Portuguese solid waste management services by means of the non-parametric technique of data envelopment analysis (DEA), evaluating the Portuguese regulatory model and the existing market structure, as well as the influence of the operational environment on efficiency. The benchmarking frontier technique of DEA is particularly useful in the efficiency measurement of public utilities, in which knowledge of the production function is relatively scarce. Several DEA models were used and they all depicted significant inefficiency. The study also proved that efficiency did not depend on ownership (public or private) and that there was no difference in efficiency between the players, irrespective of whether they were regulated or not.
Modeling Potential Tephra Dispersal at Yucca Mountain, Nevada
NASA Astrophysics Data System (ADS)
Hooper, D.; Franklin, N.; Adams, N.; Basu, D.
2006-12-01
Quaternary basaltic volcanoes exist within 20 km [12 mi] of the potential radioactive waste repository at Yucca Mountain, Nevada, and future basaltic volcanism at the repository is considered a low-probability, potentially high-consequence event. If radioactive waste was entrained in the conduit of a future volcanic event, tephra and waste could be transported in the resulting eruption plume. During an eruption, basaltic tephra would be dispersed primarily according to the height of the eruption column, particle-size distribution, and structure of the winds aloft. Following an eruption, contaminated tephra-fall deposits would be affected by surface redistribution processes. The Center for Nuclear Waste Regulatory Analyses developed the computer code TEPHRA to calculate atmospheric dispersion and subsequent deposition of tephra and spent nuclear fuel from a potential eruption at Yucca Mountain and to help prepare the U.S. Nuclear Regulatory Commission to review a potential U.S. Department of Energy license application. The TEPHRA transport code uses the Suzuki model to simulate the thermo-fluid dynamics of atmospheric tephra dispersion. TEPHRA models the transport of airborne pyroclasts based on particle diffusion from an eruption column, horizontal diffusion of particles by atmospheric and plume turbulence, horizontal advection by atmospheric circulation, and particle settling by gravity. More recently, TEPHRA was modified to calculate potential tephra deposit distributions using stratified wind fields based on upper atmosphere data from the Nevada Test Site. Wind data are binned into 1-km [0.62-mi]-high intervals with coupled distributions of wind speed and direction produced for each interval. Using this stratified wind field and discretization with respect to height, TEPHRA calculates particle fall and lateral displacement for each interval. This implementation permits modeling of split wind fields. We use a parallel version of the code to calculate expected tephra and high-level waste accumulation at specified points on a two-dimensional spatial grid, thereby simulating a three- dimensional initial deposit. To assess subsequent tephra and high-level waste redistribution and resuspension, modeling grids were devised to measure deposition in eolian and fluvial source regions. The eolian grid covers an area of 2,600 km2 [1,000 mi2] and the fluvial grid encompasses 318 km2 [123 mi2] of the southernmost portion of the Fortymile Wash catchment basin. Because each realization is independent, distributions of tephra and high-level waste reflect anticipated variations in source-term and transport characteristics. This abstract is an independent product of the Center for Nuclear Waste Regulatory Analyses and does not necessarily reflect the view or regulatory position of the U.S. Nuclear Regulatory Commission.
10 CFR 1.19 - Other committees, boards, and panels.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...
10 CFR 1.19 - Other committees, boards, and panels.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...
10 CFR 1.19 - Other committees, boards, and panels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...
10 CFR 1.19 - Other committees, boards, and panels.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...
10 CFR 1.19 - Other committees, boards, and panels.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...
ORNL Remedial Action Program strategy (FY 1987-FY 1992)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trabalka, J.R.; Myrick, T.E.
1987-12-01
Over 40 years of Oak Ridge National Laboratory (ORNL) operations have produced a diverse legacy of contaminated inactive facilities, research areas, and waste disposal areas that are potential candidates for remedial action. The ORNL Remedial Action Program (RAP) represents a comprehensive effort to meet new regulatory requirements and ensure adequate protection of on-site workers, the public, and the environment by providing appropriate corrective measures at over 130 sites contaminated historically with radioactive, hazardous chemical, or mixed wastes. A structured path of program planning, site characterization, alternatives assessment, technology development, engineering design, continued site maintenance and surveillance, interim corrective action, andmore » eventual site closure or decommissioning is required to meet these objectives. This report documents the development of the Remedial Action Program, through its preliminary characterization, regulatory interface, and strategy development activities. It provides recommendations for a comprehensive, long-term strategy consistent with existing technical, institutional, and regulatory information, along with a six-year plan for achieving its initial objectives. 53 refs., 8 figs., 12 tabs.« less
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
This action presents the Agency's final regulatory determination required by section 3001(b)(3)(C) of the Resource Conservation and Recovery Act (RCRA) for 20 special wastes from the processing of ores and minerals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.
Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review andmore » assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.« less
EPA office of solid waste (OSW) report to Congress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derkics, D.
1996-12-31
An EPA Office of Solid Waste Report to Congress is presented in outline form. The following topics are discussed: special waste chronology; statutory hazardous waste exemption; 1988 report to Congress findings; 1993 regulatory determination; current (1996), regulatory status of fossil fuel combustion wastes; co-management study; Electric Power Research Institute (EPRI) activities; EPRI coal ash field study sites; oil ash total combustion; fossil fuel combustion; current EPA activities; and Federal Register Notice.
More and more power plant flyash is being recycled
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golden, D.; Sauber, R.
A number of viable options have been demonstrated for recycling flyash, one of America's fastest-growing waste products. Application opportunities range from structural fills to pavement bases, concrete, stabilizing backfills, and a metal-castings alloy. But two stumbling blocks still face utilities and marketers of flyash. They are: (1) Convincing potential end users that flyash is a beneficial raw material and not an inferior waste product. (2) Persuading regulatory agencies to draft legislation, that promote, if not mandate, its use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiemers, K.D.; Daling, P.; Meier, K.
1999-01-04
Regulated pesticides, herbicides, miticides, and fungicides were evaluated for their potential past and current use at the Hanford Site. The starting list of these compounds is based on regulatory analyte input lists discussed in the Regulatory DQO. Twelve pesticide, herbicide, miticide, and fungicide compounds are identified for analysis in the Hanford SST and DST waste in support of the Regulatory DQO. The compounds considered for additional analyses are non-detected, considered stable in the tank waste matrix, and of higher toxicity/carcinogenicity.
Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberger, Kent H.
2013-07-01
The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of Southmore » Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)« less
77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0183] Low-Level Radioactive Waste Management and Volume.... Nuclear Regulatory Commission (NRC or the Commission) is revising its 1981 Policy Statement on Low-Level..., the NRC staff issued SECY-10-0043, ``Blending of Low-Level Radioactive Waste'' (ADAMS Accession No...
23 CFR 650.115 - Design standards.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650.115 Design... a regulatory floodway. (b) Rest area buildings and related water supply and waste treatment... highway fills are to be used as dams to permanently impound water more than 50 acre-feet (6.17×104 cubic...
23 CFR 650.115 - Design standards.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650.115 Design... a regulatory floodway. (b) Rest area buildings and related water supply and waste treatment... highway fills are to be used as dams to permanently impound water more than 50 acre-feet (6.17×104 cubic...
23 CFR 650.115 - Design standards.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650.115 Design... a regulatory floodway. (b) Rest area buildings and related water supply and waste treatment... highway fills are to be used as dams to permanently impound water more than 50 acre-feet (6.17×104 cubic...
23 CFR 650.115 - Design standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650.115 Design... a regulatory floodway. (b) Rest area buildings and related water supply and waste treatment... highway fills are to be used as dams to permanently impound water more than 50 acre-feet (6.17×104 cubic...
23 CFR 650.115 - Design standards.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650.115 Design... a regulatory floodway. (b) Rest area buildings and related water supply and waste treatment... highway fills are to be used as dams to permanently impound water more than 50 acre-feet (6.17×104 cubic...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 [NRC-1999-0005] Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is amending...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The module explains the statutory and regulatory definitions of solid waste, including the standards governing the recycling and management of specific types of wastes. It lists and cites three use/reuse scenarios where the materials are not solid wastes and states the requirements for documentation. It lists examples of sham recycling and describes the conditions under which hazardous waste-derived products may be excluded from regulation. It cites the provisions for precious metal recovery and discusses potential regulatory developments affecting the definition of solid waste and hazardous waste recycling.
Regulatory Aspects Of Implementing Electrokinetic Remediation
A better understanding of the environmental impact of hazardous waste management practices has led to new environmental laws and a comprehensive regulatory program. This program is designed to address remediation of past waste management practices and to ensure that the hazardou...
THE USEPA'S LANDFILL RESEARCH AND REGULATORY STRATEGY
The priorities and initiatives of Environmental Protection Agency's landfill research and regulatory program over the next five years will be described. This will include municipal solid waste landfills as well as abandoned hazardous waste landfills.
Regarding municipals s...
Jaccoud, Cristiane; Magrini, Alessandra
2014-02-15
With a coastline of 8500 km, Brazil has 34 public ports and various private terminals, which together in 2012 handled 809 million tonnes of goods. The solid wastes produced (from port activities, ships and cargoes) pose a highly relevant problem, both due to the quantity and diversity, requiring a complex and integrated set of practices resulting from legal requirements and proactive initiatives. The main Brazilian law on solid waste management is recent (Law 12,305/2010) and the specific rules on solid waste in ports are badly in need of revision to meet the challenges caused by expansion of the sector and to harmonize them with the best global practices. This paper analyzes the current legal/regulatory framework for solid waste management at Brazilian ports and compares this structure with the practice in Europe. At the end, we suggest initiatives to improve the regulation of solid wastes at Brazilian ports. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL...-eligible wastes in permitted hazardous waste landfills. (a) The Regional Administrator with regulatory... hazardous waste landfills not located at the site from which the waste originated, without the wastes...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-3042, ``Standard Format and Content for a License Application for an Independent Spent Fuel Storage Installation or a Monitored Retrievable Storage Facility.'' This draft regulatory guide is proposed revision 2 of Regulatory Guide 3.50, which provides a format that the NRC considers acceptable for submitting the information for license applications to store spent nuclear fuel, high-level radioactive waste, and/or reactor-related Greater than Class C waste.
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
Unique Regulatory Approach for Licensing the Port Hope Remediation Project in Canada - 13315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, M.; Howard, D.; Elder, P.
2013-07-01
The Port Hope remediation project is a part of a larger initiative of the Canadian Federal Government the Port Hope Area Initiative (PHAI) which is based upon a community proposal. The Government of Canada, through Natural Resources Canada (NRCan) is investing $1.28 billion over 10 years to clean up historic low-level radioactive waste in the Port Hope Area and to provide long-term safe management of the low-level radioactive wastes in the Port Hope Area. These wastes arose from the activities of a former Federal Crown Corporation (Eldorado Nuclear) and its private sector predecessors. In Canada, historic waste are defined asmore » low-level radioactive waste that was managed in a manner no longer considered acceptable, but for which the original producer cannot reasonably be held responsible or no longer exists and for which the Federal Government has accepted responsibility. In Canada, under the current regulatory framework, the environmental remediation is not considered as a distinct phase of the nuclear cycle. The regulatory approach for dealing with existing sites contaminated with radioactive residues is defined on the basis of risk and application of existing regulations. A unique regulatory approach was taken by the Canadian Nuclear Safety Commission (CNSC) to address the various licensing issues and to set out the requirements for licensing of the Port Hope Project within the current regulatory framework. (authors)« less
Mixed waste management options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, C.B.; Kirner, N.P.
1991-12-31
Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatorymore » and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.« less
78 FR 45578 - Application For a License to Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... NUCLEAR REGULATORY COMMISSION Application For a License to Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... requestor or petitioner upon the applicant, the office of the General Counsel, U.S. Nuclear Regulatory...
78 FR 45579 - Request for a License to Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... NUCLEAR REGULATORY COMMISSION Request for a License to Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... requestor or petitioner upon the applicant, the office of the General Counsel, U.S. Nuclear Regulatory...
Final waste forms project: Performance criteria for phase I treatability studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III
1994-06-01
This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence themore » development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradford, A.H.; Esh, D.W.; Ridge, A.C.
2006-07-01
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. Under the NDAA, NRC performs consultative technical reviews of DOE's waste determinations and monitors DOE's disposal actions for such waste, but the NRC does not have regulatory authority over DOE's waste disposal activities. The NDAA provides the criteria that must be met to determine that waste is not HLW. The criteria require that the waste does not need to be disposedmore » of in a geologic repository, that highly radioactive radionuclides be removed to the maximum extent practical, and that the performance objectives of 10 CFR 61, Subpart C, be met. The performance objectives contain criteria for protection of the public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. This paper describes NRC's approach to implementing its responsibilities under the NDAA, as well as similar activities being performed for sites not covered by the NDAA. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneve, M.K.; Shandala, N.K.
2007-07-01
The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from ice-breakers, andmore » decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)« less
40 CFR 266.220 - What does a storage and treatment conditional exemption do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage... exemption exempts your low-level mixed waste from the regulatory definition of hazardous waste in 40 CFR 261...
40 CFR 266.305 - What does the transportation and disposal conditional exemption do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level... exemption exempts your waste from the regulatory definition of hazardous waste in 40 CFR 261.3 if your waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for the waste package and its components. (a) High-level-waste package design in general. (1) Packages... package's permanent written records. (c) Waste form criteria for HLW. High-level radioactive waste that is...
10 CFR 61.55 - Waste classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...
10 CFR 61.55 - Waste classification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...
10 CFR 61.55 - Waste classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...
Clinical trials bureaucracy: unintended consequences of well-intentioned policy.
Califf, Robert M
2006-01-01
As randomized controlled trials have become the 'gold standard' for medical research, a complex regulatory structure for the conduct of clinical trials has emerged. However, this structure has not been adequately assessed to ensure that regulations governing human subjects research actually produce the desired effects. Our purpose is to identify some of the major shortcomings in the current regulatory system of human clinical trials oversight, and to propose some potential solutions to these problems. We discuss the evolution of the current US regulatory environment and its application in the context of several widely-used drug therapies. Despite numerous randomized controlled trials, performed within a structure of extensive documentation and data collection, serious shortcomings in a number of pharmaceutical therapies were not detected until after the drugs were approved and widely adopted by clinicians. The current system of regulatory bureaucracy in clinical trials has led to an extremely expensive research paradigm that, in spite of complex systems of oversight and exhaustive data collection, cannot be shown to adequately ensure the integrity of the research process and the protection of human research subjects. Some parts of the system, including Research Ethics Review Boards, may not be well-suited to carrying out their core mission of overseeing research conduct, and other aspects of clinical trials regulatory structure, such as monitoring/auditing review and adverse event reporting, may constitute a waste of money and resources. Misdirected data collection and adverse events reporting divert valuable resources and hamper development of large, simple clinical trials powered to definitively answer important research questions. Careful scrutiny of the utility of current or proposed regulatory schemes is required to ensure the integrity of human subjects research and to enhance the effectiveness of research dollars.
1989 Report to Congress: Management of Hazardous Wastes from Educational Institutions
Report identifying the statutory and regulatory requirements, examining current hazardous waste management practices, and identifying possible ways for educational institutions to improve hazardous waste management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-05-21
The package, referred to as 'Strawman II', is a working document that represents EPA's latest staff position on an effective program to regulate wastes and other materials uniquely associated with noncoal mining. Strawman II does not represent a proposed rule. The package consists of two parts: (1) the Foreward, which describes the pre-rulemaking Strawman process, a background and overview of the mining waste program as envisioned in the package, and discussions of major issues concerning the program and its scope; and (2) the Regulatory Approach, presented as '40 CFR XXX, XXY, and XXZ' to reflect how the program might appearmore » in regulatory language. Discussions and amplifications of specific points are also interspersed throughout the Regulatory Approach. EPA encourages all interested parties to convey their views on any and all aspects of the program concept.« less
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter
2016-08-01
An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the futuremore » of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.« less
To provide RCRA hazardous waste permitting regulatory information and resources permitted facilities, hazardous waste generators, and permit writers. To provide the public with information on how they can be involved in the permitting process.
Paschoa, A S
1998-03-01
The immense volume of naturally occurring radioactive materials (NORM) wastes produced annually by extracting industries throughout the world deserves to come to the attention of international and national environmental protection agencies and regulatory bodies. Although a great deal of work has been done in the fields of radiation protection and remedial actions concerning uranium and other mines, the need to dispose of diffuse NORM wastes will have environmental and regulatory implications that thus far are not fully appreciated. NORM wastes constitute, by and large, unwanted byproducts of industrial activities as diverse as thorium and uranium milling, niobium, tin and gold mining extraction, water treatment, and the production of oil, gas, phosphate fertilizer, coal fire and aluminum. The volumes of NORM wastes produced annually could reach levels so high that the existing low level radioactive waste (LLRW) facilities would be readily occupied by NORM if controlled disposal procedures were not adopted. On the other hand, NORM cannot just be ignored as being below radiological concern (BRC) or lower than exempt concentration levels (ECLs), because sometimes NORM concentrations reach levels as high as 1 x 10(3) kBq/kg for 226Ra, and not much less for 228Ra. Unfortunately, thus far there is not enough information available concerning NORM wastes in key industries, though the international scientific community has been concerned, for a long time now, with technologically enhanced natural radiation exposures (TENRE). This article is written with the intention of examining, to the extent possible, the potential environmental and regulatory implications of NORM wastes being produced in selected industries.
Graham, Jay P; Nachman, Keeve E
2010-12-01
Confined food-animal operations in the United States produce more than 40 times the amount of waste than human biosolids generated from US wastewater treatment plants. Unlike biosolids, which must meet regulatory standards for pathogen levels, vector attraction reduction and metal content, no treatment is required of waste from animal agriculture. This omission is of concern based on dramatic changes in livestock production over the past 50 years, which have resulted in large increases in animal waste and a high degree of geographic concentration of waste associated with the regional growth of industrial food-animal production. Regulatory measures have not kept pace with these changes. The purpose of this paper is to: 1) review trends that affect food-animal waste production in the United States, 2) assess risks associated with food-animal wastes, 3) contrast food-animal waste management practices to management practices for biosolids and 4) make recommendations based on existing and potential policy options to improve management of food-animal waste.
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to enable trainees to identify regulatory organizations and oversight groups and monitor and provide guidance in the implementation of the requirements of…
Radioactive Waste Management in Non-Nuclear Countries - 13070
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubelka, Dragan; Trifunovic, Dejan
2013-07-01
This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services,more » comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, N.
Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generationmore » of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.« less
DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan
Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul
This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardousmore » constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.« less
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
78 FR 53793 - Request To Amend a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to... (Class A total of 5,500 ``Foreign Suppliers.'' No IW022/04 radioactive tons of low- other changes to the existing 11005700 waste). level waste). license which authorizes the import of low-level waste for...
40 CFR 272.1851 - Oklahoma State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oklahoma § 272.1851...)(1)(i) of this section are incorporated by reference as part of the hazardous waste management... Approved Oklahoma Statutory and Regulatory Requirements Applicable to the Hazardous Waste Management...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
1982-12-13
In response to Executive Order 12291 and the President's Task Force on Regulatory Relief, the Environmental Protection Agency is reviewing and reassessing the hazardous waste regulations developed under the Resource Conservation and Recovery Act (RCRA). A variety of activities are underway that will simplify procedures and reduce paperwork, modify existing regulations to make them more workable and cost effective, and control new wastes and new processes. The purpose of this notice is to inform the public of these activities and invite comments on the general approaches being taken.
NASA Astrophysics Data System (ADS)
Massmann, Joel; Freeze, R. Allan
1987-02-01
The risk-cost-benefit analysis developed in the companion paper (J. Massmann and R. A. Freeze, this issue) is here applied to (1) an assessment of the relative worth of containment-construction activities, site-exploration activities, and monitoring activities as components of a design strategy for the owner/operator of a waste management facility; (2) an assessment of alternative policy options available to a regulatory agency; and (3) a case history. Sensitivity analyses designed to address the first issue show that the allocation of resources by the owner/operator is sensitive to the stochastic parameters used to describe the hydraulic conductivity field at a site. For the cases analyzed, the installation of a dense monitoring network is of less value to the owner/operator than a more conservative containment design. Sensitivity analyses designed to address the second issue suggest that from a regulatory perspective, design standards should be more effective than performance standards in reducing risk, and design specifications on the containment structure should be more effective than those on the monitoring network. Performance bonds posted before construction have a greater potential to influence design than prospective penalties to be imposed at the time of failure. Siting on low-conductivity deposits is a more effective method of risk reduction than any form of regulatory influence. Results of the case history indicate that the methodology can be successfully applied at field sites.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...The Environmental Protection Agency (EPA or Agency) is proposing to regulate for the first time, coal combustion residuals (CCRs) under the Resource Conservation and Recovery Act (RCRA) to address the risks from the disposal of CCRs generated from the combustion of coal at electric utilities and independent power producers. However, the Agency is considering two options in this proposal and, thus, is proposing two alternative regulations. Under the first proposal, EPA would reverse its August 1993 and May 2000 Bevill Regulatory Determinations regarding coal combustion residuals (CCRs) and list these residuals as special wastes subject to regulation under subtitle C of RCRA, when they are destined for disposal in landfills or surface impoundments. Under the second proposal, EPA would leave the Bevill determination in place and regulate disposal of such materials under subtitle D of RCRA by issuing national minimum criteria. Under both alternatives EPA is proposing to establish dam safety requirements to address the structural integrity of surface impoundments to prevent catastrophic releases. EPA is not proposing to change the May 2000 Regulatory Determination for beneficially used CCRs, which are currently exempt from the hazardous waste regulations under Section 3001(b)(3)(A) of RCRA. However, EPA is clarifying this determination and seeking comment on potential refinements for certain beneficial uses. EPA is also not proposing to address the placement of CCRs in mines, or non-minefill uses of CCRs at coal mine sites in this action.
Medical Waste Management Implications for Small Medical Facilities.
ERIC Educational Resources Information Center
Byrns, George; Burke, Thomas
1992-01-01
Discusses the implications of the Medical Waste Management Act of 1988 for small medical facilities, public health, and the environment. Reviews health and environmental risks associated with medical waste, current regulatory approaches, and classifications. Concludes that the health risk of medical wastes has been overestimated; makes…
40 CFR 256.23 - Requirements for closing or upgrading open dumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...
40 CFR 256.23 - Requirements for closing or upgrading open dumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...
[Problems of safety regulation under radioactive waste management in Russia].
Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I
2012-01-01
Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated.
Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, W.M.
1995-09-01
A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research relatedmore » to geologic disposal of HLW.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.
The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...
Eggimann, Sven; Truffer, Bernhard; Maurer, Max
2016-10-15
To determine the optimal connection rate (CR) for regional waste water treatment is a challenge that has recently gained the attention of academia and professional circles throughout the world. We contribute to this debate by proposing a framework for a total cost assessment of sanitation infrastructures in a given region for the whole range of possible CRs. The total costs comprise the treatment and transportation costs of centralised and on-site waste water management systems relative to specific CRs. We can then identify optimal CRs that either deliver waste water services at the lowest overall regional cost, or alternatively, CRs that result from households freely choosing whether they want to connect or not. We apply the framework to a Swiss region, derive a typology for regional cost curves and discuss whether and by how much the empirically observed CRs differ from the two optimal ones. Both optimal CRs may be reached by introducing specific regulatory incentive structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
78 FR 53793 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to... total of 5,500 ``Ultimate Foreign XW012/04 radioactive tons of low- Consignee(s).'' No other 11005699 waste). level waste). changes to the existing license which authorizes the export of non-conforming...
10 CFR 20.2005 - Disposal of specific wastes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it were...
10 CFR 20.2005 - Disposal of specific wastes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it were...
76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
...-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Reopening of comment... for public comment a draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management that updates the 1981 Policy Statement on Low-Level Waste Volume Reduction. The revised Policy...
Cementitious Barriers Partnership - FY2015 End-Year Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, H. H.; Flach, G. P.; Langton, C. A.
2015-09-17
The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis)more » for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.« less
Florida state information handbook: formerly utilized sites remedial action program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This volume is one of a series produced under contract with DOE, Office of Nuclear Waste Management, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the federal and state levels, the pertinent programs they administer, each affected state legislature, and current federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Florida. It contains a description ofmore » the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.« less
Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2005-03-02
This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soilmore » at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for former waste management units, legacy contamination source areas and distribution of contamination in soils, and environmental infrastructure (e.g., caps, monitoring systems, etc.) that is in place or planned in association with RAs. (3) Regulatory considerations and processes for management and disposition of waste soil upon generation, including regulatory drivers, best management practices (BMPs), waste determination protocols, waste acceptance criteria, and existing waste management procedures and BMPs for Y-12. This Soil Management Plan provides information to project planners to better coordinate their activities with other organizations and programs with a vested interest in soil disturbance activities at Y-12. The information allows project managers and maintenance personnel to evaluate and anticipate potential contaminant levels that may be present at a proposed soil disturbance site prior to commencement of activities and allows a more accurate assessment of potential waste management requirements.« less
An overview of waste crime, its characteristics, and the vulnerability of the EU waste sector.
Baird, J; Curry, R; Cruz, P
2014-02-01
While waste is increasingly viewed as a resource to be globally traded, increased regulatory control on waste across Europe has created the conditions where waste crime now operates alongside a legitimate waste sector. Waste crime,is an environmental crime and a form of white-collar crime, which exploits the physical characteristics of waste, the complexity of the collection and downstream infrastructure, and the market opportunities for profit. This paper highlights some of the factors which make the waste sector vulnerable to waste crime. These factors include new legislation and its weak regulatory enforcement, the economics of waste treatment, where legal and safe treatment of waste can be more expensive than illegal operations, the complexity of the waste sector and the different actors who can have some involvement, directly or indirectly, in the movement of illegal wastes, and finally that waste can be hidden or disguised and creates an opportunity for illegal businesses to operate alongside legitimate waste operators. The study also considers waste crime from the perspective of particular waste streams that are often associated with illegal shipment or through illegal treatment and disposal. For each, the nature of the crime which occurs is shown to differ, but for each, vulnerabilities to waste crime are evident. The paper also describes some approaches which can be adopted by regulators and those involved in developing new legislation for identifying where opportunities for waste crime occurs and how to prevent it.
Waste management technology development and demonstration programs at Brookhaven National Laboratory
NASA Technical Reports Server (NTRS)
Kalb, Paul D.; Colombo, Peter
1991-01-01
Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
Regulatory decision with EPA/NRC/DOE/State Session (Panel)
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Donnell, E.
1995-12-31
This panel will cover the Nuclear Regulatory Commission`s (NRC) proposed radiation limits in the Branch Technical Position on Low-Level Radioactive Waste Performance Assessment and the Environmental Protection Agency`s (EPA) draft regulation in Part 193. Representatives from NRC and EPA will discuss the inconsistencies in these two regulations. DOE and state representatives will discuss their perspective on how these regulations will affect low-level radioactive waste performance assessments.
77 FR 20077 - Request for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR..., 2012, radioactive waste tons of or disposal by a February 16, 2012, XW019, in the form of ash radioactive waste licensed facility 11005986. and non-conforming as contaminated in Mexico. material. ash and...
77 FR 52073 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to..., 2012, July 31, 2012, XW012/ radioactive total of 5,500 materials and/or 02, 11005699. waste including tons or about radioactive various 1,000 tons waste that is materials (e.g., metal, 4,000 attributed to...
78 FR 26812 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to...; XW012/03; 11005699. A radioactive total of 5,500 Energy of Canada waste). tons of low- Limited facilities as level waste). ``Ultimate Foreign Consignee(s).'' No other changes to the existing license which...
78 FR 26813 - Request To Amend a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to..., 2013, April 23, material (Class to a maximum the licensee name 2013, IW022/03, 11005700. A radioactive total of 5,500 from ``Perma-Fix waste). tons of low- Environmental level waste). Services, Inc.'' to...
WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 2. APPENDICES
The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...
The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, P.J.; Vance, J.N.
1990-08-01
Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less
Waste Information Management System v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bustamante, David G.; Schade, A. Carl
WIMS is a functional interface to an Oracle database for managing the required regulatory information about the handling of Hazardous Waste. WIMS does not have a component to track Radiological Waste data. And it does not have the ability to manage sensitive information.
Extending Safety Culture Development through Communication - 12366
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneve, M.K.; Kiselev, M.; Shandala, N.K.
2012-07-01
The Norwegian Radiation Protection Authority has been implementing a regulatory support program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective is the enhancement of safety culture. The project outputs have included appropriate regulatory threat assessments, to determine the hazardous activities which are most in need of enhanced regulatory supervision; and development of the norms, standards and regulatory procedures, necessary to address the often abnormal conditions at nuclear legacy sites. Project outputs have been prepared and subsequently confirmed asmore » official regulatory documents of the Russian Federation. The continuing program of work focuses on practical application of the enhanced regulatory framework as applied to legacy sites, including safe management of radioactive wastes arising in the process of site remediation. One of the lessons learnt from this practical application is the importance of effective communication at all levels: - between managers and shop workers; - between different operators - e.g. waste producers and waste disposal organisations; - between operators and regulators; - between nuclear safety regulators, radiation protection regulators and other pollution and safety regulators; - between scientists, policy makers and wider stakeholders; and - between all of those mentioned above. A key message from this work is that it is not just an issue of risk communication; rather all aspects of communication can contribute to safety culture enhancement to support effective and efficient risk management, including the role of regulatory supervision. (authors)« less
Geochemical signature of NORM waste in Brazilian oil and gas industry.
De-Paula-Costa, G T; Guerrante, I C; Costa-de-Moura, J; Amorim, F C
2018-09-01
The Brazilian Nuclear Energy Agency (CNEN) is responsible for any radioactive waste storage and disposal in the country. The storage of radioactive waste is carried out in the facilities under CNEN regulation and its disposal is operated, managed and controlled by the CNEN. Oil NORM (Naturally Occurring Radioactive Materials) in this article refers to waste coming from oil exploitation. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of a regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is the modeling of radioisotopes normally present in oil pipe contamination such as 228 Ac, 214 Bi and 214 Pb analyzed by gamma spectrometry. The specific activities of elements from different decay series are plotted in a scatter diagram. This method was successfully tested with gamma spectrometry analyses of oil sludge NORM samples from four different sources obtained from Petrobras reports for the Campos Basin/Brazil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Test plan for formulation and evaluation of grouted waste forms with shine process wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, W. L.; Jerden, J. L.
2015-09-01
The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...
Code of Federal Regulations, 2014 CFR
2014-01-01
... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...
ERIC Educational Resources Information Center
Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.
In response to a request from the Wisconsin Department of Natural Resources, Region V of the United States Environmental Protection Agency (EPA) sponsored a workshop on waste management in universities and colleges. It consisted of four sessions: (1) managing general university waste and regulatory concerns; (2) chemical waste management; (3)…
License restrictions at Barnwell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Autry, V.R.
1991-12-31
The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolshov, L.A.; Linge, I.I.; Kovalchuk, V.D.
This year the Federal Law 'On Radioactive Waste management' was adopted in the Russian Federation. The law significantly changes the existing radioactive waste management regulatory system and assigns a lot of new tasks in order to implement new principles and overcome inevitable respective difficulties. Nuclear Safety Institute was largely involved in the process of the development of the law as well as its further co-ordination among the stakeholders, during which some important initial provisions were excluded. In the paper special features of the Russian safety regulation system for radioactive waste management are analyzed. Most significant requirements adopted by the lawmore » as well as tasks and expected difficulties related to its implementation are discussed. (authors)« less
Medical waste management plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Todd W.; VanderNoot, Victoria A.
2004-12-01
This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huan Lin; Tai-Wei Lan; Min-Tsang Chang
2013-07-01
The 'Nuclear Materials and Radioactive Waste Management Act' (NMRWMA) in Taiwan has been in use since 2002. To promote further administrative efficiency and improve regulatory capacity, an amendment of the act has been initiated by the Atomic Energy Council (AEC). It is now being reviewed by outside experts and related communities so as to include the best understanding of risk management factors. For the future decommissioning challenges of nuclear facilities, the act is also being amended to comply with the regulatory requirements of the decommissioning mandates. Currently the Taiwan government is conducting government reorganization, and AEC will be reformed butmore » will remain as an independent regulatory body. AEC will then be capable of improving the regulatory capacity for facilitating licensing and inspection, ensuring operational safety, environmental protection and public involvement, and giving a more flexible administrative discretion, such as expending the margin of penalty. The amendment is also required to provide a formal legal basis for the Nuclear Backend Fund, and to mandate the waste producers to take responsibility for any final debt repayment. In addition, this amendment promotes measures to prevent accidents or emergencies concerning radioactive materials and facilities and procedures to reduce the impact and effect of any unexpected events. Furthermore, this amendment intends to implement the concept of information transparency and public participation so as to meet the public needs. Finally, radioactive waste final disposal tasks have to be completed by waste producers under the supervision of the AEC. (authors)« less
SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHILLIPS, S.J.
2004-02-03
A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less
40 CFR 240.204-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... acceptable levels. (b) In the event of an accidental spill, the local regulatory agency should be notified...
Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
MULKEY, C.H.
1999-07-02
This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for themore » Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements.« less
77 FR 73054 - Application for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... NUCLEAR REGULATORY COMMISSION Application for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear..., October 25, 2012, XW020, radioactive 1178 pounds disposal by the 11006061. waste in the (approximately...
76 FR 56489 - Request for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR... quantity End use country Duratek Services, Inc., August Class A radioactive Radionuclide Non-conforming Canada. 17, 2011, August 18, 2011, waste in the form reallocation: materials XW010/02, 11005620. of...
78 FR 9747 - Request To Amend A License To Import; Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... NUCLEAR REGULATORY COMMISSION Request To Amend A License To Import; Radioactive Waste Pursuant to... Country from application no.; docket no. Diversified Scientific Class A radioactive Up to 378,000 Volume reduction...... Canada Services, Inc.; January 10, mixed waste kilograms. Amend to: (1) add four 2013...
75 FR 74104 - Request for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear..., August 27, Radioactive waste Not to exceed Return to two Germany. 2010, November 3, 2010, XW018...
75 FR 74107 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... EnergySolutions, August 27, Radioactive waste 1,000 tons Incineration for Germany. 2010, November 3, 2010...
77 FR 20078 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... docket No. Perma-Fix Northwest Richland, Radioactive waste Up to 500 tons of Thermal Mexico. Inc...
75 FR 27842 - Request for a License to Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... NUCLEAR REGULATORY COMMISSION Request for a License to Export Radioactive Waste Pursuant to 10 CFR... Duratek Services, Inc. (a Class A Approximately 680 Storage or Canada. subsidiary of radioactive pounds (53 cubic disposal by the EnergySolutions), April 19, waste in the feet) of dry original 2010, April...
75 FR 68840 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... Oregon Specialty Metals......... Radioactive Waste 186,000 kilograms Return of U.S. Canada August 30...
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... tons per day of municipal solid waste (MSW). This action corrects an error in the regulatory language... per day of municipal solid waste (MSW), and for which construction, reconstruction, or modification... Municipal Waste Combustor (LMWC) Emissions From Existing Facilities; Correction AGENCY: Environmental...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
76 FR 61402 - Draft Nuclear Regulatory Commission Fiscal Year 2012-2016 Strategic Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
... waste. The draft Strategic Plan also describes the agency's Organizational Excellence Objectives of Openness, Regulatory Effectiveness, and Operational Excellence, which characterize the manner in which the...
Legislative and Regulatory Timeline for Fossil Fuel Combustion Wastes
This timeline walks through the history of fossil fuel combustion waste regulation since 1976 and includes information such as regulations, proposals, notices, amendments, reports and meetings and site visits conducted.
An Innovative Partnership Approach for Environmental Management and Pollution Prevention.
ERIC Educational Resources Information Center
Erten-Unal, Mujde; Aydlett, Guy M.
1997-01-01
A partnership between a university and a government regulatory agency sought to assist industries with pollution prevention and waste management. Economic incentives were developed to promote waste minimization. (SK)
Kappen, P; Ferrando-Miguel, G; Reichman, S M; Innes, L; Welter, E; Pigram, P J
2017-05-05
The surface chemistry and bulk chemical speciation of solid industrial wastes containing 8wt-% antimony (Sb) were investigated using synchrotron X-ray Absorption Near Edge Structure (XANES) and Time-of-Flight Ion Secondary Mass Spectrometry (ToF-SIMS). Leaching experiments were conducted in order to better understand the behavior of Sb in waste streams and to inform regulatory management of antimony-containing wastes. The experiments also demonstrate how a combination of XANES and ToF-SIMS adds value to the field of waste investigations. Leaching treatments (acid and base) were performed at a synchrotron over 24h time periods. Surface analyses of the wastes before leaching showed the presence of Sb associated with S and O. Bulk analyses revealed Sb to be present, primarily, as trivalent sulfide species. Both acid and base leaching did not change the antimony speciation on the solid. Leaching transferred about 1% of the total Sb into solution where Sb was found to be present as Sb(V). XANES data showed similarities between leachate and FeSbO 4 . During base leaching, the Sb content in solution gradually increased over time, and potential desorption mechanisms are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghisolfi, Verônica; Diniz Chaves, Gisele de Lorena; Ribeiro Siman, Renato; Xavier, Lúcia Helena
2017-02-01
The structure of reverse logistics for waste electrical and electronic equipment (WEEE) is essential to minimize the impacts of their improper disposal. In this context, the Brazilian Solid Waste Policy (BSWP) was a regulatory milestone in Brazil, submitting WEEE to the mandatory implementation of reverse logistics systems, involving the integration of waste pickers on the shared responsibility for the life cycle of products. This article aims to measure the impact of such legal incentives and the bargaining power obtained by the volume of collected waste on the effective formalization of waste pickers. The proposed model evaluates the sustainability of supply chains in terms of the use of raw materials due to disposal fees, collection, recycling and return of some materials from desktops and laptops using system dynamics methodology. The results show that even in the absence of bargaining power, the formalization of waste pickers occurs due to legal incentives. It is important to ensure the waste pickers cooperatives access to a minimum amount, which requires a level of protection against unfair competition with companies. Regarding the optimal level of environmental policies, even though the formalization time is long, it is still not enough to guarantee the formalization of waste picker cooperatives, which is dependent on their bargaining power. Steel is the material with the largest decrease in acquisition rate of raw material. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiva, Isabel; Trindade, Romao B.
Council Directive 2011/70/EURATOM of 19 July 2011, establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste will enter in force August 2013 in all EU Member States. Portugal has already started preparing its legislative framework to accommodate the new legislative piece. However, the first report of Portugal to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management of the IAEA, in Vienna, 2012, has shown that Portugal still has many steps to overcome to establish a successful and effective basic regulatory framework. The existencemore » of many competent authorities related to the radiological protection area and a newly independent commission that is still looking on how to fulfill its regulator role in other areas such as the radioactive waste management makes quite challenging the full application of the new directive as well as compliance that Portugal will have to show in the next Joint Convention review meeting in order to meet the obligations of the Convention. In this paper, the reality of the regulatory Portuguese framework on radiological protection, nuclear safety and radioactive waste management is presented. Discussion of the future impact of the new legislation and its consequences such as the need to setup the national program on radioactive waste management is critical discussed. (authors)« less
Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.
Audio Script for Information Center Transportation Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
NA
2003-05-26
Can waste be transported safely to Yucca Mountain? Both the Department of Energy and the Nuclear Regulatory Commission have found that spent nuclear fuel can be shipped safely and securely. In fact, over the last 30 years there have been more than 2,700 shipments of spent nuclear fuel traveling more than 1.7 million miles, and there has never been a release of radioactive material harmful to the public or the environment--not one. Spent nuclear fuel is a solid material--it cannot leak, burn, or explode. The shipping containers, called casks, are the most robust in the transportation industry and must bemore » certified by the Nuclear Regulatory Commission. They are designed to protect public health and safety under normal and severe accident conditions. Typically, every ton of shipped spent fuel is contained within approximately 4 tons of protective shielding and structural materials. How many shipments would be made to Yucca Mountain? DOE would use mainly trains and some legal-weight trucks to move spent nuclear fuel and high-level radioactive waste to Yucca Mountain. Once the repository opens, DOE estimates and average of 130 rail shipments and 45 truck shipments per year for 24 years.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-15
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0183] Request for Comments on the Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Request for public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is revising its...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for and identification of licensing and regulatory actions requiring environmental impact statements. 51.20 Section 51.20 Energy NUCLEAR REGULATORY... radioactive waste in a monitored retrievable storage installation (MRS). (10) Issuance of a license for a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... Regulatory Commission and the Bureau of Land Management AGENCY: Nuclear Regulatory Commission. ACTION: Notice... Review Branch, Division of Waste Management and Environmental Protection, Office of Federal and State... the Bureau of Land Management, United States Department of the Interior (BLM) entered into a...
78 FR 9746 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to... radioactive disposition. Amend which was imported mixed waste) in to: 1) add four from Canada under NRC a....; docket No. country Diversified Scientific Class A radioactive Up to a maximum Return of non- Canada...
76 FR 53980 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR... Hitachi Nuclear Energy, LLC. Radioactive waste Up to 210 Cobalt- Recycling, China August 1, 2011, August 5, consisting of 60 sealed forensic testing 2011, IW030. used Cobalt-60 sources. or storage and radioactive...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... DOE to carry out a high-level radioactive waste management demonstration project at the Western New... solidification of high-level radioactive waste for disposal in a Federal repository for permanent disposal. The... and other facilities where the solidified high-level radioactive waste was stored, the facilities used...
NASA Astrophysics Data System (ADS)
Massmann, Joel; Freeze, R. Allan
1987-02-01
This paper puts in place a risk-cost-benefit analysis for waste management facilities that explicitly recognizes the adversarial relationship that exists in a regulated market economy between the owner/operator of a waste management facility and the government regulatory agency under whose terms the facility must be licensed. The risk-cost-benefit analysis is set up from the perspective of the owner/operator. It can be used directly by the owner/operator to assess alternative design strategies. It can also be used by the regulatory agency to assess alternative regulatory policy, but only in an indirect manner, by examining the response of an owner/operator to the stimuli of various policies. The objective function is couched in terms of a discounted stream of benefits, costs, and risks over an engineering time horizon. Benefits are in the form of revenues for services provided; costs are those of construction and operation of the facility. Risk is defined as the cost associated with the probability of failure, with failure defined as the occurrence of a groundwater contamination event that violates the licensing requirements established for the facility. Failure requires a breach of the containment structure and contaminant migration through the hydrogeological environment to a compliance surface. The probability of failure can be estimated on the basis of reliability theory for the breach of containment and with a Monte-Carlo finite-element simulation for the advective contaminant transport. In the hydrogeological environment the hydraulic conductivity values are defined stochastically. The probability of failure is reduced by the presence of a monitoring network operated by the owner/operator and located between the source and the regulatory compliance surface. The level of reduction in the probability of failure depends on the probability of detection of the monitoring network, which can be calculated from the stochastic contaminant transport simulations. While the framework is quite general, the development in this paper is specifically suited for a landfill in which the primary design feature is one or more synthetic liners in parallel. Contamination is brought about by the release of a single, inorganic nonradioactive species into a saturated, high-permeability, advective, steady state horizontal flow system which can be analyzed with a two-dimensional analysis. It is possible to carry out sensitivity analyses for a wide variety of influences on this system, including landfill size, liner design, hydrogeological parameters, amount of exploration, extent of monitoring network, nature of remedial schemes, economic factors, and regulatory policy.
Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde
2013-10-01
Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.
Inspection Checklist Tool for Facilities Generating and Recycling Hazardous Secondary Materials
Series of checklists that assist regulatory authorities with monitoring compliance of the definition of solid waste regulations in 40 CFR section 261.2 and the 2008 definition of solid waste exclusions.
Feasibility study for a transportation operations system cask maintenance facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rennich, M.J.; Medley, L.G.; Attaway, C.R.
The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the caskmore » systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.« less
NASA Technical Reports Server (NTRS)
1977-01-01
The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.
Hazardous and toxic waste management in Botswana: practices and challenges.
Mmereki, Daniel; Li, Baizhan; Meng, Liu
2014-12-01
Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.
Meeting Regulatory Requirements
Domestic wastewater is made up of sanitary wastes from homes, commercial businesses and industry, and includes beneficial, commensal and pathogenic microorganisms. The extent to which a given strain of pathogen may be found within a waste treatment system is largely dependant up...
Regulatory control of low level radioactive waste in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T.D.S.; Chiou, Syh-Tsong
1996-12-31
The commercial operation of Chinshan Nuclear Power Plant (NPP) Unit One marked the beginning of Taiwan`s nuclear power program. There are now three NPPs, each consisting of two units, in operation. This represents a generating capacity of 5,144 MWe. Nuclear power plants are sharing some 30 percent of electricity supplies in Taiwan. As far as low level radwaste (LLRW) is concerned, Taiwan Power Company (TPC) is the principal producer, contributing more than 90 percent of total volume of waste arising in Taiwan. Small producers, other than nuclear industries, medicine, research institutes, and universities, are responsible for the remaining 10 percent.more » In the paper, the LLRW management policy, organizational scheme, regulatory control over waste treatment, storage, transportation and disposal are addressed. Added to the paper in the last is how this country is managing its Naturally Occurring Radioactive Materials (NORM) waste.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... Monitoring Activities for F-Area Tank Farm at the Savannah River Site, Revision 0 AGENCY: Nuclear Regulatory... carrying out its responsibilities for monitoring DOE's waste disposal activities at the F-Area Tank Farm at... the availability of ``U.S. Nuclear Regulatory Commission Plan for Monitoring Disposal Actions Taken by...
Code of Federal Regulations, 2011 CFR
2011-04-01
... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production facilities. 2.400 Section 2.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... purposes of deciding whether natural gas may be considered as waste as the primary energy source pursuant...
Based on the requirements presented in 40 CFR 194.24(c )(2) to (4) and 194.22(a)(1) and using experience gained as part of the CH waste characterization program, EPA examined the DOE's RH Waste Characterization Proposal as presented in the WCPIP.
40 CFR 60.3078 - What definitions must I know?
Code of Federal Regulations, 2014 CFR
2014-07-01
... connected by road to a Class I municipal solid waste landfill, as defined by Alaska regulatory code 18 AAC 60.300(c) or, if connected by road, is located more than 50 miles from a Class I municipal solid... solid waste landfill is a landfill that is not connected by road to a Class I municipal solid waste...
40 CFR 60.3078 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
... connected by road to a Class I municipal solid waste landfill, as defined by Alaska regulatory code 18 AAC 60.300(c) or, if connected by road, is located more than 50 miles from a Class I municipal solid... solid waste landfill is a landfill that is not connected by road to a Class I municipal solid waste...
40 CFR 60.3078 - What definitions must I know?
Code of Federal Regulations, 2013 CFR
2013-07-01
... connected by road to a Class I municipal solid waste landfill, as defined by Alaska regulatory code 18 AAC 60.300(c) or, if connected by road, is located more than 50 miles from a Class I municipal solid... solid waste landfill is a landfill that is not connected by road to a Class I municipal solid waste...
HAZARDOUS WASTE IDENTIFICATION
This research is in direct support of the regulatory reform efforts under the Hazarous Waste Identification (HWIR) and is related to the development of national "exit levels" based on sound scientific data and models. Research focuses on developing a systems approach to modelin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, T.W.
1991-09-01
This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)
10 CFR 60.71 - Records and reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Records... the Energy Reorganization Act. (b) Records of the receipt, handling, and disposition of radioactive waste at a geologic repository operations area shall contain sufficient information to provide a...
CONTROL OF PCDD/PCDF EMISSIONS FROM MUNICIPAL WASTE COMBUSTION SYSTEMS
The article gives results of tests on five modern municipal waste combustors (MWCs) to characterize or determine the performance of representative combustor types and associated air emission control systems in the regulatory development process. Test results for uncontrolled (com...
USEPA SITE PROGRAM APPROACH TO TECHNOLOGY TRANSFER AND REGULATORY ACCEPTANCE
The SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. To accomplish this mission, the program seeks to advance the development, implementation and commercialization of innovative technologies for hazardous waste chara...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J.D.; Kleinschmidt, R.; Veevers, P.
1995-12-31
Radiation regulatory authorities have a responsibility for the management of radioactive waste. This, more often than not, includes the collection and safe storage of radioactive sources in disused radiation devices and devices seized by the regulatory authority following an accident, abandonment or unauthorised use. The public aversion to all things radioactive, regardless of the safety controls, together with the Not In My Back Yard (NIMBY) syndrome combine to make the establishment of a radioactive materials store a near impossible task, despite the fact that such a facility is a fundamental tool for regulatory authorities to provide for the radiation safetymore » of the public. In Queensland the successful completion and operational use of such a storage facility has taken a total of 8 years of concerted effort by the staff of the regulatory authority, the expenditure of over $2 million (AUS) not including regulatory staff costs and the cost of construction of an earlier separate facility. This paper is a summary of the major developments in the planning, construction and eventual operation of the facility including technical and administrative details, together with the lessons learned from the perspective of the overall project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, M.M.; Benitez, J.C.; Pernas, R.
2007-07-01
The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in themore » Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)« less
Shirley, Robin; Black, Leon
2011-10-30
This paper examines the potential treatment by solidification/stabilisation (S/S) of air pollution control (APC) residues using only waste materials otherwise bound for disposal, namely a pulverised fuel ash (PFA) from a co-fired power station and a waste caustic solution. The use of waste materials to stabilise hazardous wastes in order to meet waste acceptance criteria (WAC) would offer an economical and efficient method for reducing the environmental impact of the hazardous waste. The potential is examined against leach limits for chlorides, sulphates and total dissolved solids, and compressive strength performance described in the WAC for stable non-reactive (SNR) hazardous waste landfill cells in England and Wales. The work demonstrates some potential for the treatment, including suitable compressive strengths to meet regulatory limits. Monolithic leach results showed good encapsulation compared to previous work using a more traditional cement binder. However, consistent with previous work, SNR WAC for chlorides was not met, suggesting the need for a washing stage. The potential problems of using a non-EN450 PFA for S/S applications were also highlighted, as well as experimental results which demonstrate the effect of ionic interactions on the mobility of phases during regulatory leach testing. Copyright © 2011 Elsevier B.V. All rights reserved.
1988-01-01
of environmental factors that attack and degrade drain performance, and methods that may be used to minimize degradation and correct deficiencies of... risks to site per- sonnel or to public health and safety. 1.3 Description of EMCB Major components of an EMCB are shown in Figure 1.1. An EMCB consists of...differential temperature effects that can occur during the design lifetime of the structure. Severe environmental loads would consist of: W - Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.
On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and thenmore » dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.« less
Schultheisz, Daniel J; Czyscinski, Kenneth S; Klinger, Adam D
2006-11-01
Radioactive waste disposal in the United States is marked by a fragmented regulatory system, with requirements that often focus on the origin or statutory definition of the waste, rather than the hazard of the material in question. It may be possible to enhance public protection by moving toward a system that provides disposal options appropriate for the hazard presented by the waste in question. This paper summarizes aspects of an approach focusing on the potential use, with appropriate conditions, of Resource Conservation and Recovery Act Subtitle-C hazardous waste landfills for disposal of "low-activity" wastes and public comments on the suggested approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
This module explains each waste exclusion and its scope, so one can apply this knowledge in determining wheather a given waste is or is not regulated under RCRA Subtitle C. It cites the regulatory section for exclusions and identifies materials that are not solid wastes and solid wastes that are not hazardous wastes. It locates the manufacturing process unit exclusion and identifies the sample and treatability study exclusions and their applicability. It outlines and specifies the conditions for meeting the exclusions for household wastes and mixtures of domestic sewage.
NASA Astrophysics Data System (ADS)
Collins, Mary Kayla; Anctil, Annick
2017-07-01
The appropriateness of regulatory methods to characterise the toxicity of photovoltaic (PV) modules was investigated to quantify potential environmental impacts for modules disposed of in landfills. Because solar energy is perceived as a green technology, it is important to ensure that end-of-life issues will not be detrimental to solar energy's success. United States Environmental Protection Agency Method 1311, California waste extraction test, and modified versions of both were performed on a multi-crystalline silicon module and cells and a copper indium gallium diselenide (CIGS) module. Variations in metal leachate concentrations were found with changes in testing parameters. Lead concentrations from the multi-crystalline module ranged from 16.2 to 50.2 mg/L. Cadmium concentrations from the CIGS module ranged from 0.1 to 3.52 mg/L. This raises doubt that regulatory methods can adequately characterise PV modules. The results are useful for developing end-of-life procedures, which is a positive step towards avoiding an e-waste problem and continuing trends of increasing installation and cost reduction in the PV market.
77 FR 59022 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-25
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0002] Sunshine Act Meeting AGENCY HOLDING THE MEETINGS: Nuclear Regulatory Commission. DATE: Weeks of September 24, October 1, 8, 15, 22, 29, 2012. [[Page 59023... of the Nuclear Materials Users and Decommissioning and Low-Level Waste Business Lines (Public Meeting...
10 CFR 63.131 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...
10 CFR 63.131 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...
10 CFR 63.131 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...
10 CFR 63.131 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...
10 CFR 63.131 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.1 Purpose and scope. (a) The regulations in this part establish, for land disposal of radioactive waste, the procedures, criteria, and terms and conditions upon which the Commission issues...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, C.A., Westinghouse Hanford
The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
Minimization and management of wastes from biomedical research.
Rau, E H; Alaimo, R J; Ashbrook, P C; Austin, S M; Borenstein, N; Evans, M R; French, H M; Gilpin, R W; Hughes, J; Hummel, S J; Jacobsohn, A P; Lee, C Y; Merkle, S; Radzinski, T; Sloane, R; Wagner, K D; Weaner, L E
2000-01-01
Several committees were established by the National Association of Physicians for the Environment to investigate and report on various topics at the National Leadership Conference on Biomedical Research and the Environment held at the 1--2 November 1999 at the National Institutes of Health in Bethesda, Maryland. This is the report of the Committee on Minimization and Management of Wastes from Biomedical Research. Biomedical research facilities contribute a small fraction of the total amount of wastes generated in the United States, and the rate of generation appears to be decreasing. Significant reductions in generation of hazardous, radioactive, and mixed wastes have recently been reported, even at facilities with rapidly expanding research programs. Changes in the focus of research, improvements in laboratory techniques, and greater emphasis on waste minimization (volume and toxicity reduction) explain the declining trend in generation. The potential for uncontrolled releases of wastes from biomedical research facilities and adverse impacts on the general environment from these wastes appears to be low. Wastes are subject to numerous regulatory requirements and are contained and managed in a manner protective of the environment. Most biohazardous agents, chemicals, and radionuclides that find significant use in research are not likely to be persistent, bioaccumulative, or toxic if they are released. Today, the primary motivations for the ongoing efforts by facilities to improve minimization and management of wastes are regulatory compliance and avoidance of the high disposal costs and liabilities associated with generation of regulated wastes. The committee concluded that there was no evidence suggesting that the anticipated increases in biomedical research will significantly increase generation of hazardous wastes or have adverse impacts on the general environment. This conclusion assumes the positive, countervailing trends of enhanced pollution prevention efforts by facilities and reductions in waste generation resulting from improvements in research methods will continue. PMID:11121362
10 CFR 72.18 - Elimination of repetition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Elimination of repetition. 72.18 Section 72.18 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Applicability. 72.13 Section 72.13 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.13...
10 CFR 72.5 - Interpretations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Interpretations. 72.5 Section 72.5 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.5...
10 CFR 72.5 - Interpretations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Interpretations. 72.5 Section 72.5 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.5...
10 CFR 72.18 - Elimination of repetition.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Elimination of repetition. 72.18 Section 72.18 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Applicability. 72.13 Section 72.13 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.13...
10 CFR 72.34 - Environmental report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report. 72.34 Section 72.34 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License Application, Form...
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General considerations. 72.90 Section 72.90 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors...
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
NASA Astrophysics Data System (ADS)
Rautman, C. A.; Treadway, A. H.
1991-11-01
Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site. One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described. The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.
Environmental Programs: Status of Work and Current Priorities for FY13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Patricia
2012-08-17
Presentation outline is: Mission/overview, Regulatory framework, Current status of cleanup, Shift in priorities to address highest risk, Removal of above-ground waste, Continued focus on protecting water resources, and Priorities for fiscal year 2013. LANL's Environmental Mission is to: (1) Repack and ship legacy transuranic waste containers; (2) Investigate and remediate Cold War (legacy) hazardous and radioactive waste areas; (3) Demolish unused buildings; (4) Disposition solid waste from Laboratory operations; and (5) Lifecycle cost nearly $3 billion.
Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
1994-01-01
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Shafer; M. Y oung; S. Zitzer
2006-01-18
Monolayer evapotranspiration (ET) covers are the baseline method for closure of disposal sites for low-level radioactive waste (LLW), mixed LLW, and transuranic (TRU) waste at the Nevada Test Site (NTS). The regulatory timeline is typically 1,000 years for LLW and 10,000 years for TRU waste. Covers for such waste have different technical considerations than those with shorter timelines because they are subject to environmental change for longer periods of time, and because the environmental processes are often coupled. To evaluate these changes, four analog sites (approximately 30, 1,000 to 2,000, 7,000 to 12,500, and 125,000 years in age) on themore » NTS were analyzed to address the early post-institutional control period (the youngest site), the 1,000-year compliance period for disposal of LLW, and the 10,000-year period for TRU waste. Tests included soil texture, structure, and morphology; surface soil infiltration and hydraulic conductivity; vegetation and faunal surveys; and literature reviews. Separate measurements were made in plant undercanopy and intercanopy areas. The results showed a progressive increase in silt and clay content of surface soils with age. Changes in soil texture and structure led to a fivefold decline in saturated hydraulic conductivity in intercanopy areas, but no change in undercanopies, which were subject to bioturbation. These changes may have been responsible for the reduction in total plant cover, most dramatically in intercanopy areas, primarily because more precipitation either runs off the site or is held nearer to the surface where plant roots are less common. The results suggest that covers may evolve over longer timeframes to stable landforms that minimize the need for active maintenance.« less
10 CFR 63.144 - Quality assurance program change.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Quality assurance program change. 63.144 Section 63.144 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC... assurance program information that duplicates language in quality assurance regulatory guides and quality...
CURRENT AND EMERGING TECHNOLOGIES FOR EXTENDING THE LIFETIME OF ELECTROLESS NICKEL PLATING BATHS
The waste treatment and rejuvenation of spent electroless nickel baths has attracted a considerable amount of interest from electroplating shops, electroless nickel suppliers, universities and regulatory agencies due to the finite life of the baths and the associated waste that t...
10 CFR 72.7 - Specific exemptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Specific exemptions. 72.7 Section 72.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.7...
10 CFR 72.20 - Public inspection of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Public inspection of application. 72.20 Section 72.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License...
10 CFR 72.7 - Specific exemptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Specific exemptions. 72.7 Section 72.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.7...
10 CFR 72.70 - Safety analysis report updating.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety analysis report updating. 72.70 Section 72.70 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
10 CFR 72.20 - Public inspection of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Public inspection of application. 72.20 Section 72.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License...
Academia's Garbage: Campus/Community Solid Waste Projects.
ERIC Educational Resources Information Center
Boyles, Marcia
The nation's overall efforts in solid waste management are noted, and suggestions and examples are presented concerning activities that can be undertaken by institutions of higher education to assist their communities to achieve safer and cleaner environments. The federal regulatory agency, The Environmental Protection Agency (EPA), is concerned…
10 CFR 72.78 - Nuclear material transaction reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
10 CFR 72.78 - Nuclear material transaction reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
10 CFR 72.78 - Nuclear material transaction reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
10 CFR 72.78 - Nuclear material transaction reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
MUNICIPAL SOLID WASTE DISPOSAL IN ESTUARIES AND COASTAL MARSHLANDS
This report is a survey of the existing situation with regards to municipal solid waste disposal in the coastal zone. Both the scientific literature and the regulatory community were surveyed to determine the state-of-knowledge of the impact of such disposal on the environment, p...
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
10 CFR 61.80 - Maintenance of records, reports, and transfers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 61.80 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.80 Maintenance of records, reports, and..., the licensee shall record the location and the quantity of radioactive wastes contained in the...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
10 CFR 61.80 - Maintenance of records, reports, and transfers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 61.80 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.80 Maintenance of records, reports, and..., the licensee shall record the location and the quantity of radioactive wastes contained in the...
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
10 CFR 61.80 - Maintenance of records, reports, and transfers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 61.80 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.80 Maintenance of records, reports, and..., the licensee shall record the location and the quantity of radioactive wastes contained in the...
Chalak, Ali; Abou-Daher, Chaza; Chaaban, Jad; Abiad, Mohamad G
2016-02-01
Food is generally wasted all along the supply chain, with an estimated loss of 35percent generated at the consumer level. Consequently, household food waste constitutes a sizable proportion of the total waste generated throughout the food supply chain. Yet such wastes vary drastically between developed and developing countries. Using data collected from 44 countries with various income levels, this paper investigates the impact of legislation and economic incentives on household food waste generation. The obtained results indicate that well-defined regulations, policies and strategies are more effective than fiscal measures in mitigating household food waste generation. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.
This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminatedmore » wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module provides a summary of the regulatory criteria for municipal solid waste landfills (MSWLFs) and provides the statutory authority under RCRA and the Clean Water Act (CWA) directing EPA to develop the MSWLF criteria in 40 CFR Part 258. It gives the part 258 effective date and the compliance dates for providing demonstrations to satisfy individual regulatory requirements. It identifies the types of facilities that qualify for the small landfill exemption. It explains the requirements of each subpart of part 258 as they apply to states with EPA-approved MSWLF permit programs and states without approved permit programs. It comparesmore » the MSWLF environmental performance standards described in part 258 to the corresponding requirements for hazardous waste TSDFs in part 264, which are generally more stringent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scofield, R.
1984-01-01
This report includes toxicological and regulatory evaluations performed in support of U.S. EPA regulation of toxic materials and hazardous wastes. The first section of the report describes evaluations which support: (a) the regulation of small-volume generators of hazardous wastes, (b) the regulation of hazardous wastes from pesticide manufacturing, and (c) the disposal of the herbicide, silvex. The second section describes the environmental fate, transport, and effect of glyphosate and dalapon. The third section deals with synthetic fuels, including evaluations of synfuel-product toxicity, uncontrolled air emissions, and particular focus on the toxicity of products from several indirect coal liquefaction processes includingmore » methanol synthesis, Fischer-Tropsch, Mobil M-Gasoline, and Lurgi gasification technologies. Three direct coal liquefaction processes were examined for product toxicity and air emissions: Solvent Refined Coal (I and II) and the Exxon Donor Solvent Process. Also described in the third section is an evaluation of environmental and health hazards associated with the use of synthetic fuels from indirect coal liquefaction, direct coal liquefaction, and shale oil. Finally, the fourth section discusses some problems associated with performing, on a contractual basis, scientific and technical evaluations in support of U.S. EPA regulatory and research decisions.« less
Pacific Basin conference on hazardous waste: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This conference was held November 4--8, 1996 in Kuala Lumpur, Malaysia. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on the problems of hazardous waste. Topics of discussion deal with pollution prevention, waste treatment technology, health and ecosystem effects research, analysis and assessment, and regulatory management techniques. Individual papers have been processed separately for inclusion in the appropriate data bases.
18 CFR 292.204 - Criteria for qualifying small power production facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... primary energy source of the facility must be biomass, waste, renewable resources, geothermal resources... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... production facilities that use the same energy resource, are owned by the same person(s) or its affiliates...
3MRA provides a technology that fully integrates the full dimensionality of human and ecological exposure and risk assessment, thus allowing regulatory decisions a more complete expression of potential adverse health effects related to the disposal and reuse of contaminated waste...
10 CFR 72.75 - Reporting requirements for specific events and conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... regulatory limits, to prevent exposures to radiation or radioactive materials that could exceed regulatory limits, or to mitigate the consequences of an accident; and (ii) No redundant equipment was available and... waste involved in the event; and (v) Any personnel radiation exposure data. (f) Follow-up notification...
10 CFR 72.75 - Reporting requirements for specific events and conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... regulatory limits, to prevent exposures to radiation or radioactive materials that could exceed regulatory limits, or to mitigate the consequences of an accident; and (ii) No redundant equipment was available and... waste involved in the event; and (v) Any personnel radiation exposure data. (f) Follow-up notification...
10 CFR 72.75 - Reporting requirements for specific events and conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... regulatory limits, to prevent exposures to radiation or radioactive materials that could exceed regulatory limits, or to mitigate the consequences of an accident; and (ii) No redundant equipment was available and... waste involved in the event; and (v) Any personnel radiation exposure data. (f) Follow-up notification...
10 CFR 72.75 - Reporting requirements for specific events and conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... regulatory limits, to prevent exposures to radiation or radioactive materials that could exceed regulatory limits, or to mitigate the consequences of an accident; and (ii) No redundant equipment was available and... waste involved in the event; and (v) Any personnel radiation exposure data. (f) Follow-up notification...
REGULATING THE ULTIMATE SINK: MANAGING THE RISKS OF GEOLOGIC CO2 STORAGE
The paper addresses the issue of geologic storage (GS) of carbon dioxide (CO2) and discusses the risks and regulatory history of deep underground waste injection on the U.S. mainland and surrounding continental shelf. The treatment focuses on the technical and regulatory aspects ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Quality Assurance § 72.176 Audits. The... assurance program and to determine the effectiveness of the program. The audits must be performed in... 10 Energy 2 2010-01-01 2010-01-01 false Audits. 72.176 Section 72.176 Energy NUCLEAR REGULATORY...
10 CFR 60.52 - Termination of license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Termination of license. 60.52 Section 60.52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... repository: (1) That the final disposition of radioactive wastes has been made in conformance with the DOE's...
10 CFR 72.56 - Application for amendment of license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Application for amendment of license. 72.56 Section 72.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE...
10 CFR 72.42 - Duration of license; renewal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Duration of license; renewal. 72.42 Section 72.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Issuance and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Backfitting. 72.62 Section 72.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Issuance and Conditions of License § 72.62...
10 CFR 72.40 - Issuance of license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Issuance of license. 72.40 Section 72.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Issuance and Conditions of...
10 CFR 72.58 - Issuance of amendment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Issuance of amendment. 72.58 Section 72.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Issuance and Conditions of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false [Reserved] 72.216 Section 72.216 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at...
10 CFR 63.321 - Individual protection standard for human intrusion.
Code of Federal Regulations, 2011 CFR
2011-01-01
... determine the earliest time after disposal that the waste package would degrade sufficiently that a human... 10 Energy 2 2011-01-01 2011-01-01 false Individual protection standard for human intrusion. 63.321 Section 63.321 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES...
10 CFR 63.321 - Individual protection standard for human intrusion.
Code of Federal Regulations, 2013 CFR
2013-01-01
... determine the earliest time after disposal that the waste package would degrade sufficiently that a human... 10 Energy 2 2013-01-01 2013-01-01 false Individual protection standard for human intrusion. 63.321 Section 63.321 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES...
10 CFR 63.321 - Individual protection standard for human intrusion.
Code of Federal Regulations, 2010 CFR
2010-01-01
... determine the earliest time after disposal that the waste package would degrade sufficiently that a human... 10 Energy 2 2010-01-01 2010-01-01 false Individual protection standard for human intrusion. 63.321 Section 63.321 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES...
10 CFR 63.321 - Individual protection standard for human intrusion.
Code of Federal Regulations, 2014 CFR
2014-01-01
... determine the earliest time after disposal that the waste package would degrade sufficiently that a human... 10 Energy 2 2014-01-01 2014-01-01 false Individual protection standard for human intrusion. 63.321 Section 63.321 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES...
10 CFR 63.321 - Individual protection standard for human intrusion.
Code of Federal Regulations, 2012 CFR
2012-01-01
... determine the earliest time after disposal that the waste package would degrade sufficiently that a human... 10 Energy 2 2012-01-01 2012-01-01 false Individual protection standard for human intrusion. 63.321 Section 63.321 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES...
78 FR 7818 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... Recipient country application no.; docket No. Eastern Technologies, Inc.; Class A radioactive The total...
10 CFR 60.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., in accordance with the Nuclear Waste Policy Act of 1992, as amended, and the Energy Policy Act of... 10 Energy 2 2013-01-01 2013-01-01 false Purpose and scope. 60.1 Section 60.1 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General...
10 CFR 60.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., in accordance with the Nuclear Waste Policy Act of 1992, as amended, and the Energy Policy Act of... 10 Energy 2 2014-01-01 2014-01-01 false Purpose and scope. 60.1 Section 60.1 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General...
10 CFR 60.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., in accordance with the Nuclear Waste Policy Act of 1992, as amended, and the Energy Policy Act of... 10 Energy 2 2011-01-01 2011-01-01 false Purpose and scope. 60.1 Section 60.1 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General...
A REVIEW OF ACID COPPER PLATING BATH LIFE EXTENSION AND COPPER RECOVERY FROM ACID COPPER BATHS
Large quantities of hazardous waste, most in aqueous solution or sludges, are being produced at numerous metal plating and processing facilities in the U.S. Regulatory pressures, future liability, and limited landfill space have driven the cost of metal waste disposal to level...
75 FR 79843 - Fall 2010 Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... 2010 edition. You will still, however, be able to download and print a Federal Register style version... chemical risk management law that will fix the weaknesses in Toxic Substances Control Act (TSCA). EPA is...: Authorization of State solid waste management plans; hazardous waste delisting petitions; Under the Clean Water...
10 CFR 61.27 - Application for renewal or closure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.27 Application for renewal or closure. (a) Any expiration date on a license applies only to the above ground activities and to the authority to dispose of waste. Failure to renew the...
10 CFR 61.27 - Application for renewal or closure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.27 Application for renewal or closure. (a) Any expiration date on a license applies only to the above ground activities and to the authority to dispose of waste. Failure to renew the...
10 CFR 61.27 - Application for renewal or closure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.27 Application for renewal or closure. (a) Any expiration date on a license applies only to the above ground activities and to the authority to dispose of waste. Failure to renew the...
10 CFR 61.27 - Application for renewal or closure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.27 Application for renewal or closure. (a) Any expiration date on a license applies only to the above ground activities and to the authority to dispose of waste. Failure to renew the...
10 CFR 61.27 - Application for renewal or closure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.27 Application for renewal or closure. (a) Any expiration date on a license applies only to the above ground activities and to the authority to dispose of waste. Failure to renew the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Jacobs, Raymer J.E.
2008-06-12
In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden pallets, contaminated equipment, decontamination materials, etc.).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The report provides an overview of the regulatory requirements of transporters of hazardous waste. It lists the conditions and requirements for a transfer facility. It identifies transporter recordkeeping and manifesting requirements. It identifies transporter requirements when exporting hazardous waste. It states the conditions under which a transporter is subject to the generator regulations and cites the CFR section covering the transporter responsibilities for hazardous waste discharges.
The Integrated Waste Tracking System - A Flexible Waste Management Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert Stephen
2001-02-01
The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less
Improved low-level radioactive waste management practices for hospitals and research institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-07-01
This report provides a general overview and a compendium of source material on low-level radioactive waste management practices in the institutional sector. Institutional sector refers to hospitals, universities, clinics, and research facilities that use radioactive materials in scientific research and the practice of medicine, and the manufacturers of radiopharmaceuticals and radiography devices. This report provides information on effective waste management practices for institutional waste to state policymakers, regulatory agency officials, and waste generators. It is not intended to be a handbook for actual waste management, but rather a sourcebook of general information, as well as a survey of the moremore » detailed analysis.« less
Thermal plasma technology for the treatment of wastes: a critical review.
Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R
2009-01-30
This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.
3MRA provides a technology that fully integrates the full dimensionality of human and ecological exposure and risk assessment, thus allowing regulatory decisions a more complete expression of potential adverse health effects related to the disposal and reuse of contaminated waste...
Metals in waste foundry sands and an evaluation of their leaching and transport to groundwater
USDA-ARS?s Scientific Manuscript database
While most waste molding foundry sands (WFSs) are not hazardous in nature, regulatory agencies are often reluctant to permit their beneficial use in agricultural and geotechnical applications due to concerns over metal leaching. The objective of this study was to quantify total and Toxicity Characte...
78 FR 56621 - Draft Waste Confidence Generic Environmental Impact Statement
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
.../public-involve/public-meetings/index.cfm no later than 10 days prior to the meetings. Dated at Rockville... licensed life for operation and prior to ultimate disposal (proposed Waste Confidence rule). The NRC staff... confirming receipt, then contact us at 301-415-1677. Fax comments to: Secretary, U.S. Nuclear Regulatory...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
This document corrects typographical errors in the regulatory text of the final standards that would limit organic air emissions as a class at hazardous waste treatment, storage, and disposal facilities (TSDF) that are subject to regulation under subtitle
Burger, Joanna; Powers, Charles; Gochfeld, Michael
2014-01-01
Many US governmental and Tribal Nation agencies, as well as state and local entities, deal with hazardous wastes within regulatory frameworks that require specific environmental assessments. In this paper we use Department of Energy (DOE) sites as examples to examine the relationship between regulatory requirements and environmental assessments for hazardous waste sites and give special attention to how assessment tools differ. We consider federal laws associated with environmental protection include the National Environmental Policy Act (NEPA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), as well as regulations promulgated by the Nuclear Regulatory Commission, Tribal Nations and state agencies. These regulatory regimes require different types of environmental assessments and remedial investigations, dose assessments and contaminant pathways. The DOE case studies illustrate the following points: 1) there is often understandable confusion about what regulatory requirements apply to the site resources, and what environmental assessments are required by each, 2) the messages sent on site safety issued by different regulatory agencies are sometimes contradictory or confusing (e.g. Oak Ridge Reservation), 3) the regulatory frameworks being used to examine the same question can be different, leading to different conclusions (e.g. Brookhaven National Laboratory), 4) computer models used in support of groundwater models or risk assessments are not necessarily successful in convincing Native Americans and others that there is no possibility of risk from contaminants (e.g. Amchitka Island), 5) when given the opportunity to choose between relying on a screening risk assessments or waiting for a full site-specific analysis of contaminants in biota, the screening risk assessment option is rarely selected (e.g. Amchitka, Hanford Site), and finally, 6) there needs to be agreement on whether there has been adequate characterization to support the risk assessment (e.g. Hanford). The assessments need to be transparent and to accommodate different opinions about the relationship between characterizations and risk assessments. This paper illustrates how many of the problems at DOE sites, and potentially at other sites in the U.S. and elsewhere, derive from a lack of either understanding of, or consensus about, the regulatory process, including the timing and types of required characterizations and data in support of site characterizations and risk assessments. PMID:20719428
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, F.H.
1990-02-01
Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.
Low-level radioactive waste technology: a selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fore, C.S.; Vaughan, N.D.; Hyder, L.K.
1980-10-01
This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinentmore » references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.« less
Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina
2016-04-01
This study aimed to assess the potential impact on soil porewater, surface and groundwater from the beneficial application of organic wastes to soil, using their eluates and acute bioassays with aquatic organisms and plants: luminescence inhibition of Vibrio fischeri (15 and 30 min), Daphnia magna immobilization (48 h), Thamnocephalus platyurus survival (24 h), and seed germination of Lolium perenne (7 d) and Lactuca sativa (5 d). Some organic wastes' eluates promoted high toxic responses, but that toxicity could not be predicted by their chemical characterization, which is compulsory by regulatory documents. In fact, when organisms were exposed to the water-extractable chemical compounds of the organic wastes, the toxic responses were more connected to the degree of stabilization of the organic wastes, or to the treatment used to achieve that stabilization, than to their contaminant load. That is why the environmental risk assessment of the use of organic wastes as soil amendments should integrate bioassays with eluates, in order to correctly evaluate the effects of the most bioavailable fraction of all the chemical compounds, which can be difficult to predict from the characterization required in regulatory documents. According to our results, some rapid and standardized acute bioassays can be suggested to integrate a Tier 1 ecotoxicological evaluation of organic wastes with potential to be land applied, namely luminescence inhibition of V. fischeri, D. magna immobilization, and the germination of L. perenne and L. sativa. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
This module provides an overview of the regulatory requirements of transporters of hazardous waste. It lists the conditions and requirements for a transfer facility. Identifies the transporter`s recordkeeping and manifesting requirements. It identifies the transporter requirements when exporting hazardous waste and states the conditions under which a transporter is subject to generator regulations. It cites the CFR section covering the transporter responsibilities for hazardous waste discharges.
Managing previously disposed waste to today's standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determinemore » extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs.« less
Find environmental regulatory and compliance information for the nonmetallic mineral processing sector (NAICS 327), including NESHAPs for asbestos and hazardous waste, and wastewater permit information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosengrant, L.; Craig, R.
1989-11-01
The background document presents the technical support and rationale for developing regulatory standards for K031, K084, K101, K102, D004, D010 and P and U wastes. Section 1 presents available data regarding the industries affected by the land disposal restriction, brief descriptions of the waste-generating processes, and waste characterization data. Section 2 discusses the technologies used to treat the wastes; Section 3 presents available treatment performance data; Section explains EPA's determination of BDAT; Section 5 discusses the selection of constituents to be regulated; and Section 6 determines the proposed treatment standards.
Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, andmore » environmental protection.« less
Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, andmore » environmental protection.« less
Hazardous waste management at the local level; The Anchorage, Alaska experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigglesworth, D.
1989-07-01
The need to manage hazardous wastes in the municipality of Anchorage, Alaska, has become increasingly evident in recent years. A task force, representing a broad cross-section of the community, was appointed by the mayor to develop a waste management plan that would address community concerns. Between 1984 and 1986, the Anchorage Hazardous Waste Task Force, supported by municipal staff, local consultants and volunteers from the community developed a plan emphasizing local responsibility and pollution prevention, using management capabilities and technical assistance. This paper describes the development of a non-regulatory hazardous waste management program in Anchorage, Alaska. Plan elements, program fundingmore » and the key role of the local Hazardous Waste Task Force are discussed.« less
10 CFR 72.94 - Design basis external man-induced events.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Design basis external man-induced events. 72.94 Section 72.94 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.94 Design basi...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Statement of interpretation of waste concerning natural gas as the primary energy source for qualifying small power production facilities. 2.400 Section 2.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Statement of interpretation of waste concerning natural gas as the primary energy source for qualifying small power production facilities. 2.400 Section 2.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Statement of interpretation of waste concerning natural gas as the primary energy source for qualifying small power production facilities. 2.400 Section 2.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Statement of interpretation of waste concerning natural gas as the primary energy source for qualifying small power production facilities. 2.400 Section 2.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...
YUCCA MOUNTAIN: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste
NASA Astrophysics Data System (ADS)
Long, Jane C. S.
2004-05-01
The nation has over 40,000 metric tonnes (MT) of nuclear waste destined for disposal in a geologic repository at Yucca Mountain. In this review, we highlight some of the important geoscience issues associated with the project and place them in the context of the process by which a final decision on Yucca Mountain will be made. The issues include understanding how water could infiltrate the repository, corrode the canisters, dissolve the waste, and transport it to the biosphere during a 10,000-year compliance period in a region, the Basin and Range province, that is known for seismic and volcanic activity. Although the site is considered to be "dry," a considerable amount of water is present as pore waters and as structural water in zeolites. The geochemical environment is oxidizing, and the present repository design will maintain temperatures at greater than 100°C for thousands of years. Geoscientists in this project are challenged to make unprecedented predictions about coupled thermal, hydrologic, mechanical, and geochemical processes governing the future behavior of the repository and to conduct research in a regulatory and legal environment that requires a quantitative analysis of repository performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module reviews two sets of regulatory requirements for containers: requirements that pertain to the management of hazardous waste containers and regulations governing residues of hazardous waste in empty containers. It defines `container` and `empty container` and provides examples and citations for each. It provides an overview of the requirements for the design and operation of hazardous waste containers. It explains the difference between the container standards set out in part 264 and part 265. It states the requirements for rendering a hazardous waste container `RCRA empty`. It explains when container rinsate must be managed as a hazardous waste.
Human factors in waste management - potential and reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.S.
There is enormous potential for human factors contributions in the realm of waste management. The reality, however, is very different from the potential. This is particularly true for low-level and low-level mixed-waste management. The hazards are less severe; therefore, health and safety requirements (including human factors) are not as rigorous as for high-level waste. High-level waste management presents its own unique challenges and opportunities. Waste management is strongly driven by regulatory compliance. When regulations are flexible and open to interpretation and the environment is driven so strongly by regulatory compliance, standard practice is to drop {open_quotes}nice to have{close_quotes} features, likemore » a human factors program, to save money for complying with other requirements. The challenge is to convince decision makers that human factors can help make operations efficient and cost-effective, as well as improving safety and complying with regulations. A human factors program should not be viewed as competing with compliance efforts; in fact, it should complement them and provide additional cost-effective means of achieving compliance with other regulations. Achieving this synergy of human factors with ongoing waste management operations requires educating program and facility managers and other technical specialists about human factors and demonstrating its value {open_quotes}through the back door{close_quotes} on existing efforts. This paper describes ongoing projects at Los Alamos National Laboratory (LANL) in support of their waste management groups. It includes lessons learned from hazard and risk analyses, safety analysis reports, job and task analyses, operating procedure development, personnel qualification/certification program development, and facility- and job-specific training program and course development.« less
1988-01-01
Settlements ........ 2.6-21 2.6.2.7.4.2 Total Settleme. t ... 2.6-21 2.6.2.7.4.3 Lateral Deformations ........ 2.6-22 2.6.2.7.5 Limits for Soil Loads and...otherwise specified, such as construction loads , etc. 2.1-2 F - Loads due to lateral and vertical pressure of incidental liquids. H - Loads due to lateral ...design loads , as well as forces and moments imposed by the continuity of the structural framing system. Columns should be designed to sustain all design
Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
SIMMONS, F.M.
2000-03-29
This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cellsmore » 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.« less
Waste minimization charges up recycling of spent lead-acid batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queneau, P.B.; Troutman, A.L.
Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developingmore » and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.« less
Using science soundly: The Yucca Mountain standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fri, R.W.
1995-09-01
Using sound science to shape government regulation is one of the most hotly argued topics in the ongoing debate about regulatory reform. Even though no one advaocates using unsound science, the belief that even the best science will sweep away regulatory controversy is equally foolish. As chair of a National Research Council (NRC) committee that studied the scientific basis for regulating high-level nuclear waste disposal, the author learned that science alone could resolve few of the key regulatory questions. Developing a standard that specifies a socially acceptable limit on the human health effects of nuclear waste releases involves many decisions.more » As the NRC committee learned in evaluating the scientific basis for the Yucca Mountain standard, a scientifically best decision rarely exists. More often, science can only offer a useful framework and starting point for policy debates. And sometimes, science`s most helpful contribution is to admit that it has nothing to say. The Yucca mountain study clearly illustrates that excessive faith in the power of science is more likely to produce messy frustration than crisp decisions. A better goal for regulatory reform is the sound use of science to clarify and contain the inevitable policy controversy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uleck, R.B.; DeFino, C.V.
1991-12-31
The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) assigned States the responsibility to provide for disposal of commercial low-level radioactive waste (LLRW) by 1993. The LLRWPAA also required the US Nuclear Regulatory Commission (NRC) to establish procedures and develop the technical review capability to process license applications for new LLRW disposal facilities. Under the LLRWPAA, NRC is required, to the extent practicable, to complete its review of an LLRW disposal facility license application within 15 months of its submittal by a State. This provision of the LLRWPAA helps ensure that NRC, in addition to protecting public health andmore » safety and the environment, facilitates States` achievement of LLRWPAA milestones for new facility development. A timely NRC review is needed for States to accomplish their objective of having new disposal facilities in operation on the dates prescribed in the LLRWPAA. To help assure NRC and States` compliance with the provisions of the LLRWPAA, NRC has developed a licensing review strategy that includes: (1) the further development of regulatory guidance, (2) enhancement of licensing review capability, and (3) prelicensing regulatory consultation with potential applicants.« less
Stevens, Peter R.; Nicholson, Thomas J.
1996-01-01
This report contains papers presented at the "Joint U.S. Geological Survey (USGS) and U.S. Nuclear Regulatory Commission (NRC) Technical Workshop on Research Related to Low-Level Radioactive Waste (LLW) Disposal" that was held at the USGS National Center Auditorium, Reston, Virginia, May 4-6, 1993. The objective of the workshop was to provide a forum for exchange of information, ideas, and technology in the geosciences dealing with LLW disposal. This workshop was the first joint activity under the Memorandum of Understanding between the USGS and NRC's Office of Nuclear Regulatory Research signed in April 1992.Participants included invited speakers from the USGS, NRC technical contractors (U.S. Department of Energy (DOE) National Laboratories and universities) and NRC staff for presentation of research study results related to LLW disposal. Also in attendance were scientists from the DOE, DOE National Laboratories, the U.S. Environmental Protection Agency, State developmental and regulatory agencies involved in LLW disposal facility siting and licensing, Atomic Energy Canada Limited (AECL), private industry, Agricultural Research Service, universities, USGS and NRC.
40 CFR 60.2977 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Is not connected by road to a Class I municipal solid waste landfill, as defined by Alaska regulatory code 18 AAC 60.300(c) or, if connected by road, is located more than 50 miles from a Class I municipal... municipal solid waste landfill is a landfill that is not connected by road to a Class I municipal solid...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruebelmann, K.L.
1990-01-01
Following the detection of chlorinated volatile organic compounds in the groundwater beneath the SDA in the summer of 1987, hydrogeological characterization of the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory (INEL) was required by the Resource Conservation and Recovery Act (RCRA). The waste site, the Subsurface Disposal Area (SDA), is the subject of a RCRA Corrective Action Program. Regulatory requirements for the Corrective Action Program dictate a phased approach to evaluation of the SDA. In the first phase of the program, the SDA is the subject of a RCRA Facility Investigation (RIF), which will obtain information to fullymore » characterize the physical properties of the site, determine the nature and extent of contamination, and identify pathways for migration of contaminants. If the need for corrective measures is identified during the RIF, a Corrective Measures Study (CMS) will be performed as second phase. Information generated during the RIF will be used to aid in the selection and implementation of appropriate corrective measures to correct the release. Following the CMS, the final phase is the implementation of the selected corrective measures. 4 refs., 1 fig.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, Betty; Bland, Jesse John
This paper documents the history of the TRU program at Sandia, previous and current activities associated with TRU material and waste, interfaces with other TRU waste generator sites and the Waste Isolation Pilot Plan (WIPP), and paths forward for TRU material and waste. This document is a snapshot in time of the TRU program and should be updated as necessary, or when significant changes have occurred in the Sandia TRU program or in the TRU regulatory environment. This paper should serve as a roadmap to capture past TRU work so that efforts are not repeated and ground is not lostmore » due to future inactivity and personnel changes.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
...With this document, the Environmental Protection Agency (EPA) recertifies that the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) continues to comply with the ``Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High- Level and Transuranic (TRU) Radioactive Waste.'' EPA initially certified that WIPP met applicable regulatory requirements on May 18, 1998, and the first shipment of waste was received at WIPP on March 26, 1999. The first Compliance Recertification Application (CRA) was submitted by DOE to EPA on March 26, 2004, and the Agency's first recertification decision was issued on March 29, 2006.
Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches
NASA Astrophysics Data System (ADS)
Harter, T.
2008-12-01
Groundwater monitoring networks are typically designed for regulatory compliance of discharges from industrial sites. There, the quality of first encountered (shallow-most) groundwater is of key importance. Network design criteria have been developed for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. The fundamental underlying paradigm is that such discharge (if it occurs) will form a distinct contamination plume. Networks that guide (post-contamination) mitigation efforts are designed to capture the shape and dynamics of existing, finite-scale plumes. In general, these networks extend over areas less than one to ten hectare. In recent years, regulatory programs such as the EU Nitrate Directive and the U.S. Clean Water Act have forced regulatory agencies to also control groundwater contamination from non-incidental, recharging, non-point sources, particularly agricultural sources (fertilizer, pesticides, animal waste application, biosolids application). Sources and contamination from these sources can stretch over several tens, hundreds, or even thousands of square kilometers with no distinct plumes. A key question in implementing monitoring programs at the local, regional, and national level is, whether groundwater monitoring can be effectively used as a landowner compliance tool, as is currently done at point-source sites. We compare the efficiency of such traditional site-specific compliance networks in nonpoint source regulation with various designs of regional nonpoint source monitoring networks that could be used for compliance monitoring. We discuss advantages and disadvantages of the site vs. regional monitoring approaches with respect to effectively protecting groundwater resources impacted by nonpoint sources: Site-networks provide a tool to enforce compliance by an individual landowner. But the nonpoint source character of the contamination and its typically large spatial extend requires extensive networks at an individual site to accurately and fairly monitor individual compliance. In contrast, regional networks seemingly fail to hold individual landowners accountable. But regional networks can effectively monitor large-scale impacts and water quality trends; and thus inform regulatory programs that enforce management practices tied to nonpoint source pollution. Regional monitoring networks for compliance purposes can face significant challenges in the implementation due to a regulatory and legal landscape that is exclusively structured to address point sources and individual liability, and due to the non-intensive nature of a regional monitoring program (lack of control of hot spots; lack of accountability of individual landowners).
Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
MELOY, R.T.
2002-04-01
This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.
DOE requests waiver on double containment for HLW canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobsenz, G.
1994-02-22
The Energy Department has asked the Nuclear Regulatory Commission to waive double containment requirements for vitrified high-level radioactive waste canisters, saying the additional protection is not necessary and too costly. NRC said it had received a petition from DOE contending that the vitrified waste canisters were durable enough without double containment to prevent any potential plutonium release during handling and shipping. DOE said testing had shown that the vitrified waste canisters were similar - even superior - in durability to spent reactor fuel shipments, which NRC specifically exempted from the double containment requirement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacRae, W.T.
The Donald C. Cook nuclear plant is located in Bridgman, Michigan. As such, no low-level radioactive waste from the facility has been sent to burial since November 1990. The only option is storage. The plant is well prepared for storage. A new facility was built, so the plant now has >2265 M3 (80 000 ft 3 ) of storage capacity. There are a number of issues that have had to be addressed during the period of storage. These items include storage capacity and waste generation rates, the waste form and the packages used, and the regulatory issues.
Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.
1988-02-01
In 1970, the US Atomic Energy Commission established a transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containingmore » mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs.« less
Towards zero waste production in the minerals and metals sector
NASA Astrophysics Data System (ADS)
Rankin, William J.
The production of mineral and metal commodities results in large quantities of wastes (solid, liquid and gaseous) at each stage of value-adding — from mining to manufacturing. Waste production (both consumer and non-consumer) is a major contributor to environmental degradation. Approaches to waste management in the minerals industry are largely `after the event'. These have moved progressively from foul-and-flee to dilute-and-disperse to end end-of-pipe treatments. There is now a need to move to approaches which aim to reduce or eliminate waste production at source. Modern waste management strategies include the application of cleaner production principles, the use of wastes as raw materials, the reengineering of process flowsheets to minimise waste production, and use of industrial symbioses through industrial ecology to convert wastes into useful by-products. This paper examines how these can be adopted by the minerals industry, with some recent examples. The financial, technical, systemic and regulatory drivers and barriers are also examined.
Construction Sector (NAICS 23)
Find environmental regulatory information for the construction sector, including the construction of buildings or engineering projects. This includes RCRA information for hazardous waste, refrigeration compliance, asbestos, effluent guidelines & lead laws
Discussions about safety criteria and guidelines for radioactive waste management.
Yamamoto, Masafumi
2011-07-01
In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bench, T.R.
1997-05-01
This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahs, W.R.; Haisfield, M.F.
1991-12-31
Since the 1982 promulgation of regulations for the land disposal of low-level radioactive waste (LLW), requirements have been in place to control transfers of LLW intended for disposal at licensed land disposal facilities. These requirements established a manifest tracking system and defined processes to control transfers of LLW intended for disposal at a land disposal facility. Because the regulations did not specify the format for the LLW shipment manifests, it was not unexpected that the two operators of the three currently operating disposal sites should each have developed their own manifest forms. The forms have many similarities and the collectedmore » information, in many cases, is identical; however, these manifests incorporate unique operator preferences and also reflect the needs of the Agreement State regulatory authority in the States where the disposal sites are located. Since Agreement State regulations must be compatible with, but need not always be identical to, those of the Nuclear Regulatory Commission (NRC), the possibility of a proliferation of different manifest forms containing variations in collected information could be envisioned. If these manifests were also to serve a shipping paper purpose, effective integration of the Department of Transportations` (DOT) requirements would also have to be addressed. This wide diversity in uses of manifest information by Federal and State regulatory authorities, other State or Compact entities, and disposal site operators, suggested a single consolidated approach to develop a uniform manifest format with a baseline information content and to define recordkeeping requirements. The NRC, in 1989, had embarked on a rulemaking activity to establish a base set of manifest information needs for regulatory purposes. In response to requests from State and Regional Compact organizations who are attempting to design, develop and operate LLW disposal facilities, and with the general support of Agreement State regulatory authorities, this original data base rulemaking was expanded to include development of a uniform low-level radioactive waste manifest.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. G Appendix G to Part... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by... chapter. Special nuclear material has the same meaning as that given in § 70.4 of this chapter. Uniform...
Government of Canada Initiatives in Support of the Joint Convention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.A.; Metcalfe, D.E.; Lojk, R.
The Government of Canada strongly supported international efforts to bring into force the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the Joint Convention), and was the second country to ratify it. The Joint Convention places a number of obligations on Contracting Parties aimed at achieving and maintaining a high level of safety worldwide in spent fuel and radioactive waste management, ensuring that effective defenses against potential hazards are in place during all management stages, preventing accidents with radiological consequences and mitigating their consequences should they occur. In addition to establishingmore » and maintaining a modem regulatory framework and an independent regulatory body through the 2000 Nuclear Safety and Control Act, the Government of Canada has implemented a number of initiatives that address its responsibilities and serve to further enhance Canada's compliance with the Joint Convention. For nuclear fuel waste, the Government of Canada brought into force the Nuclear Fuel Waste Act in 2002 to require waste owners to develop, fund, organize and implement a long-term solution for Canada's nuclear fuel waste. The Act clearly reserves for Government the decision on the solution to be implemented in the best interests of Canadians, as well as oversight to ensure that waste owners are fulfilling their responsibilities. In the case of low-level radioactive waste, long-term solutions are being developed to ensure the protection of health, safety, and the environment, both now and in the future. Regarding uranium mine and mill tailings, current operators have state-of-the-art waste management facilities in place. The Government of Canada works with provincial governments to ensure that any potential abandoned or legacy mines sites where no owner can be held responsible are safely decommissioned and managed over the long term. (authors)« less
Federal Facilities (Executive Offices) Sector (NAICS 921110)
Find EPA regulatory information for federal facilities (NAICS 92), including information on base closures and transfers, hazardous waste, military munitions, perchorlate, environmentally preferable purchasing and comprehensive procurement guidelines
Textile Manufacturing Sector (NAICS 313)
Find environmental regulatory and compliance information for the textile and leather manufacturing sector, including NESHAPs for leather tanning and fabric printing, and small business guidance for RCRA hazardous waste requirements.
Pharmaceutical and Medicine Manufacturing Sector (NAICS 3254)
Find environmental regulatory and compliance information for the pharmaceutical manufacturing sector, including essential uses of CFCs, NESHAP for pharmaceutical production, effluent guidelines for wastewater and management of hazardous waste.
Dry Cleaning Sector (NAICS 8123)
The dry cleaning sector includes establishments engaged in providing laundry services and industrial launderers. Find environmental regulatory information for perchloroethylene (PERC) cleaners as well as hazardous waste regulations for dry cleaners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitland, R.P.; Senior, D.
The Office for Nuclear Regulation (ONR) is an independent safety, security and transport regulator of the UK nuclear industry. ONR regulates all civil nuclear reactor power stations, fuel manufacture, enrichment, spent fuel reprocessing, most defence sites and installations that store and process legacy spent fuel and radioactive waste. The responsibility for funding and strategic direction of decommissioning and radioactive waste management of state owned legacy sites has rested solely with the Nuclear Decommissioning Authority (NDA) since 2005. A key component of NDA's mandate was to encourage new strategic approaches and innovation to dealing with the UK's waste legacy and whichmore » deliver value-for-money to the UK taxpayer. ONR, as an agency of the Health and Safety Executive, is entirely independent of NDA and regulates all prescribed activities on NDA's sites. NDA's competition of site management and closure contracts has attracted significant international interest and the formation of consortia comprised of major British, US, French and Swedish organizations bidding for those contracts. The prominence of US organizations in each of those consortia reflects the scale and breadth of existing waste management and D and D projects in the US. This paper will articulate, in broad terms, the challenges faced by international organizations seeking to employ 'off-the-shelf' technology and D and D techniques, successfully employed elsewhere, into the UK regulatory context. The predominantly 'goal-setting' regulatory framework in the UK does not generally prescribe a minimum standard to which a licensee must adhere. The legal onus on licensees in the UK is to demonstrate, whatever technology is selected, that in its applications, risks are reduced 'So Far As Is Reasonably Practicable' or 'SFAIRP'. By the nature of its role, ONR adopts a conservative approach to regulation; however ONR also recognises that in the decommissioning (and ultimately the site closure) domain, it is often necessary to consider and support novel approaches to achieve the nationally desired end-state. Crucial to successful and compliant operation in this regulatory environment is early and sustained engagement of the contractor with the regulator. There must be a 'no-surprises' culture to engender regulatory confidence early in a project. The paper considers some of the challenges facing international prime and lower tier contractors when undertaking D and D contracts in the UK, and emphasizes the importance of constructive and transparent dialogue with all regulators to sustain confidence at all stages of a major decommissioning project. The paper will also articulate ONR's strategy to increase collaboration with the US Department of Energy in light of increasing UK-US synergy in the area of waste management and to benchmark respective regulatory approaches. (authors)« less
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.
2011-11-01
Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less
Cogeneration feasibility: Otis Elevator Company and Polychrome Corporation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-05-01
The purpose of this study was to assess the feasibility of cogeneration at Otis Elevator Company and Polychrome Corporation located in Westchester County, New York. Each plant and its associated thermal and electrical load is reviewed. Three basic cycles for the cogeneration are investigated: power only, power generation with waste heat recovery, and combined cycle. Each case was assessed economically, beginning with a screening method to suggest those configurations most likely to be implemented and continuing through an assessment of the regulatory environment for cogeneration and an analysis of rate structures for buy back power, displaced power, and supplementing service.more » It is concluded that: for a plant designed to supply the combined loads of the two corporations, interconnection costs coupled to the coincidence of load result in unfavorable economics; for separate cogeneration plants, owned and operated by each individual corporation, energy consumption patterns and the current regulatory environment, in particular the existing and proposed cogeneration system rate structures, do not permit viable economics for the proposed plants; but if the proposed cycle were owned and operated by a new entity (neither Otis/Polychrome nor the utility), an economic scheme with marginal financial benefits can be developed and may be worthy of further study. (LEW)« less
Impacts-BRC (below regulatory concern): The microcomputer version
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J.E.; O'Neal, B.L.
1989-01-01
The IMPACTS-BRC computer code was designed for use by the Nuclear Regulatory Commission and industry to evaluate petitions to classify specific waste streams as below regulatory concern (BRC). The code provides a capability for calculating radiation doses to a maximal individual, critical group, and the general population as a result of transportation, treatment, disposal, and post-disposal activities involving low level radioactive waste. Since IMPACTS-BRC is expected to be widely used, the code has been adapted for use on a microcomputer. The microcomputer version of the code provides several features that simplify its use and broaden its applicability. These features includemore » (1) a menu-driven environment, (2) an input editor to simplify creation and editing of input files, (3) default input values and help screens to guide the user in analyzing a particular problem, (4) the ability to perform both parametric studies and Monte Carlo analysis to examine uncertainties, and (5) interactive graphics and statistics output. This paper describes the microcomputer version of IMPACTS-BRC and illustrates its use through an example application. 5 refs., 5 figs., 3 tabs.« less
Wolbarst, A B; Forinash, E K; Byrum, C O; Peake, R T; Marcinowski, F; Kruger, M U
2001-02-01
In March of 1999, the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico, the world's first deep geological repository for radioactive materials, began receiving defense-related transuranic waste. The WIPP was designed and constructed by the U.S. Department of Energy, but critical to its opening was certification by the U.S. Environmental Protection Agency that the repository complies with the radioactive waste disposal regulations set forth as environmental radiation protection standards (40 CFR Part 191) and compliance criteria (40 CFR Part 194). This paper provides a summary of the regulatory process, including the Environmental Protection Agency's waste containment, groundwater protection, and individual dose regulations for the WIPP; the Department of Energy's performance assessment and the other parts of its compliance certification application; and the Environmental Protection Agency's review and analysis of the compliance certification application and related documentation.
Capoor, Malini R; Bhowmik, Kumar Tapas
2017-01-01
This article deals with practices related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management and attempts at India-specific guidelines for their dispersal and disposal. The articles related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management were reviewed from PubMed and their applicability in Indian health-care facilities (HCFs) was also reviewed. All HCFs dealing with cytotoxic drugs should consider cytotoxic policy, patient safety and health-care worker safety, and environmental monitoring program as per the available international guidelines customized as per Indian conditions. Utmost care in handling cytotoxic waste is quintessential. The formation of India-specific cytotoxic guidelines requires the inputs from all stakeholders. Cytotoxic waste, cytotoxic safety, and cytotoxic waste management should be the subject of a national strategy with an infrastructure, cradle-to-grave legislation, competent regulatory authority, and trained personnel. PMID:28900329
Vermont State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-01
The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment wasmore » developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.« less
Teaching Old Packaging New Tricks - 12593
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, Jeffery L.; Shuler, James M.
2012-07-01
Waste disposition campaigns have been an industry and government focus area since the mid- 1970's. With increased focus on this issue, and a lot of hard work, most waste packaging and transportation issues have been addressed. The material has been successfully shipped and dis-positioned. DOE has successfully de-inventoried materials from multiple sites to meet material consolidation, footprint reduction, nonproliferation, and regulatory obligations with cost savings from reduced maintenance and regulatory compliance. There has been a wide range of certified shipping packagings for the transportation of hazardous materials to meet most of the waste needs. The remaining materials are problematic, generallymore » low volume, and do not meet the certified content of the existing inventory of packaging. Designing, testing and certifying new packaging designs can be a long and expensive process and for small volumes of material it is cost prohibitive. One very cost effective option is to lease and use a certified packaging to overpack waste containers. There are many robust certified packagings available with the capability to envelope the waste content. The capability to use inner containers, inside the current fleet of certified casks or packaging, to address specific content problems of additional shielding (e.g., U-233) or containment (e.g., sodium bonded nuclear material) has successfully expanded the capability for timely cost effective shipment of unique contents. This option has been used successfully in the NAC-LWT, T-3 and other packagings. (authors)« less
Team structure and regulatory focus: the impact of regulatory fit on team dynamic.
Dimotakis, Nikolaos; Davison, Robert B; Hollenbeck, John R
2012-03-01
We report a within-teams experiment testing the effects of fit between team structure and regulatory task demands on task performance and satisfaction through average team member positive affect and helping behaviors. We used a completely crossed repeated-observations design in which 21 teams enacted 2 tasks with different regulatory focus characteristics (prevention and promotion) in 2 organizational structures (functional and divisional), resulting in 84 observations. Results suggested that salient regulatory demands inherent in the task interacted with structure to determine objective and subjective team-level outcomes, such that functional structures were best suited to (i.e., had best fit with) tasks with a prevention regulatory focus and divisional structures were best suited to tasks with a promotion regulatory focus. This contingency finding integrates regulatory focus and structural contingency theories, and extends them to the team level with implications for models of performance, satisfaction, and team dynamics.
Hanford Facility Annual Dangerous Waste Report Calendar Year 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
FREEMAN, D.A.
2003-02-01
Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Informationmore » and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency.« less
Waste management outlook for mountain regions: Sources and solutions.
Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia
2017-09-01
Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.
Printing and Related Support Activities Sector (NAICS 323)
Find environmental regulatory and compliance information for the printing sector, including NESHAPs for paper surface coating, RCRA hazardous waste guide for small business, and a pollution prevention guidance for lithographic and screen printing
Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.
1995-12-31
This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less
A pilot outreach program for small quantity generators of hazardous waste.
Brown, M S; Kelley, B G; Gutensohn, J
1988-01-01
The Massachusetts Department of Environmental Management initiated a pilot project to improve compliance with hazardous waste regulations and management of hazardous wastes with auto body shops around the state. The program consisted of mass mailings, a series of workshops throughout the state, a coordinated inspection program by the state regulatory agency, and technology transfer. At the start of the program in January 1986, approximately 650 of the estimated 2,350 auto body shops in the state had notified EPA of their waste generating activities; by January 1987, approximately 1,200 shops had done so. Suggestions for improving program efforts include tailoring the outreach effort to the industry, government-sponsored research and development directed at the needs of small firms, mandatory participation in hazardous waste transportation programs, and better coordination by EPA of its information collection and distribution program. PMID:3421393
Soil and solid poultry waste nutrient management and water quality.
Chapman, S L
1996-07-01
Concerns about the impacts of nitrogen, phosphorus, and pathogens on surface and ground water quality has forced the poultry industry to implement voluntary waste management guidelines for use by growers. In some states, animal waste guidelines are being enforced by regulatory agencies. Strategies that growers may use to properly dispose of poultry waste include: 1) local land application as a fertilizer; 2) offsite marketing for use as a fertilizer or soil amendment, feed additive, or energy source; and 3) chemical additives that will immobilize nitrogen and phosphorus in the manure or litter. If properly followed, these and other innovative strategies should be adequate to protect surface and ground water quality without adversely affecting the economics of poultry production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MULKEY, C.H.
1999-07-06
This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through themore » DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.« less
40 CFR 92.6 - Regulatory structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Regulatory structure. 92.6 Section 92... Regulations for Locomotives and Locomotive Engines § 92.6 Regulatory structure. This section provides an overview of the regulatory structure of this part. (a) The regulations of this part 92 are intended to...
40 CFR 94.6 - Regulatory structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Regulatory structure. 94.6 Section 94... for Compression-Ignition Marine Engines § 94.6 Regulatory structure. This section provides an overview of the regulatory structure of this part. (a) The regulations of this Part 94 are intended to control...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher
2013-07-01
The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sitesmore » and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install the necessary integrated systems to process the accumulated MVST Facilities SL inventory at the TWPC thus enabling safe and effective disposal of the waste. This BCP does not include work to support current MVST Facility Surveillance and Maintenance programs or the ORNL Building 3019 U-233 Disposition project, since they are not currently part of the TWPC prime contract. The purpose of the environmental compliance strategy is to identify the environmental permits and other required regulatory documents necessary for the construction and operation of the SL- PFB at the TWPC, Oak Ridge, TN. The permits and other regulatory documents identified are necessary to comply with the environmental laws and regulations of DOE Orders, and other requirements documented in the SL-PFB, Safety Design Strategy (SDS), SL-A-AD-002, R0 draft, and the Systems, Function and Requirements Document (SFRD), SL-X-AD-002, R1 draft. This compliance strategy is considered a 'living strategy' and it is anticipated that it will be revised as design progresses and more detail is known. The design basis on which this environmental permitting and compliance strategy is based is the Wastren Advantage, Inc., (WAI), TWPC, SL-PFB (WAI-BL-B.01.06) baseline. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, D.W.; Ridge, A.C.; Thaggard, M.
2006-07-01
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the Department of Energy (DOE) to consult with the Nuclear Regulatory Commission (NRC) about non-High Level Waste (HLW) determinations. In its consultative role, NRC performs technical reviews of DOE's waste determinations but does not have regulatory authority over DOE's waste disposal activities. The safety of disposal is evaluated by comparing predicted disposal facility performance to the performance objectives specified in NRC regulations for the disposal of low-level waste (10 CFR Part 61 Subpart C). The performance objectives contain criteria for protection of themore » public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. The potential radiological dose to receptors typically is evaluated with a performance assessment (PA) model that simulates the release of radionuclides from the disposal site, transport of radionuclides through the environment, and exposure of potential receptors to residual contamination for thousands of years. This paper describes NRC's development and use of independent performance assessment modeling to facilitate review of DOE's non-HLW determination for the Saltstone Disposal Facility (SDF) at the Savannah River Site. NRC's review of the safety of near-surface disposal of radioactive waste at the SDF was facilitated and focused by risk insights developed with an independent PA model. The main components of NRC's performance assessment model are presented. The development of risk insights that allow the staff to focus review efforts on those areas that are most important to satisfying the performance objectives is discussed. Uncertainty analysis was performed of the full stochastic model using genetic variable selection algorithms. The results of the uncertainty analysis were then used to guide the development of simulations of other scenarios to understand the key risk drivers and risk limiters of the SDF. Review emphasis was placed on those aspects of the disposal system that were expected to drive performance: the physical and chemical performance of the cementitious wasteform and concrete vaults. Refinement of the modeling of the degradation and release from the cementitious wasteform had a significant effect on the predicted dose to a member of the public. (authors)« less
Common Sense Initiative’s Recommendation on Cathode Ray Tube (CRT) Glass-to-Glass
From 1994 through 1998, EPA’s Common Sense Initiative (CSI) Computers and Electronics Subcommittee (CES) formed a workgroup to examine regulatory barriers to pollution prevention and electronic waste recycling.
Electric Power Generation, Transmission and Distribution (NAICS 2211)
Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehler, Kurt
Since the start of its contract in 2008, the CH2M Hill Plateau Remediation Company (CH2M HILL) has demolished 25 buildings with concrete asbestos board (CAB) siding using mechanical means. While the asbestos contained in CAB siding is not friable in its manufactured form, concerns persist that mechanical methods of demolition have the potential to render the asbestos friable and airborne, therefore posing a health risk to demolition workers and the public. CH2M HILL's experience demonstrates that when carefully managed, mechanical demolition of CAB siding can be undertaken safely, successfully, and in compliance with regulatory requirements for the disposal of Classmore » II Asbestos-Containing Material (ACM). While the number of buildings demolished at Hanford and the number of samples collected does not make a conclusive argument that CAB cannot be made friable with normal demolition techniques, it certainly provides a significant body of evidence for the success of the approach. Of course, there are many factors that affect how to demolish a structure and dispose of the waste. These factors will impact the success depending on each site. The most obvious factors which contribute to this success at Hanford are: 1. The availability of onsite waste disposal where the handling and cost of asbestos-containing waste is not much different than other potentially contaminated waste. Therefore, segregation of demolition debris from the potential asbestos contamination is not necessary from a debris handling or asbestos disposal aspect. 2. The space between structures is typically significant enough to allow for large exclusion zones. There are not many restrictions due to cohabitation issues or potential contamination of adjacent facilities. 3. The willingness of the regulators and client to understand the industrial safety issues associated with manual CAB removal. (authors)« less
MUNICIPAL WASTE COMBUSTION ASSESSMENT ...
The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for municipal waste combustors (MWCs) that reportedly accept medical waste in the U.S., Europe, and Canada. nly very limited data are available on the emission impacts associated with the combustion of medical waste in MWGs. Especially lacking is information needed to fully evaluate the impacts on acid gas, dioxin, and metals emissions, as well as the design and operating requirements for complete destruction of solvents, cytotoxic chemicals, and pathogens. The EPA's Office of Air Quatity Planning and Standards is developing emission standards and guidelines for new and existing MWCs under Sections 111(b) and 111(d) of the Clean Air Act. In support of these regulatory development efforts, the Air and Energy Engineering Research Laboratory in EPA's Office of Research and Development has conducted an assessment to examine the incineration of medical waste in MWGs from an emission standpoint. Potential worker safety and health problems associated with handling of medical wastes and residues were also identified. information
Ramadan, Adham R; Kock, Per; Nadim, Amani
2005-04-01
A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.
Department of Energy's first waste determinations under section 3116: how did the process work?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picha Jr, K.G.; Kaltreider, R.; Suttora, L.
2007-07-01
Congress passed the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005 on October 9, 2004, and the President signed it into law on October 28, 2004. Section 3116(a) of the NDAA allows the Department of Energy (DOE) to, in consultation with the Nuclear Regulatory Commission (NRC), determine whether certain radioactive waste resulting from reprocessing of spent nuclear fuel at two DOE sites is not high-level radioactive waste, and dispose of that waste in compliance with the performance objectives set out in subpart C of 10 CFR part 61 for low-level waste. On January 17, 2006, themore » Department issued its first waste determination under the NDAA for salt waste disposal at the Savannah River Site. On November 19, 2006, the Department issued its second waste determination for closure of tanks at the Idaho Nuclear Technology and Engineering Center Tank Farm Facility. These two determinations and a third draft determination illustrate the range of issues that may be encountered in preparing a waste determination in accordance with NDAA Section 3116. This paper discusses the experiences associated with these first two completed waste determinations and an in-progress third waste determination, and discusses lessons learned from the projects that can be applied to future waste determinations. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyder, L.K.; Fore, C.S.; Vaughan, N.D.
This annotated bibliography of 705 references represents the first in a series to be published by the Ecological Sciences Information Center containing scientific, technical, economic, and regulatory information relevant to nuclear waste isolation. Most references discuss deep geologic disposal, with fewer studies of deep seabed disposal; space disposal is also included. The publication covers both domestic and foreign literature for the period 1954 to 1980. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Envirnmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Repository Design and Engineering; Transportation Technology;more » Waste Production; and Waste Treatment. Specialized data fields have been incorporated to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for author(s), keywords, subject category, title, geographic location, measured parameters, measured radionuclides, and publication description.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Electric utilities operating nuclear power plants have found themselves in a regulatory Catch-22; extremely limited treatment and disposal capacity is available for their mixed wastes, yet EPA has interpreted RCRA in such a way that long-term storage of the wastes is prohibited. A group of utilities received no relief from this predicament when a court recently rejected their petition for review of EPA`s interpretation of the RCRA mixed-waste storage prohibition. The decision was rendered by the U.S. Court of Appeals for the District of Columbia Circuit on June 18, 1993 (Edison Electric Institute et al. v. U.S. EPA, Docket Number:more » 91-1586).« less
A science and technology initiative within the office of civilian radioactive waste management
Budnitz, R.J.; Kiess, T.E.; Peters, M.; Duncan, D.
2003-01-01
In 2002, by following a national decision-making process that had been specified in the 1982 Nuclear Waste Policy Act, Yucca Mountain (YM) was designated as the site for the nation's geologic repository for commercial spent nuclear fuel (SNF). The U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) must now obtain regulatory approval to construct and operate a repository there, and to develop transportation and infrastructure needed to support operations. The OCRWM has also recently begun a separate Science and Technology (S&T) initiative, whose purposes, beginnings, current projects, and future plans are described here.
Waste management CDM projects barriers NVivo 10® qualitative dataset.
Bufoni, André Luiz; de Sousa Ferreira, Aracéli Cristina; Oliveira, Luciano Basto
2017-12-01
This article contains one NVivo 10® file with the complete 432 projects design documents (PDD) of seven waste management sector industries registered as Clean Development Mechanism (CDM) under United Nations Framework Convention on Climate Change (UNFCCC) Kyoto Protocol Initiative from 2004 to 2014. All data analyses and sample statistics made during the research remain in the file. We coded PDDs in 890 fragments of text, classified in five categories of barriers (nodes): technological, financial, human resources, regulatory, socio-political. The data supports the findings of author thesis [1] and other two indexed publication in Waste Management Journal: "The financial attractiveness assessment of large waste management projects registered as clean development mechanism" and "The declared barriers of the large developing countries waste management projects: The STAR model" [2], [3]. The data allows any computer assisted qualitative content analysis (CAQCA) on the sector and it is available at Mendeley [4].
The Relationship between SW-846, PBMS, and Innovative Analytical Technologies
This paper explains EPA's position regarding testing methods used within waste programs, documentation of EPA's position, the reasoning behind EPA's position, and the relationship between analytical method regulatory flexibility and the use of on-site...
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... with low horizontal and vertical permeability; (ii) Downward or dominantly horizontal hydraulic... permeability and low hydraulic gradient between the host rock and the surrounding hydrogeologic units. (3... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
The Tompkins County Solid Waste Annual Fee: Background and overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penniman, P.W.
1995-05-01
This report outlines the development by Tompkins County of a new revenue source for solid waste programs -- The Solid Waste Annual Fee. Over the past two decades in New York State, regulatory demands and the decline in available landfill space have combined to cause a rapid escalation in the cost of solid waste disposal. While the New York State Department of Environmental Conservation (NYSDEC) has implemented tighter regulations for the siting of solid waste landfills, they have also mandated the permitting or closure of all existing landfills in the state. The result is that all communities have been requiredmore » to invest millions of dollars in landfill siting, closure and solid waste processing facilities. In addition, programs for reducing and recycling solid wastes have been mandated to reduce the outflow to landfills. Until recent years, solid waste services in most New York counties have been funded almost entirely through a collection of property taxes. During the past six years, fiscal stress has stimulated a movement toward funding solid waste programs by other means. Alternatives to the property tax include: (1) special assessment taxes or fees; (2) user charges (including tipping fees); and (3) intergovernment grants.« less
Korenkov, I P; Lashchenova, T N; Shandala, N K
2015-01-01
In the article there are presented materials on radiation-hygienic approaches to the treatment of very low level radioactive waste (VLLW) and industrial waste containing radionuclides. There is done detailed information on radiation-hygienic principles and criteria for the assurance ofradiation safety in the collection, transportation, storage and processing of VLLW as a category of radioactive waste.. Particular attention is paid to the problem of designing VLLW landfill site choice, system of radiation monitoring in operation and decommissioning of the landfill. There are presented data about the criteria for the release of VLLW buried at the site, from regulatory control. Also there are considered in detail the radiation-hygienic requirements for radiation safety of industrial waste containing radionuclides for which there is assumed unlimited and limited use of solid materials in economic activity, based on the requirements ofthe revised Basic Sanitary Rules for Radiation Safety - 99/2010. There are considered basic requirements for the organization of industrial waste landfill. As an example, there-are presented the hygiene requirements for industrial waste management and results of waste categorization in Northern Federal Enterprise for Radioactive Waste Management.
Lau, Winifred Ka-Yan; Chung, Shan-Shan; Zhang, Chan
2013-03-01
A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.
Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A. A.; Peeler, D. K.; Kim, D. S.
2015-11-23
The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less
Implementation of SAP Waste Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, M.L.; LaBorde, C.M.; Nichols, C.D.
2008-07-01
The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less
New Jersey state information handbook: Formerly Utilized Sites Remedial Action Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Under the implied authority of the Atomic Energy Act of 1954, as amended, radiological surveys and research work has been conducted to determine radiological conditions at former MED/AEC sites. As of this time, 31 sites in 13 states have been identified that require or may require remedial action. This volume is one of a series produced under contract with DOE, Office of Nuclear Waste Management, by POLITECH CORPORATION to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Remedial Action Program. This Information Handbook seriesmore » contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of New Jersey. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations. The loose-leaf format used in these volumes will allow the material to be updated periodically as the Remedial Action Program progresses.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... requirements. (11) Issuance of amendments to licenses for fuel cycle plants and radioactive waste disposal... licensees, except processing of source material for extraction of rare earth and other metals. (xiv) Nuclear...
Fact Sheet on Evapotranspiration Cover Systems for Waste Containment
This Fact Sheet updates the 2003 Fact Sheet on Evapotranspiration Covers and provides information on the regulatory setting for ET covers, general considerations in their design, performance, and monitoring, and status at the time of writing (2011).
10 CFR 60.151 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Applicability. 60.151 Section 60.151 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Quality... to activities related thereto. These activities include: site characterization, facility and...
10 CFR 60.151 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Applicability. 60.151 Section 60.151 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Quality... to activities related thereto. These activities include: site characterization, facility and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... material in sealed sources contained in devices used in industrial measuring systems, including x-ray... metals other than uranium or thorium, including licenses authorizing the possession of byproduct waste...
30 CFR 917.12 - State regulatory program and proposed program amendment provisions not approved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... depression left by backfilling and grading, that is not a sedimentation pond or coal mine waste impoundment... completely incised or created by a depression left by backfilling and grading but not meeting MSHA...
30 CFR 917.12 - State regulatory program and proposed program amendment provisions not approved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... depression left by backfilling and grading, that is not a sedimentation pond or coal mine waste impoundment... completely incised or created by a depression left by backfilling and grading but not meeting MSHA...
30 CFR 917.12 - State regulatory program and proposed program amendment provisions not approved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... depression left by backfilling and grading, that is not a sedimentation pond or coal mine waste impoundment... completely incised or created by a depression left by backfilling and grading but not meeting MSHA...
POLLUTION CONTROL GUIDANCE FOR GEOTHERMAL ENERGY DEVELOPMENT
This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pol...
Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.
Guo, Xuejun; Wang, Kunpeng; He, Mengchang; Liu, Ziwei; Yang, Hailin; Li, Sisi
2014-07-01
A large amount of solid waste has been produced by the antimony smelting process in the "World Capital of Antimony", Xikuangshan area in China. This study comprehensively investigated the physical and chemical characteristics of the various solid wastes, as well as the leaching behavior of the solid wastes, which included water-quenched slag, arsenic-alkali residue, desulfurized slag and blast furnace dust. These four types of waste were enriched in a variety of heavy metals and metalloids and more specifically with As and Sb levels up to 8.6 × 10⁴ and 3.16×10⁵ mg/kg, respectively, in arsenic-alkali residue. For desulfurized slag and water-quenched slag, the leaching concentration of Sb significantly exceeded the acceptable limits during the leaching tests using the toxicity characteristic leaching procedure and the synthetic precipitation leaching procedure. In addition, As leaching in arsenic-alkali residue was extraordinarily hazardous, being three orders of magnitude higher than the regulatory level of As. According to the results of the extraction tests, all the tested wastes were classified as hazardous waste. Copyright © 2014. Published by Elsevier B.V.
Leaching characteristics of copper flotation waste before and after vitrification.
Coruh, Semra; Ergun, Osman Nuri
2006-12-01
Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.
An overview of radioactive waste disposal procedures of a nuclear medicine department
Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.
2011-01-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225
An overview of radioactive waste disposal procedures of a nuclear medicine department.
Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S
2011-04-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Gross
2004-09-01
The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall inmore » emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the Total System Performance Assessment for the License Application (TSPA-LA). The results from this scientific analysis also address project requirements related to parameter uncertainty, as specified in the acceptance criteria in ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]). This document was prepared under the direction of ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 170528]) which directed the work identified in work package ARTM05. This document was prepared under procedure AP-SIII.9Q, ''Scientific Analyses''. There are no specific known limitations to this analysis.« less
Sneve, M K; Kiselev, M; Shandala, N K
2014-05-01
The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support regulatory analysis of management options. For assessments of the current radiological situation, the types of data needed include information about the distribution of radionuclides in environmental media. For prognostic assessments, additional data are needed about the landscape features, on-shore and off-shore hydrology, geochemical properties of soils and sediments, and possible continuing source terms from continuing operations and on-site disposal. It is anticipated that shared international experience in legacy site characterization can be useful in the next steps. Although the output has been designed to support regulatory evaluation of these particular sites in northwest Russia, the methods and techniques are considered useful examples for application elsewhere, as well as providing relevant input to the International Atomic Energy Agency's international Working Forum for the Regulatory Supervision of Legacy Sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management; The Delphi Groupe, Inc.; J. A. Cesare and Associates, Inc.
The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03more » and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.« less
Waste information management system: a web-based system for DOE waste forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.
2007-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less
Working towards a zero waste environment in Taiwan.
Young, Chea-Yuan; Ni, Shih-Piao; Fan, Kuo-Shuh
2010-03-01
It is essential to the achievement of zero waste that emphasis is concentrated on front-end preventions rather than end-of-pipe (EOP) treatment. Zero waste is primarily based on cleaner production, waste management, the reduction of unnecessary consumption and the effective utilization of waste materials. The aim of this study was to briefly review the tasks undertaken and future plans for achieving zero waste in Taiwan. Waste prevention, source reduction, waste to product, waste to energy, EOP treatment, and adequate disposal are the sequential principal procedures to achieve the goal of zero waste. Six strategies have been adopted to implement the zero waste policy in Taiwan. These are regulatory amendments, consumption education, financial incentives, technical support, public awareness, and tracking and reporting. Stepwise targets have been set for 2005, 2007, 2011, and 2020 for both the municipal solid waste (MSW) and industrial waste to reach the goal of zero waste. The eventual aim is to achieve 70% MSW minimization and 85% industrial waste minimization by 2020. Although tools and measures have been established, some key programmes have higher priority. These include the establishment of a waste recycling programme, promotion of cleaner production, a green procurement programme, and promotion of public awareness. Since the implementation of the zero waste policy started in 2003, the volume of MSW for landfill and incineration has declined dramatically. The recycling and/or minimization of MSW quantity in 2007 was 37%, which is much higher than the goal of 25%. Industrial waste reached almost 76% minimization by the end of 2006, which is 1 year before the target year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-06-17
The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueth, Joachim
The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials,more » and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)« less
Management of Disused Radioactive Sealed Sources in Egypt - 13512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.
The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Egypt depends on the safe and secure management of disused radioactive sealed sources. In the past years have determined the necessity to formulate and apply the integrated management program for radioactive sealed sources to assure harmless and ecological rational management of disused sealed sources in Egypt. The waste management system in Egypt comprises operational and regulatory capabilities. Both of these activities are performed under legislations. The Hot Laboratories and Waste Management Center HLWMC, is considered as a centralizedmore » radioactive waste management facility in Egypt by law 7/2010. (authors)« less
Environment, Environmental Restoration, and Waste Management Field Organization Directory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
This directory was developed by the Office of Environmental Guidance, RCRA/CERCLA Division (EH-231) from an outgrowth of the Departments efforts to identify and establish the regulatory response lead persons in the Field Organizations. The directory was developed for intemal EH-231 use to identify both the DOE and DOE contractor Field Organizations in the Environment, Environmental Restoration and Waste Management areas. The Field Organization directory is divided into three substantive sections: (1) Environment; (2) Environmental Restoration; and (3) Waste Management which are organized to correspond to the management hierarchy at each Field Organization. The information provided includes the facility name andmore » address, individual managers name, and telephone/fax numbers.« less
Treatment of copper industry waste and production of sintered glass-ceramic.
Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui
2006-06-01
Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.
10 CFR 60.4 - Communications and records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC... offices at 11555 Rockville Pike, Rockville, Maryland; or, where practicable, by electronic submission, for example, via Electronic Information Exchange, or CD-ROM. Electronic submissions must be made in a manner...
10 CFR 60.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General..., special nuclear, and byproduct material at a geologic repository operations area sited, constructed, or... at a geologic repository operations area sited, constructed, or operated at Yucca Mountain, Nevada...
10 CFR 60.15 - Site characterization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... the geologic repository to the extent practical. (2) The number of exploratory boreholes and shafts... characterization. (3) To the extent practical, exploratory boreholes and shafts in the geologic repository...
LEACHING OF CCA-TREATED WOOD: IMPLICATIONS FOR WASTE DISPOSAL
Leaching of arsenic, chromium, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of US regulatory leaching procedures, including the toxicity character...
10 CFR 60.15 - Site characterization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in situ testing before and during construction shall be planned and coordinated with geologic... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... be described in such application. (b) Unless the Commission determines with respect to the site...
10 CFR 60.15 - Site characterization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in situ testing before and during construction shall be planned and coordinated with geologic... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... be described in such application. (b) Unless the Commission determines with respect to the site...
10 CFR 60.15 - Site characterization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in situ testing before and during construction shall be planned and coordinated with geologic... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... be described in such application. (b) Unless the Commission determines with respect to the site...
10 CFR 60.15 - Site characterization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in situ testing before and during construction shall be planned and coordinated with geologic... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... be described in such application. (b) Unless the Commission determines with respect to the site...
10 CFR 60.31 - Construction authorization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Construction authorization. 60.31 Section 60.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Construction Authorization § 60.31 Construction authorization. Upon review and...
10 CFR 60.31 - Construction authorization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Construction authorization. 60.31 Section 60.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Construction Authorization § 60.31 Construction authorization. Upon review and...
A Paradigm Shift to Protect Environment
Attempts to protect the environment have primarily been remedial with the intent to move away from environmental problems. Congressional agendas have provided specific acts related to pollution of air, water, and toxic wastes. These acts provide the regulatory powers to move away...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Communications. 61.4 Section 61.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.4 Communications. Except where otherwise specified, all communications and reports concerning...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Communications. 61.4 Section 61.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.4 Communications. Except where otherwise specified, all communications and reports concerning...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Communications. 61.4 Section 61.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.4 Communications. Except where otherwise specified, all communications and reports concerning...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Communications. 61.4 Section 61.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.4 Communications. Except where otherwise specified, all communications and reports concerning...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Communications. 61.4 Section 61.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.4 Communications. Except where otherwise specified, all communications and reports concerning...
A New Concept: Use of Negotiations in the Hazardous Waste Facility Permitting Process in New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, G.J.; Rose, W.M.; Domenici, P.V.
This paper describes a unique negotiation process leading to authorization of the U.S. Department of Energy (DOE) to manage and dispose remote-handled (RH) transuranic (TRU) mixed wastes at the Waste Isolation Pilot Plant (WIPP). The negotiation process involved multiple entities and individuals brought together under authority of the New Mexico Environment Department (NMED) to discuss and resolve technical and facility operational issues flowing from an NMED-issued hazardous waste facility Draft Permit. The novel negotiation process resulted in numerous substantive changes to the Draft Permit, which were ultimately memorialised in a 'Draft Permit as Changed'. This paper discusses various aspects ofmore » the negotiation process, including events leading to the negotiations, regulatory basis for the negotiations, negotiation participants, and benefits of the process. (authors)« less
Iron-nickel alloys as canister material for radioactive waste disposal in underground repositories
NASA Astrophysics Data System (ADS)
Apps, J. A.
1982-09-01
Canisters containing high-level radioactive waste must retain their integrity in an underground waste repository for at least one thousand years after burial (Nuclear Regulatory Commission, 1981). Since no direct means of verifying canister integrity is plausible over such a long period, indirect methods must be chosen. A persuasive approach is to examine the natural environment and find a suitable material which is thermodynamically compatible with the host rock under the environmental conditions with the host rock under the environmental conditions expected in a waste repository. Several candidates have been proposed, among them being iron-nickel alloys that are known to occur naturally in altered ultramafic rocks. The following review of stability relations among iron-nickel alloys below 3500 C is the initial phase of a more detailed evaluation of these alloys as suitable canister materials.
From macro- to microplastics - Analysis of EU regulation along the life cycle of plastic bags.
Steensgaard, Ida M; Syberg, Kristian; Rist, Sinja; Hartmann, Nanna B; Boldrin, Alessio; Hansen, Steffen Foss
2017-05-01
Plastic pollution and its environmental effects has received global attention the recent years. However, limited attention has so far been directed towards how plastics are regulated in a life cycle perspective and how regulatory gaps can be addressed in order to limit and prevent environmental exposure and hazards of macro- and microplastics. In this paper, we map European regulation taking outset in the life cycle perspective of plastic carrier bags: from plastic bag production to when it enters the environment. Relevant regulatory frameworks, directives and authorities along the life cycle are identified and their role in regulation of plastics is discussed. Most important regulations were identified as: the EU chemical Regulation, the Packaging and Packaging Waste Directive including the amending Directive regarding regulation of the consumption of lightweight plastic carrier bags, the Waste Framework Directive and the Directive on the Landfill of Waste. The main gaps identified relate to lack of clear definitions of categories of polymers, unambitious recycling rates and lack of consideration of macro- and microplastics in key pieces of legislation. We recommend that polymers are categorized according to whether they are polymers with the same monomer constituents (homopolymers) or with different monomer constituents (copolymers) and that polymers are no longer exempt from registration and evaluation under REACH. Plastics should furthermore have the same high level of monitoring and reporting requirements as hazardous waste involving stricter requirements to labelling, recordkeeping, monitoring and control over the whole lifecycle. Finally, we recommend that more ambitious recycle and recovery targets are set across the EU. Regulation of the consumption of lightweight plastic carrier bags should also apply to heavyweight plastic carrier bags. Last, the Marine and Water Framework Directives should specifically address plastic waste affecting water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Underground waste barrier structure
Saha, Anuj J.; Grant, David C.
1988-01-01
Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.
Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.
2012-07-01
Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The currentmore » Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from uranium mining and milling' is to be introduced as the legal acts and regulatory documents. The recent ICRP recommendations provide the flexible approaches for solving of such tasks. The FMBA of Russia recognizes the problems of radiation safety assurance related to the legacy of the former USSR in the uranium mining industry. Some part of the regulatory problems assumes to be solved within the EurAsEC inter-state target program 'Reclamation of the territories of the EurAsEC member states affected by the uranium mining and milling facilities'. Using the example of the uranium legacy sites in Kyrgyz and Tajikistan which could result in the tran-boundary disasters and require urgent reclamation, the experience will be gained to be used in other states as well. Harmonization of the national legislations and regulative documents on radiation safety assurance is envisaged. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigsby V.P.
2009-02-12
In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement slab], roofing, structural steel supports, interior walls, and exterior walls) and support system components including the recirculation cooling water (RCW); electrical; communication; fire protection; ventilation; process coolant; process lube oil; utilities such as steam, water and drain lines; (2) Process Piping; (3) Seal Exhaust Headers; (4) Seal Exhaust Traps; (5) Process Valves; (6) Differential Blind Multipliers (DBM)/Partial Blind Multipliers (PBM); and (7) Aftercoolers (also known as Intercell coolers). Converters and compressors while components of the process gas system, are not included in this commingled waste lot. On January 6, 2009, a meeting was held with EPA, TDEC, DOE and the team for the sole purpose of finalizing the objectives, format, and content of WPXL 6.999. The objective of WPXL 6.999 was to provide a crosswalk to the building structure and the PGE components profiles. This was accomplished by providing tables with references to the specific section of the individual profiles for each of the WLs. There are two building profiles and eight PGE profiles. All of the waste identified in the individual profiles will be commingled, shipped, and disposed exclusively under WPXL 6.999. The individual profiles were provided to the EPA and Tennessee Department of Environment and Conservation (TDEC) for information purposes only. This summary WPXL 6.999 will be submitted to EPA, TDEC, and DOE for review and approval. The format agreed upon by the regulators and DOE form the basis for WPXL 6.999. The agreed format is found on pages v and vi of the CONTENTS section of this profile. The disposal of this waste will be executed in accordance with the Action Memorandum for the Decontamination and Decommissioning of the K-25 and K-27 Buildings, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2002), Removal Action Work Plan for the K-25 and K-27 Buildings, Process Equipment Removal and Demolition, K-25/K-27 Project, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008a); Waste Handling Plan for Demolition of the K-25 and K-27 Building Structures and Remaining Components Located at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005); and Waste Handling Plan for Building K-25 West Wing Process Equipment and Piping at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008b).« less
Safe Management of Waste Generated during Shale Gas Operations
NASA Astrophysics Data System (ADS)
Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga
2017-04-01
Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.
WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kumar
2000-06-21
The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneve, M. K.; Smith, G. M.
2006-07-01
The Norwegian Government is promoting improvements in radiation protection and nuclear safety in North-West Russia. Among priority areas there is the improvement of spent nuclear fuel and radioactive waste management, as well as remediation operations at the Shore Technical Bases operated by Federal Enterprise SevRAO at Andreeva Bay and Gremikha on the Kola Peninsula. The extreme radiological conditions at these sites present novel difficulties for regulatory supervision of operations. The situation at these sites is such that the existing regulations are applicable, and actions to remedy the situation are not permitted under the current regulatory regime. An improved regulatory process,more » including development of special norms and rules, is required to take account of this unusual situation. The Norwegian strategy includes not only support to industrial projects, but also support to Russian Federation regulatory bodies, to ensure that work is carried out in compliance with Russian Federation law, taking account of international recommendations and other national good practice as relevant in the RF. Accordingly, the Norwegian Radiation Protection Authority has set up a programme of cooperation with the Federal Medical-Biological Agency (FMBA), which is the primary radiation protection authority in the RF. The work is carried out with technical input from the Russian Institute of Biophysics and with inputs from western technical support organisations. The overall objective of the work is to promote effective and efficient regulatory supervision of SevRAO activities at Andreeva Bay and Gremikha within the scope of responsibilities of FMBA. This paper describes the results of an initial threat assessment which allows consideration of the cross-cutting issues associated with developing an overall effective site management plan which deals with short- and long-term issues, and protection of workers as well as of the public and the environment, while achieving a timely and effective use of resources in order to solve the problems. (authors)« less
Progress in Norwegian-Russian Regulatory Cooperation in Management of the Nuclear Legacy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneve, M.K.; Shandala, N.K.; Smith, G.M.
2008-07-01
The Norwegian Radiation Protection Authority (NRPA) and the Federal Medical-Biological Agency (FMBA) of the Russian Federation have a collaboration programme which forms part of the Norwegian government's Plan of Action to improve radiation and nuclear safety in northwest Russia. The background to the NRPA-FMBA collaboration programme has been described in previous WM presentations. This paper presents the substantial progress made within that programme, describes ongoing progress within specific projects and sets out the value arising from wider involvement in the programme of other organisations such as NATO and the technical support derived from other national agencies such as the IAEA,more » and regulatory authorities from the USA, the UK and France. The main activities of the cooperation projects are concerned with the management of the nuclear legacy in northwest Russia, in particular the remediation of facilities, and related spent fuel and radioactive waste management, at the former Shore Technical Bases at Andreeva Bay and Gremikha Village. New regulatory guidance documents have been developed, necessary because of the special abnormal situation at these sites, now designated as Sites of Temporary Storage (STS), but also because of the transition from military to civilian regulatory supervision and the evolving regulatory system in the Russian Federation. The work has involved major technical inputs from the Russian Federation Institute of Biophysics, as well as review and advice on international recommendations and good practice in other countries provided by other technical support organisations. Projects on-going in 2007 are described which involve regulatory guidance on very Low-Level Waste management, specifically for the licensing and operation of new VLLW disposal facilities; optimisation of operational radiation protection, particularly in areas of high ambient radiation dose rate as are found in some parts of the STSs; determination of factors which can be used to identify when to apply emergency procedures before the full emergency is obvious; and development of the radio-ecological basis for identifying radiation supervision area boundaries. (authors)« less
[Hospital and environment: waste disposal].
Faure, P; Rizzo Padoin, N
2003-11-01
Like all production units, hospitals produce waste and are responsible for waste disposal. Hospital waste is particular due to the environmental risks involved, particularly concerning infection, effluents, and radionucleide contamination. Management plans are required to meet environmental, hygiene and regulatory obligations and to define reference waste products. The first step is to optimize waste sorting, with proper definition of the different categories, adequate containers (collection stations, color-coded sacks), waste circuits, intermediate then central storage areas, and finally transfer to an incineration unit. Volume and delay to elimination must be carefully controlled. Elimination of drugs and related products is a second aspect: packaging, perfusion pouches, tubing, radiopharmaceutic agents. These later products are managed with non-sealed sources whose elimination depends on the radioactive period, requiring selective sorting and specific holding areas while radioactivity declines. Elimination of urine and excreta containing anti-cancer drugs or intravesical drugs, particularly coming from protected rooms using radioactive iodine is another aspect. There is also a marginal flow of unused or expired drugs. For a health establishment, elimination of drugs is not included as part of waste disposal. This requires establishing a specific circuit with selective sorting and carefully applied safety regulations. Market orders for collecting and handling hospital wastes must be implemented in compliance with the rules of Public Health Tenders.
National profile on commercially generated low-level radioactive mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Mrochek, J.E.; Jolley, R.L.
1992-12-01
This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate themore » mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.« less
Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Robert Wesley; Hargis, Kenneth Marshall
2014-09-01
A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth Marshall
A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlementmore » agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.« less
The Retail Strategy lays out a cohesive and effective plan to address the unique challenges the retail sector has with complying with the hazardous waste regulations while reducing burden and protecting human health and the environment.
Commercial Nuclear Steam-Electric Power Plants, Part II
ERIC Educational Resources Information Center
Shore, Ferdinand J.
1974-01-01
Presents the pros and cons of nuclear power systems. Includes a discussion of the institutional status of the AEC, AEC regulatory record, routine low-level radiation hazards, transport of radioactive materials, storage of wastes, and uranium resources and economics of supply. (GS)