Sample records for waste removal operations

  1. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco

    2009-01-01

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

  2. Reducing acid leaching of manganiferous ore: Effect of the iron removal operation on solid waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca

    2009-01-15

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary ironmore » removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.« less

  3. Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods.

    PubMed

    Wang, Hou Chuan; Hwang, Jyh Feng; Chi, Kai Hsien; Chang, Moo Been

    2007-04-01

    The PCDD/F concentrations and removal efficiencies achieved with air pollution control devices (APCDs) during different operating periods (start-up, normal operation, and shut-down) at an existing municipal waste incinerator (MWI) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP), wet scrubbers (WS), and selective catalytic reduction system (SCR) as APCDs. The sampling results indicate that the PCDD/F concentrations at the EP inlet during start-up period were 15 times higher than that measured during normal operation period. The PCDD/F concentration observed at shut-down period was close to that measured at normal operation period. The CO concentration was between 400 and 1000 ppm during start-up period, which was about 50 times higher compared with the normal operation. Hence, combustion condition significantly affected the PCDD/F formation concentration during the waste incineration process. In addition, the distributions of the PCDD/F congeners were similar at different operating periods. During the normal operation and shut-down periods, the EP decreases the PCDD/F concentration (based on TEQ) by 18.4-48.6%, while the removal efficiency of PCDD/Fs achieved with SCR system reaches 99.3-99.6%. Nevertheless, the PCDD/F removal efficiency achieved with SCR was only 42% during the 19-h start-up period due to the low SCR operating temperature (195 degrees C).

  4. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WILLIS, W.L.

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  5. Ethene removal from a synthetic waste gas using a dry biobed.

    PubMed

    De Heyder, B; Overmeire, A; Van Langenhove, H; Verstraete, W

    1994-08-20

    A packed granular activated carbon (GAC) biobed, inoculated with the ethane-degrading strain Mycobacterium E3, was used to study ethene removal from a synthetic waste gas. Ethene, for which the dimensionless partition coefficient for an air-water system at 20 degrees C is about 7.6, was used as a model compound for poorly water soluble gaseous pollutants. In a first mode or operation, the GAC biobed was sprinkled intermittently and the waste gas influent was continuously pre-humidified, establishing relatively moist conditions (water content >40% to 45%). A volumetric ethene removal rate of 0.382 kg COD x m(-3) x d(-1) (0.112 kg ethene x m(-3) x d(-1)) was obtained for an influent concentration of 125 ppm, a superficial waste gas velocity of 3.6E-3 m x s(-1) and a pseudo residence time of 45 s. However, in the second mode of operation, omitting the pre-humidification of the waste gas influent and establishing a "dry" biobed (water content <40% to 45%), and thus obtaining better mass transfer to the biofilm, the ethene removal could be doubled for otherwise comparable operating parameters. Furthermore, under decreased wetting and for the given experimental conditions (influent concentration 125 to 816 ppm, waste gas superficial velocity 3.0E-3 m x s(-1), pseudo waste gas residence time 43 s), the ethene removal was not limited by mass transfer of ethene through the water layer covering the biofilm.

  6. Ethene removal from a synthetic waste gas using a dry biobed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Heyder, B.; Overmeire, A.; Van Langenhove, H.

    A packed granular activated carbon (GAC) biobed, inoculated with the ethene-degrading strain Mycobacterium E3, was used to study ethene removal from a synthetic waste gas. Ethene, for which the dimensionless partition coefficient for an air-water system at 20C is about 7.6, was used as a model compound for poorly water soluble gaseous pollutants. In a first mode of operation, the GAC biobed was sprinkled intermittently and the waste gas influent was continuously pre-humidified, establishing relatively moist conditions. A volumetric ethene removal rate of 0.382 kg COD [center dot] m[sup [minus]3] [center dot] d[sup [minus]1] was obtained for an influent concentrationmore » of 125 ppm, a superficial waste gas velocity of 3.6E-3 m [center dot] s[sup [minus]1] and a pseudo residence time of 45 s. However, in the second mode of operation, omitting the pre-humidification of the waste gas influent and establishing a dry'' biobed and thus obtaining better mass transfer to the biofilm, the ethene removal could be doubled for otherwise comparable operating parameters. Furthermore, under decreased wetting and for the given experimental conditions, the ethene removal was not limited by mass transfer of ethene through the water layer covering the biofilm.« less

  7. Protein removal from waste brines generated during ham salting through acidification and centrifugation.

    PubMed

    Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel

    2014-03-01

    The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®

  8. Removal of boron (B) from waste liquors.

    PubMed

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  9. Operative costs, reasons for operative waste, and vendor credit replacement in spinal surgery.

    PubMed

    Epstein, Nancy E; Roberts, Rita; Collins, John

    2015-01-01

    In 2012, Epstein et al. documented that educating spinal surgeons reduced the cost of operative waste (explanted devices: placed but removed prior to closure) occurring during anterior cervical diskectomy/fusion from 20% to 5.8%.[5] This prompted the development of a two-pronged spine surgeon-education program (2012-2014) aimed at decreasing operative costs for waste, and reducing the nine reasons for operative waste. The spine surgeon-education program involved posting the data for operative costs of waste and the nine reasons for operative waste over the neurosurgery/orthopedic scrub sinks every quarter. These data were compared for 2012 (latter 10 months), 2013 (12 months), and 2014 (first 9 months) (e.g. data were normalized). Savings from a 2013 Vendor Credit Replacement program were also calculated. From 2012 to 2013 and 2014, spinal operative costs for waste were, respectively reduced by 64.7% and 61% for orthopedics, and 49.4% and 45.2% for neurosurgery. Although reduced by the program, the major reason for operative waste for all 3 years remained surgeon-related factors (e.g. 159.6, to 67, and 96, respectively). Alternatively, the eight other reasons for operative waste were reduced from 68.4 (2012) to 12 (2013) and finally to zero by 2014. Additionally, the Vendor Replacement program for 2013 netted $78,564. The spine surgeon-education program reduced the costs/reasons for operative waste for 2012 to lower levels by 2013 and 2014. Although the major cost/reasons for operative waste were attributed to surgeon-related factors, these declined while the other eight reasons for operative waste were reduced to zero by 2014.

  10. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leist, K.J.

    1998-02-18

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ``Compliant``and One Trip Port DO-07402B is designated as ``Non Compliant``. As the processingmore » (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it`s state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.« less

  11. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    PubMed

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    canned motor pumps designed to fit within available risers and have significant agitation capabilities to suspend waste solids. Waste removal and closure of two tanks has been accomplished with agitation provided by 3 SMPs installed within the tanks. In 2012, a team was assembled to investigate alternative solids removal technologies to support waste removal for closing tanks. The goal of the team was to find a more cost effective approach that could be used to replace the current mixing pump technology. This team was unable to identify an alternative technology outside of mixing pumps to support waste agitation and removal from SRS waste tanks. However, the team did identify a potentially lower cost mixing pump compared to the baseline SLPs and SMPs. Rather than using the traditional procurement using an engineering specification, the team proposed to seek commercially available submersible mixer pumps (CSMP) as alternatives to SLPs and SMPs. SLPs and SMPs have a high procurement cost and the actual cost of moving pumps between tanks has shown to be significantly higher than the original estimates that justified the reuse of SMPs and SLPs. The team recommended procurement of “off-the-shelf” industry pumps which may be available for significant savings, but at an increased risk of failure and reduced operating life in the waste tank. The goal of the CSMP program is to obtain mixing pumps that could mix from bulk waste removal through tank closure and then be abandoned in place as part of tank closure. This paper will present the development, progress and relative advantages of the CSMP.« less

  13. Determination of biological removal of recalcitrant organic contaminants in coal gasification waste water.

    PubMed

    Ji, Qinhong; Tabassum, Salma; Yu, Guangxin; Chu, Chunfeng; Zhang, Zhenjia

    2015-01-01

    Coal gasification waste water treatment needed a sustainable and affordable plan to eliminate the organic contaminants in order to lower the potential environmental and human health risk. In this paper, a laboratory-scale anaerobic-aerobic intermittent system carried out 66 operational cycles together for the treatment of coal gasification waste water and the removal capacity of each organic pollutant. Contaminants included phenols, carboxylic acids, long-chain hydrocarbons, and heterocyclic compounds, wherein the relative content of phenol is up to 57.86%. The long-term removal of 77 organic contaminants was evaluated at different hydraulic retention time (anaerobic24 h + aerobic48 h and anaerobic48 h +aerobic48 h). Contaminant removal ranged from no measurable removal to near-complete removal with effluent concentrations below the detection limit. Contaminant removals followed one of four trends: steady-state removal throughout, increasing removal to steady state (acclimation), decreasing removal, and no removal. Organic degradation and transformation in the reaction were analysed by gas chromatography/mass spectrometry technology.

  14. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  15. The As removal from arsenopyrite-bearing mine waste by microwave

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo; Myung, Eun Ji; Hack Lim, Dae; Kim, Bong Ju; Park, Cheon Young

    2016-04-01

    Penalties incurred by miners for arsenic in concentrates have increased significantly because the removal and disposal of arsenic is difficult and costly for smelters and because the environmental challenges are increasing worldwide. Typically miners incur penalties on arsenic in concentrates above 0.2% As with smelter rejection limits of 0.5%. Therefore, finding an effective solution for removing As during primary mining activities is necessary to avoid penalty. The aim of this study was to investigate the As removal from mine waste using microwave process. The mine waste samples were characterized by chemical and XRD analysis. To determine of As removal from the microwave experiments, aqua regia digestion was performed according to Korean environmental standard method(KESM) and the As removal effect were evaluated using the standard EPA toxicity characteristic leaching procedure(TCLP, EPA 1311 method). The result of mineralogical character for mine waste using XRD was detected arsenopyrite, pyrite, chalcopyrite, pyrrhotite and quartz. The chemical analysis of As, Pb, Zn contents in the mine waste measured 13,896.0, 896.1 and 1,054.6 mg/kg, respectively. The As removal of experiments was conducted to examine the effects of microwave exposure time(1~15min). The results showed that the As removal in mine waste (exposure time = 10min) was 92.90%, and the temperature of mine waste by microwave heating was 886℃. The TCLP leaching of treated mine waste by microwave measured values were below the EPA's current regulatory threshold(As, Pb, Zn : 5 mg/L). The optimum condition of microwave exposure for As removal from arsenopyrite-bearing mine waste was obtained at 800W, 2450MHz, 10min. Acknowledgment : This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea

  16. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  17. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  18. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia

    2000-12-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10.more » Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste.« less

  19. [Removal of toluene from waste gas by honeycomb adsorption rotor with modified 13X molecular sieves].

    PubMed

    Wang, Jia-De; Zheng, Liang-Wei; Zhu, Run-Ye; Yu, Yun-Feng

    2013-12-01

    The removal of toluene from waste gas by Honeycomb Adsorption Rotor with modified 13X molecular sieves was systematically investigated. The effects of the rotor operating parameters and the feed gas parameters on the adsorption efficiency were clarified. The experimental results indicated that the honeycomb adsorption rotor had a good humidity resistance. The removal efficiency of honeycomb adsorption rotor achieved the maximal value with optimal rotor speed and optimal generation air temperature. Moreover, for an appropriate flow rate ratio the removal efficiency and energy consumption should be taken into account. When the recommended operating parameters were regeneration air temperature of 180 degrees C, rotor speed of 2.8-5 r x h(-1), flow rate ratio of 8-12, the removal efficiency kept over 90% for the toluene gas with concentration of 100 mg x m(-3) and inlet velocity of 2 m x s(-1). The research provided design experience and operating parameters for industrial application of honeycomb adsorption rotor. It showed that lower empty bed velocity, faster rotor speed and higher temperature were necessary to purify organic waste gases of higher concentrations.

  20. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    PubMed

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  1. Utilization of Waste Biomass (Kitchen Waste) Hydrolysis Residue as Adsorbent for Dye Removal: Kinetic, Equilibrium, and Thermodynamic Studies.

    PubMed

    Li, Panyu; Chen, Xi; Zeng, Xiaotong; Zeng, Yu; Xie, Yi; Li, Xiang; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui

    2018-02-02

    Kitchen waste hydrolysis residue (KWHR), which is produced in the bioproduction process from kitchen waste (KW), is usually wasted with potential threats to the environment. Herein, experiments were carried out to evaluate the potential of KWHR as adsorbent for dye (methylene blue, MB) removal from aqueous solution. The adsorbent was characterized using FT-IR and SEM. Adsorption results showed that the operating variables had great effects on the removal efficiency of MB. Kinetic study indicated pseudo-second-order model was suitable to describe the adsorption process. Afterwards, the equilibrium data were well fitted by using Langmuir isotherm model, suggesting a monolayer adsorption. The Langmuir monolayer adsorption capacity was calculated to be 110.13 mg/g, a level comparable to some other low-cost adsorbents. It was found that the adsorption process of MB onto KWHR was spontaneous and exothermic through the estimation of thermodynamic parameters. Thus, KWHR was of great potential to be an alternative adsorbent material to improve the utilization efficiency of bioresource (KW) and lower the cost of adsorbent for color treatment.

  2. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  3. Robots remove explosive waste from flooded site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    Explosive industrial waste can remain hazardous for years, making remediation extremely dangerous, particularly when using traditional methods involving people and manually operated equipment. The work is even more complex if the waste is submerged. Authorities in 1988 faced an unusual challenge when they decided to clean up a flooded area that had been used for more than 30 years as a dump for explosive materials. They devised an innovative but highly effective solution. Instead of using divers, two robots perform the cleanup while site personnel remain 600 feet away from the restricted area. The robots were developed by Sonsub Environmentalmore » Services Inc. (Houston), which is responsible for their operation. The robots initially located and cleared a small area underwater to set up a metal-processing system, which also was designed by Sonsub. The system is similar to a metal-recycling shredder. The robots then assembled the 25-foot-tall, 20-ton system 60 feet below the surface on the pit floor. A large, surface robot carried sections of the shredder to the cleared area and lowered them, while a smaller, submersible robot guided them into position. This required extreme precision by the smaller robot, which had to ensure that sections mated properly. Both robots now retrieve waste from the pit bottom and feed it into the shredder. The larger robot has a 40-foot jointed arm for lifting up to 1,000 pounds of debris, a manipulator hand for sorting through rock piles and removing small containers, and a grapple for picking up items from the pit floor.« less

  4. Removal of chromium(III) from aqueous waste solution by liquid-liquid extraction in a circular microchannel.

    PubMed

    Luo, Jian Hong; Li, Jun; Guo, Lei; Zhu, Xin Hua; Dai, Shuang; Li, Xing

    2017-11-01

    A new circular microchannel device has been proposed for the removal of chromium(III) from aqueous waste solution by using kerosene as a diluent and (2-ethylhexyl) 2-ethylhexyl phosphonate as an extractant. The proposed device has several advantages such as a flexible and easily adaptable design, easy maintenance, and cheap setup without the requirement of microfabrication. To study the extraction efficiency and advantages of the circular microchannel device in the removal of chromium(III), the effects of various operating conditions such as the inner diameter of the channel, the total flow velocity, the phase ratio, the initial pH of aqueous waste solution, the reaction temperature and the initial concentration of extractant on the extraction efficiency are investigated and the optimal process conditions are obtained. The results show that chromium(III) in aqueous waste solution can be effectively removed with (2-ethylhexyl) 2-ethylhexyl phosphonate in the circular microchannel. Under optimized conditions, an extraction efficiency of chromium(III) of more than 99% can be attained and the aqueous waste solution can be discharged directly, which can meet the Chinese national emission standards.

  5. Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal

    NASA Astrophysics Data System (ADS)

    Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.

    2017-06-01

    Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.

  6. Nuclear energy waste-space transportation and removal

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  7. Standard Waste Box Lid Screw Removal Option Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  8. Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate.

    PubMed

    Yang, Y; Wang, Z M; Liu, C; Guo, X C

    2012-01-01

    Construction solid waste (CSW), an inescapable by-product of the construction and demolition process, was used as main substrate in a four-stage vertical subsurface flow constructed wetland system to improve phosphorus P removal from domestic wastewater. A 'tidal flow' operation was also employed in the treatment system. Under a hydraulic loading rate (HLR) of 0.76 m3/m2 d for 1st and 3rd stage and HLR of 0.04 m3/m2 d for 2nd and 4th stage of the constructed wetland system respectively and tidal flow operation strategy, average removal efficiencies of 99.4% for P, 95.4% for ammoniacal-nitrogen, 56.5% for total nitrogen and 84.5% for total chemical oxygen demand were achieved during the operation period. The CSW-based constructed wetland system presents excellent P removal performance. The adoption of tidal flow strategy creates the aerobic/anoxic condition intermittently in the treatment system. This can achieve better oxygen transfer and hence lead to more complete nitrification and organic matter removal and enhanced denitrification. Overall, the CSW-based tidal flow constructed wetland system holds great promise for enabling high rate removal of P, ammoniacal-nitrogen and organic matter from domestic wastewater, and transforms CSW from a waste into a useful material.

  9. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... time after disposal. Such documentation shall include an analysis of the technological feasibility of...

  10. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... time after disposal. Such documentation shall include an analysis of the technological feasibility of...

  11. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... time after disposal. Such documentation shall include an analysis of the technological feasibility of...

  12. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... time after disposal. Such documentation shall include an analysis of the technological feasibility of...

  13. Structure modification of natural zeolite for waste removal application

    NASA Astrophysics Data System (ADS)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  14. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  15. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS CRITERIA... disposal. Such documentation shall include an analysis of the technological feasibility of mining the...

  16. Natural diatomite process for removal of radioactivity from liquid waste.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  17. Ammonia nitrogen removal from aqueous solution by local agricultural wastes

    NASA Astrophysics Data System (ADS)

    Azreen, I.; Lija, Y.; Zahrim, A. Y.

    2017-06-01

    Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied.

  18. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  19. Savannah River Site Operating Experience with Transuranic (TRU) Waste Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, K.A.; Milner, T.N.

    2006-07-01

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads from the 1970's through the 1980's. These drums were subsequently covered with tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This papermore » will describe the operating experience and lessons learned from the SRS retrieval activities. (authors)« less

  20. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    PubMed

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been

  2. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

    PubMed

    Guha, Saumyen; Bhargava, Puja

    2005-01-01

    Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.

  3. Review of hydrophilic PP membrane for organic waste removal

    NASA Astrophysics Data System (ADS)

    Ariono, Danu; Wardani, Anita Kusuma

    2017-05-01

    The acceleration of industrialization in developing countries has given an impact of environmental pollution rapidly, such as contamination of groundwater with organic waste. To solve this problem, some membrane techniques have been performed to remove organic waste from water, such as membrane contactors, membrane bioreactors, and supported liquid membranes. Polypropylene (PP) membrane is one of the promising candidates for these membrane processes due to its chemical stability, low cost, good mechanical resistance, and being easily available. However, different processes require membranes with different surface properties. Hydrophobic PP membranes with excellent chemical stability can be directly used in membrane contactors, in which the organic phase wets the porous membrane and slightly excessive pressure applied to the other phase. On the other hand, hydrophilization of PP membrane is necessary for some other processes, such as for fouling reduction on membrane bioreactors due to organic matters deposition. The aim of this paper is to give a brief overview of removal of organic waste by PP membrane. Moreover, the effects of PP surface hydrophilization on antifouling properties are also discussed.

  4. Removal of arsenic from aqueous solutions using waste iron columns inoculated with iron bacteria.

    PubMed

    Azhdarpoor, Abooalfazl; Nikmanesh, Roya; Samaei, Mohammad Reza

    2015-01-01

    Arsenic contamination of water resources is one of the serious risks threatening natural ecosystems and human health. This study investigates arsenic removal using a waste iron column with and without iron bacteria in continuous and batch phases. In batch experiments, the effects of pH, contact time, initial concentration of arsenic and adsorbent dose were investigated. Results indicated that the highest arsenate removal efficiency occurred at pH 7 (96.76%). On increasing the amount of waste iron from 0.25 to 1 g, the removal rate changed from about 42.37%-96.70%. The results of continuous experiments on the column containing waste iron showed that as the empty bed contact time increased from 5 to 60 min, the secondary arsenate concentration changed from 23 to 6 µg/l. In experiments involving a waste iron column with iron bacteria, an increase in residence time from 5 to 60 min decreased the secondary arsenate concentration from 14.97 to 4.86 µg/l. The results of this study showed that waste iron containing iron bacteria is a good adsorbent for removal of arsenic from contaminated water.

  5. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Pareizs, John M.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  6. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  7. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  8. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  9. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  10. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  11. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  12. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  13. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  14. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  15. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  16. Precipitation process for the removal of technetium values from nuclear waste solutions

    DOEpatents

    Walker, D.D.; Ebra, M.A.

    1985-11-21

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  17. Let's Waste Less Waste, Level 4. Teacher Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  18. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland.

    PubMed

    Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun

    2018-03-01

    Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH 4 + -N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H 2 S, NH 3 , greenhouse gas (N 2 O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H 2 S, NH 3 and N 2 O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterization of leaf waste based biochar for cost effective hydrogen sulphide removal from biogas.

    PubMed

    Sahota, Shivali; Vijay, Virendra Kumar; Subbarao, P M V; Chandra, Ram; Ghosh, Pooja; Shah, Goldy; Kapoor, Rimika; Vijay, Vandit; Koutu, Vaibhav; Thakur, Indu Shekhar

    2018-02-01

    Installation of decentralized units for biogas production along with indigenous upgradation systems can be an effective approach to meet growing energy demands of the rural population. Therefore, readily available leaf waste was used to prepare biochar at different temperatures and employed for H 2 S removal from biogas produced via anaerobic digestion plant. It is found that biochar prepared via carbonization of leaf waste at 400 °C effectively removes 84.2% H 2 S (from 1254 ppm to 201 ppm) from raw biogas for 25 min in a continuous adsorption tower. Subsequently, leaf waste biochar compositional, textural and morphological properties before and after H 2 S adsorption have been analyzed using proximate analysis, CHNS, BET surface area, FTIR, XRD, and SEM-EDX. It is found that BET surface area, pore size, and textural properties of leaf waste biochar plays a crucial role in H 2 S removal from the biogas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support.

  1. The feasibility of applying immature yard-waste compost to remove nitrate from agricultural drainage effluents: A preliminary assessment

    USGS Publications Warehouse

    Tsui, L.; Krapac, I.G.; Roy, W.R.

    2007-01-01

    Nitrate is a major agricultural pollutant found in drainage waters. Immature yard-waste compost was selected as a filter media to study its feasibility for removing nitrate from drainage water. Different operation parameters were tested to examine the denitrification efficiency, including the amounts of compost packed in columns, the flow rate, and the compost storage periods. The experimental results suggested that hydraulic retention time was the major factor to determine the extent of nitrate removal, although the amount of compost packed could also contribute to the nitrate removal efficiency. The effluent nitrate concentration increased as the flow rate decreased, and the compost column reduced nitrate concentrations from 20 mg/L to less than 5 mg/L within 1.5 h. The solution pH increased at the onset of experiment because of denitrification, but stabilized at a pH of about 7.8, suggesting that the compost had a buffering capacity to maintain a suitable pH for denitrification. Storing compost under air-dried conditions may diminish the extent nitrate removed initially, but the effects were not apparent after longer applications. It appeared that immature yard-waste compost may be a suitable material to remove nitrate from tile drainage water because of its relatively large organic carbon content, high microbial activity, and buffering capacity. ?? 2006 Elsevier B.V. All rights reserved.

  2. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    PubMed

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  3. Biosorbents based on agricultural wastes for ionic liquid removal: An approach to agricultural wastes management.

    PubMed

    Yu, Fang; Sun, Li; Zhou, Yanmei; Gao, Bin; Gao, Wenli; Bao, Chong; Feng, Caixia; Li, Yonghong

    2016-12-01

    Modified biochars produced from different agricultural wastes were used as low-cost biosorbents to remove hydrophilic ionic liquid, 1-butyl-3-methyl-imidazolium chloride ([BMIM][Cl]). Herein, the biosorbents based on peanut shell, corn stalk and wheat straw (denoted as PB-K-N, CB-K-N and WB-K-N) all exhibited higher [BMIM][Cl] removal than many other carbonaceous adsorbents and the adsorption capacities were as the following: PB-K-N > CB-K-N > WB-K-N. The characterizations of biosorbents indicated that they had great deal of similarity in morphological, textural and surface chemical properties such as possessing simultaneously accessible microporous structure and abundant oxygen-containing functional groups. Additionally, adsorption of [BMIM][Cl] onto PB-K-N, CB-K-N and WB-K-N prepared from the modified process, which was better described by pseudo-second order kinetic and Freundlich isotherm models. Therefore, the viable approach could also be applied in other biomass materials treatment for the efficient removal of ILs from aqueous solutions, as well as recycling agricultural wastes to ease their disposal pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect and removal mechanisms of 6 different washing agents for building wastes containing chromium.

    PubMed

    Xing-run, Wang; Yan-xia, Zhang; Qi, Wang; Jian-min, Shu

    2012-01-01

    With the building wastes contaminated by chromium in Haibei Chemical Plan in China as objects, we studied the contents of total Cr and Cr (VI) of different sizes, analyzed the effect of 6 different washing agents, discussed the removal mechanisms of 6 different washing agents for Cr in various forms, and finally selected applicable washing agent. As per the results, particle size had little impact on the contents of total Cr and Cr (VI); after one washing with water, the removal rate of total Cr and Cr (VI) was 75% and 78%, respectively, and after the second washing with 6 agents, the removal rate of citric acid was the highest, above 90% for total Cr and above 99% for hexavalent chromium; the pH of building wastes were reduced by citric acid, and under acid condition, hexavalent chromium was reduced to trivalent chromium spontaneously by organic acid, which led to better removal rate of acid soluble Cr and reducible Cr; due to the complexing action, citric acid had best removal rate for oxidizable trivalent chromium. In conclusion, citric acid is the most applicable second washing agent for building wastes.

  5. Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.

    The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility thatmore » houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS

  6. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... management activities under a RAP at a location removed from the area where the remediation wastes originated? (a) You may request a RAP for remediation waste management activities at a location removed from the...

  7. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... management activities under a RAP at a location removed from the area where the remediation wastes originated? (a) You may request a RAP for remediation waste management activities at a location removed from the...

  8. Paint removal activities in the US Navy

    NASA Astrophysics Data System (ADS)

    Kozol, Joseph

    1993-03-01

    Use of methylene chloride and phenol based chemical strippers for aircraft paint removal generates large quantities of hazardous waste and creates health and safety problems for operating personnel. This paper presents an overview of the U.S. Navy's activities in the investigation and implementation of alternate paint stripping methods which will minimize or eliminate hazardous waste and provide a safe operating environment. Alternate paint removal methods under investigation by the Navy at the present time include use of non-hazardous chemical paint removers, xenon flashlamp/CO2 pellets, lasers and plastic media. Plastic media blasting represents a mature technology in current usage for aircraft paint stripping and is being investigated for determination of its effects on Navy composite aircraft configurations.

  9. Enhancement of ethene removal from waste gas by stimulating nitrification.

    PubMed

    de heyder, B; van Elst, T; van Langenhove, H; Verstraete, W

    1997-01-01

    The treatment of poorly water soluble waste gas compounds, such as ethene, is associated with low substrate concentration levels in the liquid phase. This low concentration level might hamper the optimal development of a microbial population. In this respect, the possible benefit of introducing nitrifying activity in the heterotrophic removal of ethene at moderate concentrations (< 1000 ppm) from a waste gas was investigated. Nitrifying activity is known to be associated with (i) the production of soluble microbial products, which can act as (co-)substrates for heterotrophic micro-organisms and (ii) the co-oxidation of ethene. The used reactor configuration was a packed granular activated carbon biobed inoculated with the heterotrophic strain Mycobacterium E3. The nitrifying activity was introduced by regular submersion in a nitrifying medium prepared from (i) compost or (ii) activated sludge. In both cases a clear enhancement of the volumetric removal rate of ethene could be observed. When combined with a NH3 dosage on a daily basis, a gradual increase of the volumetric removal rate of ethene could be observed. For a volumetric loading rate of 3 kg ethene-COD.m-3.d-1, the volumetric removal rate could thus be increased with a factor 1.8, i.e. from 0.72 to a level of 1.26 kg ethene-COD.m-3.d-1.

  10. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RT Hallen; SA Bryan; FV Hoopes

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRUmore » removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000

  11. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    NASA Astrophysics Data System (ADS)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  12. Heavy metal removal from waste waters by ion flotation.

    PubMed

    Polat, H; Erdogan, D

    2007-09-05

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under optimum conditions at low pH. At basic pH it became as high as 90%, probably due to the contribution from the flotation of metal precipitates.

  13. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    PubMed

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  14. Process for removing thorium and recovering vanadium from titanium chlorinator waste

    DOEpatents

    Olsen, Richard S.; Banks, John T.

    1996-01-01

    A process for removal of thorium from titanium chlorinator waste comprising: (a) leaching an anhydrous titanium chlorinator waste in water or dilute hydrochloric acid solution and filtering to separate insoluble minerals and coke fractions from soluble metal chlorides; (b) beneficiating the insoluble fractions from step (a) on shaking tables to recover recyclable or otherwise useful TiO.sub.2 minerals and coke; and (c) treating filtrate from step (a) with reagents to precipitate and remove thorium by filtration along with acid metals of Ti, Zr, Nb, and Ta by the addition of the filtrate (a), a base and a precipitant to a boiling slurry of reaction products (d); treating filtrate from step (c) with reagents to precipitate and recover an iron vanadate product by the addition of the filtrate (c), a base and an oxidizing agent to a boiling slurry of reaction products; and (e) treating filtrate from step (d) to remove any remaining cations except Na by addition of Na.sub.2 CO.sub.3 and boiling.

  15. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  16. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE PAGES

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    2017-03-16

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  17. Benzene waste operations NESHAP. Waiver guidance document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    Subpart FF of 40 CFR Part 61 addresses benzene emissions from waste operations at petroleum refineries, chemical manufacturing plants, coke by-product plants, and waste management units that manage wastes from these facilities. Subpart FF, also known as the benzene waste operations national emission standards for hazardous air pollutants (NESHAP), was amended and published in the Federal Register on January 7, 1993. Facilities unable to comply with the NESHAP by April 7, 1993, may apply for a waiver of compliance for a period that shall not extend beyond January 7, 1995. As a condition of the waiver, facilities will be requiredmore » to mitigate benzene air emissions that result from the delay in compliance with the NESHAP. The document outlines the goals and objectives of the benzene waste NESHAP waiver policy, and provides guidance for preparing, reviewing and evaluating waiver requests.« less

  18. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    PubMed

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Operating room waste reduction in plastic and hand surgery.

    PubMed

    Albert, Mark G; Rothkopf, Douglas M

    2015-01-01

    Operating rooms (ORs), combined with labour and delivery suites, account for approximately 70% of hospital waste. Previous studies have reported that recycling can have a considerable financial impact on a hospital-wide basis; however, its importance in the OR has not been demonstrated. To propose a method of decreasing cost through judicious selection of instruments and supplies, and initiation of recycling in plastic and hand surgery. The authors identified disposable supplies and instruments that are routinely opened and wasted in common plastic and hand surgery procedures, and calculated the savings that can result from eliminating extraneous items. A cost analysis was performed, which compared the expense of OR waste versus single-stream recycling and the benefit of recycling HIPAA documents and blue wrap. Fifteen total items were removed from disposable plastic packs and seven total items from hand packs. A total of US$17,381.05 could be saved per year from these changes alone. Since initiating single-stream recycling, the authors' institution has saved, on average, US$3,487 per month at the three campuses. After extrapolating at the current savings rate, one would expect to save a minimum of US$41,844 per year. OR waste reduction is an effective method of decreasing cost in the surgical setting. By revising the contents of current disposable packs and instrument sets designated for plastic and hand surgery, hospitals can reduce the amount of opened and unused material. Significant financial savings and environmental benefit can result from this judicious supply and instrument selection, as well as implementation of recycling.

  20. Hazardous-waste analysis plan for LLNL operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R.S.

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less

  1. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding themore » RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d

  2. Mechanisms for parasites removal in a waste stabilisation pond.

    PubMed

    Reinoso, Roberto; Blanco, Saúl; Torres-Villamizar, Linda A; Bécares, Eloy

    2011-04-01

    A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m(-2) day(-1), respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.

  3. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions.

    PubMed

    Srivastava, Sudhakar; Bhainsa, K C

    2016-02-01

    The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste.

    PubMed

    Fahim, N F; Barsoum, B N; Eid, A E; Khalil, M S

    2006-08-21

    Chromium is commonly found in huge quantities in tannery wastewaters. For this reason, the removal and recovery of the chromium content of tannery wastewaters is crucial for environmental protection and economic reasons. Removal and recovery of chromium were carried out by using low-cost potential adsorbents. For this purpose three types of activated carbon; C1, the waste generated from sugar industry as waste products and the others (C2, C3) are commercial granular activated carbon, were used. The adsorption process and extent of adsorption are dependent on the physical and chemical characteristics of the adsorbent, adsorbate and experimental condition. The effect of pH, particle size and different adsorbent on the adsorption isotherm of Cr(III) was studied in batch system. The sorption data fitted well with Langmuir adsorption model. The efficiencies of activated carbon for the removal of Cr(III) were found to be 98.86, 98.6 and 93 % for C1, C2 and C3, respectively. The order of selectivity is C1>C2>C3 for removal of Cr(III) from tannery wastewater. Carbon "C1" of the highest surface area (520.66 m(2)/g) and calcium content (333.3 mg/l) has the highest adsorptive capacity for removal of Cr(III). The results revealed that the trivalent chromium is significantly adsorbed on activated carbon collected from sugar industry as waste products and the method could be used economically as an efficient technique for removal of Cr(III) and purification of tannery wastewaters.

  5. IET control building (TAN620). equipment removed. Lube oil and waste ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). equipment removed. Lube oil and waste piping at upper right. Fire door on right. Rebar exposed in concrete of ceiling. INEEL negative no. HD-21-5-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  7. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  8. [Removal of mixed waste gases by the biotrickling filter].

    PubMed

    Zhang, Ding-Feng; Fang, Jun-Yi; Ye, Jie-Xu; Qiu, Song-Kai; Qian, Dong-Sheng; Dai, Qi-Zhou; Chen, Dong-Zhi

    2013-06-01

    A biotrickling filter (BTF) was designed for treating mixed waste gases, which contained hydrogen sulfide (H2S), tetrahydrofuran (THF) and dichloromethane (DCM) at the start-up and steady states. The removal efficiency of H2S and DCM could maintain about 99% and 60%, respectively, and the removal efficiency of DCM was reduced from 90% to 37% with the shortening empty bed retention time (EBRT) form 50 to 20 seconds when the inlet concentrations were 200, 100, 100 mg x m(-3) of H2S, THF, DCM, respectively. In the theoretical study, the biodegradation efficiency of contaminants was H2S > THF > DCM by analyzing the Michaelis-Menten Dynamic model.

  9. Ammonia removal in food waste anaerobic digestion using a side-stream stripping process.

    PubMed

    Serna-Maza, A; Heaven, S; Banks, C J

    2014-01-01

    Three 35-L anaerobic digesters fed on source segregated food waste were coupled to side-stream ammonia stripping columns and operated semi-continuously over 300 days, with results in terms of performance and stability compared to those of a control digester without stripping. Biogas was used as the stripping medium, and the columns were operated under different conditions of temperature (55, 70, 85 °C), pH (unadjusted and pH 10), and RT (2-5 days). To reduce digester TAN concentrations to a useful level a high temperature (≥70 °C) and a pH of 10 were needed; under these conditions 48% of the TAN was removed over a 138-day period without any detrimental effects on digester performance. Other effects of the stripping process were an overall reduction in digestate organic nitrogen-containing fraction compared to the control and a recovery in the acetoclastic pathway when TAN concentration was 1770±20 mg kg(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Utilization and recycling of industrial magnesite refractory waste material for removal of certain radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcos, T.N.; Tadrous, N.A.; Borai, E.H.

    2007-07-01

    Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less

  11. Waste Out of Place, Level 1. Teacher Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  12. Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Won-Seok; Nam, Seongsik; Chang, Seeun

    Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less

  13. Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process

    DOE PAGES

    Kim, Won-Seok; Nam, Seongsik; Chang, Seeun; ...

    2017-08-13

    Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less

  14. Adsorption and removal of arsenic from water by iron ore mining waste.

    PubMed

    Nguyen, Tien Vinh; Nguyen, Thi Van Trang; Pham, Tuan Linh; Vigneswaran, Saravanamuth; Ngo, Huu Hao; Kandasamy, J; Nguyen, Hong Khanh; Nguyen, Duc Tho

    2009-01-01

    There is a global need to develop low-cost technologies to remove arsenic from water for individual household water supply. In this study, a purified and enriched waste material (treated magnetite waste, TMW) from the Trai Cau's iron ore mine in the Thai Nguyen Province in Vietnam was examined for its capacity to remove arsenic. The treatment system was packed with TMW that consisted of 75% of ferrous-ferric oxide (Fe(3)O(4)) and had a large surface area of 89.7 m(2)/g. The experiments were conducted at a filtration rate of 0.05 m/h to treat groundwater with an arsenic concentration of 380 microg/L and iron, manganese and phosphate concentrations of 2.07 mg/L, 0.093 mg/L and 1.6 mg/L respectively. The batch experimental results show that this new material was able to absorb up to 0.74 mg arsenic/g. The results also indicated that the treatment system removed more than 90% arsenic giving an effluent with an arsenic concentration of less than 30 microg/L while achieving a removal efficiency of about 80% for Mn(2 + ) and PO(4) (3-). This could be a promising and cost-effective new material for capturing arsenic as well as other metals from groundwater.

  15. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at

  16. Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of Olin Chemicals Group, Charleston, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, M.S.

    1983-08-01

    A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at Olin Chemicals Group (SIC-2800, SIC-2812, SIC-2819), Charleston, Tennessee in May 1982. Hazardous wastes generated at the facility included brine sludge, thick mercury (7439954) (Hg) butter, and calcium-hypochlorite (7778543). An estimated 8500 tons of waste were disposed of annually. The Hg waste underwent a retorting process that recycled the Hg. The final detoxified waste was land filled. Brine sludge and calcium-hypochlorite were also land filled. No controls beyond those normally used at such sites were found at the landfills. Periodic monitoring of Hg vapor concentrationsmore » was conducted by the company. Medical monitoring of urine for Hg exposure was conducted. Specific limits were set for urinary Hg concentrations. When these limits were exceeded the workers were removed from exposure. Personal protective equipment consisted of hard hats, safety glasses, and spirators specially designed for Hg exposure. The author concludes that the hazardous waste disposal and treatment operations at the facility are well controlled.« less

  17. Species removal from aqueous radioactive waste by deep-bed filtration.

    PubMed

    Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta

    2018-05-26

    Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  19. [Characteristics and mechanism of sodium removal by the synergistic action of flue gas and waste solid].

    PubMed

    Yi, Yuan-Rong; Han, Min-Fang

    2012-07-01

    The carbon dioxide (CO2) in flue gas was used to remove the sodium in the red mud (RM) , a kind of alkaline solid waste generated during alumina production. The reaction characteristics and mechanism of sodium removal by the synergistic action of CO2 and RM were studied with different medium pH, reaction time and temperature. It was demonstrated that the remove of sodium by RM was actually the result of the synergistic action of sodium-based solid waste in RM with the CO2-H2O and OH(-)-CO2 systems. The sodium removal efficiency was correlated with pH, reaction temperature and time. The characteristics of RM before and after sodium removal were analyzed using X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the results showed that the alkaline materials in the red mud reacted with CO2 and the sodium content in solid phases decreased significantly after reaction. The sodium removal efficiency could reach up to 70% with scientific procedure. The results of this research will offer an efficient way for low-cost sodium removal.

  20. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    PubMed Central

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  1. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    PubMed

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  2. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to themore » Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs

  3. Explosives Removal from Munitions Wastewaters

    DTIC Science & Technology

    1975-01-01

    activated carbon columns. Waste water, for the study was drawn as needed from the effluent of the i diatomaceous earth filters and stored in an 800-gallon...explosive Laterials, such as DNT and nitrocresols, from waste streams. The loaded adsorbent can be regenerated with solvent. To minimize operating costs...most effective is fixed-bed adsorption followir.nI clarification and filtration to remove suspended j solids. Activated carbon adsorbent is used at a

  4. Lean waste classification model to support the sustainable operational practice

    NASA Astrophysics Data System (ADS)

    Sutrisno, A.; Vanany, I.; Gunawan, I.; Asjad, M.

    2018-04-01

    Driven by growing pressure for a more sustainable operational practice, improvement on the classification of non-value added (waste) is one of the prerequisites to realize sustainability of a firm. While the use of the 7 (seven) types of the Ohno model now becoming a versatile tool to reveal the lean waste occurrence. In many recent investigations, the use of the Seven Waste model of Ohno is insufficient to cope with the types of waste occurred in industrial practices at various application levels. Intended to a narrowing down this limitation, this paper presented an improved waste classification model based on survey to recent studies discussing on waste at various operational stages. Implications on the waste classification model to the body of knowledge and industrial practices are provided.

  5. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  6. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  7. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  8. WRAP low level waste (LLW) glovebox operational test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into anothermore » 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.« less

  9. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.

  10. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    PubMed

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  11. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less

  12. Municipal waste processing apparatus

    DOEpatents

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  13. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete.

    PubMed

    Ismail, Zainab Z; AbdelKareem, Hala N

    2015-11-01

    Sustainable management of waste materials is an attractive approach for modern societies. In this study, recycling of raw waste lamb and chicken bones for defluoridation of water has been estimated. The effects of several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existing anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal efficiency up to 99.4% and 99.8% using lamb and chicken bones, respectively at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the pseudo-second order kinetic model. Both, Langmuir and Freundlich isotherm models could fit the experimental data well with correlation coefficient values >0.99 suggesting favorable conditions of the process. Furthermore, for complete sustainable management of waste bones, the resulted fluoride-bearing sludge was reused in concrete mixes to partially replace sand. Tests of the mechanical properties of fluoride sludge-modified concrete mixes indicated a potential environmentally friendly approach to dispose fluoride sludge in concrete and simultaneously enhance concrete properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Removal of dichloromethane from waste gas streams using a hybrid bubble column/biofilter bioreactor

    PubMed Central

    2014-01-01

    The performance of a hybrid bubble column/biofilter (HBCB) bioreactor for the removal of dichloromethane (DCM) from waste gas streams was studied in continuous mode for several months. The HBCB bioreactor consisted of two compartments: bubble column bioreactor removing DCM from liquid phase and biofilter removing DCM from gas phase. Effect of inlet DCM concentration on the elimination capacity was examined in the DCM concentration range of 34–359 ppm with loading rates ranged from 2.2 to 22.8 g/m3.h and constant total empty bed retention time (EBRT) of 200 s. In the equal loading rates, the elimination capacity and removal efficiency of the biofilter were higher than the corresponding values of the bubble column bioreactor. The maximum elimination capacity of the HBCB bioreactor was determined to be 15.7 g/m3.h occurred in the highest loading rate of 22.8 g/m3.h with removal efficiency of 69%. The overall mineralization portion of the HBCB bioreactor was in the range of 72-79%. The mixed liquor acidic pH especially below 5.5 inhibited microbial activity and decreased the elimination capacity. Inhibitory effect of high ionic strength was initiated in the mixed liquor electrical conductivity of 12.2 mS/cm. This study indicated that the HBCB bioreactor could benefit from advantages of both bubble column and biofilter reactors and could remove DCM from waste gas streams in a better manner. PMID:24406056

  15. Chromium removal from water by activated carbon developed from waste rubber tires.

    PubMed

    Gupta, Vinod Kumar; Ali, Imran; Saleh, Tawfik A; Siddiqui, M N; Agarwal, Shilpi

    2013-03-01

    Because of the continuous production of large amount of waste tires, the disposal of waste tires represents a major environmental issue throughout the world. This paper reports the utilization of waste tires (hard-to-dispose waste) as a precursor in the production of activated carbons (pollution-cleaning adsorbent). In the preparation of activated carbon (AC), waste rubber tire (WRT) was thermally treated and activated. The tire-derived activated carbon was characterized by means of scanning electron microscope, energy-dispersive X-ray spectroscopy, FTIR spectrophotometer, and X-ray diffraction. In the IR spectrum, a number of bands centred at about 3409, 2350, 1710, 1650, and 1300-1000 cm(-1) prove the present of hydroxyl and carboxyl groups on the surface of AC in addition to C═C double bonds. The developed AC was tested and evaluated as potential adsorbent removal of chromium (III). Experimental parameters, such as contact time, initial concentration, adsorbent dosage and pH were optimized. A rapid uptake of chromium ions was observed and the equilibrium is achieved in 1 h. It was also found that the adsorption process is pH dependent. This work adds to the global discussion of the cost-effective utilization of waste rubber tires for waste water treatment.

  16. Dioxins from medical waste incineration: Normal operation and transient conditions.

    PubMed

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  17. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    NASA Astrophysics Data System (ADS)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    Land filling is the most common method of disposal of solid waste all over the world. As well as municipal solid waste, industrial wastes, which may contain hazardous substances, are also received by landfills in many countries. Leachate is one of the problems arising from landfills. When water percolates through solid wastes, contaminants are leached into solution. The major concern with the movement of leachate into the subsurface aquifer is the fate of the constituents found in leachate. The fate of heavy metals is the greatest interest in leachate. Several treatment technologies have been developed for eliminating heavy metals recently. Adsorption is one of the most interesting methods that it has been successfully applied for the heavy metal removal. Activated carbons were widely used as adsorbent materials because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. However, it is restricted due to its relatively high price, high operation costs, and problems with generation for the industrial scale applications. Recently, more research efforts have been focused on effective sorbents material in order to minimize the processing cost and solve their disposal problems in an environmentally sustainable way. Adsorption of metal ions onto clay minerals has been studied extensively because both metal ions and clays are common components in nature. The cost of clays is relatively low as compared to other alternative adsorbents. Furthermore, the high specific surface area, chemical and mechanical stability, variety of structural and surface properties and higher values of cation exchange capacities make the clays an excellent group of adsorbents. Sepiolite (Si12O30Mg8(OH)4(H2O)4•8H2O) is a natural, fibrous clay mineral with fine microporous channels running parallel to the length of the fibers. The structure of sepiolite, in some aspects, is similar to those of other 2:1 trioctahedral silicates, such

  18. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and emergency...

  19. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and emergency...

  20. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and emergency...

  1. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  2. Robotics for mixed waste operations, demonstration description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.R.

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less

  3. Community Solutions for Solid Waste Pollution, Level 6. Teacher Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  4. Operating room waste: disposable supply utilization in neurointerventional procedures.

    PubMed

    Rigante, Luigi; Moudrous, Walid; de Vries, Joost; Grotenhuis, André J; Boogaarts, Hieronymus D

    2017-12-01

    Operating rooms account for 70% of hospital waste, increasing healthcare costs and creating environmental hazards. Endovascular treatment of cerebrovascular pathologies has become prominent, and associated products highly impact the total cost of care. We investigated the costs of endovascular surgical waste at our institution. Data from 53 consecutive endovascular procedures at the Radboud UMC Nijmegen from May to December 2016 were collected. "Unused disposable supply" was defined as one-time use items opened but not used during the procedure. Two observers cataloged the unused disposable supply for each case. The cost of each item was determined from the center supply catalog, and these costs were summed to determine the total cost of unused supply per case. Thirteen diagnostic cerebral digital subtraction angiographies (DSA) (24.5%) and 40 endovascular procedures (75.5%) were analyzed. Total interventional waste was 27,299.53 € (mean 515.09 € per procedure). While total costs of unused disposable supply were almost irrelevant for DSAs, they were consistent for interventional procedures (mean 676.49 € per case). Aneurysm standard coiling had the highest impact on total interventional waste (mean 1061.55 €). Disposable interventional products had a very high impact on the surgical waste costs in the series of the neurointerventional procedures (95% of total waste). This study shows the impact of neurointerventional waste on the total care costs for cerebrovascular patients. This might reflect the tendency to anticipate needs and emergencies in neurointervention. Responsible use of disposable material can be achieved by educating operators and nurses and creating operator preference cards.

  5. Continuous operation of thermophilic food waste digestion with side-stream ammonia stripping.

    PubMed

    Zhang, Wei; Heaven, Sonia; Banks, Charles J

    2017-11-01

    Digesters fed on food waste (high nitrogen content) were operated successfully over an extended period using sidestream biogas stripping to control total ammonia nitrogen (TAN) below inhibitory concentrations. This is the first time biogas stripping has been used to achieve stable thermophilic operation with undiluted substrate of this type. Stripping columns operated batch-wise treated the equivalent of 1.7-4.1% of digester contents daily at pH >10 and 70°C, with no detrimental effect on digestion. TKN removal was 54%, with potential to recover 3.5kgNtonne -1 substrate. When stripping was stopped in one digester TAN increased, accompanied by rising propionic acid concentrations with progressive instability observed from 2.5gNL -1 . Eventual failure as TAN approached 5gNL -1 was due to rapid acetic acid accumulation, resulting in a fall in pH to below 6.5. The pattern of VFA accumulation indicated failure of both acetoclastic methanogenesis and acetate oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Optimizing Anesthesia-Related Waste Disposal in the Operating Room: A Brief Report.

    PubMed

    Hubbard, Richard M; Hayanga, Jeremiah A; Quinlan, Joseph J; Soltez, Anita K; Hayanga, Heather K

    2017-10-01

    Misappropriation of noncontaminated waste into regulated medical waste (RMW) containers is a source of added expense to health care facilities. The operating room is a significant contributor to RMW waste production. This study sought to determine whether disposing of anesthesia-related waste in standard waste receptacles before patient entry into the operating room would produce a reduction in RMW. A median of 0.35 kg of waste was collected from 51 cases sampled, with a potential annual reduction of 13,800 kg of RMW to the host institution, and a cost savings of $2200.

  7. Removal of nickel and cadmium from battery waste by a chemical method using ferric sulphate.

    PubMed

    Jadhav, Umesh U; Hocheng, Hong

    2014-01-01

    The removal of nickel (Ni) and cadmium (Cd) from spent batteries was studied by the chemical method. A novel leaching system using ferric sulphate hydrate was introduced to dissolve heavy metals in batteries. Ni-Cd batteries are classified as hazardous waste because Ni and Cd are suspected carcinogens. More efficient technologies are required to recover metals from spent batteries to minimize capital outlay, environmental impact and to respond to increased demand. The results obtained demonstrate that optimal conditions, including pH, concentration of ferric sulphate, shaking speed and temperature for the metal removal, were 2.5, 60 g/L, 150 rpm and 30 degrees C, respectively. More than 88 (+/- 0.9) and 84 (+/- 2.8)% of nickel and cadmium were recovered, respectively. These results suggest that ferric ion oxidized Ni and Cd present in battery waste. This novel process provides a possibility for recycling waste Ni-Cd batteries in a large industrial scale.

  8. Nutrients removal in hybrid fluidised bed bioreactors operated with aeration cycles.

    PubMed

    Martin, Martin; Enríquez, L López; Fernández-Polanco, M; Villaverde, S; Garcia-Encina, P A

    2007-01-01

    Abstract Two hybrid fluidised bed reactors filled with sepiolite and granular activated carbon (GAC) were operated with short cycled aeration for removing organic matter, total nitrogen and phosphorous, respectively. Both reactors were continuously operated with synthetic and/or industrial wastewater containing 350-500 mg COD/L, 110-130 mg NKT/L, 90-100 mg NH3-N/L and 12-15 mg P/L for 8 months. The reactor filled with sepiolite, treating only synthetic wastewater, removed COD, ammonia, total nitrogen and phosphorous up to 88, 91, 55 and 80% with a hydraulic retention time (HRT) of 10 h, respectively. These efficiencies correspond to removal rates of 0.95 kgCODm(-3)d(-1) and 0.16 kg total N m(-3)d(-1). The reactor filled with GAC was operated for 4 months with synthetic wastewater and 4 months with industrial wastewater, removing 98% of COD, 96% of ammonia, and 66% of total nitrogen, with an HRT of 13.6 h. No significant phosphorous removing activity was observed in this reactor. Microbial communities growing with both reactors were followed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The microbial fingerprints, i.e. DGGE profiles, indicated that biological communities in both reactors were stable along the operational period even when the operating conditions were changed.

  9. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  10. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  11. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  12. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  13. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  14. Applying fermentation liquid of food waste as carbon source to a pilot-scale anoxic/oxic-membrane bioreactor for enhancing nitrogen removal: Microbial communities and membrane fouling behaviour.

    PubMed

    Tang, Jialing; Wang, Xiaochang C; Hu, Yisong; Ngo, Huu Hao; Li, Yuyou; Zhang, Yongmei

    2017-07-01

    Fermentation liquid of food waste (FLFW) was applied as an external carbon source in a pilot-scale anoxic/oxic-membrane bioreactor (A/O-MBR) system to enhance nitrogen removal for treating low COD/TN ratio domestic wastewater. Results showed that, with the FLFW addition, total nitrogen removal increased from lower than 20% to 44-67% during the 150days of operation. The bacterial metabolic activities were obviously enhanced, and the significant change in microbial community structure promoted pollutants removal and favored membrane fouling mitigation. By monitoring transmembrane pressure and characterizing typical membrane foulants, such as extracellular polymeric substances (EPS), dissolved organic matter (DOM), and inorganics and biopolymers in the cake layer, it was confirmed that FLFW addition did not bring about any additional accumulation of membrane foulants, acceleration of fouling rate, or obvious irreversible membrane fouling in the whole operation period. Therefore, FLFW is a promising alternative carbon source to enhance nitrogen removal for the A/O-MBR system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Use of phosphorus-sorbing materials to remove phosphate from greenhouse wastewater.

    PubMed

    Dunets, C Siobhan; Zheng, Youbin; Dixon, Mike

    2015-01-01

    High phosphate content in wastewater is currently a major issue faced by the North American greenhouse industry. Phosphate-sorbing material filters could provide a means of removing phosphate from wastewater prior to discharge to the environment, but the characterization of economically viable materials and specific recommendations for greenhouse wastewater are not available. Batch and column experiments were used to examine the capacity of two calcium-based waste materials, basic oxygen furnace slag and a concrete waste material, to remove phosphate from greenhouse nutrient solution at varied operating conditions. Material columns operating at a hydraulic retention time (HRT) of 3 h consistently removed >99% of influent phosphate at a concentration of 60 mg/L over repeated applications and demonstrated high phosphate retention capacity (PRC) of 8.8 and 5.1 g P/kg for slag and concrete waste, respectively. Both materials also provided some removal of the micronutrients Fe, Mn and Zn. Increasing HRT to 24 h increased P retention capacity of slag to >10.5 g P/kg but did not improve retention by concrete waste. Decreasing influent phosphate concentration to 20 mg/L decreased PRC to 1.64 g P/kg in concrete waste columns, suggesting fluctuations in greenhouse wastewater composition will affect filter performance. The pH of filter effluent was closely correlated to final P concentration and can likely be used to monitor treatment effectiveness. This study demonstrated that calcium-based materials are promising for the removal of phosphate from greenhouse wastewater, and worthy of further research on scaling up the application to a full-sized system.

  16. A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials.

    PubMed

    Mondal, Monoj Kumar; Garg, Ravi

    2017-05-01

    Arsenic contamination in water bodies is a serious problem and causes various health problems due to which US Environment Protection Agency (USEPA) set its maximum permissible limit of 10 ppb. The present review article starts with the removal of toxic arsenic using adsorbents prepared from easily available waste materials. Adsorbent either commercial or low-cost adsorbent can be used for arsenic removal but recent research was focused on the low-cost adsorbent. Preparation and activation of various adsorbents were discussed. Adsorption capacities, surface area, thermodynamic, and kinetics data of various adsorbents for As(III) and As(V) removal were compiled. Desorption followed by regeneration and reuse of adsorbents is an important step in adsorption and leads to economical process. Various desorbing and regenerating agents were discussed for arsenic decontamination from the adsorbent surface. Strong acids, bases, and salts are the main desorbing agents. Disposal of arsenic-contaminated adsorbent and arsenic waste was also a big problem because of the toxic and leaching effect of arsenic. So, arsenic waste was disposed of by proper stabilization/solidification (S/S) technique by mixing it in Portland cement, iron, ash, etc. to reduce the leaching effect.

  17. SEMINAR PUBLICATION: OPERATIONAL PARAMETERS FOR HAZARDOUS WASTE COMBUSTION DEVICES

    EPA Science Inventory

    The information in the document is based on presentations at the EPA-sponsored seminar series on Operational Parameters for Hazardous Waste Combustion Devices. This series consisted of five seminars held in 1992. Hazardous waste combustion devices are regulated under the Resource...

  18. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  19. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  20. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  1. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  2. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  3. Arsenic removal by nanoparticles: a review.

    PubMed

    Habuda-Stanić, Mirna; Nujić, Marija

    2015-06-01

    Contamination of natural waters with arsenic, which is both toxic and carcinogenic, is widespread. Among various technologies that have been employed for arsenic removal from water, such as coagulation, filtration, membrane separation, ion exchange, etc., adsorption offers many advantages including simple and stable operation, easy handling of waste, absence of added reagents, compact facilities, and generally lower operation cost, but the need for technological innovation for water purification is gaining attention worldwide. Nanotechnology is considered to play a crucial role in providing clean and affordable water to meet human demands. This review presents an overview of nanoparticles and nanobased adsorbents and its efficiencies in arsenic removal from water. The paper highlights the application of nanomaterials and their properties, mechanisms, and advantages over conventional adsorbents for arsenic removal from contaminated water.

  4. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water

    NASA Astrophysics Data System (ADS)

    Ardila, Liliana; Godoy, Rubén; Montenegro, Luis

    2017-08-01

    Tanning process is a polluting activity due to the release of toxic agents into the environment. One of the most important of those toxic chemicals is chromium. Different alternatives have been proposed for the removal of this metal from tanning waste water which include the optimization of the productive processes, physicochemical and biochemical waste water treatment. In this study, the biological adsorption process of trivalent chromium was carried out in synthetic water and tannery waste water through two types of native green microalgae, called Chlorella vulgaris and Scenedesmus acutus in Free State and immobilized in PVA state. This, considering that cellular wall of microalgae has functional groups like amines and carboxyl that might bind with trivalent chromium. Statistical significance of variables as pH temperature, chromium and algae concentrations was evaluated just like bio sorption capacity of different types of water and kind of bioadsorbent was calculated to determine if this process is a competitive solution comparing to other heavy metal removal processes.

  5. Dyes removal from textile wastewater using graphene based nanofiltration

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Rizki, Z.; Zunita, M.; Dharmawijaya, P. T.

    2017-05-01

    Wastewater produced from textile industry is having more strict regulation. The major pollutant of wastewater from textile industry is Dyes. Dyes have several harsh properties i.e toxic, volatile, complexing easily with mineral ions that are dissolved in water (decreasing the amount of important mineral ions in water), and hard to disintegrate, therefore it must be removed from the waste stream. There are several methods and mechanisms to remove dyes such as chemical and physical sorption, evaporation, biological degradation, and photocatalytic system that can be applied to the waste stream. Membrane-based separation technology has been introduced in dyes removal treatment and is well known for its advantages (flexibility, mild operating condition, insensitive to toxic pollutant). Graphene and its derivatives are novel materials which have special properties due to its ultrathin layer and nanometer-size pores. Thus, the materials are very light yet strong. Moreover, it has low cost and easy to fabricate. Recently, the application of graphene and its derivatives in nanofiltration membrane processes is being widely explored. This review investigates the potentials of graphene based membrane in dyes removal processes. The operating conditions, dyes removal effectiveness, and the drawbacks of the process are the main focus in this paper.

  6. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... assumed to be in compliance with this requirement. (e) These alternative locations are remediation waste... 40 Protection of Environment 27 2011-07-01 2011-07-01 false May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes originated...

  7. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... assumed to be in compliance with this requirement. (e) These alternative locations are remediation waste... 40 Protection of Environment 27 2014-07-01 2014-07-01 false May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes originated...

  8. Parametric and kinetic study of adsorptive removal of dyes from aqueous solutions using an agriculture waste

    NASA Astrophysics Data System (ADS)

    Bencheikh, imane; el hajjaji, souad; abourouh, imane; Kitane, Said; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Wastewater treatment is the subject of several studies through decades. Interest is continuously oriented to provide cheaper and efficient methods of treatment. Several methods of treatment exit including coagulation flocculation, filtration, precipitation, ozonation, ion exchange, reverse osmosis, advanced oxidation process. The use of these methods proved limited because of their high investment and operational cost. Adsorption can be an efficient low-cost process to remove pollutants from wastewater. This method of treatment calls for an solid adsorbent which constitutes the purification tool. Agricultural wastes have been widely exploited in this case .As we know the agricultural wastes are an important source of water pollution once discharged into the aquatic environment (river, sea ...). The valorization of such wastes and their use allows the prevention of this problem with an economic and environment benefits. In this context our study aimed testing the wastewater treatment capacity by adsorption onto holocellulose resulting from the valorization of an agriculture waste. In this study, methylene blue (MB) and methyl orange (MO) are selected as models pollutants for evaluating the holocellulose adsorbent capacity. The kinetics of adsorption is performed using UV-visible spectroscopy. In order to study the effect of the main parameters for the adsorption process and their mutual interaction, a full factorial design (type nk) has been used.23 full factorial design analysis was performed to screen the parameters affecting dye removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters and their interactions was obtained. The parametric study showed that efficiency of the adsorption system (Dyes/ Holocellulose) is mainly linked to pH variation. The best yields were observed for MB at pH=10 and for MO at pH=2.The kinetic data was analyzed using different models , namely , the pseudo

  9. Deep rock nuclear waste disposal test: design and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, Robert D.

    1974-09-01

    An electrically heated test of nuclear waste simulants in granitic rock was conducted to demonstrate the feasibility of the concept of deep rock nuclear waste disposal and to obtain design data. This report describes the deep rock disposal sytstems study and the design and operation of the first concept feasibility test.

  10. How do operating conditions affect As(III) removal by iron electrocoagulation?

    PubMed

    Delaire, Caroline; Amrose, Susan; Zhang, Minghui; Hake, James; Gadgil, Ashok

    2017-04-01

    Iron electrocoagulation (Fe-EC) has been shown to effectively remove arsenic from contaminated groundwater at low cost and has the potential to improve access to safe drinking water for millions of people. Understanding how operating conditions, such as the Fe dosage rate and the O 2 recharge rate, affect arsenic removal at different pH values is crucial to maximize the performance of Fe-EC under economic constraints. In this work, we improved upon an existing computational model to investigate the combined effects of pH, Fe dosage rate, and O 2 recharge rate on arsenic removal in Fe-EC. We showed that the impact of the Fe dosage rate strongly depends on pH and on the O 2 recharge rate, which has important practical implications. We identified the process limiting arsenic removal (As(III) oxidation versus As(V) adsorption) at different pH values, which allowed us to interpret the effect of operating conditions on Fe-EC performance. Finally, we assessed the robustness of the trends predicted by the model, which assumes a constant pH, against lab experiments reproducing more realistic conditions where pH is allowed to drift during treatment as a result of equilibration with atmospheric CO 2 . Our results provide a nuanced understanding of how operating conditions impact arsenic removal by Fe-EC and can inform decisions regarding the operation of this technology in a range of groundwaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Department of Energy Operational Readiness Review for the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The U.S. Department of Energy (DOE) has completed an Operational Readiness Review (ORR) for the restart of Contact Handled (CH) waste emplacement at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The ORR team assessed the readiness of Nuclear Waste Partnership, LLC (NWP) to manage and perform receipt through CH waste emplacement, and associated waste handling and management activities, including the ability of the National TRU Program (NTP) to evaluate the waste currently stored at the WIPP site against the revised and enhanced Waste Acceptance Criteria (WAC). Field work for this review began on November 14, 2015more » and was completed on November 30, 2016. The DOE ORR was conducted in accordance with the Department of Energy Operational Readiness Review Implementation Plan for the Waste Isolation Pilot Plant, dated November 8, 2016, and DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. The review activities included personnel interviews, record reviews, direct observation of operations and maintenance demonstrations, and observation of multiple operational and emergency drills/exercises. The DOE ORR also evaluated the adequacy of the contractor’s ORR (CORR) and the readiness of the DOE Carlsbad field Office (CBFO) to oversee the startup and execution of CH waste emplacement activities at the WIPP facility. The WIPP facility is categorized as a Hazard Category 2 DOE Nonreactor Nuclear Facility for all surface and Underground (UG) operations per DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. In addition, the WIPP experienced two events in February, 2014 that resulted in Accident Investigations being performed in accordance with the requirements of DOE Order 225.1B, Accident Investigations. Based upon the results of the accident investigations and hazard categorization of the facility, the team placed

  12. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    PubMed

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ion Exchange Column Tests Supporting Technetium Removal Resin Maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.; McCabe, D.; Hamm, L.

    2013-12-20

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant, currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed on site. There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Due to the soluble properties of pertechnetate and long half-life ofmore » 99Tc, effective management of 99Tc is important. Options are being explored to immobilize the supplemental LAW portion of the tank waste, as well as to examine the volatility of 99Tc during the vitrification process. Removal of 99Tc, followed by off-site disposal has potential to reduce treatment and disposal costs. A conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. SuperLig® 639 is an elutable ion exchange resin. In the tank waste, 99Tc is predominantly found in the tank supernate as pertechnetate (TcO 4 -). Perrhenate (ReO 4 -) has been shown to be a good non-radioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin. This report contains results of experimental ion exchange distribution coefficient and column resin maturation kinetics testing using the resin SuperLig® 639a to selectively remove perrhenate from simulated LAW. This revision includes results from testing to determine effective resin operating temperature range. Loading tests were performed at 45°C, and the computer modeling was updated to include the temperature effects. Equilibrium contact testing indicated that this batch of SuperLig® 639 resin has good performance, with an average perrhenate distribution coefficient of

  14. Applicability of Perinereis aibuhitensis Grube for fish waste removal from fish cages in Sanggou Bay, P. R. China

    NASA Astrophysics Data System (ADS)

    Fang, Jinghui; Jiang, Zengjie; Jansen, Henrice M.; Hu, Fawen; Fang, Jianguang; Liu, Yi; Gao, Yaping; Du, Meirong

    2017-04-01

    The present study investigated the applicability of integrated polychaete-fish culture for fish waste removal to offset negative impact induced by organic benthic enrichment. A field study demonstrated that deposition rate was significantly higher underneath the fish farm than that in control area. The material settling under the farm was characterized by a high amount of fish feces (45%) and uneaten feed (27%). Both feeding rate (FR) and apparent digestibility rate (ADR) increased with decreasing body weight, as was indicated by significantly a higher rate observed for the groups containing smaller individuals in a lab study. The nutrient in fresh deposited material (De) was higher than that in sediments collected under the farm (Se), resulting in lower feces production but higher apparent digestibility rate for the De group as feeding rate was similar. Consequently, higher nutrient removal efficiency was observed in the De group. A mass balance approach indicated that approximately 400-500 individuals m-2 is required for removing all waste materials deposited underneath the fish farm, whereas abundance can be lower (about 300-350 individuals m-2) when only the fish waste needs to be removed. The results showed that a significant amount of waste had been accumulated in the fish cages in Sanggou Bay. The integration of fish with P. aibuhitensis seems promising for preventing organic pollution in the sediment and therefore is an effective strategy for mitigating negative effect of fish farms. Thus such integration can become a new IMTA (integrated multi-trophic aquaculture) model in Sanggou Bay.

  15. Calcium and organic matter removal by carbonation process with waste incineration flue gas towards improvement of leachate biotreatment performance.

    PubMed

    Zhang, Cheng; Zhu, Xuedong; Wu, Liang; Li, Qingtao; Liu, Jianyong; Qian, Guangren

    2017-09-01

    Municipal solid wastes incineration (MSWI) flue gas was employed as the carbon source for in-situ calcium removal from MSWI leachate. Calcium removal efficiency was 95-97% with pH of 10.0-11.0 over 100min of flue gas aeration, with both bound Ca and free Ca being removed effectively. The fluorescence intensity of tryptophan, protein-like and humic acid-like compounds increased after carbonation process. The decrease of bound Ca with the increase of precipitate indicated that calcium was mainly converted to calcium carbonate precipitate. It suggested that the interaction between dissolved organic matter and Ca 2+ was weakened. Moreover, 10-16% of chemical oxygen demand removal and the decrease of ultraviolet absorption at 254nm indicated that some organics, especially aromatic compound decreased via adsorption onto the surface of calcium carbonate. The results indicate that introduce of waste incineration flue gas could be a feasible way for calcium removal from leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  17. Investigation on the efficiency of treated Palm Tree waste for removal of organic pollutants

    NASA Astrophysics Data System (ADS)

    Azoulay, Karima; El HajjajiI, Souad; Dahchour, Abdelmalek

    2017-04-01

    Development of the industrial sector generates several problems of environmental pollution. This issue rises concern among scientific community and decision makers, in this work; we e interested in water resources polluted by the chemical substances, which can cause various problems of health. As an example, dyes generated by different industrial activities such as textile, cosmetic, metal plating, leather, paper and plastic sectors, constitute an important source of pollution. In this work, we aim at investigating the efficiency of palm tree waste for removal of dyes from polluted solution. Our work presents a double environmental aspect, on one hand it constitutes an attempt for valorization of Palm Tree waste, and on the other hand it provides natural adsorbent. The study focuses on the effectiveness of the waste in removing Methylene Bleu and Methyl Orange taken as models of pollutants from aqueous solution. Kinetics and isotherm experiments were conducted in order to determine the sorption behavior of the examined dye. The effects of initial dye and adsorbent concentrations are considered. The results indicate that the correlation coefficient calculated from pseudo-second order equation was higher than the other kinetic equations, indicating that equilibrium data fitted well with pseudo-second order model where adsorption process was chemisorption. The adsorption equilibrium was well described by Langmuir isotherm model.

  18. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes originated... Plans (RAPs) Obtaining A Rap for An Off-Site Location § 270.230 May I perform remediation waste...

  19. Litter Pollution, Level 2. Teacher Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  20. Trash Trends, Level 3. Teacher Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  1. Trash Treasures, Level 5. Teacher Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  2. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  3. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  4. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  5. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  6. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  7. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    PubMed

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. 2010 Elsevier B.V. All rights reserved.

  8. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    USDA-ARS?s Scientific Manuscript database

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  9. Leach test of cladding removal waste grout using Hanford groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R.J.; Martin, W.J.; Legore, V.L.

    1995-09-01

    This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. Themore » semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.« less

  10. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    PubMed

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Development of consistent hazard controls for DOE transuranic waste operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, W.J.

    2007-07-01

    This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsitemore » movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)« less

  12. Postoperative environmental anesthetic vapour concentrations following removal of the airway device in the operating room versus the postanesthesia care unit.

    PubMed

    Cheung, Sara K; Özelsel, Timur; Rashiq, Saifee; Tsui, Ban C

    2016-09-01

    This study was designed to compare waste anesthetic gas (WAG) concentrations within patients' breathing zones after removal of the patient's airway device in the postanesthesia care unit (PACU) vs in the operating room (OR). Following Research Ethics Board approval and patient consent, we recruited patients undergoing surgery who received volatile anesthesia via an endotracheal tube or supraglottic airway. Patients had their airway device removed in the OR or in the PACU depending on the attending anesthesiologist's preference. Upon the patient's arrival in the PACU, concentrations of exhaled sevoflurane and desflurane were measured at their breathing zone (i.e., 15 cm from the patient's mouth and nose) using a single-beam infrared spectrophotometer. Seventy patients were recruited during the five-month study period. The median [interquartile range] WAG levels in the patients' breathing zones were higher when their airway devices were removed in the PACU vs in the OR. The WAG levels for sevoflurane were 0.7 [0.4-1.1] parts per million (ppm) vs 0.5 [0.4-0.7] ppm, respectively; median difference, 0.3; 95% confidence interval (CI), 0.1 to 0.6; P = 0.04. The WAG levels for desflurane were 2.4 [1.2-3.4] ppm vs 4.1 [2.5-5.2] ppm, respectively; median difference, 1.5; 95% CI, 0.3 to 2.7; P = 0.04. After a volatile-based anesthetic, our results suggest that removal of the airway device in the PACU vs in the OR increases the amount of waste anesthetic gas in a patient's breathing zone and thus potentially in the PACU nurse's working zone.

  13. Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents.

    PubMed

    Vecino, X; Devesa-Rey, R; Moldes, A B; Cruz, J M

    2014-09-01

    The cellulosic fraction of vineyard pruning waste (free of hemicellulosic sugars) was entrapped in calcium alginate beads and evaluated as an eco-friendly adsorbent for the removal of different nutrients and micronutrients (Mg, P, Zn, K, N-NH4, SO4, TN, TC and PO4) from an agroindustrial effluent (winery wastewater). Batch adsorption studies were performed by varying the amounts of cellulosic adsorbent (0.5-2%), sodium alginate (1-5%) and calcium chloride (0.05-0.9M) included in the biocomposite. The optimal formulation of the adsorbent composite varied depending on the target contaminant. Thus, for the adsorption of cationic contaminants (Mg, Zn, K, N-NH4 and TN), the best mixture comprised 5% sodium alginate, 0.05M calcium chloride and 0.5% cellulosic vineyard pruning waste, whereas for removal of anionic compounds (P, SO4 and PO4), the optimal mixture comprised 1% sodium alginate, 0.9M calcium chloride and 0.5% cellulosic vineyard pruning waste. To remove TC from the winery wastewater, the optimal mixture comprised 3% of sodium alginate, 0.475M calcium chloride and 0.5% cellulosic vineyard pruning waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Method for removing sulfur oxide from waste gases and recovering elemental sulfur

    DOEpatents

    Moore, Raymond H.

    1977-01-01

    A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.

  15. The role of acceptable knowledge in transuranic waste disposal operations - 11117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chancellor, Christopher John; Nelson, Roger

    2010-11-08

    The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may bemore » thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably

  16. Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams

    DOEpatents

    Spiegel, Ella F.; Sammells, Anthony F.

    2001-01-01

    Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

  17. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    DOE PAGES

    Lee, S. Y.; Smith, III, F. G.

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermalmore » response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.« less

  18. Valorization of aquaculture waste in removal of cadmium from aqueous solution: optimization by kinetics and ANN analysis

    NASA Astrophysics Data System (ADS)

    Aditya, Gautam; Hossain, Asif

    2018-05-01

    Cadmium is one of the most hazardous heavy metal concerning human health and aquatic pollution. The removal of cadmium through biosorption is a feasible option for restoration of the ecosystem health of the contaminated freshwater ecosystems. In compliance with this proposition and considering the efficiency of calcium carbonate as biosorbent, the shell dust of the economically important snail Bellamya bengalensis was tested for the removal of cadmium from aqueous medium. Following use of the flesh as a cheap source of protein, the shells of B. bengalensis made up of CaCO3 are discarded as aquaculture waste. The biosorption was assessed through batch sorption studies along with studies to characterize the morphology and surface structures of waste shell dust. The data on the biosorption were subjected to the artificial neural network (ANN) model for optimization of the process. The biosorption process changed as functions of pH of the solution, concentration of heavy metal, biomass of the adsorbent and time of exposure. The kinetic process was well represented by pseudo second order ( R 2 = 0.998), and Langmuir equilibrium ( R 2 = 0.995) had better fits in the equilibrium process with 30.33 mg g-1 of maximum sorption capacity. The regression equation ( R 2 = 0.948) in the ANN model supports predicted values of Cd removal satisfactorily. The normalized importance analysis in ANN predicts Cd2+ concentration, and pH has the most influence in removal than biomass dose and time. The SEM and EDX studies show clear peaks for Cd confirming the biosorption process while the FTIR study depicts the main functional groups (-OH, C-H, C=O, C=C) responsible for the biosorption process. The study indicated that the waste shell dust can be used as an efficient, low cost, environment friendly, sustainable adsorbent for the removal of cadmium from aqueous solution.

  19. The Effects of Scavenging on Waste Methoxyflurane Concentrations in Veterinary Operating Room Air

    DTIC Science & Technology

    1981-01-01

    Afl-AO5 572 AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL H4EALTH LAS -ETC F/S 6120 TIE EFFECTS OF SCAVENGING ON WASTE METHOXYFLURANE CONCENTRATIOH-ETC...REPRINT The Effects of Scavenging on Waste Methoxyflurane Concentrations in Veterinary Operating Room Air Approved for public release; distribution...Waste Methoxyflurane Fnal y t Concentrations ir Veterinary Operating Room Air, 6.PROMN _6._PERFORMIN oIG. REPORT NUMBER 7. AUTOR~s)B. CONTRACT OR GRANT

  20. Getters for Tc and I Removal from Liquid Waste

    NASA Astrophysics Data System (ADS)

    Qafoku, N. P.; Asmussen, M.; Lawter, A.; Neeway, J.; Smith, G.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental waste form for the low activity waste (LAW) at the Hanford Site, which contains significant amounts of radioactive 99Tc and 129I, as part of the tank waste cleanup mission. To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to decrease the rate of contaminant release and diffusivity, and improve Cast Stone performance. A series of kinetic batch sorption experiments was performed to determine the effectiveness of the getter materials. Several Tc getters [blast furnace slag, Sn (II) apatite, SnCl2, nanoporous Sn phosphate, KMS-2 (a potassium-metal-sulfide), and Sn(II) hydroxyapatite] and I getters [layered Bi hydroxide, natural argentite mineral, synthetic argentite, Ag-impregnated carbon, and Ag-exchanged zeolite] were tested in different solution media, 18.2 MΩ DI H2O and a caustic LAW waste simulant containing 6.5 M Na or 7.8 M Na. The experiments were conducted at room temperature in the presence or absence of air. Results indicated that most Tc getters (with the exception of KMS-2) performed better in the DI H2O solution than in the 6.5 and 7.8 M Na LAW simulant. In addition, Tc sequestration may be affected by the presence of other redox sensitive elements that were present in the LAW simulant, such as Cr. The Tc getter materials have been examined through various solid-state characterization techniques such as XRD, SEM/EDS, XANES and EXAFS which provided evidence for plausible mechanisms of aqueous Tc removal. The results indicated that the Tc precipitates differ depending on the getter material and that Tc(VII) is reduced to Tc(IV) in most of the getters but to a differing extents. For the I getters, Ag-exchanged zeolite and synthetic argentite were the most effective ones. The other I getters showed limited effectiveness for sorbing I under the high ionic strength and caustic

  1. Efficient fluoride removal using Al-Cu oxide nanoparticles supported on steel slag industrial waste solid.

    PubMed

    Blanco-Flores, Alien; Arteaga-Larios, Nubia; Pérez-García, Víctor; Martínez-Gutiérrez, José; Ojeda-Escamilla, María; Rodríguez-Torres, Israel

    2018-03-01

    A SSW/Al-Cu formed from an industrial solid waste and Al-Cu Nps are utilized for the removal of fluoride from aqueous solutions. The SSW/Al-Cu was obtained by a chemical reduction method. The SSW/Al-Cu was characterized by TEM, SEM, FT-IR, XRD, BET, and pH zpc techniques. The Nps were formed as bimetallic oxides and deposited in the form of spheroidal particles forming agglomerations. The sizes of these particles range from 1 to 3 nm. The surface area and average pore width of SSW/Al-Cu were 2.99 m 2 /g and 17.09 nm, respectively. The adsorption kinetics were better described using the second-order model, pointing to chemical adsorption with an equilibrium time of 540 min. The thermodynamic parameters obtained here confirm the spontaneous and endothermic nature of the process. The percentage of fluoride removal was 89.5% using the four-bladed disk turbine, and computational fluid dynamics (CFD) modeling demonstrated that using the four-bladed disk turbine helped improve the fluoride removal process. The maximum adsorption capacity was 3.99 mg/g. The Langmuir-Freundlich model best describes the adsorption process, which occurred by a combination of mechanisms, such as electrostatic interactions between the ions involved in the process. This study proves that the chemical modification of this waste solid created an efficient bimetallic nanomaterial for fluoride removal. Furthermore, the method of preparation of these nanocomposites is quite scalable.

  2. Isothermal approach to predict the removal efficiency of β-carotene adsorption from CPO using activated carbon produced from tea waste

    NASA Astrophysics Data System (ADS)

    Harahap, S. A. A.; Nazar, A.; Yunita, M.; Pasaribu, RA; Panjaitan, F.; Yanuar, F.; Misran, E.

    2018-02-01

    Adsorption of β-carotene in crude palm oil (CPO) was studied using activated carbon produced from tea waste (ACTW) an adsorbent. Isothermal studies were carried out at 60 °C with the ratio of activated carbon to CPO were 1:3, 1:4, 1:5, and 1:6, respectively. The ACTW showed excellent performance as the percentage of adsorption of β-carotene from CPO was > 99%. The best percentage removal (R) was achieved at ACTW to CPO ratio equal to 1:3, which was 99.61%. The appropriate isotherm model for this study was Freundlich isotherm model. The combination of Freundlich isotherm equation and mass balance equation showed a good agreement when validated to the experimental data. The equation subsequently executed to predict the removal efficiency under given sets of operating conditions. At a targetted R, CPO volume can be estimated for a certain initial concentration β-carotene in CPO C0 and mass of ACTW adsorbent M used.

  3. Evaluation of a membrane bioreactor system as post-treatment in waste water treatment for better removal of micropollutants.

    PubMed

    Arriaga, Sonia; de Jonge, Nadieh; Nielsen, Marc Lund; Andersen, Henrik Rasmus; Borregaard, Vibeke; Jewel, Kevin; Ternes, Thomas A; Nielsen, Jeppe Lund

    2016-12-15

    Organic micropollutants (OMPs) such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants was examined together with the development and stability of the microbial community. Two stages of operation were studied during a period of 9 months, one with (S1) and one without (S2) the addition of exogenous OMPs. Ibuprofen and naproxen had the highest degradation rates with values of 248 μg/g VSS ·h and 71 μg/g VSS ·h, whereas diclofenac was a more persistent OMP (7.28 μg/g VSS ·h). Mineralization of 14 C-labeled OMPs in batch kinetic experiments indicates that higher removal rates (∼0.8 ng/mg T SS ·h) with a short lag phase can be obtained when artificial addition of organic micropollutants was performed. Similar microbial populations dominated S1 and S2, despite the independent operations. Hydrogenophaga, Nitrospira, p55-a5, the actinobacterial Tetrasphaera, Propionicimonas, Fodinicola, and Candidatus Microthrix were the most abundant groups in the polishing MBR. Finally, potential microbial candidates for ibuprofen and naproxen degradation are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    PubMed

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  5. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  6. Removal of Pharmaceutical Residues by Ferrate(VI)

    PubMed Central

    Jiang, JiaQian; Zhou, Zhengwei

    2013-01-01

    Background Pharmaceuticals and their metabolites are inevitably emitted into the waters. The adverse environmental and human health effects of pharmaceutical residues in water could take place under a very low concentration range; from several µg/L to ng/L. These are challenges to the global water industries as there is no unit process specifically designed to remove these pollutants. An efficient technology is thus sought to treat these pollutants in water and waste water. Methodology/Major Results A novel chemical, ferrate, was assessed using a standard jar test procedure for the removal of pharmaceuticals. The analytical protocols of pharmaceuticals were standard solid phase extraction together with various instrumentation methods including LC-MS, HPLC-UV and UV/Vis spectroscopy. Ferrate can remove more than 80% of ciprofloxacin (CIP) at ferrate dose of 1 mg Fe/L and 30% of ibuprofen (IBU) at ferrate dose of 2 mg Fe/L. Removal of pharmaceuticals by ferrate was pH dependant and this was in coordinate to the chemical/physical properties of pharmaceuticals. Ferrate has shown higher capability in the degradation of CIP than IBU; this is because CIP has electron-rich organic moieties (EOM) which can be readily degraded by ferrate oxidation and IBU has electron-withdrawing groups which has slow reaction rate with ferrate. Promising performance of ferrate in the treatment of real waste water effluent at both pH 6 and 8 and dose range of 1–5 mg Fe/L was observed. Removal efficiency of ciprofloxacin was the highest among the target compounds (63%), followed by naproxen (43%). On the other hand, n-acetyl sulphamethoxazole was the hardest to be removed by ferrate (8% only). Conclusions Ferrate is a promising chemical to be used to treat pharmaceuticals in waste water. Adjusting operating conditions in terms of the properties of target pharmaceuticals can maximise the pharmaceutical removal efficiency. PMID:23409029

  7. Evaluation of cyanobacteria: Spirulina maxima for growth, nutrient removal, and quality on waste-effluent media in batch cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, M.G.; Phillips, J.

    1992-01-01

    Spirulina maxima, a semi-microscopic filamentous blue-green alga, was inoculated in synthetic and waste media of different sources. The alga was evaluated for growth yield, uptake of nutrients and chemical composition. The removal rate of N and P was rapid during the first week of growth. At the end of the second week, more than 90% of the total -P and -N was removed. The mass of alga was high. The quality of the alga obtained in different media did not show much variations, except when the medium was limited in nutrients. Results indicated that Spirulina may be integrated into themore » effluent treatment system. Recycling waste materials not only minimizes the problem of water pollution but also revitalizes the inherently rich nutrients of waste. The biomass obtained from cultivation of Spirulina in these wastewater media may be used as a pigment-protein supplement in animal feed and as raw material for certain chemicals.« less

  8. Nitrate removal from eutrophic wetlands polluted by metal-mine wastes: effects of liming and plant growth.

    PubMed

    González-Alcaraz, María Nazaret; Conesa, Héctor Miguel; Álvarez-Rogel, José

    2013-10-15

    Wetlands are highly effective systems in removing large amounts of N from waters, preventing eutrophication processes. However, when wetlands are polluted by metal-mine wastes their capacity to act as green filters may be diminished. The objective of this study was to evaluate the effect of liming and plants (Sarcocornia fruticosa and Phragmites australis) on the removal of NO3(-) from eutrophic water in slightly acidic, wetland soils polluted by metal-mine wastes. Simulated soil profiles were constructed and six treatments were assayed: (1) no liming + no plant, (2) no liming + S. fruticosa, (3) no liming + P. australis, (4) liming + no plant, (5) liming + S. fruticosa and (6) liming + P. australis. Three horizons were differentiated: A (never under water), C1 (alternating flooding-drying conditions) and C2 (always under water). The eutrophic water used to flood the soil profiles was enriched in N and organic carbon (pH ~ 7.5, electrical conductivity ~ 11 dS m(-1), NO3(-) ~ 234 mg L(-1) and dissolved organic carbon ~ 106 mg L(-1)). The pH, Eh and concentrations of dissolved organic carbon (DOC), N-NO3(-) and N-NH4(+) were measured regularly for 18 weeks. Liming stimulated the growth of plants, especially for S. fruticosa (20-fold more plant biomass than without liming), increased the soil pH and favoured the decline of the Eh values, enhancing the removal of NO3(-) via denitrification. Of all the treatments assayed, liming + S. fruticosa was the only treatment that removed almost completely the high concentration of NO3(-) from the eutrophic flooding water, reaching ~1 mg L(-1) N-NO3(-) at the end of the experiment, at all depths. The higher content of DOC in the pore water of this treatment could explain this behaviour, since more labile carbon was available to the soil microorganisms in the rhizosphere, favouring NO3(-) removal through denitrification processes. However, the treatment liming + P. australis (2-fold more plant biomass that without liming) did not

  9. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... municipal waste combustor operating practices. (a) On and after the date on which the initial performance...

  10. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    PubMed

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  12. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  13. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  14. Production of biochar from olive mill solid waste for heavy metal removal.

    PubMed

    Abdelhadi, Samya O; Dosoretz, Carlos G; Rytwo, Giora; Gerchman, Yoram; Azaizeh, Hassan

    2017-11-01

    Commercial activated carbon (CAC) and biochar are useful adsorbents for removing heavy metals (HM) from water, but their production is costly. Biochar production from olive solid waste from two olive cultivars (Picual and Souri) and two oil production process (two- or three-phase) and two temperatures (350 and 450°C) was tested. The biochar yield was 24-35% of the biomass, with a surface area of 1.65-8.12m 2 g -1 , as compared to 1100m 2 g -1 for CAC. Picual residue from the two-phase milling technique, pyrolysed at 350°C, had the best cumulative removal capacity for Cu +2 , Pb +2 , Cd +2 , Ni +2 and Zn +2 with more than 85% compared to other biochar types and CAC. These results suggest that surface area cannot be used as a sole predictor of HM removal capacity. FTIR analysis revealed the presence of different functional groups in the different biochar types, which may be related to the differences in absorbing capacities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Enhanced DOC removal using anion and cation ion exchange resins.

    PubMed

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  16. CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING CHEMICALS OF POTENTIAL INTEREST. (R825392)

    EPA Science Inventory

    A protocol was developed to rapidly assess the efficiency of chemical washing for the removal of excess biomass from biotrickling filters for waste air treatment. Although the experiment was performed on a small scale, conditions were chosen to simulate application in full-scale ...

  17. Workplace Respiratory Protection Factors during Asbestos Removal Operations.

    PubMed

    Chazelet, Sandrine; Wild, Pascal; Silvente, Eric; Eypert-Blaison, Céline

    2018-05-28

    Numerous changes have been made to the French labour regulations in recent years relating to the prevention of risks of exposure to asbestos fibres for operators removing asbestos-containing materials. These changes refer to the method used to count fibres, the collective and personal protective devices to be used on these worksites, and the occupational exposure limit value, which was reduced to 10 f.L-1 on 2 July 2015. In this context, this study assessed the level of respiratory protection afforded by supplied-air respirators and powered air-purifying respirators by monitoring exposure for several operators on nine worksites. The levels of dustiness measured in personal samples taken outside masks showed significant evidence of potential exposure during removal of asbestos-containing plaster or sprayed asbestos, and when using abrasive blasting to treat asbestos-containing materials. For these tasks outside concentration regularly exceeds 25000 f.L-1. Measurements inside masks were generally low, under 10 f.L-1, except in some situations involving the removal of asbestos-containing plaster. This partial penetration of fibres inside masks could be due to the high loading linked to this material. The distributions of Workplace Protection Factors obtained for the two types of respiratory protective devices studied were broad, and the fifth percentile values equal to 236 and 104, respectively, for supplied-air respirators and powered air-purifying respirators. This work highlights once again the need to prioritize collective protection when seeking to prevent asbestos-related risks.

  18. Evaluation of Needle Gun and Abrasive Blasting Technologies in Bridge Paint Removal Practices.

    PubMed

    Randall, Paul M; Kranz, Paul B; Sonntag, Mary L; Stadelmaier, James E

    1998-03-01

    This paper reviews the results of a U.S. Environmental Protection Agency (EPA) study that assessed needle gun technology as an alternative to conventional abrasive blasting technology to remove lead-based paint from steel bridges in western New York State. The study analyzed the operational and logistical aspects as they relate to worker health and safety, environmental protection, hazardous waste generation, and costs as compared to those arising from conventional abrasive blasting. In this 1992 EPA study, the costs and the product quality aspects favored conventional abrasive blasting over the needle gun technology for removing lead paint. However, abrasive blasting exposed workers to airborne lead levels that exceeded Permissible Exposure Limits (PELs) as established by the Occupational Safety and Health Administration (OSHA), as well as emitting high levels of lead-contaminated dusts and debris into the environment. It was estimated that more than 500 lbs of lead-contaminated spent abrasives and paint waste were released into the environment during paint removal operations. The needle gun system reduced (up to 97.5%) the generation of hazardous waste and the airborne concentrations (up to 99%) of respirable dusts and lead-containing particulates generated during paint removal operations. However, labor costs for the needle gun were three times higher than those for abrasive blasting primarily because of slower production rates that necessitated more operating personnel. The higher labor costs of the needle gun are partially offset by the increased costs associated with the expendable abrasive blast media and hazardous waste disposal. In the EPA study, the productivity of the needle gun system was 12.2 ft 2 /hr vs. 147.5 ft 2 /hr for abrasive blasting. A post blast was needed for the needle gun system to meet surface preparation specifications. When factoring in the costs of full containment structures to meet OSHA's 1993 Lead Exposure in Construction regulation

  19. Consolidation and Centralization of Waste Operations Business Systems - 12319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, D. Dean

    This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidationmore » into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate - unless however

  20. HANDBOOK: OPERATION AND MAINTENANCE OF HOSPITAL WASTE INCINERATORS

    EPA Science Inventory

    Proper operation of the incinerator will reduce the emissions of most of these pollutants. ir pollution control devices are available to further control these pollutants. ecause of the national interest in hospital medical waste and the need for technology application, the Center...

  1. Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. A. Todd; K. N. Brewer

    1999-04-01

    Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less

  2. EVALUATION OF TRICKLE-BED AIR BIOFILTER PERFORMANCE FOR STYRENE REMOVAL

    EPA Science Inventory

    A pilot-scale trickle-bed air biofilter (TBAB) was evaluated for the removal of styrene from a waste gas stream. Six-millimeter (6 mm) Celite pellets (R-635) were used as the biological attachment medium. The operating parameters considered in the study included the styrene vol...

  3. Removal of Legacy Low-Level Waste Reactor Moderator De-ionizer Resins Highly Contaminated with Carbon-14 from the 'Waste with no Path to Disposal List' Through Innovative Technical Analysis and Performance Assessment Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, W.T.; Hiergesell, R.A.; Kaplan, D.I.

    2006-07-01

    At the Savannah River Site (SRS), nuclear production reactors used de-ionizers to control the chemistry of the reactor moderator during their operation to produce nuclear materials primarily for the weapons program. These de-ionizers were removed from the reactors and stored as a legacy waste and due to the relatively high carbon-14 (C-14) contamination (i.e., on the order of 740 giga becquerel (GBq) (20 curies) per de-ionizer) were considered a legacy 'waste with no path to disposal'. Considerable progress has been made in consideration of a disposal path for the legacy reactor de-ionizers. Presently, 48 - 50 de-ionizers being stored atmore » SRS have 'no path to disposal' because the disposal limit for C-14 in the SRS's low-level waste disposal facility's Intermediate Level Vault (ILV) is only 160 GBq (4.2 curies) per vault. The current C-14 ILV disposal limit is based on a very conservative analysis of the air pathway. The paper will describe the alternatives that were investigated that resulted in the selection of a route to pursue. This paper will then describe SRS's efforts to reduce the conservatism in the analysis, which resulted in a significantly larger C-14 disposal limit. The work consisted of refining the gas-phase analysis to simulate the migration of C-14 from the waste to the ground surface and evaluated the efficacy of carbonate chemistry in cementitious environment of the ILV for suppressing the volatilization of C-14. During the past year, a Special Analysis was prepared for Department of Energy approval to incorporate the results of these activities that increased the C-14 disposal limits for the ILV, thus allowing for disposal of the Reactor Moderator De-ionizers. Once the Special Analysis is approved by DOE, the actual disposal would be dependent on priority and funding, but the de-ionizers will be removed from the 'waste with no path to disposal list'. (authors)« less

  4. Routine use of chest radiographs in the post-operative management of pectus bar removal: necessity or futility.

    PubMed

    Poola, Ashwini Suresh; Rentea, Rebecca M; Weaver, Katrina L; St Peter, Shawn David

    2017-05-01

    While there is literature on techniques for pectus bar removal, there are limited reports on post-operative management. This can include obtaining a postoperative chest radiograph (CXR) despite the minimal risk of associated intra-thoracic complications. This is a review of our experience with bar removal and lack of routine post-operative CXR. A single institution retrospective chart review was performed from 2000 to 2015. Patients who underwent a pectus bar removal procedure were included. We assessed operative timing of bar placement and removal, procedure length, intra-operative and post-operative complications and post-operative CXR findings, specifically the rate of pneumothoraces. 450 patients were identified in this study. Median duration of bar placement prior to removal was 35 months (interquartile range 30 and 36 months). Sixtey-four patients obtained a post-operative CXR. Of these, only one (58%) film revealed a pneumothorax; this was not drained. A CXR was not obtained in 386 (86%) patients with no immediate or delayed complications from this practice. Median follow-up time for all patients was 11 months (interquartile range 7.5-17 months). The risk for a clinically relevant pneumothorax is minimal following bar removal. This suggests that not obtaining routine imaging following bar removal may be a safe practice.

  5. New factors in the design, operation and performance of waste-stabilization ponds

    PubMed Central

    Marais, G. v. R.

    1966-01-01

    In the developing countries, the unit costs of waste-stabilization ponds are generally low. Moreover, in the tropics and subtropics, the environmental conditions are conducive to a high level of pond performance. In view of this, the theory, operation and performance of such ponds under these conditions have been studied. It is shown that the Hermann & Gloyna and Marais & Shaw theories of the degradation action in oxidation ponds can be integrated, and that account can be taken of the effect of the sludge layer. In Lusaka, Zambia, anaerobic conditions are much more likely to occur in summer than in winter, because of intense stratification. It is confirmed that a series of maturation or oxidation ponds is more efficient than a single pond of equivalent volume. When aqua privies and septic tanks are used as anaerobic pretreatment units, the area of the primary oxidation ponds can be reduced and there is less likelihood that anaerobic conditions will develop in them in summer. The use of self-topping aqua privies, discharging through sewers to oxidation ponds, has made possible the economic installation of water-carriage systems of waste disposal in low-cost high-density housing areas. In the oxidation ponds, typhoid bacteria appear to be more resistant than indicator organisms; helminths, cysts and ova settle out; there are no snails and, if peripheral vegetation is removed, mosquitos will not breed. PMID:5296235

  6. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  7. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  8. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  9. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  10. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  11. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  12. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  13. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  14. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  15. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  16. Removal of organic dyes using Cr-containing activated carbon prepared from leather waste.

    PubMed

    Oliveira, Luiz C A; Coura, Camila Van Zanten; Guimarães, Iara R; Gonçalves, Maraisa

    2011-09-15

    In this work, hydrogen peroxide decomposition and oxidation of organics in aqueous medium were studied in the presence of activated carbon prepared from wet blue leather waste. The wet blue leather waste, after controlled pyrolysis under CO(2) flow, was transformed into chromium-containing activated carbons. The carbon with Cr showed high microporous surface area (up to 889 m(2)g(-1)). Moreover, the obtained carbon was impregnated with nanoparticles of chromium oxide from the wet blue leather. The chromium oxide was nanodispersed on the activated carbon, and the particle size increased with the activation time. It is proposed that these chromium species on the carbon can activate H(2)O(2) to generate HO radicals, which can lead to two competitive reactions, i.e. the hydrogen peroxide decomposition or the oxidation of organics in water. In fact, in this work we observed that activated carbon obtained from leather waste presented high removal of methylene blue dye combining the adsorption and oxidation processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Nuclear waste solidification

    DOEpatents

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  18. Removal of Pb, Cd, and Cr in a water purification system using modified mineral waste materials and activated carbon derived from waste materials

    NASA Astrophysics Data System (ADS)

    Lu, H. R.; Su, L. C.; Ruan, H. D.

    2016-08-01

    This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.

  19. Assessment of biogas production from MBT waste under different operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantini, Sara, E-mail: pantini@ing.uniroma2.it; Verginelli, Iason; Lombardi, Francesco

    2015-09-15

    Highlights: • BMP test displayed high gas potential generation capacity of MBT waste. • Strong inhibition effects were observed due to ammonia and VFA accumulation. • Waste water content was found as the key parameter limiting gas generation. • First order k-values were determined for different operating conditions. - Abstract: In this work, the influence of different operating conditions on the biogas production from mechanically–biologically treated (MBT) wastes is investigated. Specifically, different lab-scale anaerobic tests varying the water content (26–43% w/w up to 75% w/w), the temperature (from 20 to 25 °C up to 55 °C) and the amount ofmore » inoculum have been performed on waste samples collected from a full-scale Italian MBT plant. For each test, the gas generation yield and, where applicable, the first-order gas generation rates were determined. Nearly all tests were characterised by a quite long lag-phase. This result was mainly ascribed to the inhibition effects resulting from the high concentrations of volatile fatty acids (VFAs) and ammonia detected in the different stages of the experiments. Furthermore, water content was found as one of the key factor limiting the anaerobic biological process. Indeed, the experimental results showed that when the moisture was lower than 32% w/w, the methanogenic microbial activity was completely inhibited. For the higher water content tested (75% w/w), high values of accumulated gas volume (up to 150 Nl/kgTS) and a relatively short time period to deplete the MBT waste gas generation capacity were observed. At these test conditions, the effect of temperature became evident, leading to gas generation rates of 0.007 d{sup −1} at room temperature that increased to 0.03–0.05 d{sup −1} at 37 °C and to 0.04–0.11 d{sup −1} at 55 °C. Overall, the obtained results highlighted that the operative conditions can drastically affect the gas production from MBT wastes. This suggests that particular

  20. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastesmore » for disposal.« less

  1. Influences of operational parameters on phosphorus removal in batch and continuous electrocoagulation process performance.

    PubMed

    Nguyen, Dinh Duc; Yoon, Yong Soo; Bui, Xuan Thanh; Kim, Sung Su; Chang, Soon Woong; Guo, Wenshan; Ngo, Huu Hao

    2017-11-01

    Performance of an electrocoagulation (EC) process in batch and continuous operating modes was thoroughly investigated and evaluated for enhancing wastewater phosphorus removal under various operating conditions, individually or combined with initial phosphorus concentration, wastewater conductivity, current density, and electrolysis times. The results revealed excellent phosphorus removal (72.7-100%) for both processes within 3-6 min of electrolysis, with relatively low energy requirements, i.e., less than 0.5 kWh/m 3 for treated wastewater. However, the removal efficiency of phosphorus in the continuous EC operation mode was better than that in batch mode within the scope of the study. Additionally, the rate and efficiency of phosphorus removal strongly depended on operational parameters, including wastewater conductivity, initial phosphorus concentration, current density, and electrolysis time. Based on experimental data, statistical model verification of the response surface methodology (RSM) (multiple factor optimization) was also established to provide further insights and accurately describe the interactive relationship between the process variables, thus optimizing the EC process performance. The EC process using iron electrodes is promising for improving wastewater phosphorus removal efficiency, and RSM can be a sustainable tool for predicting the performance of the EC process and explaining the influence of the process variables.

  2. [Co-composting of high-moisture vegetable waste and flower waste in a batch operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-09-01

    Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  3. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlledmore » to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.« less

  4. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net; Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616; Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. Themore » system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.« less

  5. Removal of cadmium ions from wastewater using innovative electronic waste-derived material.

    PubMed

    Xu, Meng; Hadi, Pejman; Chen, Guohua; McKay, Gordon

    2014-05-30

    Cadmium is a highly toxic heavy metal even at a trace level. In this study, a novel material derived from waste PCBs has been applied as an adsorbent to remove cadmium ions from aqueous solutions. The effects of various factors including contact time, initial cadmium ion concentration, pH and adsorbent dosage have been evaluated. The maximum uptake capacity of the newly derived material for cadmium ions has reached 2.1mmol/g at an initial pH 4. This value shows that this material can effectively remove cadmium ions from effluent. The equilibrium isotherm has been analyzed using several isotherm equations and is best described by the Redlich-Peterson model. Furthermore, different commercial adsorbent resins have been studied for comparison purposes. The results further confirm that this activated material is highly competitive with its commercial counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo--Fenton processes.

    PubMed

    Li, Jiuyi; Zhao, Lei; Qin, Lele; Tian, Xiujun; Wang, Aimin; Zhou, Yanmei; Meng, Liao; Chen, Yong

    2016-03-01

    Removal of the refractory organic matters in leachate brines generated from nanofiltration unit in two full-scale municipal solid waste landfill leachate treatment plants was investigated by Fenton oxidative-coagulation and ultraviolet photo - Fenton processes in this study. Fenton oxidative-coagulation was performed under the condition of an initial pH of 5.0 and low H2O2/Fe(2+) ratios. After precipitate separation, the remaining organic constituents were further oxidized by photo - Fenton process. For both leachate brines with varying pollution strength, more than 90% COD and TOC reductions were achieved at H2O2/Fe(2+) dosages of 35 mM/8 mM and 90 mM/10 mM, respectively. The effluent COD ranged 120-160 mg/L under the optimal operating conditions, and the biodegradability was increased significantly. Fenton oxidative-coagulation was demonstrated to contribute nearly 70% overall removal of organic matters. In the combined processes, the efficiency of hydrogen peroxide varied from 216 to 228%, which may significantly reduce the operating cost of conventional Fenton method. Six phthalic acid esters and thirteen polycyclic aromatic hydrocarbons were found in leachate brines, and, on the average, around 80% phthalic acid esters and 90% polycyclic aromatic hydrocarbons were removed by the combined treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 40 CFR Table 3 to Subpart Cb of... - Municipal Waste Combustor Operating Guidelines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Municipal Waste Combustor Operating... and Compliance Times for Large Municipal Waste Combustors That are Constructed on or Before September 20, 1994 Pt. 60, Subpt. Cb, Table 3 Table 3 to Subpart Cb of Part 60—Municipal Waste Combustor...

  8. Influence of Planetary Protection Guidelines on Waste Management Operations

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  9. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    PubMed

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  10. Impacts of waste from concentrated animal feeding operations on water quality

    USGS Publications Warehouse

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  11. Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality

    PubMed Central

    Burkholder, JoAnn; Libra, Bob; Weyer, Peter; Heathcote, Susan; Kolpin, Dana; Thorne, Peter S.; Wichman, Michael

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems. PMID:17384784

  12. Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal

    NASA Astrophysics Data System (ADS)

    Al-Latief, D. N.; Arnelli, Astuti, Y.

    2015-12-01

    Surfactant-modified active carbon (SMAC) has been successfully synthesized from waste rice husk using a series of treatments i.e. carbonization, activation with H3PO4 and surface modification using sodium lauryl sulfate (SLS). The synthesized SMAC was characterized using SEM-EDX and FTIR. The adsorption results show that the SMAC synthesized using H3PO4 treatment for 8 hours followed with SLS treatment for 5 hours had efficiency and capacity of the waste lead removal of 99.965% and 0.499825 mg.g-1, respectively.

  13. Performance assessment for continuing and future operations at solid waste storage area 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

  14. Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage.

    PubMed

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2017-09-15

    The present study discusses the potentiality of using anaerobic Packed Bed Bioreactor (PBR) for the treatment of acid mine drainage (AMD). The multiple process parameters such as pH, hydraulic retention time (HRT), concentration of marine waste extract (MWE), total organic carbon (TOC) and sulfate were optimized together using Taguchi design. The order of influence of the parameters towards biological sulfate reduction was found to be pH > MWE > sulfate > HRT > TOC. At optimized conditions (pH - 7, 20% (v/v) MWE, 1500 mg/L sulfate, 48 h HRT and 2300 mg/L TOC), 98.3% and 95% sulfate at a rate of 769.7 mg/L/d. and 732.1 mg/L/d. was removed from the AMD collected from coal and metal mine, respectively. Efficiency of metal removal (Fe, Cu, Zn, Mg and Ni) was in the range of 94-98%. The levels of contaminants in the treated effluent were below the minimum permissible limits of industrial discharge as proposed by Bureau of Indian Standards (IS 2490:1981). The present study establishes the optimized conditions for PBR operation to completely remove sulfate and metal removal from AMD at high rate. The study also creates the future scope to develop an efficient treatment process for sulfate and metal-rich mine wastewater in a large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Activated bauxite waste as an adsorbent for removal of Acid Blue 92 from aqueous solutions.

    PubMed

    Norouzi, Sh; Badii, Kh; Doulati Ardejani, F

    2010-01-01

    Bauxite waste, known as red mud, is produced in some industrial processes, such as aluminum production process. In this process, the waste material is produced from leached bauxite as a by product. In this research, the removal of Acid Blue 92 (AB92) dye was investigated from aqueous solution onto the activated bauxite waste (red mud) in a batch equilibration system. Besides, the influences of pH, adsorbent dosage, contact time, initial concentration of dye and temperature have been considered. It was found that the OH group is an effective functional group for the adsorption process. The intensity of the peaks correspond to OH group has been significantly climbed after the activation process. The adsorption kinetics of AB92 can be well described by the pseudo-second-order reaction model. Based on the isotherm data obtained from the fittings of the adsorption kinetics, the Langmuir model appears to fit the adsorption process better than the Freundlich and Brunauer-Emmett-Teller (BET) models.

  16. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards of Performance for Large Municipal Waste Combustors for Which Construction is Commenced After... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... Standards for municipal waste combustor operator training and certification. (a) No later than the date 6...

  17. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste.

    PubMed

    Rao, M Madhava; Reddy, D H K Kumar; Venkateswarlu, Padala; Seshaiah, K

    2009-01-01

    Removal of mercury from aqueous solutions using activated carbon prepared from Ceiba pentandra hulls, Phaseolus aureus hulls and Cicer arietinum waste was investigated. The influence of various parameters such as effect of pH, contact time, initial metal ion concentration and adsorbent dose for the removal of mercury was studied using a batch process. The experiments demonstrated that the adsorption process corresponds to the pseudo-second-order-kinetic models and the equilibrium adsorption data fit the Freundlich isotherm model well. The prepared adsorbents ACCPH, ACPAH and ACCAW had removal capacities of 25.88 mg/g, 23.66 mg/g and 22.88 mg/g, respectively, at an initial Hg(II) concentration of 40 mg/L. The order of Hg(II) removal capacities of these three adsorbents was ACCPH>ACPAH>ACCAW. The adsorption behavior of the activated carbon is explained on the basis of its chemical nature. The feasibility of regeneration of spent activated carbon adsorbents for recovery of Hg(II) and reuse of the adsorbent was determined using HCl solution.

  18. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.; King, W. D.; Coleman, C. J.

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulkmore » waste removal campaign).« less

  19. Kinetic and morphology study of alginate-vineyard pruning waste biocomposite vs. non modified vineyard pruning waste for dye removal.

    PubMed

    Vecino, Xanel; Devesa-Rey, Rosa; Villagrasa, Salvador; Cruz, Jose M; Moldes, Ana B

    2015-12-01

    In this work a comparative bioadsorption study between a biocomposite consisting of hydrolysed vineyard pruning waste entrapped in calcium alginate spheres and non entrapped vineyard residue was carried out. Results have demonstrated that the biocomposite based on lignocellulose-calcium alginate spheres removed 77.3% of dyes, while non entrapped lignocellulose eliminated only removed 27.8% of colour compounds. The experimental data were fitted to several kinetic models (pseudo-first order, pseudo-second order, Chien-Clayton model, intraparticle diffusion model and Bangham model); being pseudo-second order the kinetic model that better described the adsorption of dyes onto both bioadsorbents. In addition, a morphological study (roughness and shape) of alginate-vineyard biocomposite was established under extreme conditions, observing significant differences between hydrated and dehydrated alginate-vineyard biocomposite. The techniques used to carry out this morphological study consisted of scanning electron microscopy (SEM), perfilometry and 3D surface analysis. Copyright © 2015. Published by Elsevier B.V.

  20. Evaluating the operational risks of biomedical waste using failure mode and effects analysis.

    PubMed

    Chen, Ying-Chu; Tsai, Pei-Yi

    2017-06-01

    The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.

  1. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance ofmore » the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.« less

  2. Continuous anaerobic digestion of food waste and design of digester with lipid removal.

    PubMed

    Li, Dong; Sun, Yongming; Guo, Yanfeng; Yuan, Zhenhong; Wang, Yao; Zhen, Feng

    2013-01-01

    Separation of municipal solid waste has been implemented in many cities in China. As a major component of municipal solid waste, food waste can be treated by anaerobic digestion (AD) for energy production. To provide reference data for disposing of food waste through engineering applications, continuous AD was carried out under various organic loading rates (OLRs) at 27 +/- 2 degrees C in the laboratory. The anaerobic reactor was stable with pH 7.0-7.1, total volatile fatty acid (VFA) concentrations of 206-746 mg/L, and NH4+ -N concentrations of 525-1293 mg/L when the OLR was 1.118-5.588 kg volatile solids (VS)/m(3) x d. The maximum volumetric biogas production rate was 4.41 L/L x d when the OLR was increased to 5.588 kg VS/m(3) x d with a hydraulic retention time of 30 d. When the OLR was increased to 6.706 and 8.382 kg VS/m(3) x d, biogas production was seriously inhibited by VFAs, with maximum total VFA and propionate concentrations of 8738 mg/L and 2864 mg/L, respectively. Due to the incomplete degradation of lipids, the specific methane production rate of 353-488 L/kg VS accounted for 55.2-76.3% of the theoretical methane potential calculated based on the component composition. A retrofitted anaerobic digester with lipid removal was designed to improve the efficiency.

  3. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  4. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth.

    PubMed

    Yu, Jiangdong; Jiang, Chunyan; Guan, Qingqing; Ning, Ping; Gu, Junjie; Chen, Qiuling; Zhang, Junmin; Miao, Rongrong

    2018-03-01

    Biochar derived from waste water hyacinth was prepared and modified by ZnO nanoparticles for Cr(VI) removal from aqueous solution with the aim of Cr(VI) removal and management of waste biomass. The effect of carbonization temperature (500-800 °C), ZnO content (10-50 wt%) loaded on biochar and contact time (0.17-14 h) on the Cr(VI) removal were investigated. It was found that higher than 95% removal efficiency of Cr(VI) can be achieved with the biochar loaded 30 wt% ZnO. The adsorption kinetics of the sorbent is consistent with the pseudo-second-order kinetic model and adsorption isotherm follows the Langmuir model with maximum adsorption capacity of 43.48 mg g -1 for Cr(VI). Multiple techniques such as XRD, XPS, SEM, EDX and FT-IR were performed to investigate the possible mechanisms involved in the Cr (VI) adsorption. The results show that there is precipitation between chromium ions and Zn oxide. Furthermore, the ZnO nanoparticles acts as photo-catalyst to generate photo-generated electrons to enhance the reduction of Cr(VI) to Cr(III). The as-prepared ZnO/BC possess good recyclability and the removal ratio remained at about 70% in the fifth cycle, which suggests that both contaminants removal and effective management of water hyacinth can be achieved by the approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Selective removal of organics for water reclamation

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J.; Hitchens, G. Duncan; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. The feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space habitat humidity condensates was demonstrated. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. The electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water reclamation applications are described. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are also described. The design of a novel electrochemical system that incorporates a proton exchange membrane (PEM) electrolyte is presented based on parametric test data and current fuel cell technology.

  6. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    PubMed

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  7. Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant.

    PubMed

    Starvin, A M; Rao, T Prasada

    2004-09-10

    As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.

  8. Natural and Man-Made Objects, Level K. Teacher's Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  9. Assessment of emissions and removal of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) at start-up periods in a hazardous waste incinerator.

    PubMed

    Karademir, Aykan; Korucu, M Kemal

    2013-07-01

    A study was conducted to observe the changes in polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) levels and congener profiles in the flue gas of a hazardous waste incinerator during two start-up periods. Flue gas samplings were performed simultaneously through Air Pollution Control Devices (APCDs) (including boiler outlet, electrostatic precipitator (ESP) outlet, wet scrubbers (WS) outlet, and activated carbon (AC) filter outlet) in different combustion temperatures during a planned cold (long) start-up and an unplanned warm (short) start-up. The results showed that PCDD/F concentrations could be elevated during the start-up periods up to levels 3-4 times higher than those observed in the normal operation. Especially lower combustion temperatures in the short start-ups may cause high PCDD/F concentrations in the raw flue gas. Assessment of combustion temperatures and Furans/Dioxins values indicated that surface-catalyzed de novo synthesis was the dominant pathway in the formation of PCDD/Fs in the combustion units. PCDD/F removal efficiencies of Air Pollution Control Devices suggested that formation by de novo synthesis existed in ESP also when in operation, leading to increase of gaseous phase PCDD/Fs in ESP Particle-bound PCDD/Fs were removed mainly by ESP and WS, while gaseous phase PCDD/Fs were removed by WS, and more efficiently by AC filter. This paper evaluates PCDD/F emissions and removal performances of APCDs (ESP, wet scrubbers, and activated carbon) during two start-up periods in an incinerator. The main implications are the following: (1) start-up periods increase PCDD/F emissions up to 2-3 times in the incinerator; (2) low combustion temperatures in start-ups cause high PCDD/F emissions in raw gas; (3) formation of PCDD/Fs by de novo synthesis occurs in ESP; (4) AC is efficient in removing gaseous PCDD/Fs, but may increase particle-bound ones; and (5) scrubbers remove both gaseous and particle-bound PCDD/Fs efficiently.

  10. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    For many years liquid scintillation cocktail (LSC) wastes have been generated and stored at Argonne National Laboratory (ANL). These wastes are stored in thousands of 10--20 m scintillation vials, many of which contain elements with Z > 88. Because storage space is limited, disposal of this waste is pressing. These wastes could be commercially incinerated if the radionuclides with Z>88 are reduced to sufficiently low levels. However, there is currently no deminimus level for these radionuclides, and separation techniques are still being tested. The University of Illinois is conducting experiments to separate radionuclides with Z > 88 from simulated LSCmore » wastes by using liquid-liquid extraction (LLX) and demulsification techniques. The actinide elements are removed from the LSC by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated and the organic phase, now free from radionuclides with Z > 88, can be sent to a commercial incineration facility. The aqueous phase may be treated and disposed of using existing techniques. The LLX separation techniques used solutions of sodium oxalate, aluminum nitrate, and tetrasodium EDTA at varying concentrations. These extractants were mixed with the simulated waste in a 1:1 volume ratio. Using 1.0M Na{sub 4} EDTA salt solutions, decontamination ratios as high as 230 were achieved.« less

  11. Gypsum and organic matter distribution in a mixed construction and demolition waste sorting process and their possible removal from outputs.

    PubMed

    Montero, A; Tojo, Y; Matsuo, T; Matsuto, T; Yamada, M; Asakura, H; Ono, Y

    2010-03-15

    With insufficient source separation, construction and demolition (C&D) waste becomes a mixed material that is difficult to recycle. Treatment of mixed C&D waste generates residue that contains gypsum and organic matter and poses a risk of H(2)S formation in landfills. Therefore, removing gypsum and organic matter from the residue is vital. This study investigated the distribution of gypsum and organic matter in a sorting process. Heavy liquid separation was used to determine the density ranges in which gypsum and organic matter were most concentrated. The fine residue that was separated before shredding accounted for 27.9% of the waste mass and contained the greatest quantity of gypsum; therefore, most of the gypsum (52.4%) was distributed in this fraction. When this fine fraction was subjected to heavy liquid separation, 93% of the gypsum was concentrated in the density range of 1.59-2.28, which contained 24% of the total waste mass. Therefore, removing this density range after segregating fine particles should reduce the amount of gypsum sent to landfills. Organic matter tends to float as density increases; nevertheless, separation at 1.0 density could be more efficient. (c) 2009 Elsevier B.V. All rights reserved.

  12. Sustainable conversion of agriculture wastes into activated carbons: energy balance and arsenic removal from water.

    PubMed

    Dieme, M M; Villot, A; Gerente, C; Andres, Y; Diop, S N; Diawara, C K

    2017-02-01

    The aims of this study are to investigate the production of activated carbons (AC) from Senegal agricultural wastes such as cashew shells, millet stalks and rice husks and to implement them in adsorption processes devoted to arsenic (V) removal. AC were produced by a direct physical activation with water steam without other chemicals. This production of AC has also led to co-products (gas and bio-oil) which have been characterized in terms of physical, chemical and thermodynamical properties for energy recovery. Considering the arsenic adsorption results and the energy balance for the three studied biomasses, the first results have shown that the millet stalks seem to be more interesting for arsenate removal from natural water and an energy recovery with a GEE elec of 18.9%. Cashew shells, which have shown the best energy recovery (34.3%), are not suitable for arsenate removal. This global approach is original and contributes to a recycling of biowastes with a joint recovery of energy and material.

  13. Arsenic: a roadblock to potential animal waste management solutions.

    PubMed

    Nachman, Keeve E; Graham, Jay P; Price, Lance B; Silbergeld, Ellen K

    2005-09-01

    The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.

  14. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  15. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  16. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  17. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  18. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  19. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    PubMed

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management.

  20. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    NASA Astrophysics Data System (ADS)

    Knox, C. A.; Farnsworth, R. K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.

  1. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  2. Cadmium Removal from Contaminated Water Using Polyelectrolyte-Coated Industrial Waste Fly Ash

    PubMed Central

    Olabemiwo, Fatai A.; Oyehan, Tajudeen A.; Khaled, Mazen

    2017-01-01

    Fly ash (FA) is a major industrial waste generated from power stations that add extra cost for proper disposal. Recent research efforts have consequently focused on developing ways to make use of FA in environmentally sound applications. This study, therefore, investigates the potential ability of raw fly ash (RFA) and polyelectrolyte-coated fly ash (PEFA) to remove cadmium (Cd) from polluted water. Using layer-by-layer approach, functionalized fly ash was coated with 20 layers from 0.03% (v/v) of cationic poly(diallyldimethylammonium chloride) (PDADMAC) and anionic polystyrene sulfonate (PSS) solutions. Both surface morphology and chemical composition of the adsorbent (PEFA) were characterized using Field-Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffraction (XRD), Fourier-Transform Infrared (FTIR), and X-Ray Fluorescence (XRF) techniques. The effects of pH, adsorbent dosage, contact time, initial contaminant concentration, and mixing rate of the adsorption of Cd were also studied in batch mode experiments. Results of the study revealed that a 4.0 g/L dosage of PEFA removed around 99% of 2.0 mg/L of Cd in 15 min at 150 rpm compared to only 27% Cd removal achieved by RFA under the same conditions. Results also showed that adsorption by PEFA followed both Langmuir and Freundlich models with correlation coefficients of 98% and 99%, respectively. PMID:28680373

  3. Radium removal for a small community water-supply system. Research report, 1 October 1985-30 September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangelson, K.A.

    1988-07-01

    In 1984, a radium-removal treatment plant was constructed for the small community of Redhill Forest located in the central mountains of Colorado. The treatment plant consists of a process for removing iron and manganese ahead of an ion-exchange process for the removal of radium. The raw water comes from deep wells and has naturally occurring radium and iron concentrations of about 30-40 pCi/L and 7-10 mg/L, respectively. Before the raw water enters the main treatment plant, the raw water is aerated to remove radon gas and carbon dioxide. The unique features of the Redhill Forest Treatment Plant are related tomore » the ways in which the radium removed from the raw water is further treated and eventually disposed of as treatment plant waste. A separate system removes only radium from the backwash/regeneration water of the ion exchange process and the radium is permanently complexed on a Radium Selective Complexer (RSC) resin made by Dow Chemical. The RSC resin containing radium is replaced with virgin resin as needed and the resin waste transported to a permanent final disposal site in Beatty, NV. This report presents a detailed description of the Redhill Forest treatment system and the results of in-depth monitoring of the processes and other factors relating to the overall operation of the radium-removal system. Included are descriptions of modifications made in the plant operation to improve the overall system operation and of the procedures for final disposal of the RSC resin-containing radium.« less

  4. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less

  5. An innovative national health care waste management system in Kyrgyzstan.

    PubMed

    Toktobaev, Nurjan; Emmanuel, Jorge; Djumalieva, Gulmira; Kravtsov, Alexei; Schüth, Tobias

    2015-02-01

    A novel low-cost health care waste management system was implemented in all rural hospitals in Kyrgyzstan. The components of the Kyrgyz model include mechanical needle removers, segregation using autoclavable containers, safe transport and storage, autoclave treatment, documentation, recycling of sterilized plastic and metal parts, cement pits for anatomical waste, composting of garden wastes, training, equipment maintenance, and management by safety and quality committees. The gravity-displacement autoclaves were fitted with filters to remove pathogens from the air exhaust. Operating parameters for the autoclaves were determined by thermal and biological tests. A hospital survey showed an average 33% annual cost savings compared to previous costs for waste management. All general hospitals with >25 beds except in the capital Bishkek use the new system, corresponding to 67.3% of all hospital beds. The investment amounted to US$0.61 per capita covered. Acceptance of the new system by the staff, cost savings, revenues from recycled materials, documented improvements in occupational safety, capacity building, and institutionalization enhance the sustainability of the Kyrgyz health care waste management system. © The Author(s) 2015.

  6. Optimizing winter/snow removal operations in MoDOT St. Louis district : includes outcome based evaluation of operations.

    DOT National Transportation Integrated Search

    2011-10-01

    The objective of this project was to develop fleet location, route decision, material selection, and treatment procedures for winter snow removal operations to improve MoDOTs services and lower costs. This work uses a systematic, heuristic-based o...

  7. STRONTIUM-90 LIQUID CONCENTRATION SOLUBILITY CORRELATION IN THE HANFORD TANK WASTE OPERATIONS SIMULATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOHL, T.; PLACE, D.; WITTMAN, R.

    2004-08-05

    A new correlation was developed to estimate the concentration of strontium-90 in a waste solution based on total organic carbon. This correlation replaces the strontium-90 wash factors, and when applied in the Hanford Tank Waste Operations Simulator, significantly reduced the estimated quantity of strontium-90 in the delivered low-activity waste feed. This is thought to be a more realistic estimate of strontium-90 than using the wash-factor method.

  8. 29 CFR 1926.65 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 1926.65 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.65 Hazardous waste operations and emergency response. (a) Scope...

  9. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  10. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  11. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  12. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  13. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  14. [Treatment of organic waste gas by adsorption rotor].

    PubMed

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  15. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  16. Assessment of biogas production from MBT waste under different operating conditions.

    PubMed

    Pantini, Sara; Verginelli, Iason; Lombardi, Francesco; Scheutz, Charlotte; Kjeldsen, Peter

    2015-09-01

    In this work, the influence of different operating conditions on the biogas production from mechanically-biologically treated (MBT) wastes is investigated. Specifically, different lab-scale anaerobic tests varying the water content (26-43% w/w up to 75% w/w), the temperature (from 20 to 25°C up to 55°C) and the amount of inoculum have been performed on waste samples collected from a full-scale Italian MBT plant. For each test, the gas generation yield and, where applicable, the first-order gas generation rates were determined. Nearly all tests were characterised by a quite long lag-phase. This result was mainly ascribed to the inhibition effects resulting from the high concentrations of volatile fatty acids (VFAs) and ammonia detected in the different stages of the experiments. Furthermore, water content was found as one of the key factor limiting the anaerobic biological process. Indeed, the experimental results showed that when the moisture was lower than 32% w/w, the methanogenic microbial activity was completely inhibited. For the higher water content tested (75% w/w), high values of accumulated gas volume (up to 150Nl/kgTS) and a relatively short time period to deplete the MBT waste gas generation capacity were observed. At these test conditions, the effect of temperature became evident, leading to gas generation rates of 0.007d(-1) at room temperature that increased to 0.03-0.05d(-1) at 37°C and to 0.04-0.11d(-1) at 55°C. Overall, the obtained results highlighted that the operative conditions can drastically affect the gas production from MBT wastes. This suggests that particular caution should be paid when using the results of lab-scale tests for the evaluation of long-term behaviour expected in the field where the boundary conditions change continuously and vary significantly depending on the climate, the landfill operative management strategies in place (e.g. leachate recirculation, waste disposal methods), the hydraulic characteristics of disposed

  17. 40 CFR 62.14105 - Requirements for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator of an affected facility must develop and update on a yearly basis a site-specific operating manual... subpart; (2) A description of basic combustion theory applicable to a municipal waste combustor unit; (3...

  18. Release and Removal of Microorganisms from Land-Deposited Animal Waste and Animal Manures: A Review of Data and Models.

    PubMed

    Blaustein, Ryan A; Pachepsky, Yakov A; Shelton, Daniel R; Hill, Robert L

    2015-09-01

    Microbial pathogens present a leading cause of impairment to rivers, bays, and estuaries in the United States, and agriculture is often viewed as the major contributor to such contamination. Microbial indicators and pathogens are released from land-applied animal manure during precipitation and irrigation events and are carried in overland and subsurface flow that can reach and contaminate surface waters and ground water used for human recreation and food production. Simulating the release and removal of manure-borne pathogens and indicator microorganisms is an essential component of microbial fate and transport modeling regarding food safety and water quality. Although microbial release controls the quantities of available pathogens and indicators that move toward human exposure, a literature review on this topic is lacking. This critical review on microbial release and subsequent removal from manure and animal waste application areas includes sections on microbial release processes and release-affecting factors, such as differences in the release of microbial species or groups; bacterial attachment in turbid suspensions; animal source; animal waste composition; waste aging; manure application method; manure treatment effect; rainfall intensity, duration, and energy; rainfall recurrence; dissolved salts and temperature; vegetation and soil; and spatial and temporal scale. Differences in microbial release from liquid and solid manures are illustrated, and the influential processes are discussed. Models used for simulating release and removal and current knowledge gaps are presented, and avenues for future research are suggested. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Advanced High-Level Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying

  20. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  1. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  2. Effect of matured compost as an inoculating agent on odour removal and maturation of vegetable and fruit waste compost.

    PubMed

    Chen, Chih-Yu; Kuo, Jong-Tar; Chung, Ying-Chien

    2013-01-01

    The use of matured compost as an inoculation agent to improve the composting of vegetable and fruit wastes in a laboratory-scale composter was evaluated, and the commercial feasibility of this approach in a pilot-scale (1.8 x 10(4) L) composter was subsequently confirmed. The effect of aeration rate on the physico-chemical and biological properties of compost was also studied. Aeration rate affected the fermentation temperature, moisture content, pH, O2 consumption rate, CO2 production rate and the formation of odour. The optimal aeration rate was 2.5 L air/kg dry solid/min. The CO2 production rate approached the theoretical value during composting and was linearly dependent on temperature, indicating that the compost system had good operating characteristics. The inoculation of cellulolytic bacteria and deodorizing bacteria to compost in the pilot-scale composter led to an 18.2% volatile solids loss and a 64.3% volume reduction ratio in 52 h; only 1.5 ppm(v) odour was detected. This is the first study to focus on both operating performance and odour removal in a pilot-scale composter.

  3. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater.

    PubMed

    Chen, Xi; Chen, Xiuxia; Wan, Xianwei; Weng, Boqi; Huang, Qin

    2010-12-01

    Both live plants and dried straw of water hyacinth were applied to a sequential treatment of swine wastewater for nitrogen and phosphorus reduction. In the facultative tank, the straw behaved as a kind of adsorbent toward phosphorus. Its phosphorus removal rate varied considerably with contact time between the straw and the influent. In the laboratory, the straw displayed a rapid total phosphorus reduction on a KH(2)PO(4) solution. The adsorption efficiency was about 36% upon saturation. At the same time, the water hyacinth straw in the facultative tank enhanced NH(3)-N removal efficiency as well. However, no adsorption was evident. This study demonstrated an economically feasible means to apply water hyacinth phosphorus straw for the swine wastewater treatment. The sequential system employed significantly reduced the land use, as compared to the wastewater stabilization pond treatment, for pollution amelioration of swine waste. 2010 Elsevier Ltd. All rights reserved.

  4. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    PubMed

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. Copyright © 2016. Published by Elsevier Ltd.

  5. Biosorbents for Removing Hazardous Metals and Metalloids †

    PubMed Central

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  6. Removal and recovery of uranium(VI) by waste digested activated sludge in fed-batch stirred tank reactor.

    PubMed

    Jain, Rohan; Peräniemi, Sirpa; Jordan, Norbert; Vogel, Manja; Weiss, Stephan; Foerstendorf, Harald; Lakaniemi, Aino-Maija

    2018-05-24

    This study demonstrated the removal and recovery of uranium(VI) in a fed-batch stirred tank reactor (STR) using waste digested activated sludge (WDAS). The batch adsorption experiments showed that WDAS can adsorb 200 (±9.0) mg of uranium(VI) per g of WDAS. The maximum adsorption of uranium(VI) was achieved even at an acidic initial pH of 2.7 which increased to a pH of 4.0 in the equilibrium state. Desorption of uranium(VI) from WDAS was successfully demonstrated from the release of more than 95% of uranium(VI) using both acidic (0.5 M HCl) and alkaline (1.0 M Na 2 CO 3 ) eluents. Due to the fast kinetics of uranium(VI) adsorption onto WDAS, the fed-batch STR was successfully operated at a mixing time of 15 min. Twelve consecutive uranium(VI) adsorption steps with an average adsorption efficiency of 91.5% required only two desorption steps to elute more than 95% of uranium(VI) from WDAS. Uranium(VI) was shown to interact predominantly with the phosphoryl and carboxyl groups of the WDAS, as revealed by in situ infrared spectroscopy and time-resolved laser-induced fluorescence spectroscopy studies. This study provides a proof-of-concept of the use of fed-batch STR process based on WDAS for the removal and recovery of uranium(VI). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  8. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  9. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  10. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  11. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  12. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m 3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmentalmore » Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.« less

  13. Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.

    PubMed

    Su, Yuh-fan; Cheng, Yu-ling; Shih, Yang-hsin

    2013-11-15

    Activated carbon (AC) and zerovalent iron (ZVI) have been widely used in the adsorption and dehalogenation process, respectively, for the removal of organic compounds in environmental treatments. This study aims to prepare ZVI/AC derived from an agricultural waste, coir pith, through simple one-step pyrolysis. The effect of activation temperature and time on the surface area, iron content, and zerovalent iron ratio of ZVI/AC was systemically investigated. The results indicated that the activation of AC by FeSO4 significantly increased surface area of AC and distributed elemental iron over the AC. The X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and X-ray absorption near edge structure (XANES) spectra of ZVI/AC revealed that zerovalent iron was present. As compared to AC without FeSO4 activation, ZVI/AC increased the trichloroethylene removal rate constant by 7 times. The dechlorination ability of ZVI/AC was dominated by the zerovalent iron content. We have shown that lab-made ZVI/AC from coir pith can effectively adsorb and dehalogenate the chlorinated compounds in water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Performance assessment for continuing and future operations at Solid Waste Storage Area 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuingmore » operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.« less

  15. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the

  16. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather.

    PubMed

    Li, Huiqin; Hu, Jingtao; Meng, Yue; Su, Jinhua; Wang, Xiaojing

    2017-12-15

    This study investigated the removal of tetracycline (TC) using multilayered graphene-phase biochar (MGB) derived from waste chicken feather. MGB was produced through a two-stage carbonization and KOH-activation method. MGB was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared (FT-IR), Raman spectra, Zeta potential and elemental analysis. Various chemical functional groups were demonstrated on the surface of MGB. MGB was featured by a very large BET surface area of 1838m 2 /g. A rapid equilibrium (within 30s) and an ultrahigh removal efficiency (up to 99.65%) were obtained when MGB was used in the adsorption of TCs. The adsorption processes were temperature-dependent and the maximum adsorption capacity of MGB was 388.33mg/g at 30°C. The data of adsorption isotherms and kinetics were represented well by the Langmuir and Elovich models, respectively. The chemical monolayer adsorption could play an important role in this process. Furthermore, the adsorption of MGB was tolerant with wide pH, high ionic strength and even co-existing anions. Regeneration experiments indicated the removal efficiency was still satisfied (96.61%) even after four cycles. These results have important implications for the future application of animal waste-derived adsorbents in the treatment of wastewater containing antibiotic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Criteria for Solid Waste Disposal Facilities: A Guide for Owners/Operators

    EPA Pesticide Factsheets

    EPA's continuing mission to establish the minimum national standards for landfill design, operation, and management that will enhance landfill safety and boost public confidence in landfills as a component of a workable integrated waste management system.

  18. Adsorbent material based on passion-fruit wastes to remove lead (Pb), chromium (Cr) and copper (Cu) from metal-contaminated waters

    NASA Astrophysics Data System (ADS)

    Campos-Flores, Gaby; Castillo-Herrera, Alberto; Gurreonero-Fernández, Julio; Obeso-Obando, Aída; Díaz-Silva, Valeria; Vejarano, Ricardo

    2018-04-01

    The aim of the present work was to evaluate the feasibility of passion-fruit shell (PFS) biomass as adsorbent material to remove heavy metals from contaminated waters. Model mediums were used, which were composed of distilled water and the respective metal: lead (Pb), chromium (Cr) and copper (Cu), with a dose of 10g of dry PFSbiomass per liter of medium. The residual concentration of each metal was determined by Atomic Absorption Spectrophotometry (AAS). A good adsorption capacity was exhibited by this agro industrial waste, achieving removal levels of 96,93 and 82% for Pb, Cr and Cu, respectively. In addition, the results obtained showed an adequate fit to the Freundlich model (R2 > 0.91), on the basis of which, the following values of adsorption capacity (k: 1.7057, 0.6784, 0.3302) and adsorption intensity (n: 0.6869, 2.3474, 1.0499), for Pb, Cr and Cu respectively, were obtained. Our results suggest that Pb, Cr and Cu ions can be removed by more than 80% by using this agro industrial waste, which with a minimum treatment could be used as an adsorbent material in the treatment of metal-contaminated waters.

  19. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  20. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  1. Numerical Modeling to Assess DNAPL Movement and Removal at the Scenic Site Operable Unit Near Baton Rouge, Louisiana: A Case Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Mart; Thorne, Paul D.; White, Mark D.

    2003-12-01

    Detailed three-dimensional multifluid flow modeling was conducted to assess movement and removal of dense nonaqueous phase liquid (DNAPL) movement at a waste site in Louisiana. The site’s subsurface consists of several permeable zones separated by (semi) confining clays. In the upper subsurface, the two major permeable zones are, starting with the uppermost zone, the +40- and +20-MSL (mean sea level) zones. At the site, a total of 23,000 m3 of DNAPL was emplaced in an open waste pit between 1962 and 1974. In this period, considerable amounts of DNAPL moved into the subsurface. By 1974 a portion of the DNAPLmore » was removed and the waste site was filled with low-permeability materials and closed. During this process, some of the DNAPL was mixed with the fill material and remained at the site. Between 1974 and 2000, no additional DNAPL recovery activities were implemented. In an effort to reduce the DNAPL source, organic liquid has been pumped through a timed-pumping scheme from a total of 7 wells starting in calendar year 2000. The recovery wells are screened in the lower part of the waste fill material. In site investigations, DNAPL has been encountered in the +40-MSL but not in the +20-MSL zone. The following questions are addressed: (1) Where has the DNAPL migrated vertically and laterally? (2) How much further is DNAPL expected to move in the next century? (3) How effective is the current DNAPL pumping in reducing the DNAPL source? The computational domains for the simulations were derived from 3-D interpolations of borehole logs using a geologic interpretation software (EarthvisionTM ) . The simulation results show that DNAPL primarily entered the subsurface in the period 1962 – 1974, when the waste site was operational. After 1974, the infiltration rates dropped dramatically as a result of the infilling of the waste pit. The simulation results indicate that DNAPL moved from the pit into the underlying +40-MSL zone through two contact zones at

  2. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.

    PubMed

    Son, Eun-Bi; Poo, Kyung-Min; Chang, Jae-Soo; Chae, Kyu-Jung

    2018-02-15

    Despite the excellent sorption ability of biochar for heavy metals, it is difficult to separate and reuse after adsorption when applied to wastewater treatment process. To overcome these drawbacks, we developed an engineered magnetic biochar by pyrolyzing waste marine macro-algae as a feedstock, and we doped iron oxide particles (e.g., magnetite, maghemite) to impart magnetism. The physicochemical characteristics and adsorption properties of the biochar were evaluated. When compared to conventional pinewood sawdust biochar, the waste marine algae-based magnetic biochar exhibited a greater potential to remove heavy metals despite having a lower surface area (0.97m 2 /g for kelp magnetic biochar and 63.33m 2 /g for hijikia magnetic biochar). Although magnetic biochar could be effectively separated from the solution, however, the magnetization of the biochar partially reduced its heavy metal adsorption efficiency due to the biochar's surface pores becoming plugged with iron oxide particles. Therefore, it is vital to determine the optimum amount of iron doping that maximizes the biochar's separation without sacrificing its heavy metal adsorption efficiency. The optimum concentration of the iron loading solution for the magnetic biochar was determined to be 0.025-0.05mol/L. The magnetic biochar's heavy metal adsorption capability is considerably higher than that of other types of biochar reported previously. Further, it demonstrated a high selectivity for copper, showing two-fold greater removal (69.37mg/g for kelp magnetic biochar and 63.52mg/g for hijikia magnetic biochar) than zinc and cadmium. This high heavy metal removal performance can likely be attributed to the abundant presence of various oxygen-containing functional groups (COOH and OH) on the magnetic biochar, which serve as potential adsorption sites for heavy metals. The unique features of its high heavy metal removal performance and easy separation suggest that the magnetic algae biochar can potentially

  3. Effect of operational cycle time length on nitrogen removal in an alternating oxidation ditch system.

    PubMed

    Mantziaras, I D; Stamou, A; Katsiri, A

    2011-06-01

    This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.

  4. Removal of total suspended solid by natural coagulant derived from cassava peel waste

    NASA Astrophysics Data System (ADS)

    Mohd-Asharuddin, S.; Othman, N.; Mohd-Zin, N. S.; Tajarudin, H. A.

    2018-04-01

    The present study was aimed to investigate the performance of starch derived from cassava peel waste as primary coagulant and coagulant aid. Comparable study was also conducted using commercially used aluminium sulfate (alum) as primary coagulant. A series of Jar tests were performed using raw water from Sembrong Barat water treatment plant. It was observed that coagulation test using cassava peel starch (CPS) alone had unappreciable removing ability. However, it was found that combination of alum-CPS successfully achieve up to 90.48% of total suspended solid (TSS) removal under optimized working conditions (pH 9, 7.5mg/L : 100 mg/L of alum : CPS dosage, rapid mixing of 200 rpm for 1 minute; 100 rpm for 2 minutes, slow mixing of 25 rpm for 30 minutes and 30 minutes settling time). This remarks the reduction in alum dosage up to 50% compared to coagulation test using alum alone. Therefore this finding suggesting that CPS can be considered as potential source of sustainable and effective coagulant aid for water treatment especially in developing countries.

  5. 40 CFR Appendix A to Subpart M of... - Interpretive Rule Governing Roof Removal Operations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... condition of the material at the time of demolition or renovation, (2) the nature of the operation to which... roofing materials. C. Cutting vs. Slicing and Manual Methods for Removal of Category I ACM 1.C.1. Because.... However, EPA believes that few roof removal jobs constitute “demolitions” as defined in the NESHAP (§ 61...

  6. 40 CFR Appendix A to Subpart M of... - Interpretive Rule Governing Roof Removal Operations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... condition of the material at the time of demolition or renovation, (2) the nature of the operation to which... roofing materials. C. Cutting vs. Slicing and Manual Methods for Removal of Category I ACM 1.C.1. Because.... However, EPA believes that few roof removal jobs constitute “demolitions” as defined in the NESHAP (§ 61...

  7. 40 CFR Appendix A to Subpart M of... - Interpretive Rule Governing Roof Removal Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... condition of the material at the time of demolition or renovation, (2) the nature of the operation to which... roofing materials. C. Cutting vs. Slicing and Manual Methods for Removal of Category I ACM 1.C.1. Because.... However, EPA believes that few roof removal jobs constitute “demolitions” as defined in the NESHAP (§ 61...

  8. 40 CFR Appendix A to Subpart M of... - Interpretive Rule Governing Roof Removal Operations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... condition of the material at the time of demolition or renovation, (2) the nature of the operation to which... roofing materials. C. Cutting vs. Slicing and Manual Methods for Removal of Category I ACM 1.C.1. Because.... However, EPA believes that few roof removal jobs constitute “demolitions” as defined in the NESHAP (§ 61...

  9. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.; Martin, K.; Hobbs, D.

    2012-01-03

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membranemore » cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.« less

  10. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  11. Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Robert; Seniow, Kendra

    The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with severalmore » important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self

  12. The removal of As(III) and As(V) from aqueous solutions by waste materials.

    PubMed

    Rahaman, M S; Basu, A; Islam, M R

    2008-05-01

    The use of different waste materials such as Atlantic Cod fish scale, chicken fat, coconut fibre and charcoal in removing arsenic [As(III) and As(V)] from aqueous solutions was investigated. Initial experimental runs, conducted for both As(III) and As(V) with the aforementioned materials, demonstrated the potential of using Atlantic Cod fish scale in removing both species of arsenic from aqueous streams. Therefore, the biosorbent fish scale was selected for further investigations and various parameters such as residence time, adsorbent dose, initial concentration of adsorbate, grain size of the adsorbent and pH of the bulk phase were studied to establish optimum conditions. The maximum adsorption capacity was observed at pH value 4.0. The equilibrium adsorption data were interpreted by using both Freundlich and Langmuir models. Rapid small-scale column tests (RSSCT) were also performed to determine the breakthrough characteristics of the arsenic species with respect to packed biosorbent columns.

  13. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    PubMed

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Thermal Pretreatment For TRU Waste Sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, T.; Aoyama, Y.; Miyamoto, Y.

    2008-07-01

    Japan Atomic Energy Agency conducted a study on thermal treatment of TRU waste to develop a removal technology for materials that are forbidden for disposal. The thermal pretreatment in which hot nitrogen and/or air is introduced to the waste is a process of removing combustibles, liquids, and low melting point metals from PVC wrapped TRU waste. In this study, thermal pretreatment of simulated waste was conducted using a desktop thermal treatment vessel and a laboratory scale thermal pretreatment system. Combustibles and low melting point metals are effectively separated from wastes by choosing appropriate temperature of flowing gases. Combustibles such asmore » papers, PVC, oil, etc. were removed and low melting point metals such as zinc, lead, and aluminum were separated from the simulated waste by the thermal pretreatment. (authors)« less

  16. Utilization of powdered waste sludge (PWS) for removal of textile dyestuffs from wastewater by adsorption.

    PubMed

    Ozmihci, Serpil; Kargi, Fikret

    2006-11-01

    Acid pre-treated powdered waste sludge (PWS) was used for removal of textile dyestuffs from aqueous medium by adsorption as an alternative to the use of powdered activated carbon (PAC). The rate and extent of dysetuff removals were determined for four different dyestuffs at different PWS concentrations varying between 1 and 6 gl(-1). Biosorbed dyestuff concentrations at equilibrium decreased with increasing PWS concentration for all dyestuffs tested. PWS was more effective for adsorption of Remazol red RR and Chrisofonia direct yellow 12 as compared to the other dyestuffs tested. More than 80% percent dyestuff removal was obtained for all dyestuffs at PWS concentrations above 4 gl(-1) after 6h of incubation. Similar to percent dyestuff removal, the rate of adsorption was maximum at a PWS concentration of 4 gl(-1). Kinetics of adsorption of dyestuffs was investigated by using the first- and second-order kinetic models and the kinetic constants were determined. Second-order kinetics was found to fit the experimental data better than the first-order model for all dyestuffs tested. Adsorption isotherms were established for all dyestuffs used and the isotherm constants were determined by using the experimental data. Langmuir and the generalized adsorption isotherms were found to be more suitable than the Freundlich isotherm for correlation of equilibrium adsorption data. Acid pre-treated PWS was proven to be an effective adsorbent for dyestuff removal as compared to the other adsorbents reported in literature studies.

  17. 29 CFR 1926.65 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Hazardous waste operations and emergency response. 1926.65 Section 1926.65 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.65...

  18. 29 CFR 1926.65 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Hazardous waste operations and emergency response. 1926.65 Section 1926.65 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.65...

  19. 29 CFR 1926.65 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Hazardous waste operations and emergency response. 1926.65 Section 1926.65 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.65...

  20. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    PubMed

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  1. Operating room waste: disposable supply utilization in neurosurgical procedures.

    PubMed

    Zygourakis, Corinna C; Yoon, Seungwon; Valencia, Victoria; Boscardin, Christy; Moriates, Christopher; Gonzales, Ralph; Lawton, Michael T

    2017-02-01

    OBJECTIVE Disposable supplies constitute a large portion of operating room (OR) costs and are often left over at the end of a surgical case. Despite financial and environmental implications of such waste, there has been little evaluation of OR supply utilization. The goal of this study was to quantify the utilization of disposable supplies and the costs associated with opened but unused items (i.e., "waste") in neurosurgical procedures. METHODS Every disposable supply that was unused at the end of surgery was quantified through direct observation of 58 neurosurgical cases at the University of California, San Francisco, in August 2015. Item costs (in US dollars) were determined from the authors' supply catalog, and statistical analyses were performed. RESULTS Across 58 procedures (36 cranial, 22 spinal), the average cost of unused supplies was $653 (range $89-$3640, median $448, interquartile range $230-$810), or 13.1% of total surgical supply cost. Univariate analyses revealed that case type (cranial versus spinal), case category (vascular, tumor, functional, instrumented, and noninstrumented spine), and surgeon were important predictors of the percentage of unused surgical supply cost. Case length and years of surgical training did not affect the percentage of unused supply cost. Accounting for the different case distribution in the 58 selected cases, the authors estimate approximately $968 of OR waste per case, $242,968 per month, and $2.9 million per year, for their neurosurgical department. CONCLUSIONS This study shows a large variation and significant magnitude of OR waste in neurosurgical procedures. At the authors' institution, they recommend price transparency, education about OR waste to surgeons and nurses, preference card reviews, and clarification of supplies that should be opened versus available as needed to reduce waste.

  2. Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes.

    PubMed

    Janyasuthiwong, Suthee; Phiri, Sheila M; Kijjanapanich, Pimluck; Rene, Eldon R; Esposito, Giovanni; Lens, Piet N L

    2015-01-01

    The use of agricultural wastes (groundnut shell, orange and banana peel, rice husk, coconut husk and Wawa tree saw dust) as potential cost-effective adsorbent for heavy metal removal from wastewater was evaluated. The effect of pH (2.0-6.0), adsorbent dosage (0.6-2.2 g), contact time (10-130 min) and initial concentration (Pb: 5-105 mg/L, Cu and Zn: 2.5-52.7 mg/L) on the metal removal efficiency and uptake capacity were investigated using response surface methodology to optimize the process conditions. Groundnut shell showed a high potential to remove Cu, Pb and Zn from synthetic wastewater. The highest removal efficiencies with groundnut as the adsorbent were 85% at pH 5.0 for Cu and 98% at pH 3.0 for Pb and Zn. The optimum conditions obtained were 2.5 g adsorbent with 40.7 mg/L Cu at pH 4.4 and 64 min contact time, 2.5 g adsorbent with 196.1 mg/L Pb at pH 5.6 and 60 min contact time and 3.1 g adsorbent with 70.2 mg/L Zn at pH 4.3 and 50 min contact time, for Cu, Pb and Zn, respectively. The regeneration of the groundnut shell was possible for a maximum of three cycles using 0.2 M HCl as the desorbing solution without any significant change in the adsorbing efficiency.

  3. Color removal from dye-containing wastewater by magnesium chloride.

    PubMed

    Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Zhou, Wei-Zhi

    2007-01-01

    Color removal by MgCl(2) when treating synthetic waste containing pure dyes was studied. The color removal efficiency of MgCl(2)/Ca(OH)(2) was compared with that of Al(2)(SO(4))(3), polyaluminum chloride (PAC) and FeSO(4)/Ca(OH)(2). The mechanism of color removal by MgCl(2) was also investigated. The experimental results show that the color removal efficiency of MgCl(2) is related to the type of dye and depends on the pH of the waste and the dosage of the coagulants used. Treatment of waste containing reactive dye or dispersed dye with MgCl(2) yielded an optimum color removal ratio when the pH of the solution was equal to or above 12.0. For both the reactive and dispersed dye waste, MgCl(2)/Ca(OH)(2) was shown to be superior to MgCl(2)/NaOH, Al(2)(SO(4))(3), PAC and FeSO(4)/Ca(OH)(2) for color removal. A magnesium hydroxide precipitate formed at pH values greater than 12.0, which provided a large adsorptive surface area and a positive electrostatic surface charge, enabling it to remove the dyes through charge neutralization and an adsorptive coagulating mechanism. So, the MgCl(2)/Ca(OH)(2) system is a viable alternative to some of the more conventional forms of chemical treatment, especially for treating actual textile waste with high natural pH.

  4. Waste biomass adsorbents for copper removal from industrial wastewater--a review.

    PubMed

    Bilal, Muhammad; Shah, Jehanzeb Ali; Ashfaq, Tayyab; Gardazi, Syed Mubashar Hussain; Tahir, Adnan Ahmad; Pervez, Arshid; Haroon, Hajira; Mahmood, Qaisar

    2013-12-15

    Copper (Cu(2+)) containing wastewaters are extensively released from different industries and its excessive entry into food chains results in serious health impairments, carcinogenicity and mutagenesis in various living systems. An array of technologies is in use to remediate Cu(2+) from wastewaters. Adsorption is the most attractive option due to the availability of cost effective, sustainable and eco-friendly bioadsorbents. The current review is dedicated to presenting state of the art knowledge on various bioadsorbents and physico-chemical conditions used to remediate Cu(2+) from waste streams. The advantages and constraints of various adsorbents were also discussed. The literature revealed the maximum Cu adsorption capacities of various bioadsorbents in the order of algae>agricultural and forest>fungal>bacterial>activated carbon>yeast. However, based on the average Cu adsorption capacity, the arrangement can be: activated carbon>algal>bacterial>agriculture and forest-derived>fungal>yeast biomass. The data of Cu removal using these bioadsorbents were found best fit both Freundlich and Langmuir models. Agriculture and forest derived bioadsorbents have greater potential for Cu removal because of higher uptake, cheaper nature, bulk availability and mono to multilayer adsorption behavior. Higher costs at the biomass transformation stage and decreasing efficiency with desorption cycles are the major constraints to implement this technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  6. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  7. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  8. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  9. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  10. Operator models for delivering municipal solid waste management services in developing countries. Part A: The evidence base.

    PubMed

    Wilson, David C; Kanjogera, Jennifer Bangirana; Soós, Reka; Briciu, Cosmin; Smith, Stephen R; Whiteman, Andrew D; Spies, Sandra; Oelz, Barbara

    2017-08-01

    This article presents the evidence base for 'operator models' - that is, how to deliver a sustainable service through the interaction of the 'client', 'revenue collector' and 'operator' functions - for municipal solid waste management in emerging and developing countries. The companion article addresses a selection of locally appropriate operator models. The evidence shows that no 'standard' operator model is effective in all developing countries and circumstances. Each city uses a mix of different operator models; 134 cases showed on average 2.5 models per city, each applying to different elements of municipal solid waste management - that is, street sweeping, primary collection, secondary collection, transfer, recycling, resource recovery and disposal or a combination. Operator models were analysed in detail for 28 case studies; the article summarises evidence across all elements and in more detail for waste collection. Operators fall into three main groups: The public sector, formal private sector, and micro-service providers including micro-, community-based and informal enterprises. Micro-service providers emerge as a common group; they are effective in expanding primary collection service coverage into poor- or peri-urban neighbourhoods and in delivering recycling. Both public and private sector operators can deliver effective services in the appropriate situation; what matters more is a strong client organisation responsible for municipal solid waste management within the municipality, with stable political and financial backing and capacity to manage service delivery. Revenue collection is also integral to operator models: Generally the municipality pays the operator from direct charges and/or indirect taxes, rather than the operator collecting fees directly from the service user.

  11. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, Lane A.; Burger, Leland L.

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  12. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    PubMed

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.

  13. Electrochemical removal of phenol from oil refinery wastewater.

    PubMed

    Abdelwahab, O; Amin, N K; El-Ashtoukhy, E-S Z

    2009-04-30

    This study explores the possibility of using electrocoagulation to remove phenol from oil refinery waste effluent using a cell with horizontally oriented aluminum cathode and a horizontal aluminum screen anode. The removal of phenol was investigated in terms of various parameters namely: pH, operating time, current density, initial phenol concentration and addition of NaCl. Removal of phenol during electrocoagulation was due to combined effect of sweep coagulation and adsorption. The results showed that, at high current density and solution pH 7, remarkable removal of 97% of phenol after 2h can be achieved. The rate of electrocoagulation was observed to increase as the phenol concentration decreases; the maximum removal rate was attained at 30 mg L(-1) phenol concentration. For a given current density using an array of closely packed Al screens as anode was found to be more effective than single screen anode, the percentage phenol removal was found to increase with increasing the number of screens per array. After 2h of electrocoagulation, 94.5% of initial phenol concentration was removed from the petroleum refinery wastewater. Energy consumption and aluminum Electrode consumption were calculated per gram of phenol removed. The present study shows that, electrocoagulation of phenol using aluminum electrodes is a promising process.

  14. Waste minimization in horizontal boring operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, M.

    Horizontal boring has become a highly useful, and competitive, practice. Its uses include river crossings, tunneling under existing roads and buildings, and increasing the effectiveness of groundwater remediation programs. As this method becomes more popular, more contractors enter the market place and compete for each project. So, it is important to provide quality service and reduce cost to maintain market share and profitability. This article is about reducing project cost with sound drilling fluid practices. Recirculation of drilling fluid provides many benefits. It reduces the amount of fluid required for a project, reduces waste volume, and improves boring operations. Improvedmore » boring rate, lower torque and drag, greater hole stability, and increased equipment life are all results of proper fluid management.« less

  15. Bimanual, intra-operative, fluoroscopy-guided removal of nasopharyngeal migratory fish bone from carotid space.

    PubMed

    Al-Abduwani, J A; Bhargava, D; Sawhney, S; Al-Abri, R

    2010-07-01

    We report a rare and unusual case of a patient with an ingested fishbone which migrated from the oropharynx to the anterior compartment of the retropharyngeal space and then to the deep neck space in the nasopharynx (i.e. the carotid space). This report aims to describe a successful, minimally invasive method of foreign body removal which avoided both major skull base surgery and any potential life-threatening complications. A secondary aim is to highlight the role of intra-operative fluoroscopy, an under-used tool. We present a 67-year-old man with a history of fish bone impaction but no fish bone visible on plain X-ray or flexible endoscopy. The diagnosis of fish bone lodged in the retropharyngeal space was confirmed by computed tomography. Surgical exploration of the anterior retropharyngeal space failed to locate the fish bone, as it had migrated to a new, unknown location. Intra-operative fluoroscopy was vital for the removal of the fish bone, as it was impossible to see with the naked eye and had migrated from its previously imaged position. The fish bone was finally retrieved bimanually using external pressure on the submandibular region, which displaced the fish bone, and fluoroscopic guidance, which assisted its removal from the nasopharyngeal lumen. To the best of our knowledge, this is the first reported case of bimanual, intra-operative, fluoroscopy-guided, intra-luminal removal of a migratory fish bone from the deep neck space in this region of the nasopharynx.

  16. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  17. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland.

    PubMed

    Li, Chunyan; Wu, Shubiao; Dong, Renjie

    2015-03-15

    This paper demonstrates the potential of tidal flow operated constructed wetland application for the removal dynamics of organic matter, nitrogen and phosphorus. Near-complete removal of organic matter was achieved with a constant removal efficiency of 95%, irrespective of TOC influent loadings ranged from 10 g/m(2) · d to 700 g/m(2) · d. High NH4(+)-N removal at 95% efficiency under influent loading of 17 g/m(2) · d, was stably obtained and was not negatively influenced by increasing influent organic carbon loading rate. Increased influent TOC loading (350 g/m(2) · d to 700 g/m(2) · d) significantly enhanced denitrification capacity and increased TN removal from 30% to 95%. Under tidal flow operation, a higher carbon supply (C/N = 20) for complete TN removal was demonstrated as comparing to that observed in traditional CWs approaches. In addition, the removal of phosphorus was strongly influenced by organic loadings. However, further investigations are needed to elucidate the detailed mechanism that would explain the role of organic loading in phosphorus removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Textile Wastes.

    ERIC Educational Resources Information Center

    Talbot, R. S.

    1978-01-01

    Presents a literature review of wastes from textile industry, covering publications of 1977. This review covers studies such as removing heavy metals in textile wastes, and the biodegradability of six dyes. A list of references is also presented. (HM)

  19. 40 CFR 60.34b - Emission guidelines for municipal waste combustor operating practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor operating practices. 60.34b Section 60.34b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.34b Emission guidelines for municipal waste combustor operating practices. (a) For approval, a State plan shall include emission limits for carbon monoxide at least as protective as the...

  20. 40 CFR 60.34b - Emission guidelines for municipal waste combustor operating practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor operating practices. 60.34b Section 60.34b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.34b Emission guidelines for municipal waste combustor operating practices. (a) For approval, a State plan shall include emission limits for carbon monoxide at least as protective as the...

  1. 40 CFR 60.34b - Emission guidelines for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor operating practices. 60.34b Section 60.34b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.34b Emission guidelines for municipal waste combustor operating practices. (a) For approval, a State plan shall include emission limits for carbon monoxide at least as protective as the...

  2. 40 CFR 60.34b - Emission guidelines for municipal waste combustor operating practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor operating practices. 60.34b Section 60.34b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.34b Emission guidelines for municipal waste combustor operating practices. (a) For approval, a State plan shall include emission limits for carbon monoxide at least as protective as the...

  3. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water.

    PubMed

    Méndez, A; Barriga, S; Fidalgo, J M; Gascó, G

    2009-06-15

    This paper deals with the removal of Cu(2+) from water using adsorbent materials prepared from paper industry waste materials (one de-inking paper sludge and other sludge from virgin pulp mill). Experimental results showed that de-inking paper sludge leads to mesoporous materials (V(mic)/V(T)=0.13 and 0.14), whereas the sludge from virgin pulp mill produces high microporous adsorbents (V(mic)/V(T)=0.39 and 0.41). Adsorbent materials were then used for Cu(2+) removal from water at acid pH. During water treatment, heavy metals lixiviation from adsorbent materials was not produced. However, important Ca and Mg leaching was observed. Final pH significantly increases after treatment of water with adsorbent materials probably due to their elevated CaCO(3) content. In general, highest Cu(2+) removal was obtained using adsorbent materials from de-inking paper sludge. This result could be due to their higher content in oxygenated surface groups, high average pore diameter, elevated superficial charge density, high CaCO(3) amount and high Ca and Mg exchange content.

  4. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    PubMed

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights

  5. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-05-26

    This report describes experimental results for the selective removal of strontium and cesium from simulated waste solutions using monosodium titanate (MST) and crystalline silicotitanate (CST)-laden filter cartridges. Four types of ion exchange cartridge media (CST and MST designed by both 3M and POROX{reg_sign}) were evaluated. In these proof-of-principle tests effective uptake of both Sr-85 and Cs-137 was observed. However, the experiments were not performed long enough to determine the saturation levels or breakthrough curve for each filter cartridge. POREX{reg_sign} MST cartridges, which by design were based on co-sintering of the active titanates with polyethylene particles, seem to perform as wellmore » as the 3M-designed MST cartridges (impregnated filter membrane design) in the uptake of strontium. At low salt simulant conditions (0.29 M Na{sup +}), the instantaneous decontamination factor (D{sub F}) for Sr-85 with the 3M-design MST cartridge measured 26, representing the removal of 96% of the Sr-85. On the other hand, the Sr-85 instantaneous D{sub F} with the POREX{reg_sign} design MST cartridge measured 40 or 98% removal of the Sr-85. Strontium removal with the 3M-design MST and CST cartridges placed in series filter arrangement produced an instantaneous decontamination factor of 41 or 97.6% removal compared to an instantaneous decontamination factor of 368 or 99.7% removal of the strontium with the POREX{reg_sign} MST and CST cartridge design placed in series. At high salt simulant conditions (5.6 M Na{sup +}), strontium removal with 3M-designed MST cartridge only and with 3M-designed MST and CST cartridges operated in a series configuration were identical. The instantaneous decontamination factor and the strontium removal efficiency, under the above configuration, averaged 8.6 and 88%, respectively. There were no POREX{reg_sign} cartridge experiments using the higher ionic strength simulant solution. At low salt simulant conditions, the uptake of Cs

  6. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

    PubMed

    Ren, Hongyan; Tuo, Jinhua; Addy, Min M; Zhang, Renchuan; Lu, Qian; Anderson, Erik; Chen, Paul; Ruan, Roger

    2017-12-01

    To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL -1 with the maximum biomass productivity of 460mgL -1 d -1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL -1 waste glycerol addition, the average biomass production of 16.7gm -2 d -1 , lipid content of 23.6%, and the removal of 2.4gm -2 d -1 NH 4 + -N, 2.7gm -2 d -1 total nitrogen, 3.0gm -2 d -1 total phosphorous, and 103.0gm -2 d -1 of COD were attained for 34days semi-continuous mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Removal of batteries from solid waste using trommel separation.

    PubMed

    Lau, S T; Cheung, W H; Kwong, C K; Wan, C P; Choy, K K H; Leung, C C; Porter, J F; Hui, C W; Mc Kay, G

    2005-01-01

    This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.

  8. Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.

    PubMed

    Alimahmoodi, Mahmood; Mulligan, Catherine N

    2011-01-01

    The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40°C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Small Column Testing of Superlig 639 for Removal of 99Tc from Hanford Tank Waste Envelope C (Tank 241-AN-107)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DL Blanchard; DE Kurath; BM Rapko

    The current BNFL Inc. flow sheet for pretreating Hanford High-Level tank wastes includes the use of Superlig(reg.sign)639 (SL-639) in a dual column system for removing technetium-99 ({sup 99}Tc) from the aqueous fraction of the waste. This sorbent material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. This report documents the results of testing the SL-639 sorbent with diluted waste [Na{sup +}] {approx} 5 M from Tank 241-AN-107 (an Envelope C waste, abbreviated AN-107) at Battelle Northwest Laboratories (BNW). The equilibrium behavior was assessed with batch contacts between the sorbent and the waste. Two AN-107 samplesmore » were used: (1) an archived sample from previous testing and (2) a more recent sample collected specifically for BNFL. A portion of the archive sample and all of the BNFL sample were treated to remove Sr-90 and transuranic elements (TRU). All samples had also been Cs decontaminated by ion exchange (IX), and were spiked with a technetium-95m ({sup 95m}Tc) pertechnetate tracer, {sup 95m}TcO{sub 4}{sup -}.The TcO{sub 4}{sup -} and total Tc K{sub d} values, assumed equal to the {sup 95m}Tc and {sup 99}Tc K{sub d}'s, respectively, are shown in Table S1. Values are averages of duplicates, which showed significant scatter. The total Tc K{sub d} for the BNFL sample is much lower than the TcO{sub 4}{sup -}, indicating that a large fraction of the {sup 99}Tc is not pertechnetate.« less

  10. Ion Exchange Modeling of Crystalline Silicotitanate (IONSIV(R) IE-911) Column for Cesium Removal from Argentine Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, T.

    2003-07-16

    The U.S. Department of Energy (DOE) and the Nuclear Energy Commission of Argentina (CNEA) have a collaborative project to separate cesium/strontium from waste resulting from the production of Mo-99. The Pacific Northwest National Laboratory (PNNL) is assisting DOE on this joint project by providing technical guidance to CNEA scientists. As part of the collaboration, PNNL staff works with staff at the Savannah River Technology Center (SRTC) to run the VERSE-LC model for removal of cesium from the Mo-99 waste using the crystalline silicotitanate (CST) material (IONSIV(R) IE-911, UOP LLC, DesPlaines, IL) based on technical data provided by CNEA. This reportmore » discusses the VERSE-LC ion-exchange-column model and the predicted results of CNEA test cases.« less

  11. Modified rotating biological contactor for removal of dichloromethane vapours.

    PubMed

    Ravi, R; Philip, Ligy; Swaminathan, T

    2015-01-01

    Bioreactors are used for the treatment of waste gas and odour that has gained much acceptance in the recent years to treat volatile organic compounds (VOCs). The different types of bioreactors (biofilter, biotrickling filter and bioscrubber) have been used for waste gas treatment. Each of these reactors has some advantages and some limitations. Though biodegradation is the main process for the removal of the pollutants, the mechanisms of removal and the microbial communities may differ among these bioreactors. Consequently, their performance or removal efficiency may also be different. Clogging of reactor and pressure drop are the main problems. In this study attempts are made to use the principle of rotating biological contactor (RBC) used for wastewater treatment for the removal of VOC. To overcome the above problem the RBC is modified which is suitable for the treatment of VOC (dichloromethane, DCM). DCM is harmful to human health and hazardous to the atmospheric environment. Modified RBC had no clogging problems and no pressure drop. So, it can handle the pollutant load for a longer period of time. A maximum elimination capacity of 25.7 g/m3 h has been achieved in this study for the DCM inlet load of 58 g/m3 h. The average biofilm thickness is 1 mm. The transient behaviour of the modified RBC treating DCM was investigated. The modified RBC is able to handle shutdown, restart and shock loading operations.

  12. CHARACTERIZATION OF AIR EMISSIONS AND RESIDUAL ASH FROM OPEN BURNING OF ELECTRONIC WASTES DURING SIMULATED RUDIMENTALRY RECYCLING OPERATIONS

    EPA Science Inventory

    Air emissions and residual ash measurements were made from open, uncontrolled combustion of electronic waste (e-waste) during simulations of practices associated with rudimentary e-waste recycling operations. Circuit boards and insulated wires were separately burned to simulate p...

  13. Removal of toxic metals from leachates from hazardous solid wastes and reduction of toxicity to microtox by the use of calcium alginate beads containing humic acid.

    PubMed

    Pandey, Ashok K; Pandey, Shri Dhar; Misra, Virendra

    2002-06-01

    Improper disposal of hazardous wastes can lead to release of potentially harmful substances through leaching such as heavy metals, which ultimately contaminate soil, sediment surface water, and groundwater through runoff. To remove these toxic metals and avoid any adverse effect on the ecosystem, a novel approach involving calcium alginate (CA) beads containing humic acid (HA) was used. For this, 10% leachates of the waste obtained from two major industrial units with electroplating processess were prepared at neutral pH and analyzed by atomic absorption spectrophotometry (AAS). Both leachates contained Cd, Cu, Cr, Ni, Mn, Fe, and Zn. The concentrations of Ni, Mn, Fe, and Zn in the waste were found to be significant. The leachates analyzed were passed through columns packed with calcium alginate beads with or without humic acid. The concentrations of various metals in beads and in different fractions collected after adsorption were measured. Data recorded indicate that calcium alginate beads containing humic acids are more efficient in removal of all metals in substantial amounts from the two leachates. Along with removal of metals, this process led to considerable detoxification of the leachates as tested by Microtox assay, indicated by earlier protection and higher EC(50). The significance of the results in relation to removal of toxic metals by beads containing humic acid is discussed. (c) 2002 Elsevier Science (USA).

  14. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.

  15. Waste treatment in silicon production operations

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor); Tambo, William (Inventor)

    1985-01-01

    A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.

  16. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique.

    PubMed

    Zhang, Cong-Cong; Zhang, Fu-Shen

    2012-06-30

    Brominated flame retardants (BFRs) in electrical and electronic (E&E) waste plastic are toxic, bioaccumulative and recalcitrant. In the present study, tetrabromobisphenol A (TBBPA) contained in this type of plastic was tentatively subjected to solvothermal treatment so as to obtain bromine-free plastic. Methanol, ethanol and isopropanol were examined as solvents for solvothermal treatment and it was found that methanol was the optimal solvent for TBBPA removal. The optimum temperature, time and liquid to solid ratio for solvothermal treatment to remove TBBPA were 90°C, 2h and 15:1, respectively. After the treatment with various alcohol solvents, it was found that TBBPA was finally transferred into the solvents and bromine in the extract was debrominated catalyzed by metallic copper. Bisphenol A and cuprous bromide were the main products after debromination. The morphology and FTIR properties of the plastic were generally unchanged after the solvothermal treatment indicating that the structure of the plastic maintained after the process. This work provides a clean and applicable process for BFRs-containing plastic disposal. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Emissions from Open Burning of Simulated Military Waste from Forward Operating Bases

    EPA Science Inventory

    Emissions from open burning of simulated military waste from forward operating bases (FOBs) were extensively characterized as an initial step in assessing potential inhalation exposure of FOB personnel and future disposal alternatives. Emissions from two different burning scenar...

  18. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the

  19. High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass.

    PubMed

    Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Mat, Hanapi

    2017-03-01

    An effective organoalkoxysilanes-grafted lignocellulosic waste biomass (OS-LWB) adsorbent aiming for high removal towards inorganic and organic mercury (Hg(II) and MeHg(II)) ions was prepared. Organoalkoxysilanes (OS) namely mercaptoproyltriethoxylsilane (MPTES), aminopropyltriethoxylsilane (APTES), aminoethylaminopropyltriethoxylsilane (AEPTES), bis(triethoxysilylpropyl) tetrasulfide (BTESPT), methacrylopropyltrimethoxylsilane (MPS) and ureidopropyltriethoxylsilane (URS) were grafted onto the LWB using the same conditions. The MPTES grafted lignocellulosic waste biomass (MPTES-LWB) showed the highest adsorption capacity towards both mercury ions. The adsorption behavior of inorganic and organic mercury ions (Hg(II) and MeHg(II)) in batch adsorption studies shows that it was independent with pH of the solutions and dependent on initial concentration, temperature and contact time. The maximum adsorption capacity of Hg(II) was greater than MeHg(II) which respectively followed the Temkin and Langmuir models. The kinetic data analysis showed that the adsorptions of Hg(II) and MeHg(II) onto MPTES-LWB were respectively controlled by the physical process of film diffusion and the chemical process of physisorption interactions. The overall mechanism of Hg(II) and MeHg(II) adsorption was a combination of diffusion and chemical interaction mechanisms. Regeneration results were very encouraging especially for the Hg(II); this therefore further demonstrated the potential application of organosilane-grafted lignocellulosic waste biomass as low-cost adsorbents for mercury removal process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures andmore » are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The

  1. Recovery of Stored Aerobic Granular Sludge and Its Contaminants Removal Efficiency under Different Operation Conditions

    PubMed Central

    Zhao, Zhiwei; Shi, Wenxin; Li, Ji

    2013-01-01

    The quick recovery process of contaminants removal of aerobic granular sludge (AGS) is complex, and the influencing factors are still not clear. The effects of dissolved oxygen (DO, air intensive aeration rate), organic loading rate (OLR), and C/N on contaminants removal characteristics of AGS and subsequently long-term operation of AGS bioreactor were investigated in this study. DO had a major impact on the recovery of AGS. The granules reactivated at air intensive aeration rate of 100 L/h achieved better settling property and contaminants removal efficiency. Moreover, protein content in extracellular polymeric substance (EPS) was almost unchanged, which demonstrated that an aeration rate of 100 L/h was more suitable for maintaining the biomass and the structure of AGS. Higher OLR caused polysaccharides content increase in EPS, and unstable C/N resulted in the overgrowth of filamentous bacteria, which presented worse NH4 +-N and PO4 3−-P removal. Correspondingly, quick recovery of contaminants removal was accomplished in 12 days at the optimized operation conditions of aeration rate 100 L/h, OLR 4 g/L·d, and C/N 100 : 10, with COD, NH4 +-N, and PO4 3−-P removal efficiencies of 87.2%, 86.9%, and 86.5%, respectively. The renovation of AGS could be successfully utilized as the seed sludge for the rapid start-up of AGS bioreactor. PMID:24106695

  2. Muscle Contraction and Force: the Importance of an Ancillary Network, Nutrient Supply and Waste Removal

    PubMed Central

    Brüggemann, Dagmar A.; Risbo, Jens; Pierzynowski, Stefan G.; Harrison, Adrian P.

    2008-01-01

    Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen ”wires”. This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable contributor to force transfer within muscular tissue. PMID:19325816

  3. Hospitalization and Medical Evacuation of Army Personnel Due to Toxic Inhalational Exposure-Operations Iraqi Freedom and Enduring Freedom, 2001 Through Mid 2011

    DTIC Science & Technology

    2012-01-01

    waste management tools at locations where more so- phisticated methods of solid waste disposal ( incinerators , reuse/recycling, containerized removal by...an incinerator or other equip- ment specifi cally designed…for burning of solid waste, designated for the purpose of disposing of solid waste by...regularly exceeded the 24-hour standards set by the US Environmental Pro - tection Agency.14 Exhaust and Industrial Byproducts The operational setting in

  4. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement.

    PubMed

    Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai

    2017-06-01

    Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.

  5. Removal of Pb(II) from aqueous solutions using waste textiles/poly(acrylic acid) composite synthesized by radical polymerization technique.

    PubMed

    Zhou, Tao; Xia, Fafa; Deng, Yue; Zhao, Youcai

    2018-05-01

    Waste textiles (WTs) are the inevitable outcome of human activity and should be separated and recycled in view of sustainable development. In this work, WT was modified through grafting with acrylic acid (AA) via radical polymerization process using ceric ammonium nitrate (CAN) as an initiator and microwave and/or UV irradiation as energy supply. The acrylic acid-grafted waste textiles (WT-g-AA) thus obtained was then used as an adsorbent to remove Pb(II) from Pb(II)-containing wastewater. The effects of pH, initial concentrations of Pb(II) and adsorbent dose were investigated, and around 95% Pb(II) can be removed from the aqueous solution containing 10mg/L at pH6.0-8.0. The experimental adsorption isotherm data was fitted to the Langmuir model with maximum adsorption capacity of 35.7mg Pb/g WT-g-AA. The Pb-absorbed WT-g-AA was stripped using dilute nitric acid solution and the adsorption capacity of Pb-free material decreased from 95.4% (cycle 1) to 91.1% (cycle 3). It was considered that the WT-g-AA adsorption for Pb(II) may be realized through the ion-exchange mechanism between COOH and Pb(II). The promising results manifested that WT-g-AA powder was an efficient, eco-friendly and reusable adsorbent for the removal of Pb(II) from wastewater. Copyright © 2017. Published by Elsevier B.V.

  6. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process.

    PubMed

    Natarajan, Subramanian; Bajaj, Hari C; Tayade, Rajesh J

    2018-03-01

    The problem of textile dye pollution has been addressed by various methods, mainly physical, chemical, biological, and acoustical. These methods mainly separate and/or remove the dye present in water. Recently, advanced oxidation processes (AOP) have been focused for removal of dye from waste water due to their advantages such as ecofriendly, economic and capable to degrade many dyes or organic pollutant present in water. Photocatalysis is one of the advance oxidation processes, mainly carried out under irradiation of light and suitable photocatalytic materials. The photocatalytic activity of the photocatalytic materials mainly depends on the band gap, surface area, and generation of electron-hole pair for degradation dyes present in water. It has been observed that the surface area plays a major role in photocatalytic degradation of dyes, by providing higher surface area, which leads to the higher adsorption of dye molecule on the surface of photocatalyst and enhances the photocatalytic activity. This present review discusses the synergic effect of adsorption of dyes on the photocatalytic efficiency of various nanostructured high surface area photocatalysts. In addition, it also provides the properties of the water polluting dyes, their mechanism and various photocatalytic materials; and their morphology used for the dye degradation under irradiation of light along with the future prospects of highly adsorptive photocatalytic material and their application in photocatalytic removal of dye from waste water. Copyright © 2017. Published by Elsevier B.V.

  7. Removal of Cesium From Acidic Radioactive Tank Waste Using IONSIV IE-911 (CST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nicholas Robert; Todd, Terry Allen

    2004-10-01

    IONSIV IE-911, or the engineered form of crystalline silicotitanate (CST), manufactured by UOP Molecular Sieves, has been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) acidic radioactive tank waste. A series of batch contacts and column tests were performed by using three separate batches of CST. Batch contacts were performed to evaluate the concentration effects of nitric acid, sodium, and potassium ions on cesium sorption. Additional batch tests were performed to determine if americium, mercury, and plutonium would sorb onto IONSIV IE-911. An equilibrium isotherm was generated by using a concentrated tank waste simulant.more » Column tests using a 1.5 cm 3 column and flow rates of 3, 5, 10, 20, and 30 bed volumes (BV)/hr were performed to elucidate dynamic cesium sorption capacities and sorption kinetics. Additional experiments investigated the effect of CST batch and pretreatment on cesium sorption. The thermal stability of IONSIV IE-911 was evaluated by performing thermal gravimetric analysis/differential thermal analysis. Overall, IONSIV IE-911 was shown to be effective for cesium sorption from complex, highly acidic solutions; however, sorbent stability in these solutions may have a deleterious effect on cesium sorption.« less

  8. Effects of temperature and aerial exposure on the BOD of waste zebra mussels removed from navigational locks.

    PubMed

    Aldridge, D W; Payne, B S

    2001-08-01

    This laboratory study evaluated the effects of temperature and aerial exposure on BOD5 (5-day BOD) of waste zebra mussels of the type generated by maintenance operations on dams and navigational locks. The term waste zebra mussels includes the mussels and their associated debris with the latter including sediment, feces, pseudofeces and other small aquatic organisms. The BOD5 of waste zebra mussel was evaluated after aerial exposure of 3 and 10 days at temperatures of 5, 10, and 20 degrees C. The mean BOD5 values for waste zebra mussels in this study ranged from 18,500 to 30,600 mg O2/l. Factorial ANOVA analysis revealed that both temperature and aerial exposure had a negative effect on waste zebra mussel BOD5 (P<0.05) but there was no significant interaction effect (P = 0.119). Multiple regression analysis predicted that for the range of treatment conditions used in this study each 1 degrees C increase in temperature reduced the waste zebra mussel BOD5 by 284mg O2/l or 0.93% of the maximum mean BOD5. Each I day increase in aerial exposure reduced waste zebra mussel BOD5 by 987 mg O2/l or 3.22% of the maximum mean BOD5. Aerial exposure of waste zebra mussels substantially reduces waste BOD5.

  9. Removal of diclofenac and sulfamethoxazole from synthetic municipal waste water in microcosm downflow constructed wetlands: Start-up results.

    PubMed

    Nowrotek, Monika; Sochacki, Adam; Felis, Ewa; Miksch, Korneliusz

    2016-01-01

    The objectives of this study were to investigate the start-up removal of pharmaceutical compounds diclofenac and sulfamethoxazole in microcosm downflow constructed wetlands and their effect on the performance of the studied constructed wetlands, and also to assess the effect of plants on the removal of these compounds. The experimental system that was used in this 86-day experiment consisted of 24 columns filled up to 70 cm with predominantly sandy material. Four types of columns were used (six replicates) depending on the presence of plants (Phalaris arundinacea L. var. picta L.) and the presence of pharmaceutical compounds in the influent. The influent was synthetic municipal waste water to which a mixture of 5 mg/L of diclofenac and 5 mg/L of sulfamethoxazole was added. The observed removal of diclofenac was moderate (approx. 50%) and the removal of sulfamethoxazole was relatively low (24-30%). It was found that the removal of diclofenac and sulfamethoxazole was not affected by the vegetation. The presence of diclofenac and sulfamethoxazole in the influent had significant effect on the effluent concentration of N-NO3 and the water loss in the columns, which in both cases were lower than in the control columns. The scope for further research was discussed.

  10. Laboratory scale studies on removal of chromium from industrial wastes.

    PubMed

    Baig, M A; Mir, Mohsin; Murtaza, Shazad; Bhatti, Zafar I

    2003-05-01

    Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr(3+)) and hexavalent (Cr(6+)) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr(3+) is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100% efficiency in reducing Cr(6+) to Cr(3+), and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase III studies indicated the best pH was 8.5 for precipitation of Cr(3+) to chromium hydroxide by using lime. An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confined that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.

  11. JJ Stent Removal under Ultrasound Guidance in Women: It is Simple and Safe.

    PubMed

    Amer, Bernard; Gupta, Sandeep; Kanwar, Vijayendra S; Lodh, Bijit; Khumukcham, Somarendra; Akoijam, Kaku Singh

    2014-12-01

    With the increase in number of patients treated for urological problems with endoscopic procedures, the number of patients with JJ stent is also increasing. The amount of workload thus incurred multiplies, even to the point that, sometimes we waste more time in the operating room removing JJ stents than the actual endourological procedures. Here in our institute, we have devised a very simple and effective way of removing JJ stents in women and also determined the efficacy, safety and cost of JJ stent removal under ultrasound guidance in women in comparison to cystoscopic removal. Two hundred women attending the Department of Urology from July 2012 to July 2013 at RIMS hospital were randomly divided into two arms. One hundred women had their JJ stent removed with cystoscope and another 100 women had their JJ stent removed under ultrasound guidance using simple surgical tools available at the hospital. The primary comparative points were waiting time for operating room appointment date, cost of the procedure, time taken for the procedure, discomfort or pain felt by the patient and urethral injuries. In all the parameters, stent removal under ultrasound guidance was significantly better except for urethral injuries where both the procedures had similar outcomes. We concluded that JJ stent removal under ultrasound guidance in women was simple, effective and safe.

  12. Large-scale modular biofiltration system for effective odor removal in a composting facility.

    PubMed

    Lin, Yueh-Hsien; Chen, Yu-Pei; Ho, Kuo-Ling; Lee, Tsung-Yih; Tseng, Ching-Ping

    2013-01-01

    Several different foul odors such as nitrogen-containing groups, sulfur-containing groups, and short-chain fatty-acids commonly emitted from composting facilities. In this study, an experimental laboratory-scale bioreactor was scaled up to build a large-scale modular biofiltration system that can process 34 m(3)min(-1)waste gases. This modular reactor system was proven effective in eliminating odors, with a 97% removal efficiency for 96 ppm ammonia, a 98% removal efficiency for 220 ppm amines, and a 100% removal efficiency of other odorous substances. The results of operational parameters indicate that this modular biofiltration system offers long-term operational stability. Specifically, a low pressure drop (<45 mmH2O m(-1)) was observed, indicating that the packing carrier in bioreactor units does not require frequent replacement. Thus, this modular biofiltration system can be used in field applications to eliminate various odors with compact working volume.

  13. The removal of ammonia from sanitary landfill leachate using a series of shallow waste stabilization ponds.

    PubMed

    Leite, V D; Pearson, H W; de Sousa, J T; Lopes, W S; de Luna, M L D

    2011-01-01

    This study evaluated the efficiency of a shallow (0.5 m deep) waste stabilization pond series to remove high concentrations of ammonia from sanitary landfill leachate. The pond system was located at EXTRABES, Campina Grande, Paraiba, Northeast Brazil. The pond series was fed with sanitary landfill leachate transported by road tanker to the experimental site from the sanitary landfill of the City of Joao Pessoa, Paraiba. The ammoniacal-N surface loading on the first pond of the series was equivalent to 364 kg ha(-1) d(-1) and the COD surface loading equivalent to 3,690 kg ha(-1) d(-1). The maximum mean ammonia removal efficiency was 99.5% achieved by the third pond in the series which had an effluent concentration of 5.3 mg L(-1) ammoniacal-N for an accumulative HRT of 39.5 days. The removal process was mainly attributed to ammonia volatilization (stripping) from the pond surfaces as a result of high surface pH values and water temperatures of 22-26°C. Shallow pond systems would appear to be a promising technology for stripping ammonia from landfill leachate under tropical conditions.

  14. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence

    NASA Astrophysics Data System (ADS)

    Misran, E.; Bani, O.; Situmeang, E. M.; Purba, A. S.

    2018-02-01

    The effort to remove methylene blue in artificial solution had been conducted using adsorption process. The abundant banana stem waste was utilized as activated carbon precursor. This study aimed to analyse the influence of solution pH to removal efficiency of methylene blue using activated carbon from banana stem as adsorbent. Activated carbon from banana stem was obtained by chemical activation using H3PO4 solution. Proximate analysis result showed that the activated carbon has 47.22% of fixed carbon. This value exhibited that banana stem was a potential adsorbent precursor. Methylene blue solutions were prepared at initial concentration of 50 ppm. The influence of solution pH was investigated with the use of 0.2 g adsorbent for 100 mL dye solution. The adsorption was conducted using shaker with at a constant rate of 100 rpm at room temperature for 90 minutes. The results showed that solution pH influenced the adsorption. The activated carbon from banana stem demonstrated satisfying performance since removal efficiencies of methylene blue were higher than 99%.

  15. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  16. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  17. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  18. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  19. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  20. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance with §§ 257.7 through 257.30 prior to the receipt of CESQG hazardous waste. (b) Definitions.... Waste management unit boundary means a vertical surface located at the hydraulically downgradient limit.../operators of non-municipal non-hazardous waste disposal units that receive Conditionally Exempt Small...

  1. Criticality Safety Evaluations on the Use of 200-gram Pu Mass Limit for RHWM Waste Storage Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, P

    This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-grammore » Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.« less

  2. Federal Register Notice: Identification and Listing of Hazardous Waste from Wood Preserving Operations

    EPA Pesticide Factsheets

    EPA is today amending its regulations under the Resource Conservation and Recovery Act by listing as hazardous three categories of wastes from wood preserving operations that use chlorophenolic, creosote, and/or inorganic preservatives

  3. Image-guided neurosurgery for secondary operative removal of projectiles after missile injury of the brain.

    PubMed

    Schulz, Chris; Woerner, Ulrich; Luelsdorf, Peter

    2008-04-01

    The primary treatment of penetrating missile injuries of the brain includes debridement of the scalp, fractured skull, and necrotic brain parenchyma. It is acceptable to remove all bony and metallic fragments that are accessible without additional trauma to nondamaged brain regions. Therefore, bone chips and bullets are often initially retained in the brain and are supposedly responsible for delayed cerebral infections and posttraumatic seizures. We successfully operated on 3 patients electively to remove bony and metallic fragments secondarily after penetrating brain trauma. We used an electromagnetic neuronavigation system for preoperative planning and chose a less invasive approach for the exact intraoperative localization of the fragments. All fragments were extracted without any problems. No patients had any additional neurologic deficits, and no signs of cerebral infections or seizures occurred between 4 and 8 weeks after the operative revision. We recommend the implementation of neuronavigation techniques into the surgical strategy for secondary removal of retained missile fragments.

  4. Novel phased isolation ditch system for enhanced nutrient removal and its optimal operating strategy.

    PubMed

    Hong, K i-Ho; Chang, Duk; Hur, Joon-Moo; Han, Sang-Bae

    2003-01-01

    Phased isolation ditch system with intrachannel clarifier is a simplified novel oxidation ditch system enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater. The system employs two ditches with intra-clarifier, and eliminates external final clarifier, additional preanaerobic reactor, and recycle of sludge and nitrified effluent. Separation of anoxic, anaerobic, and aerobic phases can be accomplished by alternating flow and intermittent aeration. Its pilot-scale system operated at HRTs of 10-21 h, SRTs of 15-41 days, and a cycle times of 2-8 h showed removals of BOD, TN, and TP in the range of mixed liquor temperature above 10 degrees C as high as 88-97, 70-84, and 65-90%, respectively. As the SRTs became longer, the effluent TN decreased dramatically, whereas the effluent TP increased. Higher nitrogen removal was accomplished at shorter cycle times, while better phosphorus removal was achieved in longer cycle times. Optimal system operating strategies maximizing the performance and satisfying both the best nitrogen and phosphorus removals included HRTs ranged 10-14 h, SRTs ranged 25-30 days, and a cycle time of 4 h at the mixed liquor temperature above 10 degrees C. Thus, complete phase separation in a cycle maximizing phosphorus release and uptake as well as nitrification and denitrification was accomplished by scheduling of alternating flow and intermittent aeration in the simplified process scheme. Especially, temporal phase separation for phosphorus release without additional anaerobic reactor was successfully accomplished during anaerobic period without any nitrate interference and carbon-limiting.

  5. Multi-phased anaerobic baffled reactor treating food waste.

    PubMed

    Ahamed, A; Chen, C-L; Rajagopal, R; Wu, D; Mao, Y; Ho, I J R; Lim, J W; Wang, J-Y

    2015-04-01

    This study was conducted to identify the performance of a multi-phased anaerobic baffled reactor (MP-ABR) with food waste (FW) as the substrate for biogas production and thereby to promote an efficient energy recovery and treatment method for the wastes with high organic solid content through phase separation. A four-chambered ABR was operated at an HRT of 30 days with an OLR of 0.5-1.0 g-VS/Ld for a period of 175 days at 35 ± 1°C. Consistent overall removal efficiencies of 85.3% (CODt), 94.5% (CODs), 89.6% (VFA) and 86.4% (VS) were observed throughout the experiment displaying a great potential to treat FW. Biogas generated was 215.57 mL/g-VS removed d. Phase separation was observed and supported by the COD and VFA trends, and an efficient recovery of bioenergy from FW was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Characteristics and treatability of oil-bearing wastes from aluminum alloy machining operations.

    PubMed

    Chen, Luke; Hsieh, Chueh-Chen; Wetherbee, John; Yang, Chen-Lu

    2008-04-15

    Enomoto Industry Co., exclusively uses water-based cutting fluids in its aluminum alloy machining operations. Since the cost of disposal can be much greater than the cost of purchase, the treatability of spent cutting fluids is becoming a major criterion for cutting fluid selection. Samples were collected from the machining lines at Enomoto's facility to determine their characteristics and evaluate their treatability with centrifugation, chemical coagulation and electrochemical coagulation. As expected, oil and grease (O&G) and total suspended solids (TSS) are the main reasons that spent cutting fluids are prohibited from being discharged into local swage systems. The average O&G found in the spent cutting fluids is 87,354 mg/L with TSS of more than 70,000 mg/L. Both O&G and TSS are the major contributors to the high turbidity of these waste effluents. A centrifuge with a relative centrifugal force of 1318 x g, was able to reduce 60% of the turbidity. By adding the coagulant aluminum chloride, the oil-water emulsion was destabilized, and the turbidity was reduced from 3249 Formazin Attenuation Units (FAU) to around 314 FAU. With freshly generated aluminum ions in the spent cutting fluid, the electrochemical process destabilized the oil-water emulsion system. The coalesced oil droplets were adsorbed onto the highly dispersed aluminum coagulant. The oil-rich sludge that was generated in the operation was then floated to the surface, forming a blanket that was removed by skimming. The electrochemical treatment was able to reduce the turbidity to less than 14 FAU, which is the detection limit of the Hach DR/4000 UV-vis spectrophotometer.

  8. After flow control: The steps taken by Dade County to ensure continued operation of its solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauriello, P.J.; Ragbeer, D.

    1997-12-01

    In the wake of the U.S. Supreme Court decision in the Carbone vs. Clarkstown case striking down waste flow control as unconstitutional, Dade County, Florida, one of the most severely impacted communities in the nation, has managed to stabilize its waste stream and balance its solid waste department finances; although the road taken to restabilization has been a difficult one. At its peak in 1995, Dade County experienced an annual loss of solid waste in excess of 1,000,000 tons, or over 40 percent of the waste stream normally handled by the County. This diversion of waste was accompanied by amore » net revenue loss of $30 million per year. The County lost its ability to plan for future capacity needs, or to assure sufficient future waste flows to meet its put-or-pay obligation to the County`s Resources Recovery plant operator. The County`s solid waste management system bonds were downgraded by Moody`s Investors Service and Standard and Poors. With the help of a special solid waste management team, appointed by the County Manager, the department was able to rightsize its waste disposal operations to fit its reduced waste flows, stabilize its waste stream, and develop strategies to solve its long-term funding shortfall.« less

  9. Innovative approach to reduction of waste streams for cutting operations in remote environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibo, A.

    SRNL proposes to develop and demonstrate an approach using the SRNL rotary microfilter (RMF) technology for reducing waste streams in remote cutting operations during decontamination operations. SRNL offers to collaborate with Tokyo Electric Power Company (TEPCO) in evaluation, testing, and utilization of SRNL’s radiation-hardened rotary microfilter in the deactivation and decommissioning (D&D) operations of the Fukushima Daiichi Nuclear Power Station (NPS). Refinement of the scope and associated costs will be conducted in consultation with TEPCO.

  10. A dipeptide-based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water.

    PubMed

    Nandi, Nibedita; Baral, Abhishek; Basu, Kingshuk; Roy, Subhasish; Banerjee, Arindam

    2017-01-01

    A short peptide-based molecule has been found to form a strong hydrogel at phosphate buffer solution of pH 7.46. The hydrogel has been characterized thoroughly using various techniques including field emission scanning electron microscopy (FE-SEM), wide angle powder X-ray diffraction (PXRD), and rheological analysis. It has been observed from FE-SEM images that entangled nanofiber network is responsible for gelation. Rheological investigation demonstrates that the self-assembly of this synthetic dipeptide results in the formation of mechanically strong hydrogel with storage modulus (G') around 10 4 Pa. This gel has been used for removing both cationic and anionic toxic organic dyes (Brilliant Blue, Congo red, Malachite Green, Rhodamine B) and metal ions (Co 2+ and Ni 2+ ) from waste water. Moreover, only a small amount of the gelator is required (less than 1 mg/mL) for preparation of this superhydrogel and even this hydrogel can be reused three times for dye/metal ion absorption. This signifies the importance of the hydrogel towards waste water management. © 2016 Wiley Periodicals, Inc.

  11. Electrooxidation of organics in waste water

    NASA Technical Reports Server (NTRS)

    Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.

  12. Nuclear waste solutions

    DOEpatents

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  13. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needsmore » in the field.« less

  14. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needsmore » in the field.« less

  15. Removal of organic impurities in waste glycerol from biodiesel production process through the acidification and coagulation processes.

    PubMed

    Xie, Qiao-Guang; Taweepreda, Wirach; Musikavong, Charongpun; Suksaroj, Chaisri

    2012-01-01

    Treatment of waste glycerol, a by-product of the biodiesel production process, can reduce water pollution and bring significant economic benefits for biodiesel facilities. In the present study, hydrochloric acid (HCl) was used as acidification to convert soaps into salts and free fatty acids which were recovered after treatment. The pH value, dosages of polyaluminum chloride (PACl) and dosage of polyacrylamide (PAM) were considered to be the factors that can influence coagulation efficiency. The pH value of waste glycerol was adjusted to a pH range of 3-9. The PACl and PAM added were in the range of 1-6 g/L and 0.005-0.07 g/L. The results showed best coagulation efficiency occurs at pH 4 when dosage of PACl and PAM were 2 and 0.01 g/L. The removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), total suspended solids (TSS) and soaps were 80, 68, 97 and 100%, respectively. The compositions of organic matters in the treated waste glycerol were glycerol (288 g/L), methanol (3.8 g/L), and other impurities (0.3 g/L).

  16. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  17. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-07-01

    The startup and long term operation of enhanced biological phosphorus removal (EBPR) in a continuous-flow reactor (CFR) with granules were investigated in this study. Through reducing the settling time from 9min to 3min gradually, the startup of EBPR in a CFR with granules was successfully realized in 16days. Under continuous-flow operation, the granules with good phosphorus and COD removal performance were stably operated for more than 6months. And the granules were characterized with particle size of around 960μm, loose structure and good settling ability. During the startup phase, polysaccharides (PS) was secreted excessively by microorganisms to resist the influence from the variation of operational mode. Results of relative quantitative PCR indicated that granules dominated by polyphosphate-accumulating organisms (PAOs) were easier accumulated in the CFR because more excellent settling ability was needed in the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Distribution and removal of organochlorine pesticides in waste clay bricks from an abandoned manufacturing plant using low-temperature thermal desorption technology.

    PubMed

    Cong, Xin; Li, Fasheng; Kelly, Ryan M; Xue, Nandong

    2018-04-01

    The distribution of pollutants in waste clay bricks from an organochlorine pesticide-contaminated site was investigated, and removal of the pollutants using a thermal desorption technology was studied. The results showed that the contents of HCHs in both the surface and the inner layer of the bricks were slightly higher than those of DDTs. The total pore volume of the bricks was 37.7 to 41.6% with an increase from external to internal surfaces. The removal efficiency by thermal treatment was within 62 to 83% for HCHs and DDTs in bricks when the temperature was raised from 200 to 250 °C after 1 h. HCHs were more easily removed than DDTs with a higher temperature. Either intraparticle or surface diffusion controls the desorption processes of pollutants in bricks. It was feasible to use the polluted bricks after removal of the pollutants by low-temperature thermal desorption technology.

  19. Integrated Cr(VI) removal using constructed wetlands and composting.

    PubMed

    Sultana, Mar-Yam; Chowdhury, Abu Khayer Md Muktadirul Bari; Michailides, Michail K; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Vayenas, Dimitrios V

    2015-01-08

    The present work was conducted to study integrated chromium removal from aqueous solutions in horizontal subsurface (HSF) constructed wetlands. Two pilot-scale HSF constructed wetlands (CWs) units were built and operated. One unit was planted with common reeds (Phragmites australis) and one was kept unplanted. Influent concentrations of Cr(VI) ranged from 0.5 to 10mg/L. The effect of temperature and hydraulic residence time (8-0.5 days) on Cr(VI) removal were studied. Temperature was proved to affect Cr(VI) removal in both units. In the planted unit maximum Cr(VI) removal efficiencies of 100% were recorded at HRT's of 1 day with Cr(VI) concentrations of 5, 2.5 and 1mg/L, while a significantly lower removal rate was recorded in the unplanted unit. Harvested reed biomass from the CWs was co-composted with olive mill wastes. The final product had excellent physicochemical characteristics (C/N: 14.1-14.7, germination index (GI): 145-157%, Cr: 8-10mg/kg dry mass), fulfills EU requirements and can be used as a fertilizer in organic farming. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  1. Selective removal of carious human dentin using a nanosecond pulsed laser operating at a wavelength of 5.85 μ m

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kita, Tetsuya; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2015-05-01

    Less invasive methods for treating dental caries are strongly desired. However, conventional dental lasers do not always selectively remove caries or ensure good bonding to the composite resin. According to our previous study, demineralized dentin might be removed by a nanosecond pulsed laser operating at wavelengths of around 5.8 μm. The present study investigated the irradiation effect of the light on carious human dentin classified into "remove," "not remove," and "unclear" categories. Under 5.85-μm laser pulses, at average power densities of 30 W/cm2 and irradiation time of 2 s, the ablation depth of "remove" and "not remove," and also the ablation depth of "unclear" and "not remove," were significantly different (p<0.01). The ablation depth was correlated with both Vickers hardness and Ca content. Thus, a nanosecond pulsed laser operating at 5.85 μm proved an effective less-invasive caries treatment.

  2. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste.

    PubMed

    Al-Jubouri, Sama M; Curry, Nicholas A; Holmes, Stuart M

    2016-12-15

    A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr 2+ ions from an aqueous phase. The encapsulation of the Sr 2+ using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65mg/g for the pure natural clinoptilolite and 72mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160mg/g) having higher capacity than the natural clinoptilolite composite (95mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    PubMed

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The cost benefit and efficiency of waste water treatment using domestic ponds—the ultimate solution in Southern Africa

    NASA Astrophysics Data System (ADS)

    Ntengwe, F. W.

    Wastewater treatment has become a challenge to most countries in Southern Africa because of the fluctuating economies that have been hit by high levels of debts. The treatment of domestic wastewater using ponds, if carefully utilized, as has been observed in most countries in the world, is the most cost effective means of handling wastewaters. When compared to the conventional use of treatment plants, the ponds have been observed to be the ultimate solution for the countries in Southern Africa especially those that are classified as Highly Indebted Poor Countries (HIPC) because of little or no operating costs associated with the treatment. The study conducted on Kitwe Waste Water Treatment Ponds to evaluate the cost benefit and efficiencies has revealed low levels of operating cost and high removal efficiencies of oxygen demanding wastes (BOD removal of 86% and TSS removal of 75%), pH values ranged from 7 to 8 indicating an increasing alkalinity from facultative to maturation ponds while other parameters such as nitrates, phosphates and temperature were found to be within acceptable levels thereby releasing effluent that makes the environment sustainable. The overall social benefit was found to be much higher than the operating costs.

  5. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  6. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  7. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  8. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  9. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  10. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  11. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  12. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  13. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that

  14. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Segregation for reduction of regulated medical waste in the operating room: a case report

    PubMed Central

    Shinn, Helen Ki; Kim, Byung-Gun; Yang, Chunwoo; Na, WonJu; Song, Jang-Ho

    2017-01-01

    One-third of all hospital-regulated medical waste (RMW) comes from the operating room (OR), and it considerably consists of disposable packaging and wrapping materials for the sterilization of surgical instruments. This study sought to identify the amount and type of waste produced by ORs in order to reduce the RMW so as to achieve environmentally-friendly waste management in the OR. We performed an initial waste segregation of 4 total knee replacement arthroplasties (TKRAs) and 1 total hip replacement arthroplasty, and later of 1 extra TKRA, 1 laparoscopic anterior resection of the colon, and 1 pelviscopy (with radical vaginal hysterectomy), performed at our OR. The total mass of non-regulated medical waste (non-RMW) and blue wrap amounted to 30.5 kg (24.9%), and that of RMW to 92.1 kg (75.1%). In the course of the study, we noted that the non-RMW included recyclables, such as papers, plastics, cardboards, and various wrapping materials. The study showed that a reduction in RMW generation can be achieved through the systematic segregation of OR waste. PMID:28184276

  16. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    NASA Astrophysics Data System (ADS)

    Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.

    2006-11-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.

  17. Effects of Inoculated Bacillus subtilis on Geosmin and 2-Methylisoborneol Removal in Suspended Growth Reactors Using Aquacultural Waste for Biofloc Production.

    PubMed

    Luo, Guozhi; Wang, Jiao; Ma, Niannian; Liu, Zefeng; Tan, Hongxin

    2016-08-28

    Geosmin and 2-methylisoborneol (2-MIB) are two of the most common taint compounds that adversely affect the quality of aquacultural animals. In the present study, 94% of geosmin and 97% of 2-MIB in suspended growth reactors producing bioflocs (SGRs) with aquaculture waste were removed after inoculation with Bacillus subtilis, significantly higher than that of control SGRs (70% of geosmin and 86.4% of 2-MIB). The lowest concentrations of geosmin and 2-MIB achieved in the effluent of the SGRs were 2.43 ± 0.42 ng/l and 2.23 ± 0.15 ng/l, respectively. The crude protein content of the bioflocs produced in the SGRs was 35 ± 4%. The NH4(+)-N and NO2(-)-N concentrations in the effluent of the reactors were 1.13 ± 0.21 mg/l and 0.42 ± 0.04 mg/l, respectively. These results suggest that inoculated with Bacillus subtilis, SGRs have a better performance to reuse the nitrogen in fish waste and to remove geosmin and 2-MIB from the culture water efficiently.

  18. Nitrogen removal characteristics analyzed with gas and microbial community in thermophilic aerobic digestion for piggery waste treatment.

    PubMed

    Lee, J W; Lee, H W; Kim, S W; Lee, S Y; Park, Y K; Han, J H; Choi, S I; Yi, Y S; Yun, Z

    2004-01-01

    In order to characterize the nitrogen conversion characteristics in a thermophilic aerobic digestion (TAD) system, a laboratory study has been conducted with the analysis of effluent gas and microbial community in the sludge samples. The lab TAD system was operated with HRT of 3 days and 60 degrees C. Based on the nitrogen mass balance, it has been found that about 2/3 of the daily load of nitrogen was converted to the gaseous form of nitrogen whereas cellular transformation and unmetabolized nitrogen accounted for about 1/3. Among the gaseous nitrogen transformation, significant amount of influent nitrogen had been converted to N2 gas (29% of influent N) and N2O (9% of influent N). Ammonia conversion was only 28% of influent N. The detection of N2O gas is a clear indication of the biological nitrogen reduction process in the thermophilic aerobic digester. No conclusive evidence for the existence of aerobic deammonification has been found. The microbial community analysis showed that thermophilic bacteria such as Bacillus thermocloacae, Bacillus sp. and Clostridial groups dominated in this TAD reactor. The diverse microbial community in TAD sludge may play an important role in removing both strong organics and nitrogen from piggery waste.

  19. Managing waste from confined animal feeding operations in the United States: the need for sanitary reform.

    PubMed

    Graham, Jay P; Nachman, Keeve E

    2010-12-01

    Confined food-animal operations in the United States produce more than 40 times the amount of waste than human biosolids generated from US wastewater treatment plants. Unlike biosolids, which must meet regulatory standards for pathogen levels, vector attraction reduction and metal content, no treatment is required of waste from animal agriculture. This omission is of concern based on dramatic changes in livestock production over the past 50 years, which have resulted in large increases in animal waste and a high degree of geographic concentration of waste associated with the regional growth of industrial food-animal production. Regulatory measures have not kept pace with these changes. The purpose of this paper is to: 1) review trends that affect food-animal waste production in the United States, 2) assess risks associated with food-animal wastes, 3) contrast food-animal waste management practices to management practices for biosolids and 4) make recommendations based on existing and potential policy options to improve management of food-animal waste.

  20. Ion Exchange Distribution Coefficient Tests and Computer Modeling at High Ionic Strength Supporting Technetium Removal Resin Maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.; Hamm, L. Larry; Smith, Frank G.

    2014-12-19

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and poured into canisters for disposition. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Duemore » to the water solubility properties of pertechnetate and long half-life of 99Tc, effective management of 99Tc is important to the overall success of the Hanford River Protection Project mission. To achieve the full target WTP throughput, additional LAW immobilization capacity is needed, and options are being explored to immobilize the supplemental LAW portion of the tank waste. Removal of 99Tc, followed by off-site disposal, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. To enable an informed decision regarding the viability of technetium removal, further maturation of available technologies is being performed. This report contains results of experimental ion exchange distribution coefficient testing and computer modeling using the resin SuperLig ® 639 a to selectively remove perrhenate from high ionic strength simulated LAW. It is advantageous to operate at higher concentration in order to treat the waste stream without dilution and to minimize the volume of the

  1. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate.

    PubMed

    Peng, Wei; Pivato, Alberto; Lavagnolo, Maria Cristina; Raga, Roberto

    2018-04-01

    Anaerobic digestion of organics is one of the most used solution to gain renewable energy from waste and the final product, the digestate, still rich in putrescible components and nutrients, is mainly considered for reutilization (in land use) as a bio-fertilizer or a compost after its treatment. Alternative approaches are recommended in situations where conventional digestate management practices are not suitable. Aim of this study was to develop an alternative option to use digestate to enhance nitrified leachate treatment through a digestate layer in a landfill bioreactor. Two identical landfill columns (Ra and Rb) filled with the same solid digestate were set and nitrified leachate was used as influent. Ra ceased after 75 day's operation to get solid samples and calculate the C/N mass balance while Rb was operated for 132 days. Every two or three days, effluent from the columns were discarded and the columns were refilled with nitrified leachate (average N-NO 3 - concentration = 1,438 mg-N/L). N-NO 3 - removal efficiency of 94.7% and N-NO 3 - removal capacity of 19.2 mg N-NO 3 - /gTS-digestate were achieved after 75 days operation in Ra. Prolonging the operation to 132 days in Rb, N-NO 3 - removal efficiency and N-NO 3 - removal capacity were 72.5% and 33.1 mg N-NO 3 - /gTS-digestate, respectively. The experimental analysis of the process suggested that 85.4% of nitrate removal could be attributed to denitrification while the contribution percentage of adsorption was 14.6%. These results suggest that those solid digestates not for agricultural or land use, could be used in landfill bioreactors to remove the nitrogen from old landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Start-up and operation strategies on the liquefied food waste anaerobic digestion and a full-scale case application.

    PubMed

    Meng, Ying; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin

    2014-11-01

    Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L(-1), the start-up would go well using lower F/M ratio of 0.5-0.7. The OLR 7.0 gCOD L(-1) day(-1) was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53% and biomethane yield of 3.5 ± 0.2 L gCOD(-1) were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L(-1) day(-1), and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m(3) volume) with biogas production of 1.0-3.8 m(3) m(-3) day(-1).

  3. Operation of an anaerobic filter compared with an anaerobic moving bed bioreactor for the treatment of waste water from hydrothermal carbonisation of fine mulch.

    PubMed

    Meier, J F; Austermann-Haun, U; Fettig, J; Liebe, H; Wichern, M

    2017-10-01

    This experimental study investigates the anaerobic digestion of waste water from hydrothermal carbonisation of fine mulch (wood chips) in combination with a co-substrate for the first time. Two anaerobic reactors, an anaerobic filter (AF) and an anaerobic moving bed bioreactor (AnMBBR), were operated over a period of 131 days at mesophilic conditions. The organic loading rate was increased to a maximum of 8.5 g L -l d -1 in the AF and the AnMBBR. Both reactors achieved similarly efficient chemical oxygen demand removal rates of 80% approximately (approx.) and high methane production rates of approx. 2.7 L L -1 d -1 . Nevertheless, signs of an inhibition were observed during the experiments.

  4. Removal of 2,4-dinitrophenol using hybrid methods based on ultrasound at an operating capacity of 7 L.

    PubMed

    Bagal, Manisha V; Lele, Bhagyashree J; Gogate, Parag R

    2013-09-01

    Sonochemical removal of 2,4-dinitrophenol (DNP) has been investigated using ultrasonic bath, with an operating capacity of 7 L, fitted with a large transducer with longitudinal vibrations having a 1 kW rated power output and operating frequency of 25 kHz. It has been revealed from calorimetric studies that maximum power is dissipated at a capacity of 7 L. The concentration of DNP has been monitored with an objective of evaluation of the efficacy of ultrasonic reactor in combination with process intensifying approaches for the removal of DNP. The effect of operating pH and additives such as hydrogen peroxide and ferrous iron activated persulfate on the extent of removal of DNP has been investigated. It has been observed that the extent of removal is greater at lower pH (pH 2.5 and 4) than at higher pH (pH 10). The combined treatment strategies such as ultrasound (US)/Fenton, US/advanced Fenton and US/CuO/H2O2 have also been investigated with an objective of obtaining complete removal of DNP using hybrid treatment strategies. The extent of removal has been found to increase significantly in US/Fenton process (98.7%) as compared to that using US alone (5.8%) which demonstrates the efficacy of the combined process. First order kinetics has been fitted for all the approaches investigated in the work. Calculations of cavitational yield indicated the superiority of the reactor design as compared to the conventional ultrasonic horn type reactors. The main intermediates formed during the process of removal of DNP have been identified. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Disposal of waste computer hard disk drive: data destruction and resources recycling.

    PubMed

    Yan, Guoqing; Xue, Mianqiang; Xu, Zhenming

    2013-06-01

    An increasing quantity of discarded computers is accompanied by a sharp increase in the number of hard disk drives to be eliminated. A waste hard disk drive is a special form of waste electrical and electronic equipment because it holds large amounts of information that is closely connected with its user. Therefore, the treatment of waste hard disk drives is an urgent issue in terms of data security, environmental protection and sustainable development. In the present study the degaussing method was adopted to destroy the residual data on the waste hard disk drives and the housing of the disks was used as an example to explore the coating removal process, which is the most important pretreatment for aluminium alloy recycling. The key operation points of the degaussing determined were: (1) keep the platter plate parallel with the magnetic field direction; and (2) the enlargement of magnetic field intensity B and action time t can lead to a significant upgrade in the degaussing effect. The coating removal experiment indicated that heating the waste hard disk drives housing at a temperature of 400 °C for 24 min was the optimum condition. A novel integrated technique for the treatment of waste hard disk drives is proposed herein. This technique offers the possibility of destroying residual data, recycling the recovered resources and disposing of the disks in an environmentally friendly manner.

  6. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  7. MUNICIPAL WASTE COMBUSTION ASSESSMENT: MEDICAL WASTE COMBUSTION PRACTICES AT MUNICIPAL WASTE COMBUSTION FACILITIES

    EPA Science Inventory

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...

  8. Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J; McLaughlin, Russell L.

    2008-01-01

    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment, small parts and flight components result in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL) for hexavalent chromium (CrVI) from 52 to 5 micrograms per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in numerous pretreatment and primer coatings used within the Space Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient, and environmentally preferable manner. The use of laser energy to prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation, and non destructive evaluation (NDE) is a relatively new application of the technology that has been proven to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The novel process eliminates VOCs and blast media and captures the removed coatings with an integrated vacuum system. This means that the only waste generated are the coatings that are removed, resulting in an overall cleaner process. The development of a

  9. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... owner or operator of an affected facility shall develop and update on a yearly basis a site-specific... under this subpart; (2) A description of basic combustion theory applicable to a municipal waste...

  10. Removal of Remazol turquoise Blue G-133 from aqueous solution using modified waste newspaper fiber.

    PubMed

    Zhang, Xiaoyu; Tan, Jia; Wei, Xinhao; Wang, Lijuan

    2013-02-15

    Waste newspaper fiber (WNF) was separated and modified via grafting quaternary ammonium salt to obtain an adsorbent, which removes Remazol turquoise Blue G-133 (RTB G-133) from aqueous solutions. SEM and IR were used to analyze the morphology and chemical groups of the modified waste newspaper fiber (MWNF). Batch adsorption studies were conducted with varying adsorbent dosages, solution pH, and contact time. Adsorption isotherms and models were fitted. The SEM photographs show the surface of MWNF is smoother in comparison with that of WNF. The IR analysis indicates that the quaternary ammonium salt was successfully grafted onto the cellulose skeleton in WNF and the chemical interaction played an important role in adsorption. Results show that the equilibrium adsorption capacity can be reached within 360 min, and that the maximum adsorption capacity was 260 mg g(-1). The adsorption of RTB G-133 on MWNF was a spontaneous endothermic process and well fitted pseudo-second-order kinetic model and Langmuir adsorption isotherm model. The results show that MWNF is promising for dye wastewater treatment. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Pesticide removal from waste spray-tank water by organoclay adsorption after field application: an approach for a formulation of cyprodinil containing antifoaming/defoaming agents.

    PubMed

    Suciu, Nicoleta A; Ferrari, Tommaso; Ferrari, Federico; Trevisan, Marco; Capri, Ettore

    2012-05-01

    Many reports on purification of water containing pesticides are based on studies using unformulated active ingredients. However, most commercial formulations contain additives/adjuvants or are manufactured using microencapsulation which may influence the purification process. Therefore, the main objective of this work was to develop and test a pilot scheme for decontaminating water containing pesticides formulated with antifoaming/defoaming agents. The Freundlich adsorption coefficients of formulation of cyprodinil, a new-generation fungicide, onto the organoclay Cloisite 20A have been determined in the laboratory in order to predict the efficiency of this organoclay in removing the fungicide from waste spray-tank water. Subsequently, the adsorption tests were repeated in the pilot system in order to test the practical operation of the purification scheme. The laboratory adsorption tests successfully predicted the efficiency of the pilot purification system, which removed more than 96% cyprodinil over a few hours. The passing of the organoclay-cyprodinil suspension through a layer of biomass gave 100% recovery of the organoclay at the surface of the biomass after 1 week. The organoclay was composted after the treatment to try to break down the fungicide so as to allow safe disposal of the waste, but cyprodinil was not significantly dissipated after 90 days. The purification scheme proved to be efficient for decontaminating water containing cyprodinil formulated with antifoaming/defoaming agents, but additional treatments for the adsorbed residues still appear to be necessary even for a moderately persistent pesticide such as cyprodinil. Furthermore, a significant conclusion of this study concerns the high influence of pesticide formulations on the process of purification of water containing these compounds, which should be taken into account when developing innovative decontamination schemes, especially for practical applications.

  12. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell.

    PubMed

    Li, Hui; Tian, Yu; Zuo, Wei; Zhang, Jun; Pan, Xiaoyue; Li, Lipin; Su, Xinying

    2016-04-01

    The microbial fuel cell (MFC) was evaluated as an alternative way to recover electricity from canteen based food waste. Characteristics of the organics in food waste before and after the MFC treatment were analyzed to investigate how the organic matters were biodegraded and transformed during the MFC treatment. A maximum power density of 5.6W/m(3) and an average output voltage of 0.51V were obtained. During the MFC operation, the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions. Additionally, aromatic compounds in the hydrophilic fraction were more preferentially removed than non-aromatic compounds. The MFC could easily remove the tryptophan protein-like substances in all fractions and aromatic proteins in hydrophilic and hydrophobic neutral fractions. Additionally, the hydrophobic amide-1 proteins and aliphatic components were readily hydrolyzed and biodegraded in the MFC. These findings may facilitate the pretreatment and posttreatment choices for MFC system fed with food waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Waste-to-Energy Cogeneration Project, Centennial Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utilitymore » bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.« less

  14. Recovery of isopropyl alcohol from waste solvent of a semiconductor plant.

    PubMed

    Lin, Sheng H; Wang, Chuen S

    2004-01-30

    An important waste solvent generated in the semiconductor manufacturing process was characterized by high isopropyl alcohol (IPA) concentration over 65%, other organic pollutants and strong color. Because of these characteristics, IPA recovery was deemed as a logic choice for tackling this waste solvent. In the present work, an integrated method consisting of air stripping in conjunction with condensation and packed activated carbon fiber (ACF) adsorption for dealing with this waste solvent. The air stripping with proper stripping temperature control was employed to remove IPA from the waste solvent and the IPA vapor in the gas mixture was condensed out in a side condenser. The residual IPA remaining in the gas mixture exiting the side condenser was efficiently removed in a packed ACF column. The air stripping with condensation was able to recover up to 93% of total IPA in the initial waste solvent. The residual IPA in the gas mixture, representing less than 3% of the initial IPA, was efficiently captured in the packed ACF column. Experimental tests were conducted to examine the performances of each unit and to identify the optimum operating conditions. Theoretical modeling of the experimental IPA breakthrough curves was also undertaken using a macroscopic model. The verified breakthrough model significantly facilitates the adsorption column design. The recovered IPA was found to be of high purity and could be considered for reuse. Copyright 2003 Elsevier B.V.

  15. Alternating-polarity operation for complete regeneration of electrochemical deionization system

    DOEpatents

    Tran, Tri D.; Lenz, David J.

    2002-01-01

    An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

  16. Analysis of waste management issues arising from a field study evaluating decontamination of a biological agent from a building.

    PubMed

    Lemieux, P; Wood, J; Drake, J; Minamyer, S; Silvestri, E; Yund, C; Nichols, T; Ierardi, M; Amidan, B

    2016-01-01

    The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through "Pre-Incident" response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test

  17. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  18. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  19. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  20. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  1. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  2. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  3. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  4. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  5. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  6. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  7. Study on nitrogen removal enhanced by shunt distributing wastewater in a constructed subsurface infiltration system under intermittent operation mode.

    PubMed

    Li, Yinghua; Li, Haibo; Sun, Tieheng; Wang, Xin

    2011-05-15

    Subsurface wastewater infiltration system is an efficient and economic technology in treating small scattered sewage. The removal rates are generally satisfactory in terms of COD, BOD(5), TP and SS removal; while nitrogen removal is deficient in most of the present operating SWIS due to the different requirements for the presence of oxygen for nitrification and denitrification processes. To study the enhanced nitrogen removal technologies, two pilot subsurface wastewater infiltration systems were constructed in a village in Shenyang, China. The filled matrix was a mixture of 5% activated sludge, 65% brown soil and 30% coal slag in volume ratio for both systems. Intermittent operation mode was applied in to supply sufficient oxygen to accomplish the nitrification; meanwhile sewage was supplemented as the carbon source to the lower part in to denitrify. The constructed subsurface wastewater infiltration systems worked successfully under wetting-drying ratio of 1:1 with hydraulic loading of 0.081 m(3)/(m(2)d) for over 4 months. Carbon source was supplemented with shunt ratio of 1:1 and shunt position at the depth of 0.5m. The experimental results showed that intermittent operation mode and carbon source supplementation could significantly enhance the nitrogen removal efficiency with little influence on COD and TP removal. The average removal efficiencies for NH(3)-N and TN were 87.7 ± 1.4 and 70.1 ± 1.0%, increased by 12.5 ± 1.0 and 8.6 ± 0.7%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.

    PubMed

    Lochmatter, Samuel; Holliger, Christof

    2014-08-01

    The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Sequential anaerobic/aerobic digestion for enhanced sludge stabilization: comparison of the process performance for mixed and waste sludge [corrected].

    PubMed

    Tomei, M Concetta; Carozza, Nicola Antonello

    2015-05-01

    Sequential anaerobic-aerobic digestion has been demonstrated as a promising alternative for enhanced sludge stabilization. In this paper, a feasibility study of the sequential digestion applied to real waste activated sludge (WAS) and mixed sludge is presented. Process performance is evaluated in terms of total solid (TS) and volatile solid (VS) removal, biogas production, and dewaterability trend in the anaerobic and double-stage digested sludge. In the proposed digestion lay out, the aerobic stage was operated with intermittent aeration to reduce the nitrogen load recycled to the wastewater treatment plant (WWTP). Experimental results showed a very good performance of the sequential digestion process for both waste and mixed sludge, even if, given its better digestibility, higher efficiencies are observed for mixed sludge. VS removal efficiencies in the anaerobic stage were 48 and 50% for waste and mixed sludge, respectively, while a significant additional improvement of the VS removal of 25% for WAS and 45% for mixed sludge has been obtained in the aerobic stage. The post-aerobic stage, operated with intermittent aeration, was also efficient in nitrogen removal, providing a significant decrease of the nitrogen content in the supernatant: nitrification efficiencies of 90 and 97% and denitrification efficiencies of 62 and 70% have been obtained for secondary and mixed sludges, respectively. A positive effect due to the aerobic stage was also observed on the sludge dewaterability in both cases. Biogas production, expressed as Nm(3)/(kgVSdestroyed), was 0.54 for waste and 0.82 for mixed sludge and is in the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days.

  10. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less

  11. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  12. Removal of heavy metals from waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, M.D.; Kozaruk, J.M.; Melvin, M.

    1988-07-19

    A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water,more » wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.« less

  13. Treatment of synthetic wastewater and hog waste with reduced sludge generation by the multi-environment BioCAST technology.

    PubMed

    Yerushalmi, L; Alimahmoodi, M; Mulligan, C N

    2013-01-01

    Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300-4,000 mg chemical oxygen demand (COD)/L, 42-115 mg total nitrogen (TN)/L, and 19-40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m(3) d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960-2,400, 143-235 and 25-57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.

  14. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    PubMed

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  15. Post carbon removal nitrifying MBBR operation at high loading and exposure to starvation conditions.

    PubMed

    Young, Bradley; Delatolla, Robert; Kennedy, Kevin; LaFlamme, Edith; Stintzi, Alain

    2017-09-01

    This study investigates the performance of MBBR nitrifying biofilm post carbon removal at high loading and starvation conditions. The nitrifying MBBR, treating carbon removal lagoon effluent, achieved a maximum SARR of 2.13gN/m 2 d with complete conversion of ammonia to nitrate. The results also show the MBBR technology is capable of maintaining a stable biofilm under starvation conditions in systems that nitrify intermittently. The biomass exhibited a higher live fraction of total cells in the high loaded reactors (73-100%) as compared to the reactors operated in starvation condition (26-82%). For both the high loaded and starvation condition, the microbial communities significantly changed with time of operation. The nitrifying community, however, remained steady with the family Nitrosomonadacea as the primary AOBs and Nitrospira as the primary NOB. During starvation conditions, the relative abundance of AOBs decreased and Nitrospira increased corresponding to an NOB/AOB ratio of 5.2-12.1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tankmore » inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.« less

  17. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Kevin M.; Peeler, David K.; Kruger, Albert A.

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment withmore » Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.« less

  18. Metals removal and recovery in bioelectrochemical systems: A review.

    PubMed

    Nancharaiah, Y V; Venkata Mohan, S; Lens, P N L

    2015-11-01

    Metal laden wastes and contamination pose a threat to ecosystem well being and human health. Metal containing waste streams are also a valuable resource for recovery of precious and scarce elements. Although biological methods are inexpensive and effective for treating metal wastewaters and in situ bioremediation of metal(loid) contamination, little progress has been made towards metal(loid) recovery. Bioelectrochemical systems are emerging as a new technology platform for removal and recovery of metal ions from metallurgical wastes, process streams and wastewaters. Biodegradation of organic matter by electroactive biofilms at the anode has been successfully coupled to cathodic reduction of metal ions. Until now, leaching of Co(II) from LiCoO2 particles, and removal of metal ions i.e. Co(III/II), Cr(VI), Cu(II), Hg(II), Ag(I), Se(IV), and Cd(II) from aqueous solutions has been demonstrated. This article reviews the state of art research of bioelectrochemical systems for removal and recovery of metal(loid) ions and pertaining removal mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  20. Simulating the heat budget for waste as it is placed within a landfill operating in a northern climate.

    PubMed

    Megalla, Dina; Van Geel, Paul J; Doyle, James T

    2016-09-01

    A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Removal of Waste Anesthetics Exhaust.

    DTIC Science & Technology

    1995-12-01

    Filter 580 ST manufactured by Auer (MSA) in Germany. This filter contains Hopcalite (a mixture of MnO2, CuO, C0203 and Ag20) which oxidizes carbon...exhaust of dental patients. A C2 canister coupled downstream to the Hopcalite -containing filter may be used to remove the oxidation products such as nitric...components of this Hopcalite - type catalyst consist of 60-75% manganese oxide, 11-14% copper oxide and 15-16% aluminum oxide. f. Penetrant-Protective

  2. Biofiltration for stormwater harvesting: Comparison of Campylobacter spp. and Escherichia coli removal under normal and challenging operational conditions

    NASA Astrophysics Data System (ADS)

    Chandrasena, G. I.; Deletic, A.; McCarthy, D. T.

    2016-06-01

    Knowledge of pathogen removal in stormwater biofilters (also known as stormwater bioretention systems or rain gardens) has predominately been determined using bacterial indicators, and the removal of reference pathogens in these systems has rarely been investigated. Furthermore, current understanding of indicator bacteria removal in these systems is largely built upon laboratory-scale work. This paper examines whether indicator organism removal from urban stormwater using biofilters in laboratory settings are representative of the removal of pathogens in field conditions, by studying the removal of Escherichia coli (a typical indicator microorganism) and Campylobacter spp. (a typical reference pathogen) from urban stormwater by two established field-scale biofilters. It was found that E. coli log reduction was higher than that of Campylobacter spp. in both biofilters, and that there was no correlation between E. coli and Campylobacter spp. log removal performance. This confirms that E. coli behaves significantly differently to this reference pathogen, reinforcing that single organisms should not be employed to understand faecal microorganism removal in urban stormwater treatment systems. The average reduction in E. coli from only one of the tested biofilters was able to meet the log reduction targets suggested in the current Australian stormwater harvesting guidelines for irrigating sports fields and golf courses. The difference in the performance of the two biofilters is likely a result of a number of design and operational factors; the most important being that the biofilter that did not meet the guidelines was tested using extremely high influent volumes and microbial concentrations, and long antecedent dry weather periods. As such, the E. coli removal performances identified in this study confirmed laboratory findings that inflow concentration and antecedent dry period impact overall microbial removal. In general, this paper emphasizes the need for the

  3. 75 FR 20942 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... of the waste generation and management information for saccharin and its salts, which demonstrate... partnership with the States, biennially collects information regarding the generation, management, and final... Based on the Available Toxicological Information and Waste Generation and Management Information for...

  4. Operation and model description of a sequencing batch reactor treating reject water for biological nitrogen removal via nitrite.

    PubMed

    Dosta, J; Galí, A; Benabdallah El-Hadj, T; Macé, S; Mata-Alvarez, J

    2007-08-01

    The aim of this study was the operation and model description of a sequencing batch reactor (SBR) for biological nitrogen removal (BNR) from a reject water (800-900 mg NH(4)(+)-NL(-1)) from a municipal wastewater treatment plant (WWTP). The SBR was operated with three cycles per day, temperature 30 degrees C, SRT 11 days and HRT 1 day. During the operational cycle, three alternating oxic/anoxic periods were performed to avoid alkalinity restrictions. Oxygen supply and working pH range were controlled to achieve the BNR via nitrite, which makes the process more economical. Under steady state conditions, a total nitrogen removal of 0.87 kg N (m(3)day)(-1) was reached. A four-step nitrogen removal model was developed to describe the process. This model enlarges the IWA activated sludge models for a more detailed description of the nitrogen elimination processes and their inhibitions. A closed intermittent-flow respirometer was set up for the estimation of the most relevant model parameters. Once calibrated, model predictions reproduced experimental data accurately.

  5. Removal of lead (II) ions from aqueous solutions onto activated carbon derived from waste biomass.

    PubMed

    Erdem, Murat; Ucar, Suat; Karagöz, Selhan; Tay, Turgay

    2013-01-01

    The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g⁻¹. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.

  6. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides amore » review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not

  7. Carbon Dioxide Removal Troubleshooting aboard the International Space Station (ISS) during Space Shuttle (STS) Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.; Cover, John M.

    2009-01-01

    The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.

  8. Influences of operational practices on municipal solid waste landfill storage capacity.

    PubMed

    Li, Yu-Chao; Liu, Hai-Long; Cleall, Peter John; Ke, Han; Bian, Xue-Cheng

    2013-03-01

    The quantitative effects of three operational factors, that is initial compaction, decomposition condition and leachate level, on municipal solid waste (MSW) landfill settlement and storage capacity are investigated in this article via consideration of a hypothetical case. The implemented model for calculating landfill compression displacement is able to consider decreases in compressibility induced by biological decomposition and load dependence of decomposition compression for the MSW. According to the investigation, a significant increase in storage capacity can be achieved by intensive initial compaction, adjustment of decomposition condition and lowering of leachate levels. The quantitative investigation presented aims to encourage landfill operators to improve management to enhance storage capacity. Furthermore, improving initial compaction and creating a preferential decomposition condition can also significantly reduce operational and post-closure settlements, respectively, which helps protect leachate and gas management infrastructure and monitoring equipment in modern landfills.

  9. Nitrogen removal from digested slurries using a simplified ammonia stripping technique.

    PubMed

    Provolo, Giorgio; Perazzolo, Francesca; Mattachini, Gabriele; Finzi, Alberto; Naldi, Ezio; Riva, Elisabetta

    2017-11-01

    This study assessed a novel technique for removing nitrogen from digested organic waste based on a slow release of ammonia that was promoted by continuous mixing of the digestate and delivering a continuous air stream across the surface of the liquid. Three 10-day experiments were conducted using two 50-L reactors. In the first two, nitrogen removal efficiencies were evaluated from identical digestates maintained at different temperatures (30°C and 40°C). At the start of the first experiment, the digestates were adjusted to pH 9 using sodium hydroxide, while in the second experiment pH was not adjusted. The highest ammonia removal efficiency (87%) was obtained at 40°C with pH adjustment. However at 40°C without pH adjustment, removal efficiencies of 69% for ammonia and 47% for total nitrogen were obtained. In the third experiment two different digestates were tested at 50°C without pH adjustment. Although the initial chemical characteristics of the digestates were different in this experiment, the ammonia removal efficiencies were very similar (approximately 85%). Despite ammonia removal, the pH increased in all experiments, most likely due to carbon dioxide stripping that was promoted by temperature and mixing. The technique proved to be suitable for removing nitrogen following anaerobic digestion of livestock manure because effective removal was obtained at natural pH (≈8) and 40°C, common operating conditions at typical biogas plants that process manure. Furthermore, the electrical energy requirement to operate the process is limited (estimated to be 3.8kWhm -3 digestate). Further improvements may increase the efficiency and reduce the processing time of this treatment technique. Even without these advances slow-rate air stripping of ammonia is a viable option for reducing the environmental impact associated with animal manure management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Method of dye removal for the textile industry

    DOEpatents

    Stone, Mark L.

    2000-01-01

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  11. Emissions from open burning of simulated military waste from forward operating bases.

    PubMed

    Aurell, Johanna; Gullett, Brian K; Yamamoto, Dirk

    2012-10-16

    Emissions from open burning of simulated military waste from forward operating bases (FOBs) were extensively characterized as an initial step in assessing potential inhalation exposure of FOB personnel and future disposal alternatives. Emissions from two different burning scenarios, so-called "burn piles/pits" and an air curtain burner/"burn box", were compared using simulated FOB waste from municipal and commercial sources. A comprehensive array of emissions was quantified, including CO(2), PM(2.5), volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins and -furans (PCDDs/PCDFs), polybrominated dibenzodioxins and -furans (PBDDs/PBDFs), and metals. In general, smoldering conditions in the burn box and the burn pile led to similar emissions. However, when the burn box underwent periodic waste charging to maintain sustained combustion, PM(2.5), VOCs, and PAH emissions dropped considerably compared to smoldering conditions and the overall burn pile results. The PCDD/PCDF and PBDD/PBDF emission factors for the burn piles were 50 times higher than those from the burn box likely due to the dominance of smoldering combustion in the burn piles.

  12. Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes.

    PubMed

    Singha, Biswajit; Das, Sudip Kumar

    2013-07-01

    The potentiality of low cost natural/agricultural waste biomasses for the removal of Cu(II) ion from aqueous solution has been investigated in batch experiments. The effect of various physico-chemical parameters such as initial pH, initial Cu(II) concentration, adsorbent dosage, contact time and temperature has been studied. The optimum pH for adsorption was found to be 6 for all adsorbents used. Kinetics data were best described by the pseudo-2nd-order model. The experimental data were fitted well with Freundlich and Halsey isotherm models. The diffusion coefficient and sorption energy indicated that the adsorption process was chemical in nature. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated, and it was observed that the adsorption process was spontaneous and endothermic. The mean sorption energy was calculated using Dubinin-Radushkevich isotherm model and it confirmed that the sorption process was chemical in nature. Different active functional groups were identified by FTIR studies which were responsible for Cu(II) ion adsorption process. Application study using electroplating industrial waste water and regeneration experiment of the adsorbent were also investigated. Design procedure for the batch process was also reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.

    PubMed

    Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe

    2014-03-01

    The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.

  14. Capital and Operating Cost of Small Arsenic Removal System and their Most Frequent Maintenance Problems

    EPA Science Inventory

    This presentation will first summarize the capital and operating cost of treatment systems by type and size of the systems. The treatment systems include adsorptive media (AM) systems, iron removal (IR), coagulation/filtration (CF), ion exchange (IX) systems, and point-of-use rev...

  15. The operation of cost-effective on-site process for the bio-treatment of mixed municipal solid waste in rural areas.

    PubMed

    Wu, Duo; Zhang, Chunyan; Lü, Fan; Shao, Liming; He, Pinjing

    2014-06-01

    The application of on-site waste treatment significantly reduces the need for expensive waste collection and transportation in rural areas; hence, it is considered of fundamental importance in developing countries. In this study, the effects of in-field operation of two types of mini-scale on-site solid waste treatment facilities on de-centralized communities, one using mesophilic two-phase anaerobic digestion combined with composting (TPAD, 50 kg/d) and another using decentralized composting (DC, 0.6-2 t/d), were investigated. Source-separated collection was applied to provide organic waste for combined process, in which the amount of waste showed significant seasonal variation. The highest collection amount was 0.18 kg/capital day and 0.6 kg/household day. Both sites showed good performance after operating for more than 6 months, with peak waste reduction rates of 53.5% in TPAD process and 63.2% in DC process. Additionally, the windrow temperature exceeded 55 °C for >5 days, indicating that the composting products from both facilities were safe. These results were supported by 4 days aerobic static respiration rate tests. The emissions were low enough to avoid any impact on nearby communities (distance <100 m). Partial energy could be recovered by the combined process but with complicated operation. Hence, the choice of process must be considered in case separately. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of solids retention time on the bioavailability of organic carbon in anaerobically digested swine waste.

    PubMed

    Kinyua, Maureen N; Cunningham, Jeffrey; Ergas, Sarina J

    2014-06-01

    Anaerobic digestion (AD) can be used to stabilize and produce energy from livestock waste; however, digester effluents may require further treatment to remove nitrogen. This paper quantifies the effects of varying solids retention time (SRT) methane yield, volatile solids (VS) reduction and organic carbon bioavailability for denitrification during swine waste AD. Four bench-scale anaerobic digesters, with SRTs of 14, 21, 28 and 42 days, operated with swine waste feed. Effluent organic carbon bioavailability was measured using anoxic microcosms and respirometry. Excellent performance was observed for all four digesters, with >60% VS removal and CH4 yields between 0.1 and 0.3(m(3)CH4)/(kg VS added). Organic carbon in the centrate as an internal organic carbon source for denitrification supported maximum specific denitrification rates between 47 and 56(mg NO3(-)-N)/(g VSS h). The digester with the 21-day SRT had the highest CH4 yield and maximum specific denitrification rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal.

    PubMed

    Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-01-22

    In this work the morphological and surface properties of a biocomposite formulated with vineyard pruning waste entrapped in calcium alginate hydrogel beads were studied. The formulation of the calcium alginate hydrogel beads, containing vineyard pruning waste, was based on the capacity of this green adsorbent to remove dye compounds from wastewater, observing that in the optimum condition (1.25% of cellulosic residue, 2.2% of sodium alginate and 0.475 mol L(-1) CaCl2) the percentage of dyes was reduced up to 74.6%. At lower concentration of CaCl2, high-resolution optical images show that the elongation of the vineyard-alginate biocomposite decreased, whereas the compactness increased. Moreover, higher concentrations of cellulosic residue increased the biocomposite roundness in comparison with biocomposite without the cellulosic residue. Interferometric perfilometry analysis (Ra, Rq, Rz and Rt) revealed that high concentrations of CaCl2 increased the roughness of the of the calcium alginate hydrogel beads observing vesicles in the external surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. REMOVAL OF ARSENIC FROM DRINKING WATER SUPPLIES BY IRON REMOVAL PROCESS

    EPA Science Inventory

    This design manual is an in-depth presentation of the steps required to design and operate a water treatment plant for removal of arsenic in the As (V) form from drinking water using an iron removal process. The manual also discusses the capital and operating costs including many...

  19. Permanent Disposal of Nuclear Waste in Salt

    NASA Astrophysics Data System (ADS)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  20. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.

    PubMed

    Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye

    2016-01-15

    Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  2. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    PubMed Central

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  3. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    NASA Astrophysics Data System (ADS)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  4. Removal of lindane wastes by advanced electrochemical oxidation.

    PubMed

    Dominguez, Carmen M; Oturan, Nihal; Romero, Arturo; Santos, Aurora; Oturan, Mehmet A

    2018-07-01

    The effective removal of recalcitrant organochlorine pesticides including hexachlorocyclohexane (HCH) present in a real groundwater coming from a landfill of an old lindane (γ-HCH) factory was performed by electrochemical oxidation using a BDD anode and a carbon felt cathode. Groundwater (ΣHCHs = 0.42 mg L -1 , TOC 0  = 9 mg L -1 , pH 0  = 7, conductivity = 3.7 mS cm -1 ) was treated as received, achieving the complete depletion of the HCH isomers and a mineralization degree of 90% at 4 h electrolysis at constant current of 400 mA. Initial groundwater contains high chloride concentration (Cl 0 -  = 630 mg L -1 ) that is progressively decreased due to its oxidation to different oxychlorine species: Cl 2 , HClO, ClO - , ClO 2 - ClO 3 - and ClO 4 - some of them (Cl 2 , HClO, ClO - ) playing an important role in the oxidation of organic pollutants. The oxidation rate of chloride (and its oxidized intermediates) depends on the applied current value. Although some of the species generated from them are active oxidants, the presence of inorganic salts is detrimental to the efficiency of the electrochemical process when working at current densities above 100 mA due to the high consumption of hydroxyl radicals in wasting reactions. The initial organic carbon content is not crucial for the extension of the process but high organic loads are more profitable for cost effectiveness. The addition of a supporting electrolyte to the solution could be interesting since it increases the conductivity, reducing the cell potential and therefore, decreasing the energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Thiacrown polymers for removal of mercury from waste streams

    DOEpatents

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2002-01-01

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  6. Thiacrown polymers for removal of mercury from waste streams

    DOEpatents

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2004-02-24

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  7. Heavy equipment maintenance wastes and environmental management in the mining industry.

    PubMed

    Guerin, Turlough F

    2002-10-01

    Maintenance wastes, if not managed properly, represent significant environmental issues for mining operations. Petroleum hydrocarbon liquid wastes were studied at an Australian site and a review of the literature and technology vendors was carried out to identify oil/water separation technologies. Treatment technologies and practices for managing oily wastewater, used across the broader mining industry in the Asia-Pacific region, were also identified. Key findings from the study were: (1) primary treatment is required to remove grease oil contamination and to protect secondary oily wastewater treatment systems from being overloaded; (2) selection of an effective secondary treatment system is dependent on influent oil droplet size and concentration, suspended solids concentration, flow rates (and their variability), environmental conditions, maintenance schedules and effectiveness, treatment targets and costs; and (3) oily wastewater treatment systems, based on mechanical separation, are favoured over those that are chemically based, as they simplify operational requirements. Source reduction, through housekeeping, equipment and reagent modifications, and segregation and/or consolidation of hydrocarbon waste streams, minimizes treatment costs, safety and environmental impact.

  8. Fruit stones from industrial waste for the removal of lead ions from polluted water.

    PubMed

    Rashed, M N

    2006-08-01

    Lead, one of the earliest metals recognized and used by humans, has a long history of beneficial use. However, it is now recognized as toxic and as posing a widespread threat to humans and wildlife. Treatment of lead from polluted water and wastewater has received a great deal of attention. Adsorption is one of the most common technologies for the treatment of lead-polluted water. This technique was evaluated here, with the goal of identifying innovative, low-cost adsorbent. This study presents experiments undertaken to determine the suitable conditions for the use of peach and apricot stones, produced from food industries as solid waste, as adsorbents for the removal of lead from aqueous solution. Chemical stability of adsorbents, effect of pH, adsorbents dose, adsorption time and equilibrium concentration were studied. The results reveal that adsorption of lead ions onto peach stone was stronger than onto apricot stone up to 3.36% at 3 h adsorption time. Suitable equilibrium time for the adsorption was 3-5 h (% Pb adsorption 93% for apricot and 97.64% for peach). The effective adsorption range for pH in the range was 7-8. Application of Langmuir and Freundlich isotherm models show high adsorption maximum and binding energies for using these adsorbents for the removal of lead ions from contaminated water and wastewater.

  9. Removal of odor emitted from composting facilities using a porous ceramic biofilter.

    PubMed

    Park, S J; Nam, S L; Choi, E S

    2001-01-01

    A field experiment was conducted using a full-scale ceramic biofilter (approximately 150 m3/min) in order to determine the potential for biofiltration to remove malodorous gases from composting facilities. The main compounds found in malodorous gases were NH3 and H2S. These compounds were analyzed by a UV-spectrophotometer and gas chromatograph. The microbial carrier was a porous ceramic consisting of diatomite and fly ash. About 12 m3 of ceramic media inoculated with waste activated sludge were filled in the biofilter. The experimental conditions were space velocity of 500 hr(-1), empty bed residence time of 7.2 s, and linear velocity of 0.2 m/s. About 90 L/d of water were sprayed for the operation. The NH3 concentration in inlet gases ranged from 8 to 90 ppmv. The concentration of H2S ranged from 3.2-5.5 ppmv. The acclimation of the biofilter was slow, but more than 95% of removal efficiency was achieved after one month of operation. No nutrients were supplied to the biofilter. The pressure drop in the biofilter varied from 20-40 mmAq during the operation. The energy consumption of this biofilter was about 200 kW/d. It was estimated that the deodorization using this ceramic biofilter was successfully carried out to remove the odor emitted from composting facilities.

  10. Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) technology of mercury removal and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xiangdong; Liu, Jun; Fryxell, G.E.

    1997-09-01

    This paper explains the technology developed to produce Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) for mercury removal from aqueous wastewater and from organic wastes. The characteristics of SAMMS materials, including physical characteristics and mercury loading, and its application for mercury removal and stabilization are discussed. Binding kinetics and binding speciations are reported. Preliminary cost estimates are provided for producing SAMMS materials and for mercury removal from wastewater. The characteristics of SAMMS in mercury separation were studied at PNNL using simulated aqueous tank wastes and actual tritiated pump oil wastes from Savannah River Site; preliminary results are outlined. 47 refs., 16more » figs., 16 tabs.« less

  11. Removal of Pertechnetate-Related Oxyanions from Solution Using Functionalized Hierarchical Porous Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Elsaidi, Sameh K.; Aguila, Briana

    2016-10-20

    Efficient and cost-effective removal of radioactive pertechnetate anions from nuclear waste is a key challenge to mitigate long-term nuclear waste storage issues. Traditional materials such as resins and layered double hydroxides (LDHs) were evaluated for their pertechnetate or perrhenate (the non-radioactive surrogate) removal capacity, but there is room for improvement in terms of capacity, selectivity and kinetics. A series of functionalized hierarchical porous frameworks were evaluated for their perrhenate removal capacity in the presence of other competing anions.

  12. Delayed intraocular foreign body removal without endophthalmitis during Operations Iraqi Freedom and Enduring Freedom.

    PubMed

    Colyer, Marcus H; Weber, Eric D; Weichel, Eric D; Dick, John S B; Bower, Kraig S; Ward, Thomas P; Haller, Julia A

    2007-08-01

    To report the long-term follow-up results of intraocular foreign body (IOFB) removal at Walter Reed Army Medical Center during Operation Iraqi Freedom and Operation Enduring Freedom from February 2003 through November 2005 and to determine the prognostic factors for visual outcome in this patient population. Retrospective, noncomparative, interventional case series. Seventy-nine eyes of 70 United States military soldiers deployed in support of operations Iraqi Freedom and Enduring Freedom sustained IOFB injuries and subsequently were treated at the Walter Reed Army Medical Center with a minimum of 6 months of follow-up. The principal procedure performed was 20-gauge 3-port vitrectomy with IOFB removal through limbal or pars plana incision. Final visual acuity, rate of proliferative vitreoretinopathy, rate of endophthalmitis. Average patient age was 27 years, with an average of 331 days of postoperative follow-up. Average IOFB size was 3.7 mm (range, 0.1-20 mm). Median time to IOFB removal was 21 days (mean, 38 days; range, 2-661 days). Mean preoperative visual acuity was 20/400 (1.36 logarithm of mean angle of resolution [logMAR] units) and mean final visual acuity was 20/120 (0.75 logMAR). Of the patients, 53.4% achieved visual acuity of 20/40 or better, whereas 77.5% achieved visual acuity of better than 20/200. There were no cases of endophthalmitis (0/79 eyes; 95% confidence interval, 0%-3.1%), siderosis bulbi, or sympathetic ophthalmia. Among the eyes, 10.3% evolved to no light perception or had been enucleated by the 6-month follow-up visit. Poor visual outcome correlated with extensive intraocular injury (P<0.032). Seventeen of 79 eyes (21%) experienced proliferative vitreoretinopathy. Proliferative vitreoretinopathy correlated with poor initial vision (hand movements or worse; P = 0.035) and extensive intraocular injury (P<0.001). Timing of vitrectomy did not correlate with visual outcome. The most common systemic antibiotic administered was levofloxacin

  13. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  14. Removal of Historic Low-Level Radioactive Sediment from the Port Hope Harbour - 13314

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolberg, Mark; Case, Glenn; Ferguson Jones, Andrea

    2013-07-01

    At the Port Hope Harbour, located on the north shore of Lake Ontario, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the Harbour, currently limits redevelopment and revitalization opportunities. These waste materials contain radium-226, uranium, arsenic and other contaminants. Several other on-land locations within the community of Port Hope are also affected by the low-level radioactive waste management practices of the past. The Port Hope Project is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from themore » various sites in Port Hope into a new engineered above ground long-term waste management facility. The remediation of the estimated 120,000 m{sup 3} of contaminated sediments from the Port Hope Harbour is one of the more challenging components of the Port Hope Project. Following a thorough review of various options, the proposed method of contaminated sediment removal is by dredging. The sediment from the dredge will then be pumped as a sediment-water slurry mixture into geo-synthetic containment tubes for dewatering. Due to the hard substrate below the contaminated sediment, the challenge has been to set performance standards in terms of low residual surface concentrations that are attainable in an operationally efficient manner. (authors)« less

  15. Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water.

    PubMed

    Salama, Ahmed

    2018-01-01

    A novel superadsorbent anionic hydrogel was synthesized by grafting of poly (3-sulfopropyl methacrylate), P(SPMA), onto carboxymethyl cellulose (CMC). CMC-g-P(SPMA) superadsorbent hydrogel was applied as an efficient and sustainable adsorbent to remove methylene blue (MB) from waste water. Batch adsorption experiments showed that the solution pH had an obvious effect on the adsorption capacity with an optimal sorption pH at 6. The CMC-g-P(SPMA) hydrogel had rapid adsorption kinetics for MB and the adsorption equilibrium reached within 40min. The adsorption kinetics were more accurately described by pseudo second-order model and the Langmuir-fitted adsorption isotherms revealed a maximum capacity of 1675mg/g. The current anionic hydrogel is reusable as the adsorption capacity remained at 89% level after five adsorption-desorption cycles. CMC-g-P(SPMA) hydrogel was presented as a sustainable promising adsorbent with high adsorption capacity and good regenerability for effective cationic dyes removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water.

    PubMed

    Lessa, Emanuele F; Nunes, Matheus L; Fajardo, André R

    2018-06-01

    Waste coffee-grounds (WCG), a poorly explored source of biocompounds, were combined with chitosan (Cs) and poly(vinyl alcohol) (PVA) in order to obtain composites. Overall, WCG showed a good interaction with the polymeric matrix and good dispersibility up to 10 wt-%. At 5 wt-% WCG, the composite exhibited a noticeable enhancement (from 10 to 44%) of the adsorption of pharmaceuticals (metamizol (MET), acetylsalicylic acid (ASA), acetaminophen (ACE), and caffeine (CAF)) as compared to the pristine sample. The highest removal efficiency was registered at pH 6 and the removal followed the order ASA > CAF > ACE > MET. For all pharmaceuticals, the adsorption kinetics was found to follow the pseudo-second order model, while the adsorption mechanism was explained by the Freundlich isotherm. Reuse experiments indicated that the WCG-containing composite has an attractive cost-effectiveness since it presented a remarkable reusability in at least five consecutive adsorption/desorption cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation.

    PubMed

    Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2012-07-13

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general

  18. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developedmore » that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.« less

  19. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent.

    PubMed

    Naga Babu, A; Reddy, D Srinivasa; Kumar, G Suresh; Ravindhranath, K; Krishna Mohan, G V

    2018-07-15

    Water pollution by industrial and anthropogenic actives has become a serious threat to the environment. World Health Organization (WHO) has identified that lead and fluoride amid the environmental pollutants are most poisonous water contaminants with devastating impact on the human race. The present work proposes a study on economical bio-adsorbent based technique using exhausted coffee grounds in the removal of lead and fluoride contaminants from water. The exhausted coffee grounds gathered from industrial wastes have been acid-activated and examined for their adsorption capacity. The surface morphology and elemental characterization of pre-and-post adsorption operations by FESEM, EDX and FTIR spectral analysis confirmed the potential of the exhausted coffee ground as successful bio-sorbent. However, thermodynamic analysis confirmed the adsorption to be spontaneous physisorption with Langmuir mode of homogenous monolayer deposition. The kinetics of adsorption is well defined by pseudo second order model for both lead and fluoride. A significant quantity of lead and fluoride is removed from the synthetic contaminated water by the proposed bio-sorbent with the respective sorption capabilities of 61.6 mg/g and 9.05 mg/g. However, the developed bio-sorbent is also recyclable and is capable of removing the lead and fluoride from the domestic and industrial waste-water sources with an overall removal efficiency of about 90%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations

    PubMed Central

    Heaney, Christopher D.; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R.

    2015-01-01

    Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI] = 1.03, 5.94) and 2.30 times (95% CI = 0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI = 1.21, 6.80) and 3.36 (95% CI = 1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. PMID:25600418